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Abstract. The existence of nontrivial solutions for reversed variational in-
equalities involving p-Laplace operators is proved. The solutions are obtained

as limits of solutions of suitable penalizing problems.

1. Introduction. Several interesting problems can be described by variational in-
equalities in which the sign of the inequality is opposite with respect to the sign of
classical ones à la Lions–Stampacchia ([13]). This is the reason why they are called
reversed variational inequalities. For instance the bounce problem gives rise to a
reversed variational inequality (see [5], [7] and [14]), as well as the jumping problem
(see [15]).

In this paper we consider a non-Hilbert version of the notion of reversed varia-
tional inequality, introduced for the Hilbert case in [16], in connection with a fourth
order elliptic problem (see also [14]). In the present case the strategy used in [16] to
prove the existence of solutions cannot be adapted directly and needs some refined
tools of nonlinear analysis.

We study the existence of a solution u of the following problem:

(P )





∃u ∈ Kφ :=
{
u ∈ W 1,p

0 (Ω) : u ≥ φ
}

such that
∫

Ω

|Du|p−2Du ·D(v − u) dx− α

∫

Ω

|u|p−2u(v − u) dx ≤ 0

∀ v ∈ Kφ,

where Ω is a smooth bounded domain of RN , 1 ≤ N < p, φ is a measurable function,
with supΩ φ < 0, and α < λ1, where

λ1 = inf
u∈W

1,p
0 (Ω)

u 6=0

∫
Ω
|Du|p dx∫

Ω
|u|p dx

. (1.1)

By a solution we mean a function u ∈ Kφ which solves (P ) and which is not a
solution of the associated equation ∆pu + α|u|p−2u = 0 in Ω.

If p = 2 and N = 1 problem (P ) admits bounce trajectories as solutions (see [7],
[14] or [15]). In fact (P ) is not a “problem with obstacle” (described by classical
variational inequalities), but is a “bounce problem”.
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It is apparent that, taking v = u + ψ in (P ), with ψ ∈ D (Ω) and ψ ≥ 0, any
solution of (P ) is a nontrivial solution of the problem

{
−∆pu− α|u|p−2u ≤ 0 in Ω

u = 0 on ∂Ω,

where ∆p is the p–Laplace operator. Moreover, since α < λ1, any solution of (P )
is nonpositive, so that v = −u solves

−∆pv − αvp−1 ≥ 0, v ≥ 0 in Ω. (1.2)

As a corollary of a result of Serrin and Zou ([17, Theorem I′]), if Ω ⊂ RN ,
1 ≤ N < p, is an exterior domain and v solves (1.2) with α = 1, then v ≡ 0.
Moreover for the problem

−∆mv − vp−1 ≥ 0, v ≥ 0 in Ω (1.3)

they prove that:

• if Ω is an exterior domain, inequality (1.3) has a nontrivial solution if and
only if m ∈ (1, N) and p > m(N−1)

N−m ([17, Corollary I]);
• if Ω = RN and m ∈ (1, N), then (1.3) has a nontrivial solution if and only if

p > m(N−1)
N−m ([17, Corollary II (iii)]).

Having in mind these results, we want to show that in bounded domains Ω
problem (P ), and so inequality (1.2), admits bounded solutions.

As a consequence of the previous discussion, it is clear that φ ≤ 0 is a necessary
condition for existence of solutions to (P ) when α < λ1. On the other hand, the
assumptions α < λ1 and supΩ φ < 0 are essential in all the proofs of the paper,
while the case α ≥ λ1 is still open. Indeed, if α ≥ λ1, the geometrical structures
of fω change and it seems hard to find critical points of fω. For example, the
Palais-Smale condition (see Proposition 2.4) might not hold: in fact, if α = λ1 and
un = tne1, where tn → ∞ and e1 is the eigenvalue associated to λ1 (see the proof
of Theorem 2.8), un has no converging subsequences.

Due to the lack of a general theory for ”reversed” inequalities, as Stampacchia’s
Lemma for linear (classical) variational inequalities, a natural way to face problem
(P ) is to study the following family of approximating problems:

(Pω)

{
∆pu + α|u|p−2u− ω((u− φ)−)k−1 = 0 in Ω,

u = 0 on ∂Ω,

where ω is a positive parameter approaching +∞, k > p and k is subcritical (see
Section 2). First the existence of a nontrivial solution uω of (Pω) is established for
each ω and for each N ≥ 1 and then we show that the family {uω |ω ≥ ω0 > 0}
of such nontrivial solutions uω is bounded in W 1,p

0 (Ω). Finally, when p > N ,
any limit u of sequences of solutions uωn

of (Pωn
) satisfies the reversed variational

inequality (P ). Moreover, the crucial part of the proof is that any solution u of
(P ) constructed by the limiting process satisfies ∆pu + α|u|p−2u = µ for a suitable
nontrivial nonnegative Radon measure µ depending on u.
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2. The Approximating Problems. Let Ω be a bounded and smooth domain of
RN , N ≥ 1, α < λ1, ω ≥ ω0 > 0, 1 < p < k (and k < pN/(N − p) if p < N).
Assume φ is a measurable function defined in Ω with supΩ φ < 0 and consider the
following problems:

(Pω)

{
∆pu + α|u|p−2u− ω((u− φ)−)k−1 = 0 in Ω,

u = 0 on ∂Ω,

where ∆pu = div(|Du|p−2Du), u− = max{−u, 0} and u ∈ W 1,p
0 (Ω). We endow

W 1,p
0 (Ω) with the standard norm ‖u‖ =

(∫
Ω
|Du|p dx

)1/p and we use the standard
notation p′ to denote the real number such that 1

p + 1
p′ = 1.

Consider fω : W 1,p
0 (Ω) −→ R defined as follows:

fω(u) =
1
p

∫

Ω

|Du|p dx− α

p

∫

Ω

|u|p dx− ω

k

∫

Ω

((u− φ)−)k dx.

We observe that fω is a C1 functional on W 1,p
0 (Ω) and that its critical points are

solutions of (Pω).
Note that, in general, the function g(x, s) = α|s|p−2s − ω((s − φ(x))−)k−1 does

not satisfy either the classical Ambrosetti-Rabinowitz condition (see [1]) or the
generalized Ambrosetti-Rabinowitz condition introduced in [9] and [10], namely
∃Θ and ∃ s0 > 0 such that

0 < ΘG(x, s) ≤ sg(x, s), ∀ s, |s| ≥ s0, (2.1)

where G(x, s) =
∫ s

0
g(x, σ) dσ and either Θ > 2 ([1]) or Θ > p ([9],[10]).

In fact equation (2.1) reads as

0 < Θ
α

p
|s|p + Θ

ω

k
((s− φ(x))−)k ≤ α|s|p − ω((s− φ(x))−)k−1s.

Of course, if α > 0 and Θ > p, the last inequality is not satisfied for any s > 0, and
it is not satisfied for any s > 0 when α ≤ 0, whatever Θ > 0 is. See also [11] and
[12] for other classes of nonlinearities.

Nevertheless we still apply the Mountain Pass Theorem to get a nontrivial critical
point uω for fω, i.e. a solution of problem (Pω).

We first recall the following definition.

Definition 2.1. Let c ∈ R. We say that a C1 functional f : W 1,p
0 (Ω) −→ R

satisfies the Palais-Smale condition at level c, or that (PS)c holds, if every sequence
(un)n in W 1,p

0 (Ω) such that f(un) → c and f ′(un) → 0, has a strongly converging
subsequence.

Sequences (un)n such that f(un) → c and f ′(un) → 0 are called Palais-Smale
sequences at level c, or (PS)c–sequences.

As in the Hilbert case, in order to prove (PS)c, it is sufficient to check that a
Palais-Smale sequence has a bounded subsequence. In fact, one can show that the
following property holds (see [4]).

Proposition 2.2 ((S+) property). Let Φ : W 1,p
0 (Ω) −→ R be defined as Φ(u) =

1
p‖u‖p

W 1,p
0 (Ω)

. If a sequence (un)n weakly converges in W 1,p
0 (Ω) to u and

lim sup
n→∞

< Φ′(un), un − u > ≤ 0,

then un → u strongly in W 1,p
0 (Ω).
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Thus, in order to prove that fω satisfies (PS)c, we first prove that (PS)c holds
if any (PS)c–sequence has a bounded subsequence, and then we prove that any
(PS)c–sequence is bounded.

Lemma 2.3. Let c ∈ R and let (un)n be a (PS)c–sequence for fω which has a
bounded subsequence. Then (un)n admits a strongly convergent subsequence.

Proof. The proof reminds the proof given in [9] for some nonlinear problems in
presence of the p–Laplace operator, under the generalized Ambrosetti Rabinowitz
condition.

We recall that W 1,p
0 (Ω) ↪→ Lq(Ω) compactly ∀ q < p∗, where p∗ = pN

N−p if p < N

and p∗ = ∞ if p ≥ N .
Therefore

∫ |un|p−2un(un − u) → 0 and
∫

((un − φ)−)k−1(un − u) → 0. Then we
get

< Φ′(un), un − u >=
∫

Ω

|Dun|p−2Dun · (Dun −Du) dx = f ′ω(un)(un − u)

+α

∫

Ω

|un|p−2un(un − u) dx− ω

∫

Ω

((un − φ)−)k−1(un − u) dx → 0.

By the (S+) property, we conclude that un → u strongly in W 1,p
0 (Ω).

Proposition 2.4 (Palais-Smale). Suppose supΩ φ < 0 and α < λ1. Then fω

satisfies (PS)c for every c ∈ R.

Proof. Let un be a (PS)c sequence. By the previous Lemma, it is enough to show
that (un)n has a bounded subsequence. Thus suppose by contradiction that ‖un‖
is unbounded. Then we can suppose that there exists v in W 1,p

0 (Ω) such that
vn = un/‖un‖ weakly converges to the function v in W 1,p

0 (Ω).
Of course f ′ω(un)(un)

‖un‖ → 0, where

f ′ω(un)(un)
‖un‖ =

1
‖un‖

{∫

Ω

|Dun|p dx− α

∫

Ω

|un|p dx

+ω

∫

Ω

((un − φ)−)k−1un dx

}
=

1
‖un‖ {pfω(un)

+
(p

k
− 1

)
ω

∫

Ω

((un − φ)−)k dx + ω

∫

Ω

((un − φ)−)k−1φdx

}
.

Passing to the limit we get, since p < k and φ < 0,

lim
n→∞

∫
Ω
((un − φ)−)k dx

‖un‖ = 0 and lim
n→∞

∫
Ω
((un − φ)−)k−1φdx

‖un‖ = 0. (2.2)

Since f ′ω(un)(un)
‖un‖p → 0, one has

1− α

∫

Ω

|vn|p dx +
ω

∫
Ω
((un − φ)−)k−1un dx

‖un‖p
→ 1− α

∫

Ω

|v|p dx = 0.

In this way we get an immediate contradiction if α ≤ 0. If α > 0, we would have

0 = 1− α

∫

Ω

|v|p dx ≥ 1− α

λ1

∫

Ω

|Dv|p dx ≥ 1− α

λ1
> 0.
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We now observe that (Pω) admits the trivial solution for every α and ω. We now
want to prove the existence of a particular nontrivial solution, namely a solution
which is below φ on a set of positive measure.

Definition 2.5. We say that u in W 1,p
0 (Ω) is a forcing solution of problem (Pω) if

it is a solution such that meas({x ∈ Ω | (u(x)− φ(x))− 6= 0}) > 0.

The reason for this definition lies in the fact that if uωn is a solution of (Pωn) and
uωn

⇀ u, then u ≥ φ (see Lemma 3.2) and if, moreover, uωn
is a forcing solution of

(Pωn
), uωn

→ u uniformly and φ is continuous, then the coincidence set, or “contact
set”,

{
x ∈ Ω

∣∣ u(x) = φ(x)
}

is not empty (see Proposition 3.3), so u is “forced” by
the sequence uωn to be over φ and to touch it somewhere. In this way φ works as
a bounce wall.

Remark 2.6. A solution u of (Pω) is a forcing solution if and only if fω(u) > 0.
In fact

0 = f ′ω(u)(u) = pfω(u) +
(p

k
− 1

)
ω

∫

Ω

((u− φ)−)k dx + ω

∫

Ω

((uω − φ)−)k−1φdx.

An application of Sobolev’s inequality and the fact φ < 0 give the following
lemma.

Lemma 2.7. Suppose supΩ φ < 0. Then
∫

Ω

((u− φ)−)k dx = o(‖u‖k)

as u → 0.

Theorem 2.8 (Existence Theorem). Let α < λ1 and supΩ φ < 0. Then for every
ω there exists a forcing solution uω of problem (Pω) such that sup

ω≥ω0

fω(uω) < +∞.

Proof. By Lemma 2.7, given ε < 1− α/λ1, there exists ρ > 0 such that

inf
‖u‖=ρ

fω(u) ≥ 1
p

(
1− ε− α

λ1

)
ρp > 0.

Let e1 be the function which minimizes the Rayleigh quotient of (1.1). We can
suppose e1 > 0 in Ω (see [2]).

But fω(0) = 0 and lim fω(−te1) = −∞. Therefore there exists tω > 0 such
that fω(−tωe1) < 0. By the Mountain Pass Theorem ([1]) there exists a nontrivial
critical point uω of fω for every ω. Moreover the following estimates hold:

ρp

p

(
1− ε− α

λ1

)
≤ fω(uω) ≤ sup

t∈[0,tω ]

fω(−te1) ≤ sup
t≥0

fω0(−te1) < +∞

for every ω ≥ ω0.

Remark 2.9. If p > N we can take ε = 0 in the inequalities above. In fact in this
case W 1,p

0 (Ω) ↪→ C0
0 (Ω), so there exists ρ such that, if ρ ≤ ρ and ‖u‖ ≤ ρ, then

u− φ ≥ 0 (since supΩ φ < 0). Moreover in such a case lim inf
ω→+∞

fω(uω) > 0.
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3. Bounce Equation. The aim of this section is to study the problem obtained
from (Pω) when ω tends to +∞. We will essentially follow the approach of [16],
but now there are some complications due to the Banach setting. In particular, in
order to prove the following Theorem 3.4, we will need a theorem by Boccardo and
Murat (see [3]).

From now on we will consider sequences of real positive numbers (ωn)n such that
ωn → +∞ as n → ∞ and we will investigate the asymptotic behavior of forcing
solutions (uωn)n of (Pωn)n as n goes to infinity. For the sake of simplicity we will
write ω in place of ωn and ω → +∞ in place of “ωn → +∞ as n →∞”.

Theorem 3.1. If α < λ1, supΩ φ < 0 and uω is a solution of (Pω) such that
sup

ω
fω(uω) < +∞, then

a) sup
ω

ω

∫

Ω

((uω − φ)−)k−1 dx < +∞;

b) (uω)ω is bounded.

Proof. Suppose by contradiction that there exists a subsequence, which we still
denote by (uω)ω, such that ‖uω‖ diverges. Then, up to a subsequence, there exists
v in W 1,p

0 (Ω) such that vω = uω/‖uω‖ ⇀ v in W 1,p
0 (Ω), strongly in Lp(Ω) and a.e.

in Ω. Observe that f ′ω(uω)(uω) = 0, that is∫

Ω

|Duω|p dx− α

∫

Ω

|uω|p dx + ω

∫

Ω

((uω − φ)−)k−1uω dx = pfω(uω)

+
(p

k
− 1

)
ω

∫

Ω

((uω − φ)−)k dx + ω

∫

Ω

((uω − φ)−)k−1φdx = 0.

(3.1)

Since supΩ φ < 0, dividing by ‖uω‖ and passing to the limit, we get

lim
ω→+∞

ω
∫
Ω
((uω − φ)−)k dx

‖uω‖ = 0 and lim
ω→+∞

ω
∫
Ω
((uω − φ)−)k−1φdx

‖uω‖ = 0. (3.2)

In this way, since
f ′(uω)(uω)
‖uω‖p

= 0, we get

1− α

∫

Ω

|vω|p dx +
ω

∫
Ω
((uω − φ)−)k−1uω dx

‖uω‖p
→ 1− α

∫

Ω

|v|p dx = 0,

and one concludes as at the end of Proposition 2.4.
It is now easy to prove a) from (3.1).

It is also easy to prove the following lemma.

Lemma 3.2. If uω solves (Pω) and uω ⇀ u in W 1,p
0 (Ω), then u− φ ≥ 0 a.e. in Ω.

It is readily seen that the following Proposition holds.

Proposition 3.3. Suppose φ is continuous, uω is a forcing solution of (Pω) and
u ∈ W 1,p

0 (Ω) is such that uω converges to u uniformly in Ω. Then {x ∈ Ω |u(x) =
φ(x)} 6= ∅.

If uω is a forcing solution of (Pω), let us define Aω as (a set equivalent to)

Aω =
{
x ∈ Ω

∣∣ uω(x) < φ(x)
}

,

and

A =
{
x ∈ Ω

∣∣ ∃ a ngbrhd U of x,∃ω0 s. t. ∀ω ≥ ω0 m(U ∩ Aω) = 0
}

.
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We observe that A is an open subset of Ω, and so its complementary set

B =
{
x ∈ Ω

∣∣ ∀ ngbrhd U of x,∀ω0, ∃ω ≥ ω0 s. t. m(U ∩ Aω) > 0
}

is closed. We also remark that B is, in some sense, the set of points in which u
touches φ, or the contact set; actually, if u and φ are continuous, B is the set of
points x’s of Ω where u(x) = φ(x).

Theorem 3.4. Suppose (uω)ω is a sequence of solutions of (Pω)ω and uω ⇀ u in
W 1,p

0 (Ω). Then there exists a nonnegative Radon measure µ such that
{

∆pu + α|u|p−2u = µ in Ω,

u = 0 on ∂Ω

in the sense of distributions.
Such a measure µ is supported in B, that is µ(A) = 0.
Moreover, if p > N , supφ < 0 and B =

{
x ∈ Ω

∣∣ u(x) = φ(x)
} 6= ∅ (for example

if uω is a forcing solution ∀ω) and φ is continuous, then µ(B) > 0.

Proof. Consider the following linear and continuous functionals on W 1,p
0 (Ω):

Lω(v) = −
∫

Ω

|Duω|p−2Duω ·Dv dx + α

∫

Ω

|uω|p−2uωv dx.

We want to show that ∀ v in W 1,p
0 (Ω), Lω(v) converges to L(v) defined as

L(v) = −
∫

Ω

|Du|p−2Du ·Dv dx + α

∫

Ω

|u|p−2uv dx.

To this aim we apply the following theorem by Boccardo and Murat (see [3]).

Theorem 3.5 (Boccardo-Murat). Suppose 1 < p < ∞, vω ⇀ v weakly in W 1,p(Ω),
strongly in Lp

loc(Ω) and a.e. in Ω, hω → h in W−1,p′(Ω) and gω weakly – ∗ converges
to g in the space M(Ω) of Radon measures. If

−∆pvω = hω + gω in D ′(Ω),

then
Dvω → Dv strongly in Lq(Ω,RN ) for any q < p.

Moreover u solves
−∆pv = h + g in D ′(Ω).

Actually the authors proved this theorem for a more general operator of Leray-
Lions type, but for our goals this version is enough.

In the problem under investigation, it results hω := α|uω|p−2uω and gω :=
−ω((uω − φ)−)k−1, which weakly– ∗ converges to a suitable measure µ in M(Ω).

The rest of the proof of Theorem 3.4 can be made following the proof of Theorems
7.1 and 8.7 in [16]. Anyway, for the convenience of the reader, we give a sketch of
it.

If x0 ∈ A, there exists a neighborhood U of x0 and ω0 such that uω ≥ φ in U for
any ω ≥ ω0. Take ψ ∈ C∞C (U); then

∫

Ω

|Duω|p−2Duω ·Dψ dx− α

∫

Ω

|uω|p−2uωψ dx = 0,

and passing to the limit, we get that x0 doesn’t belong to the support of µ.
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Now assume p > N and B 6= ∅. Assume by contradiction that µ ≡ 0. Then
u would solve ∆pu + α|u|p−2u = 0, and since α < λ1, we would have u ≡ 0. But
B = {x ∈ Ω : u(x) = φ(x)} 6= ∅ and a contradiction arises, since supΩ φ < 0.

We now want to show that the limit of a weakly convergent sequence has some
finer properties.

Proposition 3.6. If p > N , supΩ φ < 0 and uω is a solution of (Pω) such that
uω ⇀ u in W 1,p

0 (Ω), then uω → u strongly in W 1,p
0 (Ω).

Proof. We have f ′ω(uω)(u− uω) = 0, that is
∫

Ω

|Duω|p−2Duω ·D(u− uω) dx− α

∫

Ω

|uω|p−2uω(u− uω) dx

+ω

∫

Ω

((uω − φ)−)k−1(u− uω) dx = 0.
(3.3)

But p > N , so un → u uniformly and then, by a) of Theorem 3.1,

ω

∫

Ω

((uω − φ)−)k−1(u− uω) dx −→ 0.

Then (3.3) gives ∫

Ω

|Duω|p−2Duω ·D(u− uω) dx → 0,

and then uω → u strongly in W 1,p
0 (Ω) by the (S+) property.

Theorem 3.7. Assume p > N , supΩ φ < 0 and uω is a solution of (Pω) which
(weakly) converges to u in W 1,p

0 (Ω). Then ∀ v ∈ Kφ

∫

Ω

|Du|p−2Du ·D(v − u) dx− α

∫

Ω

|u|p−2u(v − u) dx ≤ 0. (3.4)

Proof. Let v belong to W 1,p
0 (Ω) and evaluate f ′ω(uω)(v − uω). We get

∫

Ω

|Duω|p−2Duω ·D(v − uω) dx− α

∫

Ω

|uω|p−2uω(v − uω) dx

+ ω

∫

Ω

((uω − φ)−)k−1(v − uω) dx = 0.

But ((uω − φ)−)k−1(v − uω) = ((uω − φ)−)k−1(v − φ) + ((uω − φ)−)k ≥ 0.
The thesis follows from Proposition 3.6.

Theorem 3.8 (Reversed Variational Inequality). Suppose that p > N , supΩ φ < 0
and α < λ1. Then there exists at least one nontrivial solution of problem (P ).

Proof. Theorem 2.8 + Theorem 3.1 + Lemma 3.2 + Proposition 3.3 + Theorem
3.4 + Theorem 3.7.

Remark 3.9. We remark again that (3.4) has quite a different nature with respect to
classical variational inequalities (see [13]): in the latter case we would have −∆p +
l.o.t. ≥ 0 in D ′(Ω), while in the former case we get −∆p + l.o.t. ≤ 0 in D ′(Ω).
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We also note that Theorem 3.7 states that the u is an ”upper critical point” (see
for example [6] or [8]) for the functional f defined on W 1,p

0 (Ω) as

f(u) =





1
p

∫

Ω

|Du|p dx− α

p

∫

Ω

|u|p dx if u ∈ Kφ,

−∞ otherwise,

and so Theorem 3.8 shows the existence of at least one nontrivial critical point of
f which belongs to ∂Kφ. Such a result seems quite interesting: in fact f is upper
semicontinuous and it is quite difficult to find critical points for it directly, since it
is not clear how to define curves of steepest descent for such a functional.

Acknowledgements. The author wishes to thank the referee for the helpful com-
ments, which improved the presentation of the paper.
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