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ABSTRACT. The existence of nontrivial solutions for reversed variational in-
equalities involving p-Laplace operators is proved. The solutions are obtained
as limits of solutions of suitable penalizing problems.

1. Introduction. Several interesting problems can be described by variational in-
equalities in which the sign of the inequality is opposite with respect to the sign of
classical ones ¢ la Lions-Stampacchia ([13]). This is the reason why they are called
reversed variational inequalities. For instance the bounce problem gives rise to a
reversed variational inequality (see [5], [7] and [14]), as well as the jumping problem
(see [15]).

In this paper we consider a non-Hilbert version of the notion of reversed varia-
tional inequality, introduced for the Hilbert case in [16], in connection with a fourth
order elliptic problem (see also [14]). In the present case the strategy used in [16] to
prove the existence of solutions cannot be adapted directly and needs some refined
tools of nonlinear analysis.

We study the existence of a solution u of the following problem:

Jue Ky:={uc WP (Q) :u> ¢} such that
(P) / |DulP~2Du - D(v — u) dx — a/ |u[P~?u(v — u) dr < 0
Q Q
Vo e K¢,

where (2 is a smooth bounded domain of RV, 1 < N < p, ¢ is a measurable function,
with supg ¢ < 0, and a < Ay, where

DulPd
M= g JalPulde (1.1)
uwew P () fQ ulP dx
u#0

By a solution we mean a function u € K, which solves (P) and which is not a
solution of the associated equation Ayu + alu/P~2u =0 in Q.

If p=2 and N = 1 problem (P) admits bounce trajectories as solutions (see [7],
[14] or [15]). In fact (P) is not a “problem with obstacle” (described by classical
variational inequalities), but is a “bounce problem”.
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It is apparent that, taking v = u + ¢ in (P), with ¢ € D(Q) and ¥ > 0, any
solution of (P) is a nontrivial solution of the problem
—Apu —alulP2u <0 inQ
u=20 on 0},

where A, is the p—Laplace operator. Moreover, since oz < A1, any solution of (P)
is nonpositive, so that v = —u solves

—App—av? ' >0, v>0 inQ. (1.2)

As a corollary of a result of Serrin and Zou ([17, Theorem I']), if @ c RY,
1 < N < p, is an exterior domain and v solves (1.2) with @ = 1, then v = 0.
Moreover for the problem

—“Apv—ovP"1>0, v>0 inQ (1.3)

they prove that:

e if Q is an exterior domain, inequality (1.3) has a nontrivial solution if and
only if m € (1, N) and p > "N=1 ([17, Corollary 1));
o if O =RY and m € (1, N), then (1.3) has a nontrivial solution if and only if

P> m]sjf\_’:nl) ([17, Corollary IT (iii)]).

Having in mind these results, we want to show that in bounded domains {2
problem (P), and so inequality (1.2), admits bounded solutions.

As a consequence of the previous discussion, it is clear that ¢ < 0 is a necessary
condition for existence of solutions to (P) when a < A;. On the other hand, the
assumptions o < A; and supg ¢ < 0 are essential in all the proofs of the paper,
while the case a > \p is still open. Indeed, if & > A1, the geometrical structures
of f, change and it seems hard to find critical points of f,. For example, the
Palais-Smale condition (see Proposition 2.4) might not hold: in fact, if « = A\; and
Up = tpey, where t, — oo and e; is the eigenvalue associated to A; (see the proof
of Theorem 2.8), u,, has no converging subsequences.

Due to the lack of a general theory for "reversed” inequalities, as Stampacchia’s
Lemma for linear (classical) variational inequalities, a natural way to face problem
(P) is to study the following family of approximating problems:

() { Apu+ alulP2u —w((u—¢) )1 =0 inQ,

u=20 on 012,

where w is a positive parameter approaching 400, k > p and k is subcritical (see
Section 2). First the existence of a nontrivial solution u,, of (P,) is established for
each w and for each N > 1 and then we show that the family {u, |w > wy > 0}
of such nontrivial solutions wu, is bounded in VVO1 P(Q). Finally, when p > N,
any limit u of sequences of solutions u,,, of (P, ) satisfies the reversed variational
inequality (P). Moreover, the crucial part of the proof is that any solution u of
(P) constructed by the limiting process satisfies A,u + a|u|P~2u = u for a suitable
nontrivial nonnegative Radon measure p depending on w.
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2. The Approximating Problems. Let €2 be a bounded and smooth domain of
RY N>1,a<A,w>w >0,1<p<k(and k < pN/(N —p) if p < N).
Assume ¢ is a measurable function defined in 2 with supg ¢ < 0 and consider the
following problems:

() Apu+ alulP?u—w((u—¢)7)F =0 inQ,
v u=20 on 012,

where Ayu = div(|DulP~2Du), v~ = max{—u,0} and u € W, ?(Q). We endow
WP (€) with the standard norm ||ul| = (Jo [ Dul? da:)l/p and we use the standard
notation p’ to denote the real number such that % +4 =1

p
Consider f,, : Wy (Q) — R defined as follows:

fow = [ pupde = [ jupds =% [ (=)o

We observe that f,, is a C functional on Wy (Q) and that its critical points are
solutions of (P,).

Note that, in general, the function g(z,s) = a|s|P~2s — w((s — ¢(x))7)¥~1 does
not satisfy either the classical Ambrosetti-Rabinowitz condition (see [1]) or the
generalized Ambrosetti-Rabinowitz condition introduced in [9] and [10], namely
30 and Jsg > 0 such that

0<OG(x,s) <sg(x,s), Vs, |s|> so, (2.1)

where G(z,s) = [, g(z,0) do and either © > 2 ([1]) or © > p ([9],[10]).
In fact equation (2.1) reads as

0< @;\SV +0, (s~ ¢(2)) )" < alslP — w((s — o))" s,

Of course, if @ > 0 and © > p, the last inequality is not satisfied for any s > 0, and
it is not satisfied for any s > 0 when a < 0, whatever © > 0 is. See also [11] and
[12] for other classes of nonlinearities.

Nevertheless we still apply the Mountain Pass Theorem to get a nontrivial critical
point u, for f,, i.e. a solution of problem (P,).

We first recall the following definition.

DEFINITION 2.1. Let ¢ € R. We say that a C' functional f : Wol’p(Q) — R
satisfies the Palais-Smale condition at level ¢, or that (PS). holds, if every sequence
(un)n in Wy (Q) such that f(u,) — ¢ and f'(u,) — 0, has a strongly converging
subsequence.

Sequences (un)n such that f(u,) — ¢ and f'(u,) — 0 are called Palais-Smale
sequences at level ¢, or (PS).—sequences.

As in the Hilbert case, in order to prove (PS)., it is sufficient to check that a
Palais-Smale sequence has a bounded subsequence. In fact, one can show that the
following property holds (see [4]).

PROPOSITION 2.2 ((Sy) property). Let & : Wy *(Q) — R be defined as ®(u) =

%||u||%3,p(ﬂ). If a sequence (uy), weakly converges in Wy *(Q) to u and

limsup < &' (uy), un, —u > <0,

n—oo

then u,, — u strongly in Wol’p(Q).
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Thus, in order to prove that f, satisfies (PS)., we first prove that (PS). holds
if any (PS).—sequence has a bounded subsequence, and then we prove that any
(PS).—sequence is bounded.

LEMMA 2.3. Let ¢ € R and let (up)n be a (PS).—sequence for f, which has a
bounded subsequence. Then (un), admits a strongly convergent subsequence.

Proof. The proof reminds the proof given in [9] for some nonlinear problems in
presence of the p—Laplace operator, under the generalized Ambrosetti Rabinowitz
condition.

We recall that Wol’p(Q) — L9(Q) compactly V¢ < p*, where p* = % ifp< N
and p* =0 if p > N.

Therefore [ |u,|P~?up, (1, —u) — 0 and [((u, — @)~ ) 1 (u,, —u) — 0. Then we
get

w

< D (up), up —u >= / | Dy, [P~2 Duy, - (Duy, — Du) dz = f/ (un)(t, — )
)

—l—a/ U [Py (U, — 1) d2z — w / ((un — &))" Hup — u) dz — 0.
Q Q
By the (S.) property, we conclude that u, — u strongly in Wol’p(Q). O

PROPOSITION 2.4 (Palais-Smale). Suppose supn ¢ < 0 and o < Ay. Then f,
satisfies (PS). for every c € R.

Proof. Let u, be a (PS). sequence. By the previous Lemma, it is enough to show
that (up), has a bounded subsequence. Thus suppose by contradiction that ||u,,||
is unbounded. Then we can suppose that there exists v in VVO1 P(Q) such that

Up, = Up /||un | weakly converges to the function v in WyP(Q).
Jo(un)(un)

llen ]

' 1
.fw(m)‘(lun) — {/ | Dy, |P dx — a/ |un|P da
" [[2n | Q Q

ﬂ,/ﬂ((un — ) ), da:} = {pfu(un)

|l

Of course — 0, where

p — Nk—
+(E—1)w/((un—¢) )kdx+w/((un—¢) T 1¢dx}.
Q Q
Passing to the limit we get, since p < k and ¢ < 0,

fQ((un —qb)_)kdm fQ((un _¢)_)k_1¢dx

lim =0 and lim =0. (2.2)
n— oo ||U7,|| n—oo ||U7IH
Since % — 0, one has
w Up — @) )1, dr
1—a/|vn|pda:+ Jo(( ¢)p) —>1—0¢/\U|pdx:O.
Q (I Q

In this way we get an immediate contradiction if a < 0. If a > 0, we would have

O=1—a/|v\pdx21—g/|Dv\pdx21—g>0.
Q A Ja A
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We now observe that (P,,) admits the trivial solution for every o and w. We now
want to prove the existence of a particular nontrivial solution, namely a solution
which is below ¢ on a set of positive measure.

DEFINITION 2.5. We say that u in Wol’p(ﬂ) is a forcing solution of problem (P,) if
it is a solution such that meas({z € Q| (u(z) — ¢(z))~ # 0}) > 0.

The reason for this definition lies in the fact that if u,, is a solution of (P, ) and
Uy, — u, then u > ¢ (see Lemma 3.2) and if, moreover, u,,, is a forcing solution of
(P,,), U, — wuniformly and ¢ is continuous, then the coincidence set, or “contact
set”, {x €N | u(x) = gb(x)} is not empty (see Proposition 3.3), so u is “forced” by
the sequence u,,, to be over ¢ and to touch it somewhere. In this way ¢ works as
a bounce wall.

REMARK 2.6. A solution u of (P,) is a forcing solution if and only if f,(u) > 0.
In fact

0= fu(w)w = phtw) + (2= 1) [

Q

((u—¢)7)F do +w / (s — &)V da.

Q

An application of Sobolev’s inequality and the fact ¢ < 0 give the following
lemma.

LEMMA 2.7. Suppose supg ¢ < 0. Then

/ (- ¢))* dz = of|Jul*)
Q
as u — 0.

THEOREM 2.8 (Existence Theorem). Let ov < A1 and supg ¢ < 0. Then for every
w there exists a forcing solution u,, of problem (P,,) such that sup f,(u,) < +oo.

w>wo

Proof. By Lemma 2.7, given € < 1 — a/Aq, there exists p > 0 such that

. 1 o »
uiﬂipf“’(u) =5 (1 : M) o

Let e; be the function which minimizes the Rayleigh quotient of (1.1). We can
suppose e; > 0 in Q (see [2]).

But f,(0) = 0 and lim f,(—te;) = —oo. Therefore there exists ¢, > 0 such
that f,(—t.e1) < 0. By the Mountain Pass Theorem ([1]) there exists a nontrivial
critical point u,, of f, for every w. Moreover the following estimates hold:

P «Q
P <1 —e— > < foluy) < sup  fu(—ter) < sup fo,,(—ter) < +oo
tel0,t,] t>0

for every w > wy. O
REMARK 2.9. If p > N we can take € = 0 in the inequalities above. In fact in this

case WP (Q) — C(Q), so there exists p such that, if p < p and ||u| < p, then
u—¢ >0 (since supg ¢ < 0). Moreover in such a case liminf fuw(uy) > 0.
wW—1T0C0
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3. Bounce Equation. The aim of this section is to study the problem obtained
from (P,) when w tends to +o0o. We will essentially follow the approach of [16],
but now there are some complications due to the Banach setting. In particular, in
order to prove the following Theorem 3.4, we will need a theorem by Boccardo and
Murat (see [3]).

From now on we will consider sequences of real positive numbers (wy,),, such that
wp — +00 as n — oo and we will investigate the asymptotic behavior of forcing
solutions (uy,, )n of (P, )n as n goes to infinity. For the sake of simplicity we will
write w in place of w, and w — +oo in place of “w, — 400 as n — co0”.

THEOREM 3.1. If @ < Ay, supg ¢ < 0 and u, s a solution of (P,) such that
sup fo(uw) < +00, then
w

a) sup w/ﬂ((uw — @) )t dr < +oo;

b) (uy)w is bounded.

Proof. Suppose by contradiction that there exists a subsequence, which we still
denote by (uy,)w, such that ||u,|| diverges. Then, up to a subsequence, there exists
v in Wy P(Q) such that v, = uy/|uy|| — v in WyP(Q2), strongly in LP() and a.c.
in Q. Observe that f/ (uy)(u,) =0, that is

/|Duw|pda:—oz/ |uw\pdx+w/(( )y da = pfa(u)

(3.1)
p —\k —\k—1 _
(21w [ (=9 drtw [ ((w,—0)7) odz=0.
Q Q
Since supg, ¢ < 0, dividing by ||u, | and passing to the limit, we get
_ — kd _ —\k—1 d
i Cdo(e =) e, el =9 ) T ede g
w—+oo 1wl w—+oo [[uw|
!/
In this way, since M =0, we get
[Jue [[P
_ —\k—1 d
1—a/vw|pdx+wf9((uw ¢) ) x—>1—a/|v|”dm=0,
Q llu P Q
and one concludes as at the end of Proposition 2.4.
It is now easy to prove a) from (3.1). O

It is also easy to prove the following lemma.
LEMMA 3.2. If u, solves (P,) and u, — u in WyP(Q), then u — ¢ >0 a.e. in Q.
It is readily seen that the following Proposition holds.

PROPOSITION 3.3. Suppose ¢ is continuous, u, is a forcing solution of (P,) and
w e WHP(Q) is such that u, converges to u uniformly in Q. Then {z € Q|u(z) =

b(z)} # 0.
If w,, is a forcing solution of (P,), let us define A, as (a set equivalent to)
wf{x€§2|uw ) < oz )}
and
A= {er’EangbrhdUOf:ﬁ Juwp s. t. Yw > wom(UNA,) —0}
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We observe that A is an open subset of 2, and so its complementary set
B = {m c Q|V ngbrhd U of z,Vwp, Jw > wg s. t. m(UNA,,) > 0}

is closed. We also remark that B is, in some sense, the set of points in which u
touches ¢, or the contact set; actually, if uw and ¢ are continuous, B is the set of
points z’s of Q where u(x) = ¢(z).

THEOREM 3.4. Suppose (uy), s a sequence of solutions of (P,). and u, — u in
Wol’p(Q). Then there exists a nonnegative Radon measure p such that

Apu+ alulP™2u=p in,
u=20 on 02
in the sense of distributions.
Such a measure p is supported in B, that is p(A) = 0.

Moreover, if p > N, sup¢ < 0 and B = {x €N ‘ u(zx) = (b(x)} # 0 (for example
if uy, is a forcing solution Vw) and ¢ is continuous, then u(B) > 0.

Proof. Consider the following linear and continuous functionals on WO1 P(Q):
L,(v)= —/ |Duy,|P~2Duy, - Dvdzx + a/ [, [P~ 2u v da.
Q Q
We want to show that Vv in Wy (Q), L, (v) converges to L(v) defined as
L(v) = 7/ |Du[P~?Du - Dvdx + a/ |u|P~2uw de.
Q Q

To this aim we apply the following theorem by Boccardo and Murat (see [3]).

THEOREM 3.5 (Boccardo-Murat). Suppose 1 < p < 0o, v,, — v weakly in W1P(£2),
strongly in LY (Q) and a.e. inQ, hy, — hin WL (Q) and g., weakly - % converges

to g in the space M(Q) of Radon measures. If
—Apvy, = hy + 9, inD(Q),

then
Duv, — Dv  strongly in L1(,RN) for any q < p.

Moreover u solves
—Apv=h+g inD'(Q).

Actually the authors proved this theorem for a more general operator of Leray-
Lions type, but for our goals this version is enough.

In the problem under investigation, it results h, := aluy,|P~%u, and g, :=
—w((uy — ¢)7)*~1, which weakly— * converges to a suitable measure y in ().

The rest of the proof of Theorem 3.4 can be made following the proof of Theorems
7.1 and 8.7 in [16]. Anyway, for the convenience of the reader, we give a sketch of
it.

If o € A, there exists a neighborhood U of xg and wq such that u,, > ¢ in U for
any w > wy. Take ¢ € CZ(U); then

/ | Duy,|P~2Duy, - Dt d — a/ |t [P 2ug,1h de = 0,
Q Q

and passing to the limit, we get that xy doesn’t belong to the support of u.
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Now assume p > N and 9B # (). Assume by contradiction that g = 0. Then
u would solve Apu + alulP~2u = 0, and since o < A;, we would have u = 0. But
B ={ze:u(x)=¢(x)}#0 and a contradiction arises, since supg, ¢ < 0. O

We now want to show that the limit of a weakly convergent sequence has some
finer properties.

PROPOSITION 3.6. If p > N, supg ¢ < 0 and u,, is a solution of (P,) such that
Uy — u in WyP(Q), then u, — u strongly in Wy (Q).

Proof. We have f(u,)(u — u,) = 0, that is

/\Duw|p_2Duw-D(u—uw)da}—a/|uw\P_2uw(u—uw)dx
Q Q

(3.3)
+w/ﬂ((uw — ) )N u - uy,) de = 0.
But p > N, so u, — u uniformly and then, by a) of Theorem 3.1,
w/Q((uw — o)) Y u —uy)de — 0.
Then (3.3) gives
/Q |Duy, [P~2Duy, - D(u — uy,) dx — 0,
and then u,, — u strongly in W, *(2) by the (S, ) property. O

THEOREM 3.7. Assume p > N, supg ¢ < 0 and u, is a solution of (P,,) which
(weakly) converges to u in Wy P(Q). ThenYv € K,

/ |Du|P~2Du - D(v — u) dx — a/ |ulP~2u(v — u) dx < 0. (3.4)
Q Q
Proof. Let v belong to Wy() and evaluate f/,(u,)(v — u,,). We get
/ |Duy,|P~2Duy, - D(v — u,,) dx — a/ [ [P~ 2 (v — uy,) do
Q Q
+ w/ (u — @) 7)1 — uy,) dz = 0.
Q

But ((uw = ¢)7)" (v —uw) = ((uw — ¢)7)* (v = ¢) + ((uw — ¢)7)* 2 0.
The thesis follows from Proposition 3.6. 0

THEOREM 3.8 (Reversed Variational Inequality). Suppose that p > N, supg ¢ < 0
and o < \1. Then there exists at least one nontrivial solution of problem (P).

Proof. Theorem 2.8 + Theorem 3.1 + Lemma 3.2 + Proposition 3.3 + Theorem
3.4 4+ Theorem 3.7. O

REMARK 3.9. We remark again that (3.4) has quite a different nature with respect to
classical variational inequalities (see [13]): in the latter case we would have —A, +
lo.t. >0 in D'(Q), while in the former case we get —A, + l.o.t. <0 in D' (Q).
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We also note that Theorem 3.7 states that the u is an "upper critical point” (see
for example [6] or [8]) for the functional f defined on W,"*(2) as

1/ a/ .
- Dul|? dx — — w|P dx ifu e Ky,
f(u) = p Q‘ | p Q| | ?

—00 otherwise,

and so Theorem 3.8 shows the existence of at least one nontrivial critical point of
f which belongs to 0K 4. Such a result seems quite interesting: in fact f is upper
semicontinuous and it is quite difficult to find critical points for it directly, since it
is not clear how to define curves of steepest descent for such a functional.

Acknowledgements. The author wishes to thank the referee for the helpful com-
ments, which improved the presentation of the paper.
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