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Università di Napoli “Federico II”, via Cintia - 80126 Napoli

e-mail: bruno.demaria@dma.unina.it

e-mail: antpassa@unina.it

September 15, 2009

ABSTRACT. We prove a C1,µ partial regularity result for minimizers of a non autonomous integral funcitional of

the form

F(u; Ω) :=

ˆ

Ω
f(x, Du) dx

under the so-called non standard growth conditions. More precisely we assume that

c|z|p ≤ f(x, z) ≤ L(1 + |z|q),

for 2 ≤ p < q and that Dzf(x, z) is α-Hölder continuous with respect to the x-variable. The regularity is obtained

imposing that p
q

< n+α
n

but without any assumption on the growth of D2
zf .
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1 Introduction

Let us consider the integral functional

F(u; Ω) :=
ˆ

Ω

f(x,Du) dx (1.1)

where Ω is a bounded open set in Rn, u : Ω → RN , f : Ω× Rn → RN , n ≥ 2 and N ≥ 1.
Throughout the paper we shall assume that the integrand f is a C2(Ω × Rn×N ) function

satisfying the following non standard growth condition

c|ξ|p ≤ f(x, ξ) ≤ L(1 + |ξ|q), (F1)

for some suitable 2 ≤ p < q and with c and L positive constants. Concerning the derivatives of f ,
in view of the controls from above and below, we have the following natural assumptions:

ν(1 + |ξ|2) p−2
2 |ζ|2 ≤ 〈

Dξξf(x, ξ)ζ, ζ
〉
; (F2)

|Dξf(x1, ξ)−Dξf(x2, ξ)| ≤ C|x1 − x2|α (1 + |ξ|q−1); (F3)

1



for any ξ, ζ, ξ1, ξ2 ∈ RnN , for any x, x1, x2 ∈ Ω and where C and ν are positive constants. Then
by assumption (F1) we are dealing with functionals satisfying the so-called non standard growth
conditions.

The study of the properties of minimizers of such functionals started with a series of seminal
papers by Marcellini (see [16, 17]), in case of autonomous functionals. From the very beginning it
has been clear that, even in the scalar case, no regularity can be expected if the exponents p and
q are too far apart.

In fact, Marcellini himself produced an example of functional with non standard growth con-
ditions having unbounded minimizers (see [12] and [15]).

On the other hand if the ratio
q

p
≤ c(n) → 1 (1.2)

as n → +∞ many regularity results are available both in the scalar and in the vectorial setting.
The starting issue in treating the regularity of minimizers is to show the higher integrability of
the gradient. In this direction we quote [8, 9, 10, 11, 18]. We stress that, in this setting, this kind
of regularity is crucial; indeed, since many apriori estimates depend on the Lq norm because of
the right hand side of (F2), the first step in the analysis of the regularity of minimizers is just to
improve the integrability of Du from Lp to Lq.

On the other hand C1,µ partial regularity results have been established (see [4], [19]), without
using higher integrability of the gradient, by means of a blow up argument. It is worth pointing
out that all the quoted results concern autonomous functionals.

Only recently, the study of the regularity of non autonomous functionals with non standard
growth produced both higher integrability and C1,µ partial regularity. In particular, we quote the
paper [10] by Esposito, Leonetti and Mingione where, under the above assumptions on f , it has
been proved that a minimizer u ∈ W 1,p

loc (Ω) of F actually belongs to W 1,q
loc (Ω) if q

p < n+α
n , provided

that for the functional F does not occur the Lavrentiev Phenomenon. More precisely, introducing
for a fixed ball BR ⊂⊂ Ω and for every u ∈ W 1,p(BR) the gap functional relative to F :

L(u,BR) := F̄(u)−F(u), L(u,BR) := 0 if F(u) = +∞

where F̄ is the sequentially lower semicontinuous (s.l.s.) envelope of F :

F̄ := sup
{G : W 1,p(BR) → [0,+∞] : G is s.l.s., G ≤ F on W 1,p(BR) ∩W 1,q(BR)

}
,

the requirement is that:

L(u,BR) = 0, for any BR ⊂⊂ Ω. (F4)

When the dependence on x is allowed, it is clear that a bound similar to (1.2) has to be
assumed with c(n) replaced by c(n, α) where α is the Hölder continuity exponent appearing in
(F3). More precisely Esposito, Leonetti and Mingione proved in [10] that a sufficient condition in
order to have that a W 1,p local minimizer of F belongs to W 1,q is

q

p
<

n + α

n
. (1.3)

Actually, by mean of a counterexample, in [10] the authors showed that (1.3) cannot be avoided
in order to prove higher integrability of minimizers. In fact, if q

p > n+α
n there are local minimizers

u ∈ W 1,p
loc of suitable functionals such that u /∈ W 1,q

loc .
In [6] assuming (1.3), Bildhauer and Fuchs prove C1,µ partial regularity assuming that Dξf is

Lipschitz continuous with respect to x and that the second derivative of f with respect to ξ have
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a (q − 2)-power type growth. These assumptions are stronger than the usual when one tries to
establish C1,µ partial regularity results.

The aim of the present paper is to remove these stronger assumptions on f showing that C1,µ

partial regularity still hold for minimizers. In fact we are able to prove the following

Theorem 1.1. Let f ∈ C2(Ω × Rn×N ) satisfy the assumptions (F1), (F2), (F3), (F4) and let
u ∈ W 1,p

loc (Ω;RN ) be a local minimizer of F . Assume that p ≥ 2 and (1.3) holds. Then there exists
an open subset Ω0 of Ω such that

|Ω \ Ω0| = 0

and u ∈ C1,µ(Ω0;RN ) for some µ ∈ (0, 1).

Our proof is based on a decay estimate for the excess function which measures how far the
gradient of minimizers is far from being constant in a ball BR(x0). In our case the excess is defined
as

E(x, r) =
ˆ

Br(x)

|Du− (Du)r|2 + |Du− (Du)r|p + rβ .

with δ < α, where α is the Hölder continuity exponent appearing in (F3).
We shall prove the decay estimate by using a standard argument consisting in blowing up the

solution in small balls and reducing the problem to the study of convergence of minimizers of a
suitable rescaled functionals in the unit ball. A useful tool in order to let this argument work is
the higher integrability of the minimizers of the rescaled functionals. Note that we need an higher
integrability result which is uniform with respect to the rescaling procedure. Hence we cannot use
the result in [10] and the higher integrability result will be proved in Proposition 3.1.

Even though the result in [10] holds true for p > 1, here we confine ourselves tho the case
p ≥ 2 in order to avoid the heavy technicalities needed to treat the case 1 < p < 2, which, however,
will be faced into the forthcoming paper [7].

We also mention that by the method introduced in [14] we are able to estimate the Hausdorff
dimension of the singular set. In fact we have the following

Theorem 1.2. Under the same assumptions on f , p and q as in Theorem 1.1, if u ∈ W 1,p
loc (Ω;RN )

is a local minimizer of F then
dimH(Ω \ Ω0) < n− α

2
p (1.4)

where α is the exponent appearing in (F3).

2 Preliminaries

In this section we recall some standard definitions and collect several Lemmas that we shall need
to establish our main result.

First of all we recall the definition of local minimizer for a functional with nonstandard growth
conditions.

Definition 2.1. A function u ∈ W 1,1
loc (Ω,RN ) is a local minimizer of F if x → f(x,Du(x)) ∈

L1
loc(Ω) and ˆ

supp ϕ

f(x,Du) dx ≤
ˆ

supp ϕ

f(x,Du + Dϕ) dx,

for any ϕ ∈ W 1,1
loc (Ω,RN ) with suppϕ ⊂ Ω.
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The higher integrability of the minimizers will be achieved by means of imbedding theorem in
the context of fractional order Sobolev spaces, where we have to use fractional difference quotient.
Therefore we introduce the following finite difference operator.

Definition 2.2. If G : Rn → Rk is a vector valued function the finite difference operator for G is
defined by

τs,hG(x) = G(x + hes)−G(x)

where h ∈ R, es is the unit vector in the xs direction and s ∈ {1, . . . , n}.

The basic properties of the finite difference operator are described in the following proposition
whose proof can be found, for example, in [13].

Proposition 2.3. Let F and G be two functions such that F, G ∈ W 1,p(Ω), with p ≥ 1, and let
us consider the set

Ω|h| := {x ∈ Ω : dist(x, ∂Ω) > |h|} .

Then

(d1) τs,hF ∈ W 1,p(Ω) and
Di(τs,hF ) = τs,h(DiF ).

(d2) If at least one of the functions F or G has support contained in Ω|h| then
ˆ

Ω

F τs,hGdx = −
ˆ

Ω

Gτs,−hF dx.

(d3) We have
τs,h(FG)(x) = F (x + hes)τs,hG(x) + G(x)τs,hF (x).

Next result about finite difference operator is a kind of integral version of Lagrange Theorem.

Lemma 2.4. If 0 < ρ < R, |h| < R− ρ, 1 ≤ p < +∞, s ∈ {1, . . . , n} and F, DsF ∈ Lp(BR) then
ˆ

Bρ

|τs,hF (x)|p dx ≤ |h|p
ˆ

BR

|DsF (x)|p dx. (2.1)

Moreover ˆ

Bρ

|F (x + hes)|p dx ≤ c(n, p)
ˆ

BR

|F (x)|p dx. (2.2)

Next Lemma, useful to estimate the different quotient of a function, is of particular interest
for us.

Lemma 2.5. For every p > 1 and G : BR → Rk there exists a positive constant c ≡ c(k, p) such
that

|τs,h((1 + |G(x)|2)(p−2)/4G(x))|2 ≤ c(1 + |G(x)|2 + |G(x + hes)|2)(p−2)/2|τs,hG(x)|2

for every x ∈ Bρ, with |h| < R−ρ
2 and every s ∈ {1, . . . , n} .

Now we recall the fundamental embedding properties for fractional order Sobolev spaces. (For
the proof see, for example, [5]).
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Lemma 2.6. If F : Rn → RN , F ∈ L2(BR) and for some ρ ∈ (0, R), β ∈ (0, 1], M > 0, we have
that

n∑
s=1

ˆ

Bρ

|τs,hF (x)|2 dx ≤ M2|h|2β

for every h with |h| < R−ρ
2 , then F ∈ W k,2(Bρ;RN ) ∩ L

2n
n−2k (Bρ;RN ) for every k ∈ (0, β) and

||F ||
L

2n
n−2k (Bρ)

≤ c
(
M + ||F ||L2(BR)

)
,

with c ≡ c(n,N, R, ρ, β, k).

Let us recall that the singular set Σ of a local minimizer u of the functional F is included
in the set of non-Lebesgue points of the gradient of u. Therefore the estimate for the Hausdorff
dimension of Σ is an immediate corollary of the higher integrability result stated in Proposition
3.1 in the next section through the application of the following proposition that can be found, for
example, in [14].

Lemma 2.7. Let v ∈ W θ,p(Ω,RN ) where θ ∈ (0, 1), p > 1 and set

A :=

{
x ∈ Ω : lim sup

ρ→0+

ˆ

B(x,ρ)

|v(y)− (v)x,ρ|p dy > 0

}
∪

{
x ∈ Ω : lim sup

ρ→0+
|(v)x,ρ| = +∞

}
.

Then dimH(A) ≤ n− θp.

Next Lemma finds an important application in the so called hole-filling method. Its proof can
be found in [13].

Lemma 2.8. Let h : [ρ,R0] → R be a non-negative bounded function and 0 < θ < 1, 0 ≤ A, 0 < β.
Assume that

h(r) ≤ A

(d− r)β
+ θh(d)

for ρ ≤ r < d ≤ R0. Then

h(ρ) ≤ cA

(R0 − ρ)β
,

where c = c(θ, β) > 0.

Now, for our future needs, we introduce the rescaled functional on the unit ball B ≡ B1(0)

I(v) :=
ˆ

B

g(y, Dv) dy

where

g(y, ξ) =
f(x0 + r0y,A + λξ)− f(x0 + r0y, A)−Dξf(x0 + r0y, A)λξ

λ2
. (2.3)

Here A is a matrix such that |A| is uniformly bounded by a positive constant M and λ is a
parameter such that 0 < λ < 1. Next Lemma contains the growth conditions on g.
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Lemma 2.9. Let p ≥ 2 and let f ∈ C2(Ω×Rn×N ) be a function satisfying the assumptions (F1),
(F2) and (F3). Let g(y, ξ) be defined by (2.3) then we have

c(|ξ|2 + λp−2|ξ|p) ≤g(y, ξ) ≤ c(|ξ|2 + λq−2|ξ|q); (I1)

|Dξg(y, ξ)| ≤ c(|ξ|+ λq−2|ξ|q−1); (I2)

|Dξg(y1, ξ)−Dξg(y2, ξ)| ≤ c
rα
0

λ
(1 + λq−1|ξ|q−1)|y1 − y2|α; (I3)

c(1 + λ2|ξ|2) p−2
2 |ζ|2 ≤ 〈

Dξξg(y, ξ)ζ, ζ
〉

(I4)

where the constant c depends on M and on q.

Proof. The (I1) can be proved as in Lemma 2.3 of [3] and the (I2) is an immediate consequence of
the convexity of g.

Now we prove (I3). Thanks to the definition of g we have that

Dξg(y, ξ) =
1
λ

[Dξf(x0 + r0y, A + λξ)−Dξf(x0 + r0y, A)].

So by (F3) we get

|Dξg(y1, ξ)−Dξg(y2, ξ)| ≤ 1
λ
|Dξf(x0 + r0y1, A + λξ)−Dξf(x0 + r0y2, A + λξ)|

+
1
λ
|Dξf(x0 + r0y1, A)−Dξf(x0 + r0y2, A)|

≤rα
0

λ
|y1 − y2|α[(1 + |A + λξ|q−1) + (1 + |A|q−1)]

≤rα
0

λ
|y1 − y2|α(c(M) + λq−1|ξ|q−1) ≤ c

rα
0

λ
|y1 − y2|α(1 + λq−1|ξ|q−1).

where the constant c depends on M and on q.
To prove the (I4) it is enough to develop the second derivatives of g with respect to ξ and to

observe that
Dξξg(y, ξ) = Dξξf(x0 + r0y, A + λξ).

So we are led to the ellipticity condition (F2) on f .

We shall denote by MF the Hardy-Littlewood maximal function of a function F ∈ L1
loc, which

is defined as
MF (x) = sup

x∈Q

 

Q

|F (y)| dy,

where the supremum is taken over all cubes Q ⊂ Rn, with sides parallel to coordinate axes.
The following Lemma can be found in [2].

Lemma 2.10. Let u ∈ W 1,p(Rn,RN ) and p ≥ 1. For every K > 0, if we set

HK = {x ∈ Rn : M(|Du|) ≤ K} ,

then there exists v ∈ W 1,∞(Rn,RN ) such that ||Dv||∞ ≤ cK, v = u on HK , and

meas(Rn \HK) ≤ c ||Dv||pLp

Kp
.
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3 Higher integrability

The first step in the proof of Theorem 1.1 is to obtain an higher integrability result for minimizers
of the rescaled functional I. To be more precise we need this result for the following perturbation
or I

J (v) :=
ˆ

BR̃

g(y, Dv) dy +
ˆ

BR̃

Dξf(x0 + r0y, A)
λ

(Dw −Dv) dy.

where v ∈ w + W 1,q
0 (BR̃) and x0, r0, A are the same appearing in the definition of g, therefore

|A| ≤ M .
We obtain the higher integrability with the following

Proposition 3.1. Let us suppose that g ∈ C2(B1(0),Rn×N ) satisfies the assumptions (I1), (I2),
(I3) and (I4) with 2 ≤ p ≤ q < p

(
n+α

n

)
. If the function v ∈ W 1,q(Ω;RN ) is a local minimizer of

J then there exist δ > 0, σ > 0 such that
ˆ

Bρ

(|Dv(y)|2 + λq−2|Dv(y)|q)1+δ dy ≤ c

(ˆ

BR

(1 + |Dv(y)|2 + λp−2|Dv(y)|p) dy

)σ

(3.1)

for every BR ⊂⊂ Ω, ρ < R and for a positive constant c which depends on ρ and R but does not
depend on v and it is also independent of the parameters λ, r0 and of the point x0 appearing in
the definition of g(y, ξ).

Proof. Let us fix a ball BR̃ ⊂⊂ Ω; by the minimality of v ∈ W 1,q(Ω;RN ) we have
ˆ

BR̃

g(y, Dv) dy ≤
ˆ

BR̃

g(y,Dv + Dϕ) dy +
ˆ

BR̃

Dξf(x0 + r0y,A)
λ

Dϕ dy. (3.2)

for every ϕ ∈ W 1,q
0 (BR̃;RN ). For a fixed ε ∈ (0, 1) we can write (3.2) as follows

ˆ

BR̃

[g(y,Dv + εDϕ)− g(y, Dv)] dy +
ˆ

R̃

Dξf(x0 + r0y, A)
λ

εDϕ dy ≥ 0

which is equivalent to
ˆ

BR̃

ˆ 1

0

Dξg(y, Dv + εtDϕ) εDϕ dt dy +
ˆ

BR̃

Dξf(x0 + r0y, A)
λ

εDϕ dy ≥ 0.

Dividing the previous inequality by ε, changing ϕ in −ϕ and taking the limit as ε → 0+, thanks
to the assumption of continuity of the function Dξg, we get the Euler-Lagrange equations

ˆ

BR̃

Dξg(y,Dv)Dϕdy +
ˆ

BR̃

Dξf(x0 + r0y, A)
λ

Dϕ dy = 0. (3.3)

Let us pick 0 < ρ ≤ r < d ≤ R̃ ≤ 1 and let η be a cut-off function in C∞0 (B d+r
2

) with 0 ≤ η ≤ 1,
η ≡ 1 on Br and |Dη| < 4/(d− r). Let us consider the function ϕ = τs,−h(η2τs,hv) with s fixed in
{1, . . . , n} (which from now on we shall omit for the sake of simplicity) and 0 ≤ |h| < (d − r)/4.
Now we plug such function ϕ into (3.3) and use (d1) and (d2) of Propostion 2.3 to get

−
ˆ

BR̃

τh (Dξg(y, Dv))D(η2τhv) dy

− 1
λ

ˆ

BR̃

[Dξf(x0 + r0(y + hes), A)−Dξf(x0 + r0y, A)] ·D(η2τhv) dy = 0.
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We develop the derivatives inside the first integral and use the Hölder continuity condition (F3)
and the bound |A| ≤ M into the second one obtaining the estimate

ˆ

BR̃

η2 τh (Dξg(y,Dv)) τhDv dy ≤− 2
ˆ

BR̃

η τh(Dξg(y, Dv))Dη ⊗ τhv dy

+ c
rα
0

λ
|h|α

ˆ

BR̃

|D(η2τhv)| dy (3.4)

with the constant c depending on M . Observing that
ˆ

BR̃

η2 τh (Dξg(y, Dv)) τhDv dy

=
ˆ

BR̃

η2 [Dξg(y + hes, Dv(y + hes))−Dξg(y,Dv(y))] τhDv dy

=
ˆ

BR̃

η2 [Dξg(y + hes, Dv(y + hes))−Dξg(y,Dv(y + hes))] τhDv dy

+
ˆ

BR̃

η2 [Dξg(y, Dv(y + hes))−Dξg(y, Dv(y))] τhDv dy

we can write (3.4) as
ˆ

BR

ˆ 1

0

η2[Dξξg(y,Dv + tτhDv)]D(τhv)D(τhv) dt dy

≤−
ˆ

BR̃

η2 [Dξg(y + hes, Dv(y + hes))−Dξg(y, Dv(y + hes))] · τhDv dy

− 2
ˆ

BR̃

η τh(Dξg(y,Dv))Dη ⊗ τhv dy + c
rα
0

λ
|h|α

ˆ

BR̃

|D(η2τhv)| dy.

Now we use ellipticity condition (I4) in the left hand side and the growth conditions (I2) and (I3)
in the right hand side. Thus the following estimate holds:
ˆ

BR̃

η2(1 + λ2|Dv(y)|2 + λ2|Dv(y + hes)|2)
p−2
2 |τhDv|2 dy

≤c |h|α rα
0

λ

ˆ

BR̃

η2(1 + λq−1|Dv(y + hes)|q−1) |τhDv| dy

+ c

ˆ

BR̃

η |Dη|(|Dv(y)|+ |Dv(y + hes)|+ λq−2|Dv(y)|q−1 + λq−2|Dv(y + hes)|q−1) |τhv| dy

+ c
rα
0

λ
|h|α

ˆ

B d+r
2

|D(η2τhv)| dy := (I) + (II) + (III), (3.5)

with c ≡ c(n,N, p, q, L, ν, M).
The use of Lemma 2.5 in the left hand side of (3.5) yields

ˆ

BR̃

η2|τh((1 + λ2|Dv|2) p−2
4 Dv)|2 dy ≤ (I) + (II) + (III). (3.6)

We have to estimate the integrals (I), (II) and (III). For (I) we simply use the definition of τhDv

and remember how we choose |h| so that we can apply (2.2) of Lemma 2.4 as follows

(I) ≤ c |h|α rα
0

λ

ˆ

Bd

(|Dv(y)|+ λq−1|Dv(y)|q) dy
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where c ≡ c(n, N, p, q, L, ν,M).
To estimate (II) we remember the assumptions on |Dη| and use triangle inequality which

yields

(II) ≤ c

(d− r)

ˆ

B d+r
2

(|Dv(y)|+ |Dv(y + hes)|) |τhv| dy

+
c

(d− r)
λq−2

ˆ

B d+r
2

(|Dv(y)|q−1 + |Dv(y + hes)|q−1) |τhv| dy

then we apply Hölder inequality to each integral and we use (2.1) of Lemma 2.4 in each of the
resulting addend, thus getting:

(II) ≤ c

(d− r)
|h|

(ˆ

Bd

|Dv(y)|2 dy

) 1
2

(ˆ

Bd

|Dv(y)|2 dy

) 1
2

+
c

(d− r)
|h|λq−2

(ˆ

Bd

|Dv(y)|q dy

)1− 1
q

(ˆ

Bd

|Dv(y)|q dy

) 1
q

that is

(II) ≤ c

(d− r)
|h|

(ˆ

Bd

(|Dv(y)|2 + λq−2|Dv(y)|q) dy

)

To estimate (III) we develop the derivative inside the integral and use triangle inequality, the
assumptions on η and |Dη| and (2.1) of Lemma (2.4):

(III) ≤ c |h|α rα
0

λ

ˆ

B d+r
2

|τhDv(y)| dy +
c

(d− r)
|h|α rα

0

λ

ˆ

B d+r
2

|τhv(y)| dy ≤ c |h|α rα
0

λ

ˆ

Bd

|Dv(y)| dy

where we also used the assumption |h| < d−r
4 .

Collecting the estimates for (I), (II) and (III) and summing up on s ∈ {1, . . . , n} we get, in
place of (3.6), the following estimate

ˆ

BR̃

n∑
s=1

η2|τs,h((1 + λ2|Dv|2) p−2
4 Dv)|2 dy ≤c |h|α rα

0

λ

ˆ

Bd

(|Dv(y)|+ λq−1|Dv(y)|q) dy

+
c

(d− r)
|h|

ˆ

Bd

(|Dv(y)|2 + λq−2|Dv|q) dy,

with c ≡ c(n,N, r, d, p, q, L, ν,M) independent of v, λ, r0 and x0. Notice that, in what follows, we
shall have rα

0
λ < 1. Now we apply Lemma 2.6 and find that

(1 + λ2|Dv|2) p−2
4 Dv ∈ L

2n
n−2θ (Br), ∀ θ ∈

(
0,

α

2

)
(3.7)

and
ˆ

Br

((1 + λ2|Dv|2) p−2
2 |Dv|2) n

n−2θ dy ≤ c

(ˆ

Bd

(1 + |Dv(y)|2 + λq−2|Dv(y)|q) dy

) n
n−2θ

,

where
n

n− 2θ
> 1.

But, since 2 ≤ p ≤ q we have

(J) :=
ˆ

Br

(|Dv(y)|2 + λp−2|Dv(y)|p) n
n−2θ dy ≤ c

(ˆ

Bd

(1 + |Dv(y)|2 + λq−2|Dv(y)|q) dy

) n
n−2θ

.

(3.8)
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Now we are going to estimate (J) from below in order to have an inequality which can be used to
perform the same iteration procedure of [10]. We have

(J) =
ˆ

Br

(|Dv(y)|2 q
p

p
q + λ(p−2) q

p
p
q |Dv(y)|p p

q
q
p )

n
n−2θ dy

≥ c(p, q)
ˆ

Br

(|Dv(y)|2 q
p + λ(p−2) q

p |Dv(y)|q) p
q

n
n−2θ dy (3.9)

where we used the elementary inequality

(ap + bp) ≥ c(p)(a + b)p, ∀ p > 0.

Thus we have

(J ′) :=
ˆ

Br

(1 + |Dv(y)|2 q
p + λ(p−2) q

p |Dv(y)|q) p
q

n
n−2θ dy

≤ c

(ˆ

Bd

(1 + |Dv(y)|2 + λq−2|Dv(y)|q) dy

) n
n−2θ

(3.10)

But we also have

(J ′) ≥ c

ˆ

Br

((1 + |Dv(y)|2) q
p + λ(p−2) q

p |Dv(y)|q) p
q

n
n−2θ dy

≥ c

ˆ

Br

(1 + |Dv(y)|2 + λ(p−2) q
p |Dv(y)|q) p

q
n

n−2θ dy (3.11)

since
(1 + |Dv(y)|2) q

p ≥ 1 + |Dv(y)|2.
Now we remember that 0 < λ < 1 and observe that

(p− 2)
q

p
≤ q − 2

since 2 ≤ p ≤ q, so that
λq−2 < λ(p−2) q

p .

Hence we conclude that

c

ˆ

Br

(1 + |Dv(y)|2 + λ(p−2) q
p |Dv(y)|q) p

q
n

n−2θ dy ≥ c

ˆ

Br

(1 + |Dv(y)|2 + λq−2|Dv(y)|q) p
q

n
n−2θ dy.

(3.12)
Collecting (3.8), (3.9), (3.10), (3.11) and (3.12) we can conclude that

ˆ

Br

(1 + |Dv(y)|2 + λq−2|Dv(y)|q) p
q

n
n−2θ dy ≤ c

(ˆ

Bd

(1 + |Dv(y)|2 + λq−2|Dv(y)|q) dy

) n
n−2θ

.

From here we can complete the proof using exactly the same iteration scheme of [10] with the same
exponents.

4 Decay estimate

Let u ∈ W 1,p
loc (Ω) be a local minimizer of F under the assumptions (F1), (F2), (F3), (F4) and

define its excess function as

E(x, r) =
ˆ

Br(x)

|Du− (Du)r|2 + |Du− (Du)r|p + rβ (4.1)

10



with β < α.
As usual the proof of Theorem 1.1 relies on a blow up argument which is contained in the

following

Proposition 4.1. Fix M > 0. There exists a constant C(M) > 0 such that, for every 0 < τ < 1
4 ,

there exists ε = ε(τ, M) such that, if

|(Du)x0,r| ≤ M and E(x0, r) ≤ ε,

then
E(x0, τr) ≤ C(M) τβ E(x0, r).

Proof. Step 1. Blow up

Fix M > 0. Assume by contradiction that there exists a sequence of balls Brj (xj) ⊂⊂ Ω such
that

|(Du)xj ,rj | ≤ M and λ2
j = E(xj , rj) → 0 (4.2)

but
E(xj , τrj)

λ2
j

> C̃(M)τβ (4.3)

where C̃(M) will be determined later. Setting Aj = (Du)xj ,rj , aj = (u)xj ,rj and

vj(y) =
u(xj + rjy)− aj − rjAjy

λjrj
(4.4)

for all y ∈ B1(0), one can easily check that (Dvj)0,1 = 0 and (vj)0,1 = 0. By the definition of λj

at (4.2), we get
ˆ

B1(0)

|Dvj |2 + λp−2
j |Dvj |p dy +

rβ
j

λ2
j

= 1 (4.5)

Therefore passing possibly to not relabeled sequences

vj ⇀ v weakly in W 1,2(B1(0);RN )

Aj −→ A

rj −→ 0
rγ
j

λ2
h

−→ 0, γ > β. (4.6)

Step 2. Minimality of vj

We normalize f around Aj as follows

fj(y, ξ) =
f(xj + rjy, Aj + λjξ)− f(xj + rjy, Aj)−Dξf(xj + rjy, Aj)λjξ

λ2
j

(4.7)

and we consider the corresponding rescaled functionals

Ij(w) =
ˆ

B1(0)

[fj(y,Dw)]dy. (4.8)

11



Observe that Lemma 2.9 applies to each fj thus having that (I1), (I2), (I3), (I4) hold for fj . The
minimality of u yields that

ˆ

B1(0)

f(xj + rjy, Du(xj + rjy)) dy ≤
ˆ

B1(0)

f(xj + rjy, Du(xj + rjy) + Dϕ(xj + rjy)) dy

for every ϕ ∈ W 1,q(Brj (xj);RN ) that is
ˆ

B1(0)

f(xj + rjy, Aj + λjDvj(y)) dy ≤
ˆ

B1(0)

f(xj + rjy, Aj + λjDvj(y) + Dϕ(xj + rjy)) dy

for every ϕ ∈ W 1,q(Brj
(xj);RN ). Thus by the definition of the rescaled functionals, we have

Ij(vj) ≤ Ij(vj + ϕ) +
ˆ

B1(0)

Dξf(xj + rjy, Aj)Dϕ

λj
dy. (4.9)

Hence using (I3)

Ij(vj) ≤ Ij(vj + ϕ) +
ˆ

B1(0)

[Dξf(xj + rjy, Aj)−Dξf(xj , Aj)]Dϕ

λj
dy

≤ Ij(vj + ϕ) + c(M)
rα
j

λj

ˆ

B1(0)

|Dϕ| dy. (4.10)

Step 3. Higher integrability

Since u ∈ W 1,p
loc (Ω) is a local minimizer of F under the assumptions (F1), (F2), (F3), (F4), by

Theorem 4 in [10], u ∈ W 1,q(Brj (xj)). Therefore, by a simple change of variables, we also have
that each vj ∈ W 1,q(B1). Moreover, since vj satisfy (4.9) and fj satisfy (I1), (I2), (I3) and (I4),
we are legitimate to apply Theorem 3.1. Hence there exist δ > 0 and σ > 0 such that for all ρ < 1

ˆ

Bρ

(|Dvj(y)|2 + λq−2|Dvj(y)|q)1+δ dy ≤ c

(ˆ

B1

(1 + |Dvj(y)|2 + λp−2|Dvj(y)|p) dy

)σ

(4.11)

with c depending on M and ρ. But (4.5) yields
ˆ

Bρ

(|Dvj(y)|2 + λq−2|Dvj(y)|q)1+δ dy ≤ c,

for every ball Bρ contained in B1. From that we obtain

vj ⇀ v weakly in W
1,2(1+δ)
loc (B1(0);RN ).

Step 4. v solves a linear system

Using that vj satisfies inequality (4.10), we conclude that

0 ≤ c

λj

ˆ

B1(0)

[Dξf(xj+rjy, Aj+λjDvj)−Dξf(xj+rjy, Aj)]Dϕdy+
c(M)rα

j

λj

ˆ

B1(0)

|Dϕ|dy. (4.12)

Following the argument in [1, 19], let us split

B1(0) = E+
j ∪ E−

j = {y ∈ B1 : λj |Dvj | > 1} ∪ {y ∈ B1 : λj |Dvj | ≤ 1}

12



By (4.5) we get

|E+
j | ≤

ˆ

E+
j

λ2
j |Dvj |2 dy ≤ λ2

j

ˆ

E+
j

|Dvj |2 dy ≤ λ2
j . (4.13)

By assumption (F1) and the convexity of f , applying Hölder’s inequality we obtain

1
λj

∣∣∣∣∣
ˆ

E+
j

[Dξf(xj + rjy, Aj + λjDvj)−Dξf(xj + rjy,Aj)]Dϕ dy

∣∣∣∣∣

≤ c

λj
|E+

j |+ cλq−2
j

ˆ

E+
j

|Dvj |q−1 dy ≤ c

λj
|E+

j |+ cλq−2
j

(ˆ

E+
j

|Dvj |q dy

) q−1
q

|E+
j |

1
q

≤cλj


1 +

(
λq−2

j

ˆ

E+
j

|Dvj |q dy

) q−1
q


 . (4.14)

The last term in (4.14) vanishes as j →∞. In fact, the higher integrability at (4.11) implies that

λq−2
j

ˆ

E+
j

|Dvj |q dy ≤ c.

Hence we infer that

lim
j→∞

c

λj

∣∣∣∣∣
ˆ

E+
j

[Dξf(xj + rjy, Aj + λjDvj)−Dξf(xj + rjy,Aj)]Dϕdy

∣∣∣∣∣ = 0. (4.15)

On E−
j we have

1
λj

ˆ

E−j

[Dξf(xj + rjy, Aj + λjDvj)−Dξf(xj + rjy, Aj)]Dϕ dy

=
ˆ

E−j

ˆ 1

0

Dξξf(xj + rjy, Aj + tλjDvj) dtDvjDϕdy (4.16)

Note that (4.13) yields that χ
E
−
j

→ χ
B1

in Lr, for every r < ∞. Moreover by (4.6) we have, at

least for subsequences, that

λjDvj → 0 a.e. in B1, rj → 0 and xj → x0.

Hence the uniform continuity of Dξξf on bounded sets implies

lim
j

1
λj

ˆ

E−j

[Dξf(xj + rjy, Aj + λjDvj)−Dξf(xj + rjy,Aj)]Dϕ dy =
ˆ

B1

Dξξf(x0, A)DvDϕ dy.

(4.17)
Observe that by (4.6)

lim
j

rα
j

λj
= 0. (4.18)

By estimates (4.15), (4.17) and (4.18), passing to the limit as j →∞ in (4.12) yields

0 ≤
ˆ

B1

Dξξf(x0, A)DvDϕ dy

Changing ϕ in −ϕ we finally get
ˆ

B1

Dξξf(x0, A)DvDϕdy = 0,
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that is v solves a linear system which is elliptic thank to the convexity of f . Classical regularity
results (see [12], [13]) imply that v ∈ C∞(B1) and for any 0 < τ < 1

ˆ

Bτ

|Dv − (Dv)τ |2 dy ≤ cτ2

ˆ

B1

|Dv − (Dv)1|2 dy ≤ cτ2, (4.19)

for a constant c depending on M .

Step 5. Upper bound

Let us fix r < 1
4 . Passing to a subsequence, it is not restrictive to assume that

lim
j

[Ij,r(vj)− Ij,r(v)]

exists. We shall prove that
lim

j
[Ij,r(vj)− Ij,r(v)] ≤ 0 (4.20)

Let us choose s < r and a cut-off function η ∈ C1
0 (Br) such that η = 1 on Bs, 0 ≤ η ≤ 1 and

|Dη| ≤ c
r−s . Using in (4.10) as test function ϕj = η(v − vj), we get

Ij,r(vj)− Ij,r(v) ≤ Ij,r(vj + ϕj)− Ij,r(v) +
c(M)rα

j

λj

ˆ

Br

|Dϕj |dy

≤
ˆ

Br\Bs

[fj(y, Dvj + Dϕj)− fj(y,Dv)] dy +
c(M)rα

j

λj

ˆ

Br

|Dϕj |dy

≤ c

ˆ

Br\Bs

(|Dvj |2 + λq−2
j |Dvj |q) dy + c

ˆ

Br\Bs

(|Dv|2 + λq−2
j |Dv|q) dy

+ c

ˆ

Br\Bs

( |vj − v|2
(r − s)2

+ λq−2
j

|vj − v)|q
(r − s)2

)
dy +

c(M)rα
j

λj

ˆ

Br

|Dvj −Dv| dy

+
c(M)rα

j

λj(r − s)

ˆ

Br\Bs

|vj − v| dy, (4.21)

thanks to the growth conditions on fj . Now, we use (4.5) and (4.11) in order to have

ˆ

Br\Bs

(|Dvj |2+λq−2
j |Dvj |q)dy ≤

(ˆ

Br\Bs

(|Dvj |2+λq−2
j |Dvj |q)(1+δ)dy

) 1
1+δ

|Br\Bs|
δ

1+δ ≤ c(r−s)
δ

1+δ .

(4.22)
Moreover, since v ∈ C∞(B1), we get

ˆ

Br\Bs

(|Dv|2 + λq−2
j |Dv|q) dy ≤ c

[
1 + sup

Br

|Dv|2
]

(r − s). (4.23)

For the third integral in (4.21) we have that

c

(ˆ

Br\Bs

|vj − v|2
(r − s)2

dy + λq−2
j

ˆ

Br\Bs

|vj − v|q
r − s)q dy

)
= Ij + IIj . (4.24)

Note that, by (4.6), vj → v strongly in L2(B1), hence

lim
j

Ij = 0. (4.25)

Moreover denoting by
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q∗ =





nq
n−q if q < n

r > q if q ≥ n

there exists µ ∈ (0, 1) such that 1
q = µ

q∗ + 1−µ
2 . Using Hölder and Sobolev Poincaré inequalities we

get

IIj ≤ λq−2
j

(ˆ

B1

|vj − v|2 dy

) q(1−µ)
2

(ˆ

B1

|vj − v|q∗ dy

) qµ
q∗

≤ cλq−2
j

(ˆ

B1

|vj − v − (vj − v)B1 |q
∗
dy

) qµ
q∗

+ cλq−2
j

(ˆ

B1

|(vj − v)B1 |q
∗
dy

) qµ
q∗

≤ cλq−2
j

(ˆ

B1

|Dvj −Dv|q dy

)µ

+ cλq−2
j ≤ cλq−2

j

(ˆ

B1

|Dvj |q dy

)µ

+ cλq−2
j

≤ cλ
(q−2)(1−µ)
j . (4.26)

Since 0 < µ < 1 we obtain
lim

j
IIj = 0 (4.27)

Moreover we have that

c(M)rα
j

λj

ˆ

Br

|Dvj −Dv|dy +
c(M)rα

j

λj(r − s)

ˆ

Br\Bs

|vj − v| dy

≤ c(M)rα
j

λj

(ˆ

B1

|Dvj |2dy

) 1
2

+
c(M)rα

j

λj

(ˆ

B1

|Dv|2dy

) 1
2

+
c(M)rα

j

λj(r − s)

(ˆ

Br\Bs

|vj − v|2 dy

) 1
2

(r − s)
1
2 . (4.28)

Hence, using that limj
rα

j

λj
= 0, the fact that v ∈ C∞(B1) and (4.5) we get that the right hand side

of (4.28) vanishes as j → ∞. Therefore we conclude with (4.20), taking first the limit as j → ∞
and then as s → r in (4.21).

Step 6. Lower bound

We claim that for t < r < 1
4 we have

lim sup
j

ˆ

Bt

|Dvj −Dv|2 + λp−2
j |Dvj −Dv|p dy ≤ c lim sup

j
[Ij,r(vj)− Ij,r(v)].

Let us choose a cut-off function φ ∈ C1
0 (B 1

2
) such that φ = 1 on B 1

4
, 0 ≤ φ ≤ 1 and |Dφ| ≤ c. Set

ṽj = φvj ṽ = φv.

We can always suppose that the higher integrability exponent δ of (4.11) is such that 2(1+δ) < q∗,
so we may apply Sobolev-Poincaré inequality to have that

ˆ

Rn

(|Dṽj |2 + λq−2
j |Dṽj |q)1+δ dy ≤ c. (4.29)

Fix k > 0. By Lemma 2.10 we can find a sequence (wj) ∈ W 1,∞(Rn;RN ) such that if Sj,k = {y ∈
Rn : M(|Dṽj |) > k} then

wj = ṽj on Rn \ Sj,k (4.30)
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and
||Dwj ||∞ ≤ c(n)k. (4.31)

Passing to a subsequence we may suppose that

wj ⇀ w weakly∗ in W 1,∞(Rn;RN ). (4.32)

By the maximal theorem and (4.29) we deduce that
ˆ

Rn

(M(|Dṽj |)2 + λq−2
j M(|Dṽj |)q)1+δ dy ≤ c, (4.33)

hence the sequences
{

(|Dṽj |2 + λq−2
j |Dṽj |q)

}
,

{
(M(|Dṽj |)2 + λq−2

j M(|Dṽj |)q)
}

are uniformly bounded in L1+δ(Rn) and therefore also equiabsolutely continuous in L1(Rn). Then

lim
k→∞

ˆ

Sj,k

(|Dṽj |2 + λq−2
j |Dṽj |q) dy = lim

k→∞

ˆ

Sj,k

(M(|Dṽj |)2 + λq−2
j M(|Dṽj |)q) dy = 0.

Fix ε > 0 and observe that

∃kε : if k ≥ kε, ∀j
ˆ

Sj,k

(M(|Dṽj |)2 + λq−2
j M(|Dṽj |)q) dy < ε. (4.34)

Therefore, from the definition of Sj,k, for k sufficiently large we get

|Sj,k|k2 ≤
ˆ

Sj,k

M(|Dṽj |)2 ≤ ε

and so
|Sj,k| < ε

k2
. (4.35)

Let us write

Ij,r(vj)− Ij,r(v) =[Ij,r(ṽj)− Ij,r(wj)] + [Ij,r(wj)− Ij,r(w)] + [Ij,r(w)− Ij,r(v)]

=R1
j + R2

j + R3
j . (4.36)

Now, by (4.30) and (4.31), we have

|R1
j | ≤

ˆ

Sj,k∩Br

|fj(y, Dṽj)− fj(y,Dwj)| dy ≤
ˆ

Sj,k∩Br

(|Dṽj |2 + λq−2
j |Dṽj |q) dy

+
ˆ

Sj,k∩Br

(|Dwj |2 + λq−2
j |Dwj |q) dy ≤

ˆ

Sj,k∩Br

(|Dṽj |2 + λq−2
j |Dṽj |q) dy + ck2|Sj,k| (4.37)

since for every k > kε there exists j0 = j0(ε) such that

j > j0 ⇒ |Dwj |2 + λq−2
j |Dwj |q ≤ 2k2.

Therefore, by (4.34) and (4.35) we get

lim
k→∞

sup
j
|R1

j | ≤ ε. (4.38)
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Choose s < r and take ζ a cut-off function between Bs and Br. Define

ψj = ζ(wj − w)

and split R2
j as follows:

R2
j = [Ij,r(wj)− Ij,r(w + ψj)] + [Ij,r(w + ψj)− Ij,r(w)− Ij,r(ψj)] + Ij,r(ψj)

= R4
j + R5

j + R6
j . (4.39)

Then, by (4.31), (4.32) and the growth conditions on fj , we have

|R4
j | ≤

ˆ

Br\Bs

|fj(y,Dwj)− fj(y,Dw + Dψj)| dy ≤
ˆ

Br\Bs

(|Dwj |2 + λq−2
j |Dwj |q) dy

+
ˆ

Br\Bs

(|Dw|2 + λq−2
j |Dw|q) dy +

ˆ

Br\Bs

(|w − wj |2 + λq−2
j |w − wj |q) dy

≤ c(k)|Br \Bs|+
ˆ

Br\Bs

(|w − wj |2 + λq−2
j |w − wj |q) dy. (4.40)

Using (4.32), we conclude that

lim sup
j

|R4
j | ≤ c(k)|Br \Bs|. (4.41)

To bound R5
j , we use the definition of fj in order to have

|R5
j | =

ˆ

Br

dy

ˆ 1

0

ˆ 1

0

D2f(xj + rjy, Aj + sλjDw + tλjDψj)DwDψj ds dt. (4.42)

Hence
lim sup

j
|R5

j | = 0 (4.43)

thank to (4.32), since D2f(xj + rjy, Aj + sλjDw + tλjDψj) uniformly converges to D2f(x0, A).
On the other hand, by (I1), we get

|R6
j | = Ij,r(ψj) =

ˆ

Br

fj(y, Dψj) dy ≥
ˆ

Bs

(|Dwj −Dw|2 + λp−2
j |Dwj −Dw|p) dy. (4.44)

Therefore, passing possibly to a subsequence, we may suppose that limj R2
j exists and collecting

estimates (4.41), (4.43) and (4.44), we obtain

lim
j

R2
j ≥ lim sup

j

ˆ

Bs

(|Dwj −Dw|2 + λp−2
j |Dwj −Dw|p) dy − c(k)(r − s). (4.45)

Setting S = {y ∈ Br : v(y) 6= w(y)} and S̃ = S ∩ {y ∈ Br : v(y) 6= limj vj(y)} we have |S| = |S̃|.
We claim that

|S| ≤ 2ε

k2
. (4.46)

In fact, suppose by contradiction that |S| > 2ε
k2 . Then by (4.35) for j large enough we would have

|S̃ \ Sj,k| > ε

k2
.

But by Lemma 2.10 there exists ȳ ∈ Br such that ȳ ∈ S̃ \ Sj,k for infinitely many j and hence

v(ȳ) = w(ȳ)
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and this is a contradiction. Since Dv = Dw in Br \ S, we have

|R3
j | ≤

ˆ

Br∩S

|fj(y, Dw)− fj(y,Dv)| dy ≤
ˆ

Br∩S

(|Dw|2 + λq−2
j |Dw|q) dy

+
ˆ

Br∩S

(|Dv|2 + λq−2
j |Dv|q) dy ≤ c|S| ≤ cε

k2
. (4.47)

Estimates (4.38), (4.45) and (4.47) leads us to

lim
j

[Ij,r(vj)−Ij,r(v)] ≥ − cε

k2
−c(k)(r−s)+lim sup

j

ˆ

Bs

(|Dwj−Dw|2+λp−2
j |Dwj−Dw|p) dy. (4.48)

Now, if t < s < r we have that
ˆ

Bt

(|Dvj −Dv|2+λp−2
j |Dvj −Dv|p) dy ≤

ˆ

Bs

(|Dwj −Dw|2 + λp−2
j |Dwj −Dw|p) dy

+
ˆ

Bs

(|Dwj −Dvj |2+λp−2
j |Dwj −Dvj |p) dy +

ˆ

Bs

(|Dw −Dv|2 + λp−2
j |Dw −Dv|p) dy. (4.49)

Last two integrals in (4.49) can be treated exactly as R1
j and R3

j thus leading to

lim
j

[Ij,r(vj)−Ij,r(v)] ≥ − cε

k2
−c(k)(r−s)+lim sup

j

ˆ

Bt

(|Dvj−Dv|2 +λp−2
j |Dvj−Dv|p) dy. (4.50)

The desired estimate follows letting first s → r and then k →∞ in (4.50).

Step 7. Conclusion

From previous two steps we can conclude that

lim
j

ˆ

Br

|Dv −Dvj |2 + λp−2
j |Dv −Dvj |p = 0. (4.51)

The conclusion follows observing that

lim
j

U(xj , τrj)
λ2

j

= lim
j

1
λ2

j

ˆ

Bτrj
(x)

(|Du− (Du)τrj |2 + |Du− (Du)τrj |p) dy + lim
j

τβrβ
j

λ2
j

≤ lim
j

ˆ

Bτ (0)

(|Dvj − (Dvj)τ |2 + λp−2
j |Dvj − (Dvj)τ |p) dy + τβ

= lim
j

ˆ

Bτ (0)

(|Dvj −Dv|2 + λp−2
j |Dvj −Dv|p) dy

+ lim
j

ˆ

Bτ (0)

(|(Dvj)τ − (Dv)τ |2 + λp−2
j |(Dvj)τ − (Dv)τ |p) dy

+ lim
j

ˆ

Bτ (0)

(|Dv − (Dv)τ |2 + λp−2
j |Dv − (Dv)τ |p) dy + τβ

≤
ˆ

Bτ (0)

|Dv − (Dv)τ |2 dy ≤ cMτ2 + τβ ≤ cMτβ , (4.52)

since the first integral vanishes as j → +∞ thanks to (4.51), the second one vanishes since (Dvj)τ →
(Dv)τ as j → +∞,

λp−2
j |Dv − (Dv)τ |p ≤ cλp−2

vanishes as j → +∞ and thanks to (4.5)

lim
j→+∞

τβrβ
j

λ2
j

≤ τβ .

Estimate (4.52) is a contradiction if we choose c̃(M) > cM and this concludes the proof.
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The proof of Theorem 1.1 now follows by a standard iteration procedure, see [?]. The following
proof of Theorem 1.2 is an immediate corollary of the higher differentiability result for the gradient
of minimizers of F that can be inferred from the proof of the Proposition 3.1 (see (3.7)) or from
the proof of Theorem 4 in [10].

Proof. (of Theorem 1.2) The singular set Σ of minimizers of F turns out to be contained in the
set

Σ0 :=

{
x ∈ Ω : lim sup

ρ→0+

ˆ

B(x,ρ)

|Du(y)− (Du)x,ρ|p dy > 0

}
∪

{
x ∈ Ω : lim sup

ρ→0+
|(Du)x,ρ| = +∞

}
.

Hence Lemma 2.7 applies in order to conclude the proof.
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