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Abstract
The generalization to gradient vector fields of the classical double-well, singularly perturbed func-
tionals,

1
1. (u; 2) ::/ ;W(Vu) +5\V2u\2 dz,
Q
where W(§) =0 if and only if £ = A or £ = B, and A — B is a rank-one matrix, is considered. Under

suitable constitutive and growth hypotheses on W it is shown that I. I'-converge to

1@;9):{ K*HYNY(S (V)N Q) if u e WHH(QRY), Vu € BV (Q; {A, B}),

400 otherwise,
where K™ is the (constant) interfacial energy per unit area.
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1 Introduction

The theories of phase transitions and minimal surfaces have led to extensive study of singularly-perturbed,
nonconvex functionals of the form

Je (03 82) := /QEW(U)—FE‘VUP dx, (1.1)

where W is a nonnegative potential with multiple minima. This functional was first studied by Modica and
Mortola [31], and subsequently it was applied by Modica [30] to the van der Waals—Cahn-Hilliard theory of
fluid-fluid phase transitions to solve an “optimal design” problem proposed by Gurtin [25]:

1
Minimize / W(u)dz, subject to a density constraint o] / udx = fa + (1 — 0)b,
Q Q

for some 6 € (0,1), and where W is a nonnegative bulk energy density with {W = 0} = {a,b}, a,b € R,
a < b. The striking nonuniqueness of solutions (minimizers) is due to the fact that nucleation of phases may
occur without an increase in energy. In order to select physically preferred solutions, the van der Waals—
Cahn-Hilliard theory adds a gradient term which upon rescaling leads to (1.1). Using De Giorgi’s notion of
I-convergence ([19]; see also [18, 15, 1]), it was shown in [31, 30], that

KoPerq(E) if w=xgpa+(1—xg)b |E|=0|Q, uwe BV (;{a,b}),

400 otherwise, (1.2)

r— El_i)r(r)h Je (ug; ) = {
where Ky := fab v/ Wi(s)ds. We conclude, therefore, that in the limit as ¢ — 0 partitions with minimal
interfacial area and given volume fraction 8 are selected.

Generalizations of (1.1)-(1.2) were obtained by Bouchitté [14] and by Owen and Sternberg [34] for the
undecoupled problem, in which the integrand in J. has the form ¢! f(z, v(z),eVv(z)). We refer also to the
work of Kohn and Sternberg [28] where the study of local minimizers for (1.1) was undertaken.

The vector-valued setting, where u: Q — R%, Q C RY, d, N > 1, was considered in [23, 10], where Kj is
replaced by

K; :=inf {/_L W(g(s)+|d (8)|2 ds: L >0, g piecewise C', g(—=L) = a, g(L) = b} . (1.3)

The case where W has more than two wells was addressed by Baldo [7] (see also Sternberg [35]), and later
generalized by Ambrosio [2].
The corresponding problem for gradient vector fields, where in place of J. we introduce

1
/—W(Vu) +e|V2ulrde  if uwe W22 (;RY),
[eX3

400 otherwise,

I (u; Q) == (1.4)

arises naturally in the study of elastic solid-to-solid phase transitions [9, 17, 27, 32], and it has defied a
considerable mathematical effort during the past decade. Here u : Q — R? stands for the deformation, and



taking into account frame-indifference we assume that {W = 0} = SO(N)A U SO(N)B, where SO(N) is
the set of rotations in RY. In order to guarantee the existence of “classical” (as opposed to measure-valued)
non affine solutions for the limiting problem, and in view of Hadamard’s compatibility condition for layered
deformations (see also Ball and James [9]), the two wells must be rank-one connected. Without loss of
generality, we then assume that A — B = a @ v for some a € RY and v €¢ SV~1:=9B(0,1) ¢ RY. We are
now able to construct gradients taking values only on {4, B} and layered perpendicularly to v.

As a first simplification of the problem, we remove the frame-indifference constraint and we assume simply
that

{W=0={A,B}, A-B=a®vw.

Here interfaces of minimizers must be planar with normal v (see [9]), therefore at first glance the analysis may
seem to be greatly simplified as compared with the initial problem (1.1) which requires handling minimal
surfaces. However, it turns out that the PDE constraint curl = 0 imposed on the admissible fields presents
numerous difficulties to the characterization of the I'-limsup. Precisely, if, say, Vu has a layered structure
with two interfaces then it is possible to construct a “realizing” (effective) sequence nearby each interface,
but the task of gluing together the two sequences on a suitable low-energy intermediate layer is very delicate.
This is where specific constitutive hypotheses placed on W will come into play (see Sections 5 and 6 below).

An intermediate case between (1.1) and (1.4), where the nonconvex potential depends on u and the
singular perturbation on V?u, has been recently studied by Fonseca and Mantegazza [22] (for other gener-
alizations see [21]). Also, in the two-dimensional case and when W vanishes on the unit circle (1.4) reduces
to the so-called Eikonal functional which arises in the study of liquid crystals [5] as well as in blistering of
delaminated thin films [33]. Recently, the Eikonal problem has received considerable mathematical attention,
but in spite of substantial partial progress (see [3, 6, 26, 20]) its T'-limit remains to be identified.

In this work, and under the standing hypothesis

(Hy) W is continuous, W (¢) = 0 if and only if £ € {A, B}, where A — B = a ® v for some a € R?\ {0} and
veSN-L

and additional assumptions on W, we show that as ¢ — 07 the functionals I, T'-converge to

[ (u:9) — K*HN=Y (S (Vu)n Q) ifuec WHH(QRY), Vu € BV (Q;{A, B}),
Y 4o otherwise,

where S (Vu) is the singular set of Vu, i.e. the collection of interfaces,

K* =T — liminf I. (uo; Q,)
e—0t

= inf {lim inf I., (un; @) : € — 0T, u, € W22 (Q,,; Rd’) , Up — up in L' (Q; Rd)} \

n—oo

where @, is a unit cube in RY centered at the origin and with two of its faces orthogonal to v, and

Vg A ifx-v>0,
Y=V B ifz-v<o.

The main results of this paper are:
Theorem 1.1 (Compactness) Assume that the double well potential W satisfies conditions (Hy) and
(Hz) there exists C > 0 such that .
WE) 2 Clel -
for all € € RN,
Let e, — 07, If {un} € W22 (Q;R?) is such that

sup Isn (un; Q) < 00,
then there exist a subsequence {un, } and w €¢ WH (Q;RY) | with Vu € BV (5 {A, B}), such that

1
Unk*ﬁ/um dx — u in W1 (Q;Rd’).
9 Jo



Theorem 1.2 (T-liminf) Assume that W satisfies condition (Hy). Let u € Whi (Q;Rd), with Vu €
BV (% {A, B}). Then
I —liminf I, (u; Q) > K* Perq(E),
e—0

where Vu (z) = (1 — xg (z)) A+ xg (x) B for LN a.e. 2 €.

In order to characterize the I'-limsup, we will consider two sets of additional constitutive hypotheses on
W. Without loss of generality we may assume that

A=-B=a®epn.
First consider
(Hz)" W(&) — oo as [¢] — oo;
(Hs) W (£) > W (0,&n) where € = (¢/,éy) € RN RY

Note that (H3) is satisfied by the prototype bulk energy density
. 2 2
W (€)= min {|¢ — AP, 16— B’}

Theorem 1.3 (I'-lim) Let Q C RY be an open, bounded, simply connected domain with Lipschitz boundary.
Assume that W satisfies the conditions (Hy), (Hs)' and (Hs) . Suppose, in addition, that W is differentiable
at A and B. Let uw € Wh! (Q;]Rd) , with Vu € BV (Q; {A, B}). Then

I'— lim I, (u;9) = K* Perq(FE),

e—07F
where Vu= (1 — xg (2)) A+ xg () B for LY a.e. z €.

The hypothesis (Hs3) entails a one dimensional character to the asymptotic problem. Indeed in this case
the characterization of the constant K* can be greatly simplified. It can be shown (see Proposition 5.3) that
K* reduces to the analog of the constant K introduced in (1.3), precisely, K* = K where

L
K :=inf {/ W (0,9(s))+|d (9)|2 ds: L >0, g piecewise C', g(—L) = —a, g(L) = a} .
-L

Theorem 1.3 is related to work of Kohn and Miiller [27] who studied the minimization of the functional

/ ( ou )2 N
-_— )
0,0)x (0,1) \0Z1

= 1 and boundary conditions.

&%u

p
Oz

dl‘l dl‘g

subject to the constraint 6‘9—;‘2
The main effort of the present paper is devoted to the construction of a realizing or effective sequence
for the I'—limsup. It turns out that this construction is strongly hinged to the geometry of the domain. We

first assume that (see Figure 1)
for each ¢ € R the horizontal section Q; := {(2/,zy) € Q: 2y =t} is connected in RY, (1.5)

and that
t— HNL (Q) is continuous in (a, 8), (1.6)

where
a:=inf{zy:2€Q}, p:=sup{zn:zeQ}.

It is easy to see that convex domains or cylinders of the form w x (a, b), where w C RN¥~1, satisfy conditions
(1.5) and (1.6). This case is particularly simple since realizing sequences are one-dimensional, and the
assumption that W is differentiable at A and B is not used (see Theorem 5.5).



Figure 1: Example of a domain where (1.5) and (1.6) hold.

.

=

Figure 2: Example of a domain where (1.5) holds but (1.6) fails.

If we now remove the assumption (1.6) (see Figure 2), then one-dimensional sequences cease to be optimal
as they would yield K* Perg(F) rather than K* Perg(FE) as desired. In this case, realizing sequences are
one-dimensional except near horizontally flat parts of 9Q where HV 1 (aQ N {(:z:’, rn) ERYN iy = t}) >0
(see Theorem 5.6).

The situation becomes considerably more complicated when one drops condition (1.5) (see Figure 3) since
the gradient may change abruptly when two connected components of ; meet. To solve this problem we
glue realizing sequences near the boundary to appropriate “mollifications” of u.

We remark that the above mentioned difficulties cannot be resolved by performing rotations and trans-
lations of 2 nearby the identity because the perimeter of the interface may change discontinuously under
these transformations (see Figure 4).

As we already mentioned, the hypothesis (Hs) is quite strong as it entails a one dimensional character
to the asymptotic problem. In the second part of the paper we replace it with the isotropy assumption:

(Hs) W isevenin each variable §;,¢ =1,--- ,N—1,that is W (&y,--- , &, -+ ,En) =W (&1, -+ &, - ,EN)
foreachi=1,--- ,N — 1,
where
5:(51,"' 7£N)€Rdx"'XRda 5/:(€1a"' angl)GRdX“'XRda
N— —— N———
N times N —1 times

so that & = (¢, &x) € RXN=1) » Re,
In this case we can prove the following result



Figure 3: Example of a domain where (1.5) does not hold.

Figure 4: Example of a domain where translations of rotations of ) cause discontinuous changes in the
perimeter of the interface.

Theorem 1.4 Let Q C RY be an open, bounded, simply connected domain with Lipschitz boundary. Assume
that W satisfies the conditions (Hy), (Hs), and that there exist an exponent p > 2, constants ¢,C,p > 0 and
a convex function g : [0,00) — [0, 00), with g(s) = 0 if and only if s = 0, such that g is derivable in s =0,
g(2t) <cg(t) for all0 < t < p,

<cg(|€—Al) if [€— Al <p,
(§) <cg(|€=B) if |¢ =Bl <p,

and L
gl - =W <0 +1)

for all ¢ € RN, Let u ¢ Wh! (Q; ]Rd) , with Vu € BV (;{A,B}). Then
r- lir(r)l+ I (u4;9) = K™ Perg(E),

where Vu(x) = (1 — xg (x)) A+ xg (z) B for LY a.e. x € Q. Moreover K* = K, where

Kper == inf{/ LW (Vv)+ % ‘V%‘? de:L>0,veWr® (Q;Rd) 7
Q

1
Vv =ta® ey nearby xy = :|:§, v periodic of period one in x'} .

It would be interesting to know if Theorem 1.4 continues to hold without assuming the isotropy assump-
tion (Hs). We have not been able to prove this.
In the final section of this paper we exhibit an example that shows that without hypothesis (Hs), in
general, we may have
Kper < K.

Note that this is in sharp contrast with the first-order gradient theory of phase transitions modeled by (1.1),
where the asymptotic problem has always a one dimensional character.



2 Preliminaries

We start with some notation. Here 2 C R” is an open, bounded Lipschitz domain, £V and HY ! are,
respectively, the N dimensional Lebesgue measure and the N — 1 dimensional Hausdorff measure in RY. We
shall label the first N — 1 coordinates of a point = € R by 2/, and the N-th one by x, so that x = (2/, zx).

We define A (£2) as the class of all open subsets of Q and SV—! := {:1: ERN : |z| = 1} . Welet Q := (—%, %)N

be the unit cube centered at the origin, and we set Q(xg,¢) := xo + Q. In the sequel C' and ¢ will stand
for generic real positive constants which may vary from line to line and expression to expression within the
same formula.

For ¢ > 0 consider the functional

I : L' (3 RY) x A(Q) — [0, +o0]

defined by

1 2,12 - 2,2 ((). R4
L (wU) — /UEW(Vu)Jr&‘W ulde if we W22 ((;RY),

400 otherwise,

where the double well potential W : RN — [0, c0) satisfies the following standing hypotheses:

(Hy) W is continuous, W (¢) = 0 if and only if £ € {A, B}, where A — B = a ® v, for some a € R?\ {0} and
veSh-1

(H3) there exists C' > 0 such that .
W) 2Cll- 5
for all £ € RN,
For simplicity of notation, we shall assume that
A=-B=a®epn. (2.1)
The general case may be reduced to this situation by considering in place of W a new bulk energy density
W(E) 1= W((&+&)RT)

for suitable £, € R™¥ and a rotation R with Rey = v. We recall that Ball and James [9] have shown that
there exists a non-affine Lipschitz function u such that its gradient takes only the matrix values A and B if
and only if A and B are rank-one connected, i.e. rank (A— B) = 1, in which case the jump sets (or interfaces)
of Vu are planar and orthogonal to the direction ey. Under (2.1) the prototype blown-up macroscopic field
with one interface in the unit cell Q@ = (—1/2,1/2)" is

u(z) = |zn]a. (2.2)

We review briefly some facts about functions of bounded variation which will be useful in the sequel. A
function v € L'(Q;RY) is said to be of bounded variation if for alli = 1,---d, and j = 1,--- N, there exists
a Radon measure p;; such that

/Qui(x);)—;(x) das:—/ﬂv(:z:) dpii;

for every v € C}(§5R). The distributional derivative Du is the matrix—valued measure with components
wij. Given u € BV(Q;R?) the approzimate upper and lower limit of each component u;, i = 1,---d, are
given by

uf (z) == inf {t eR: lir(r]l+ ELN,CN {y € QN Q(z,e) - uily) > t}) = 0}



and
u; (x) :=sup {t eR: lir(r]l+ ELN LYy c QnQ(z,e) : ui(y) < t}) = 0} ,

while the jump set of u, or singular set, is defined by

d
S(u) == | J{z € Q: uf () < uf (2)}.
i=1
It is well known that S(u) is N — 1 rectifiable, i.e.

S(u) = [j K, UE,

n=1

where HY "1(E) = 0 and K, is a compact subset of a C! hypersurface. If z € Q\S(u) then u(z) is taken
to be the common value of (uf (z), -+, u}t(x)) and (uy (z),--- ,u; (x)). It can be shown that u(z) € R?
for HV=! ae. x € Q\S(u). Furthermore, for H¥~! a.e. x € S(u) there exist a unit vector v, (z) € SN~
normal to S(u) at z, and two vectors u~(z), ut(z) € R? (the traces of u on S(u) at the point x) such that

|u(y) — ™ (@)Y N Dy =0
=0l ~/{yEQ(10,E): (y—z)-vy(x)>0}

and .

im fu(y) — u @)Y Dy 0.

TUET J{weQ(x0.e): (y—a) vu(x) <0}
Note that, in general, (u;)" # (ut); and (u;)~ # (v~ );. We denote the jump of u across S(u) by [u] :=
u™ — u~. The distributional derivative Du may be decomposed as

Du=Vul? +(ut —u") v, HN 7 S(u) + C(u),

where Vu is the density of the absolutely continuous part of Du with respect to the N—dimensional Lebesgue
measure £V and C(u) is the Cantor part of Du. These three measures are mutually singular.
A set E C §)is of finite perimeter if xg € BV (;R) and we denote by Perq(FE) the perimeter of E in €.
Let £, — 0%. We say that a functional

I: L' (;RY) x A(Q) — [0, 0]
is the I'—liminf (resp. I'—limsup) of the sequence of functionals {I., } with respect to the strong convergence
in L! (Q; ]Rd) if for every u € L' (Q; Rd)
I(u; Q) = inf {lim inf (resp. limsup) I, (un; Q) : u, € L* (R, upy — win L* (Q;Rd)} ,

and we write
I=T—liminf I, (resp. I =T —limsup Ig”) .

n— oo Nn—00

Since I, (v;U) = oo if v ¢ W22 (Q;Rd) , it is clear that we may write

I(u; Q) = inf {lim inf (resp. limsup) I., (un; Q) @ u, € W? (Q; ]Rd) , Up — win Lt (Q; ]Rd)} .

n—oo n— oo "
We say that the sequence {I., } I'-converges to I if the I' — liminf and I" — lim sup coincide, and we write

I=T- lim I.,.

n—oo



The functional I is said to be the T' — liminf (resp. T —limsup) of the family of functionals {I.} with respect
to the strong convergence in L' (Q; ]Rd) if for every sequence €, — 07 we have that

I =TI —liminf I, <resp. I =T —limsup Ign) ,

n—oo n—oo

and we write
I=T- limiglf]s <resp. I=T- limsup.@) .
£— e—0
Finally, we say that I is the T-limit of the family of functionals {I.}, and we write
I=T-lim I,
e—0

if ' — liminf and T" — lim sup coincide.

3 Compactness

The following compactness result is a direct consequence of the one obtained in [23] for the functional
(1.1), and the structure of the limit has been characterized in [9]. For completeness we give here a short
self-contained proof.

Theorem 3.1 (Compactness) Assume that the double well potential W satisfies conditions (Hi) and
(Hs). Let e, — 0T If {u,} C W22 (;R?) s such that

sup Isn (un; Q) < 00,
then there exist a subsequence {uy, } and u € WhH (4 RY) | with Vu € BV (; {A, B}), such that

1
Unk—ﬁ/um dr — u in W1 (Q;Rd).
€2 Jo

Proof. We claim that the sequence {un — ﬁ fQ U d:z:} is weakly compact in W! (Q; ]Rd) . Indeed, by

(H2), and with ¢ > 0 such that
sup I (un; ) =: ¢ < o0, (3.1)

we have

1
gncZ/W(Vun)d:zrzC/ V| de — = |9,
Q Q &

and so {Vu,} is uniformly bounded in L! (Q; R4xN ) . By Poincaré-Friedrichs’ inequality we conclude that
the sequence {un — ﬁ fQ U, da:} is uniformly bounded in W11 (Q; ]Rd) . Thus, to prove the claim it remains

to show that the sequence {Vu, } is equi-integrable. Fix € > 0. By (H3) we have
1
W(e) > 20l
for all ¢ € RN with || > L == %, and by (3.1) we have

1
0< —C/ |Vuy,| de < / W(Vuy)dz <enc— 0 (3.2)
2 J(vun>1} 0

as n — oo. Hence there exists n. such that

/ |Vu,| de <e forall n > n..
{IVun|>L}



Since Vu,, € L! (Q;RdXN) for all n =1, - n., by taking L larger, if necessary, we may assume that the
previous inequality holds for all n. This completes the proof of the claim.
Thus we may extract a subsequence (not relabelled) such that

1
Uy, — —/ ty dox — w in Wt (Q;Rd) (3.3)
€ Jo
and {Vu,} generates a gradient Young measure {v,},.,. We claim that

ve = (1—=0(z)) 6¢=a +0(z) 6e=p LNae. inQ,

where 0 (z) € [0,1]. Indeed, since W is nonnegative and continuous, the Fundamental Theorem on Young
Measures (see e.g. [8, 11, 36]) yields

0= lim W(Vuy,)dz > / W (&) dv, (&) dx;
Q JRAxN

n—oo Q
hence, for £V a.e z €

W (&) dve () =0,

RAXN

and thus by (F;) the claim follows. Tn turn
Vu(x) = /lefdyx O =0—-0@x)A+0(x)B LNae. inQ. (3.4)
Let M > 0 and set
p(&) = inf{/o1 min{\/m, ]Mf} W (s)| ds: h:[0,1] — RN piecewise C', h(0) = ¢, h(1) = A}.

Then ¢ is Lipschitz, ¢ (£) =0 if and only if £ = A, and

{¢(Vuy,)} is uniformly bounded in W' (Q; R). (3.5)
Indeed,
/ [V (¢ o Vug)| d:zrg/ VW (Vuy) |V2un‘ dx < %IEW (un; Q) < %c
Q Q
and

/|¢0Vun\dx§/.M\Vun|dx+cp(0)\9|,
Q Q

where we have used the fact that ¢(&) < M |€ — 0] 4+ ¢(0). Hence (3.5) holds, and up to a subsequence (not
relabelled)
¢ (Vu,) — H in L' (4 R), (3.6)

where H € BV (£; R). On the other hand, the Young measure generated by {¢ (Vu,)} is
pa = (1 =6(x)) Si—p(a) + 0 (x) Si—p(B) LN ae. in Q,
and the strong convergence in (3.6) now yields 6 (z) € {0,1} £V a.e. in Q, precisely
0(2) = xp (@)
for some measurable set E C 2. By (3.4)
Vu(2) = (1 xp () A+ xp (2) B
and

H=(1-xg@®)¢(A4)+xe (@) ¢(B)
=xg(x) ¢(B) € BV ((;R),

therefore the set £ has finite perimeter and Vu € BV (Q; {4, B}). Moreover, since v, = ¢—vy(z) and by
(3.2) we have that Vu, — Vu in L' (G;R™V) . =

10



Remark 3.2 (i) We remark that the conclusion of Theorem 3.1 still holds if we do not impose the condition
(Hs) but, instead, we assume apriori that the sequence {u,} converges weakly in W(Q; R%). Indeed, the
argument follows exactly that of the latter proof once (3.3) has been established.

(ii) If we assume that

W (&) > Oy |¢fF for all £ € RN with |¢] > L,

and for some 1 < p < oo, then

1
Up,, — ﬁ/ Up, dx — u in WHP (Q;Rd) .
12 Jo

o /
([T,

/ |V, — VulPdz < (L+ A+ |B))P™" / [Vu,, — Vu|dz — 0.
([P |22} s

Indeed
|V, [P de < / W (Vuy,)dr — 0.
Q

>L}

On the other hand,

Theorem 3.3 Let u € W1 (Q;Rd) , with Vu € BV (4 {A, B}). Then the function u has the form
u(z)=u(2',zn) = +azxy — 2¢ (2)a,
where v9 € R, v -a = 0, v € WL (O R) satisfies Vi () = xg (z)en for some set E C Q with
Perq(E) < oo, and E is layered perpendicularly to ey , that is
OENQ = Uwi X {ozi 7},
i=1

where the sets w; C RN~ are connected, bounded and open, c; € R. Moreover, in any open subset Q' of Q
with the property that for each t € R the horizontal section

{((«/,xn) €Y : 2y =t} is connected in RY,

we may write
u(z) =u(2’,zn) =y +azn —2h(zy)a a.e in Y,

where h € W1 (R;R), I’ € BV (R; {0,1}).
Proof. As in [9], in view of the fact that for LV a.e. z € Q.

Vu(z)=(1—xg @) A+xeg (@) B=(1—-xp(x)avey — xp(z) a®eyn
=a®en — 2xg (T)a® ey,

we may conclude that F is layered perpendicularly to ey , and that the function v has the form
w(z) =u(r,zy) =7 +azny — 20 () q,
where 79 € R%, v9-a = 0, ¢ € WH° (; R), satisfies Vi (z) = xg (z) ey. Moreover, since
Vaou(@ zny) =V (o +axy —2¢ (z)a) =0
we conclude that in any open subset Q" of  with the property that for each ¢t € R the horizontal section
{(z/,xn) € Y :xx =t} is connected in RY,

we may represent u as
w(z)=1u(zy) =" +axy —2h(zy)a ae. in Y,

where h € W1 (R;R), ' € BV (R; {0,1}). m
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4 I'—liminf: the lower bound
In view of (2.2), we define
K* =T —liminf I. (Jen | a; Q) (4.1)
— inf {1172@ L (3 Q) t 0 — OF, uy, € W2 (Q;RY) | wy — |an|a in L' (Q;Rd)} ,
where, we recall, Q := (f%, %)N .

Theorem 4.1 Assume that W satisfies condition (Hy). Let u € W11 (Q;Rd) , with Vu € BV (Q; {A, B}).
Then
I —liminf I, (u; Q) > K* Perq(E),

e—0

where Vu= (1 — xg (v)) A+ xg (¢) B.

The proof of Theorem 4.1 is hinged on the following lemma.

Lemma 4.2 Let w C RV be a connected, bounded, open set, with HN~1(0w) = 0, and consider the
cylinder U := w X (a — h,a+ h), where « € R and h > 0. If ug € Wh! (U; ]Rd) is such that

A ifazy >a
/ . 3
Vuo(a', ay) = { B if ay< a,

then
[ —liminf L. (ug; U) = K*HY ! (),

e—0

Assuming that Lemma 4.2 holds (its proof is left for the remaining of Section 4), we conclude the proof
of Theorem 4.1.
Proof of Theorem 4.1. By Theorem 3.3 and since 92 is Lipschitz, we may write

FENQ = Uwi x {a; }, with Z'HN_l (wi x {oy }) < o0,
i=1 i=1

where the sets w; C RY~! are connected, bounded and open, with H¥~! (dw;) = 0, a; € R. Let § > 0 and
choose k > 1 such that

k
HYN (O ENQ) <Y HYN T (wi x {as }) +6.

i=1

Let w} CC w; be connected, bounded and open, with H™ ! (dw}) = 0, and such that

R i x faq ) S BV (w] x faq ) +

| >

Since each w] x {a; } CC Q we may find h > 0 so small that

k
Uw;x(ai—h,ai—i—h)CCQ
i=1

12



and the sets w) x (a; — h,a; + h) are mutually disjoint. Then for any sequences &, — 07 and {u,} C
W22 (Q; ]Rd) such that u,, — u in L! (Q; ]Rd) we have

k
hmlnf IEn (un; Q) 2 lim ianEH (un; U (U; X (al - h) (67} + h))

n— 00 n—oo
i=1
k
> Zlim inf I (un;w) % (; — h,a; + h))

k
>3 KHN T (W] x {aq })

i=1

k
>3 K HN T (wi x {o; }) — 6K
1=1

> K*HN =Y (0*"EN Q) — 26K*,
where we have used Lemma 4.2 to assert that

liminf I, (up;w) x (o —hyoy +h)) > K*HY (W] x {oy ).

Hence
[ —liminf I, (u;Q) > HYN 1 (O*ENQ) — 26K*

e—0

and it suffices to let § — 07. m

It remains to prove Lemma 4.2. Let w C RY~! be a bounded, open set, with H¥~! (dw) = 0, and let
h > 0. Define

Fw;h) =T — limir+1fIg (lzn| a;w x (—h, h)) (4.2)

e—0
=inf {lim inf I (up;w x (=h,h)) 1, — 0", u, € W?? (w x (=h,h) ;Rd) ,
U, — |ry|ain L (w x (—h, h);]Rd)} .

Note that K* = .7:( s %) , where Q' := (*%a %)Nﬁl'

Lemma 4.3 (i) F(2/ +w;h) = F (w;h) for every 2’ € RN~
(ii) if w1 C wa then F (wi;h) < F (w23 h);

(i) if w1 Nwa = @ then F (w1 Uwa; h) > F (w13 h) + F (wa; h);

(iv) if a > 0 then F (aw;ah) = aN7LF (w; h), while if 0 < a < 1 then F (aw; h) > oN71F (w; h);
(v) F(w;h) =HN"" (w) F(Q';h);

(vi) F(w;h) = F (w;§) for each § > 0.

We note that Lemma 4.2 is a direct consequence of Lemma 4.3 (v) and (vi).

Proof. (i) follows immediately from the translation invariance of the energies I. (u,;-), while (ii) and
(iii) are consequences of the nonnegativeness of the energy densities of I, , together with the fact that
admissible sequences for wy X (—h, h) are still admissible for wy x (—h, h) when w; C wo.

To prove (iv) let €, — 07 and let {u,} € W22 (w x (—h, h);R?) be any sequence such that u, — |zy]|a
in L' (w x (—h, h);R?) . Set

Up (2) 1= aun(x/a), = € aw X (—ah,ah).

13



Clearly |zy|a = al|zy/ala and so v, — |zy|a in L' (aw x (—ah, ah);R?), and we have

1
F (ow; ah) < lim inf/ —W(Vu,) + ag,|V30,|* do
ow X (

n—oo —ah,ah) ®€n

2
1 1
— lim inf/ — W (Vun (f)) +aen | =V2u, (3)‘ dz
=0 Jawx (—ah,ah) O€n « « o

= lim inf o’V / LVV (Vun (y)) + aey

n—oo X (=h,h) Q&n

2

1 2
el N d
SV (y)| dy

1
— Nt 1iminf/ —W (Vu, (y)) + €, |V2un (y)|2 dy.
(=h,h)

n— 00 En

Hence F (aw;ah) < aN"1F (w;h), and similarly

1 1 1
Flwyh)=F (EOM; aah) < aNilf(aw; ah).

This proves that F (aw; ah) = o 1 F (w; k).
Next let 0 < a < 15 then F (aw; h) > F (aw;ah) = aN "1 F (wy h).
To show (v) we use Vitali’s Covering Theorem to decompose

w=J(ai +nQ) U N
i=1

with HV =1 (Ng) =0, a; + ;@' mutually disjoint, 0 < n; < 1, Q' := (f%,%
S = ),
i=1

For all k € N, by (ii)-(iv)

k

k k
F(wih) > F (U(ai +mQ’);h> >N Flai+mQ5h) 2> 0 TFQ5h)
i=1 i=1

i=1
By letting £ — oo we conclude
Flw;h) = HYH (w) F(Q'5h) -

Conversely, with
oo

Q' =i+ siw) U N

i=1

with HN=1(Ny) =0, b; + §;w mutually disjoint, and

iéN*l — ;
= RN (W)

we deduce that

F(Qsh) > g (wsh).
and we have concluded the proof of (v). This result will entail (vi) provided we show that
F(Qsh) = F(Q;6) (4.3)
for every 6 > 0. We first claim that for all k € N
F(kQ';6) = kN LF(Q56). (4.4)

14



Indeed, write
kN —1

kQ' = | (ai+Q)U N

i=1
with HN=1(Ng) =0, a; + Q' mutually disjoint. By (iv)

kN71

KNTLF(Q58) = F (kQ'1k6) > F (kQ'58) = > Flai +Q'58) = kN1 F(Q';6) .

i=1
Next we show that

F@Q56)=F (Q’; %) :

Indeed by (iv) and (4.4)

F(Q58) = T (KQ/5k0) = g b1 (Q'h8) = F (Q/3k0).

= =gk

and thus s s
F(Q50) =F (Q’;k%) =F (Q’; E) :
It follows that if p, &k € N, k£ £ 0, then
/. 2 _ /.
F(Q3328) = F(Q59), (4.5)

and to assert (4.3) it suffices now to establish the continuity of F (Q)’;-) . Let r, — r and extract a subsequence
!, — r. Without loss of generality assume that v/, — r* (similarly, if ), — ). Then

F(Q';r) <liminf F(Q';7]).

n—oo

Let ¢, € Q such that g,r > 7/, > r, ¢, — 1. Then by (4.5)

F(Q'5m) < F(Qsqnr) = F(Q'57),

and thus
limsup F(Q';7)) < F(Q';r).

n—00

This conclude the proof. m

Remark 4.4 It follows immediately from Lemma 4.3(vi) that the effective energy concentrates near the
interfaces. Precisely, if
Flw;h) = lim I, (un;w X (—h,h))

then for each 0 < < h
lim Isn (un;w X [(_h7 h) \ (_77777)]) = 0.

n—oo

Indeed, by Lemma 4.3(vi)

lim I, (up;w x (—h,h)) = F(w; h) = F(w;n) <liminf I, (un;w % (—1,71))

and thus
lim Isn (un;w X [(_h7 h) \ (_77777)]) =0.

n—oo
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5 I'—limsup: the upper bound. Geodesic hypotheses.

In agreement with our adopted notation, in what follows the constants C' and C's may change from line to
line. Throughout this section we assume that W satisfies the following conditions:

(Hy) W is continuous, W (§) = 0 if and only if £ € {A, B}, where A= —B = a®ey for some a € R? \ {0};
(H2)" W () — o0 as [¢] — oo;
(Hs) W () > W (0,&n) where £ = (&, &y) € RV-D x RY.

Note that (H3) is verified by the prototype bulk energy density

W (¢) = min {|¢ — AP, 16— B’}

5.1 Characterization of K*
In this subsection we prove that if (Hy), (Ha)', (Hs) hold then

L
K* = inf{/ W (0,9(s)+|d (s)‘ZdS : L >0, g piecewise C', g (L) = —g(—L) = a}.
-L

Proposition 5.1 Assume that W satisfies condition (H,)'. Let {e,} C Ry and {u,} C W2 ((—3,3);R?)
be two sequences such that £, — 07 and
1
2 W(0,u
sup W0 v T Ul dt < +oc.
neENJ -1 En
Then
sup sup |ul, (¢)] < 4o0.

neN e (-1,

Proof. Since u, € Loo((f%, %) ;RY), without loss of generality we may suppose that 0 < ¢,, < i. Let

1
2 W(0,u,
¢ = sup M+5n\ug\2dt<+oo,

n —% En

and fix €,, € (0, i) and t € (f%, %) dtte, < % then
1 t+en
- w (Oa ugz) ds < ¢,
En t
and so there exists t,, € (¢,t + &,,) such that
W (0, ul, (tn)) < c.

By (Hz)" we may find a constant C = C(c) such that sup,, |ul, (1,)] < C, and Holder’s inequality now yields

tten
0 < il (e [ )
t

Ift+e, > % then ¢ > % —¢epandsot—e, > % — 2e, > —%. Therefore we may reason as above, using the

interval (t — €,,t) in place of (¢,7 + &,) to obtain (5.1), and we conclude that SUPse(3,1) lul, (8)] < C+ /e
272
|

1/2

1
2

% 1/2
<C+ <gn/ ug2d5> <O+ /e (5.1)
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Recall that (see (4.1) and (4.2))

K*=F(Q;3) = inf{liminf/ 51 (Vuy) + ey |V un| do: e, — 07, {u,} € W (Q;RY),
Q n

n—oo
— |zy|ain ! (Q;Rd)},
N—1 . . . .
where ) := Q' x ( % %), Q = (f%, %) , and introduce the “one-dimensional” version of K*,

3 ’
K, = inf{liminf ’ M +en |u;ﬂ2dt ten — 0T, u, € W22 ((—%, %) ;Rd) ,

n—oo [ 1 En
7

a2 ((=1,2) ;]Rd)}.

An immediate consequence of the latter proposition and the compactness results of Section 3 is the
following corollary.

Corollary 5.2 Assume that W satisfies conditions (Hy) and (Hz)'. Given any 1 < p < oo there holds

T W(0,u)

1
-3 n

K, = inf{lim inf

n—oo

+én \ug\th t e, — 0T, u, € W22 ((—%, %) ;Rd) ,

@i WP (4, 1) ;Rd)}.

Proof. In view of Proposition 5.1, energy bounded sequences admissible for K, are uniformly bounded
in Whee ((f%, %) ;Rd), and, in particular, must converge weakly to |-|a in W11 (( L 1) Rd) The result
now follows from Remark 3.2(i). =

Proposition 5.3 Assume that W satisfies conditions (Hy), (Hz) and (Hs). Then
K* =K, =K,

where

L
K = inf {/ W (0,9(s))+ g (s)|2 ds: L >0, g piecewise C', g(L) = —g(—L) = a} .
~L

Proof. We divide the proof in three steps.
Step 1: We prove first that K* = K. Clearly

’2

Indeed, if {sn} c Ry and {u,} C W?? ( f% %) Rd) are two sequences such that &, — 0% and u,, — [t|a
in L' (( 3);R?), then the sequence v, (z) := u, (xy) is admissible for F (Q’; ) . To prove the converse
1nequahty, let {en} C Ry and {un} C W22 (Q R ) be such that €, — 0% and u,, — |xx|ain L! (Q ]Rd) For
un (7,

HN=1ae. 2’ € ) the function u? (1) := t) e W2 ((-1,3);R%) and u? — |t|ain L' (-3, 3);RY).

17



Using (Hs) and Fatou’s Lemma we have

linnlio%f ; iW(Vun) +en |V2un‘2 dr = linnlio%f/, (/ . iW(Vun) +en ‘V2un|2 dt) dx’
T ] du®’ 2z ’ 2

zl'ggigf// /_%ZW (o, o ) eu| Tl dr | o
; 1 du®’ d2u®’ ’

>/Q/linrgioréf /_%ZW <o,d—:> o ||t | da’

> K, dr’ = K,.
Q/

Step 2: We now prove that K, = K7, where

2 w(0,u))
K = inf{liminf —

n—oo J_ 1
2

+én \umz dt: e, — 0", u, e W?? ((—%, %) ;Rd) ,

n

u, — |tain L' ((—3, 3);RY), u, = £a near t = £3

<t < ).

Clearly K1 > K. To prove the converse inequality, let {e,} C Ry and {u,} € W22 ((—31,3);R?) be such

that e, — 0%, u, — [t/a in L} ((—%, %) ;Rd) , and

1
2 W(0,u,
K, = liminf W0 ) + e |ul) dt.

n

ol

Without loss of generality, and up to the extraction of a subsequence, we may assume that

1
5 IJV /
lim inf WO u)
-4

3 ’
ten |ulPdt = lim W0,u,)

n n—oo

+en |u;§|2 dt,

1
-5 n

and, by Corollary 5.2, that u,, — |t|a in W11 ((f%, %) ;Rd) . Since by Remark 4.4

1
2 W (0,u]
nlim % +én |ug\2 + |uy, — ta| + |ul, — a| dt =0, (5.2)
— 00 1
1

n

there exists tg € (%, %) such that (up to the extraction of a further subsequence, if necessary)

iy [0 )

n— 00 En

Fen W (t0)7 + Jun (to) — toal + |t (to) — al| = 0. (5.3)
Define

Wy () = () un ) + (1 — ¥, () (£ — to) a + up (t0))
where 1, is a smooth cut-off function such that ¢, (t) = 0 for t > tg + &5, ¥y, (t) = 1 for ¢t < g, and

WL, (O] < Clen, WL ()] < C/e2.

Then
W, (8) = Y, () (un (8) — un (to) — (t —to) @) + ¥ (8) 1y, (£) + (1 — 4 () @, (5.4)
and
wyy (8) = Uy (8) (un (1) = ua (to) = (£ = to) @) + 24, (t) (g, () — @) + ¥ (£) uyy- (5.5)

18



By Holder’s inequality, for ¢ € (tg,t0 + €5)

toten ) 1/2
)l <o) al (s [ ) (5.6)
to

and thus

toten
)~ (t0) (¢~ t0)al < [ uly () alds (5.7)

to

toten 0 \1/?
<enlul, (to) —al +en <gn/ [u] ds) :

to

Since W is continuous and W (0, a) = 0, we may find p > 0 and a modulus of continuity n = 7 (s) such that
W(0,&n) < n(lén —al) forall ¢y —al < p.
By (5.4), (5.6) and (5.7), for ¢t € (t9,t0 + €5) we have

|wy, (1) —al < EQ [tn (£) = un (o) — (t = to) al + uy, (t) — al

n

toten o \1/?
< Clul, (to)—a—l—C(sn/ [l | ds) <p

to

for £, sufficiently small, where we have used (5.2) and (5.3). Hence for ¢t € (to,tp +£,) and since 7 is

increasing
totes, 1/2
W (0,w),) <n (C’ lul, (to) —a| +C (En/ |ug|2 ds) ) ,

to

and thus

toten ’ to+en 1/2
/ wdt < <c . (to) —a| + C <gn/ u;;st) > 0.
t to

0 n
Similarly, by (5.5), (5.6) and (5.7) and for ¢ € (¢9,t0 + n),
C

e

C C toten 1/2
Ehiytto) a4 = (o0 [ uilas)
n n t()

c
[wn (] < =5 [wn (&) = un (to) = (t = to) al + — |, () — al + [y

IN

and we have -
C 0T En
el (O < Sty () o v [ s o Ce
En to
Hence, in view of (5.2) and (5.3),
toten 9 9 toten 9
/ en Wl ()" dt < Cul, (to) —al” + Ca’:‘n/ |ul|” ds — 0.

to to

Since wy, (t) = uy, (t) for t < to and wl, (t) = a for t > to + &5, we conclude that

1 1
. 2 W(0,w, i 2 W0,
lim sup M+€n ! dt < lim M+€n|ug|2dt:K*.
n—oo _1 n n—oo f_ 1 n
2 2
By repeating the same construction nearby ¢ = —% we ensure that the new sequence satisfies w], = +a near

t= :I:% resp. Hence Ky < K, and the proof of Step 2 is complete.
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Step 3: We finally prove that K, = K. Let {¢,} C Ry and {u,} C W??((—3,1);R?%) be such that
en — 0T, u, — |t|ain L (( L l) ;]Rd) , and

202
1
.. 2 W(0,u,
K, = liminf W0 ) + e |ull) dt.
n—00 % n
In light of Step 2, we may assume, without loss of generality, that w), = a near ¢t = % and u/, = —a near
t = —3. Define v, (s) := Elun (ens) for s € {f%, %} . Then v}, (s) = u), (,8), vl (s) = enpul (ens), and

SO

1 1
W0, (¢ n
| WO ®) . 2 () +éep ul (t)|2 dt:/ | W (0,4, (en8)) + €2 |u!! (5715)\2ds
3 n e

1

Ten

= [T WO () + ()] ds > K
1
T Zen
therefore K, > K. Conversely, let g : [-L, L] — R? be a piecewise C'! curve, with g(L) = —g(—L) = a.
Consider any sequence {e,} converging to 07, and define

—a ift < —e,, L,
t t
U, (t) == / vn(8)ds, v, (t):=<¢ ¢ (E—) if |t| <e,L, (5.8)
0 n
a ift>e,L.

As in [23], we have

] —a ift <0, . 11\ od )
vnﬂvo.{a 1> 0, lan((fE,E),]R),f01any1§p<oo,

and so u, = fg v, (8) ds — |t|a in WLP ((—%, %) ;]Rd) . Moreover,

1 1
2 W(0,u, . z W (0,
K, < lim / M‘an‘qudt: lim / M‘Fﬁn‘vl |2dt
n—o0 7% En n—oQ 7% En

L
2
— [ Wg@) g () s
—L
and taking the infimum over all such functions g we get the desired inequality. m

Remark 5.4 Note that the argument of Step 3 in the latter proof, together with Propositions 5.1 and 5.3,
ensures that given any sequence {¢,} converging to 07 there exists a sequence {u,} converging to |zx|a in
WP for all p € [1, +00), and such that

1
K* = lim —W (Vun) +én |v2u’n|2 dz.

n—o0 Jo En

Indeed, for each k € N construct via (5.8) a sequence {u,,;} corresponding to a function g, admissible for
K and such that

L
1
| W06+ ok (9 ds < K7
-L
Then, with u(z) := |zx|a we obtain
il e =l gae =0
and

1
limsup lim —W (Vun k) + én |V2unjk‘2 dx < K*.

k—oo M [ En
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On the other hand, by Theorem 4.1 we always have the opposite inequality, and so

1
lim lim [ =W (Vung) + 0 | Vo] de = K7

k—o00 n— o0 Q €En

It suffices now to extract a subsequence {k,} of {k} such that the subsequence 2, := uy j, satisfies (see
Lemma 7.2 in [16])

tim |z = ul gy gme) = 0,

and

1
lim inf —W(Vzn)Jrsn‘szn‘z de = K*.

n—oo Jo En

5.2 Special domains

Let
a:=inf{zy:2€Q}, [:=supi{zn:zecQ}. (5.9)

Throughout this subsection we assume that the domain €2 satisfies (see Figure 1):

for each t € R the horizontal section Q; := {(2/,xx) € Q: &y =t} is connected in RY (5.10)

and
t s HY71(Q,) is continuous in (a, 3). (5.11)

Theorem 5.5 Assume that W satisfies the conditions (Hy), (Hs)' and (Hsz). Let u € Wh (;R?), with
Vu e BV (;{A,B}). Then
I — lim I (u;Q2) = K™ Perq(F), (5.12)

e—0t

where Vu(z) = (1 — xg () A+ xg () B for LY a.e. x € Q.

Proof. In view of Theorem 4.1, to prove (5.12) it suffices to show that for any sequence {e,} C R such
that &, — 01 we have
I —limsupl. (4;Q) < K*Perq(FE).

n—>00

Thus we fix a sequence {e,} C Ry converging to 0. For simplicity in the notation we drop the subscript n
so that € := e,,. By Theorem 3.3 and (5.10) we may assume that

uw(z)=u(xn) =" t+azy —2h(zn)a ae. in
where h € W1 (R;R), b’ € BV (R; {0, 1}), with
S(Vuyne=Ja,
i=1
and Q, == {z = (¢/,zn) € Q: xy =1;} for some I; € R. We divide the proof in two steps.
Step 1: Assume that the number of interfaces is finite, that is
S(VuynQ=Ja,
i=1

for some m € N, and some finite family I; < ---

<l Fix k € N, and in view of Proposition 5.3 consider a
piecewise C'! curve g : [-L, L] — R, with g (L) =

—gr (—L) = a, such that
v ’ 2 ® 1
W0, gr () + |gi (8)|"ds < K —I—E. (5.13)
—-L
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Let € > 0 be so small that [; + e L <l;47 —e L, fori=1,--- ,m —1. Set

vep () = gk (—sgn (v (I —eL)-a) S;Zi) ifly—el<s<lj+el,i=1---,m,
SR W (s) otherwise in R,

where we have extended @ constantly to (—oo,ly —e L) and (I, + € L, +00), and define

us,k(-ﬁ):fbg,k(@"]\]) ::ﬂ(l1)+/wN Usk( )d@ QJGRN

1

Then

li+eL
/\VUEA—VU\dx<CZ/ {

li—e L

— i L
( s >’+1] ds§2CmEL+CZE/ gk (8)] dt,
€ i=1 “—L

and since u, ;. (z) = u (z) when zy = 1, by Poincaré’s inequality we have that wu. j — win W1 (Q; Rd) as
¢ — 0%, Further,

- W (0, gi (£220 — L\ ?
lim I, (uep; ) = lim / (0, 9% ( —)) _|_l d, (iIN lz) da
e—07T e—07T =1 Qﬁ{li+6L<1¢N<l7‘,+\+6L} € € €
m Lit+eL (117 (0 4 5=l N
= lim / < (0,91 (25 ))Jrlg;(:ts—ll)‘ HN 1 {z e Q: ay = s))ds
=0t = Ji oo € € € ' :
T / 2 N-1/¢ . _ R
_62%2/ W (0,9 (0) + ok (1) HV = ({w € 0 c e = et + L}
/ 2 - N-1 . 1 - N-1
= 3 )< - )
</_Lw<o,gk (0) + 19} (1) dt>;ﬂ )= (K4 ) Sn o),

where we have used (5.11) and (5.13). Hence

m

limsup lim I, (ue x5 Q) < K* Z:HN*1 (Q,) = K" Perq (E),

k—oo €—07T i—1

and in view of Theorem 4.1 this inequality is actually an identity. As in Remark 5.4, it is possible to extract
a subsequence {k.} of {k} such that the subsequence u. := u. j_ satisfies

g T~z =0

and
lim I, (u:; Q) = K*Perq (E).

e—0t

Step 2: Suppose now that the number of interfaces is infinite, that is

S(VuynQ=Ja,
i=1
where ), = {z = (2/,on) € Q: zy =1L}, I; € R. We claim that interfaces can only accumulate at the
top or bottom of Q, i.e. if | is an accumulation point of {l;} then [ € {«, 8}, where o and 8 are defined
n (5.9). Indeed, if ©; # 0 then we may find x = (2/,1) €  and, in turn, an open cylinder of the form
B'(«/,7) x (I = h,l+ h) C Q. For iy, large enough B’ (z';7) x {l;,} € Q, where {l;, } is a subsequence of {I;}
converging to [, and so

so s S I (@) = Y (2,) 2 Y HY (B () = o
i=1 in

i
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and we have reached a contradiction.
Fix an integer m € N and consider

Um;:{xEQ: Oz+(5m<éI?N<ﬁ_6m}7

where 8, — 0% and {l;} N {a + 6m, B — 6m} = 0. Then LN (Q\U,,) — 0 as m — oo, and Vu has a finite
number of interfaces in U,,. By Step 1 we may construct a sequence {u™} such that u™ — win W11 (Um; ]Rd)
as e — 07, u™ = u in Q\U,,, and

lirr(l)]s(u;”;U) K*Pery,, (F).
E—

m

We have

lim lim I, (%) = lim lim I. (u*;Uy) = K* lim Pery, (E) = K* Perg (E).

m—oo e—0 m—oo e—0 m— oo

We can conclude as in Step 1. =

5.3 z'-connected domains

Throughout this subsection we assume that for each ¢ € R the horizontal section
Q= {(z/,2n) € Q: 2y =t} is connected in RY. (5.14)

Here we allow for the possibility that ¢ — H~ 1 (€;) is not continuous (see Figure 2). In this case a more
careful analysis is required near the boundary under the additional hypothesis that W' is smooth at the wells.

Theorem 5.6 Assume (5.14) and let W satisfy the conditions (Hy), (Hz) and (Hs). Suppose, in addition,
that W is differentiable at A and B. Let uw €¢ W1 (Q; Rd) , with Vu € BV (Q;{A,B}). Then

I'— lim I, (u;) = K* Perq(FE),

e—0t
where Vu(z) = (1 — xg () A+ xg () B for LY ae. x € Q.

Proof. By virtue of Theorem 4.1 it suffices to prove that given an arbitrary sequence {e,} converging
to 0% we have
I —limsup I, (u; Q) < K*Perq(FE). (5.15)
n—-+4oo
Fix one such sequence {&, }, and for simplicity of notation abbreviate € := ,,. We divide the proof of (5.15)
into three steps.
Step 1: One interface. We assume first that « has the form

u(z) =|zy|la a.e. in £,

so that there is only one interface Qg := {o = (2/,2y) € @ : vy =0}, and we may write Qy = w x {0},

where w is an open bounded connected subset of RN~!, Let 0 < h < %min {8, —a}, where o and 3 are

defined in (5.9), and consider a sequence {6,,} converging to 07 as m — +o00. We Write 6 := b,y For every

0 we construct a smooth cut-off function s € Cg° (]RN; [0, 1]) such that ¢¥s =1 in w5 (— g, g) and ¥s =0
outside w;r& X ( 21, 2) , where for s > 0 we denote w} := {:Z: € RN=1: dist (2/,w) } (see Figure 5). 1
view of Proposition 5.3 consider a piecewise C* curve g : [-L, L] — R?, with g( )=—-g(-L)=a. Extend
g to all of R by setting g (t) = —g (—t) := a for all ¢t > L, and define

te,s () 1= Vs () 2 () + (1 = ¢s () u, (5.16)
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Figure 5: Construction for one interface in Step 1 of Theorem 5.6. The shaded region represents {0 < s < 1},
and corresponds to Aj;\ Ay where Afy := wiyx (£, &) and Af := wi x(—£,£). The function u. 5 coincides

2 3
with u outside A;& and with z. inside A+.

where 2. (z) = [ g (2) ds (see Figure 5). Note that u € W??2 (Q\ (wi x (—2,%));R%) . Then

W(Vusg +2 | V2ue " dx_/ —W(sz +e |V | da (5.17)
€ {ws= 1}5
+/ —W(Vu55 +e|V2us|” da.
{o<ys<1} €

By the fact that g (t) = —g (—t) := a for all £ > L we have
L
/ Ly (Vzo) 4 ¢ |V22. " dz < HN 1 (wf) / W (0,9 (s)) + g ()] ds. (5.18)
{ys=1} € —L

Also, as W is continuous in R™Y W (+a ®@ey) = 0, and W is differentiable at +a ® ey, we may find a
modulus of continuity n with
n(s)

lim =0 (5.19)
s—0t S
and such that
W (&) <min{n(|¢ —a®en|),n(|¢ +awey|)} forall £ € RV, (5.20)
Hence, by (5.20),
/ —W(Vu55 +€|V u55| dr < / —n(\VuE(s Vu|)+€|V2uE75|2 dz. (5.21)
{o<ys<1} € {0<ys<1} €
To estimate the right hand side of (5.21) note that
Vues — Vu| < [Vips| |ze —ul +1p5[Vze =V, (5.22)

|V2ucs| < V25| |2e — ul + 2| Vs| [Vze — V| + 5 | V2] .

Fix Ly > L. For |zn| > €Ly we have

Efo )—a)ds for zy > €Ly,
_ — 5.23
xla { — f )+a)ds for zny < —elq, ( )
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and so from (5.22)

|Vue,s — Vu| < Cse, |V2u575‘ < Cse (5.24)
for |xn| > €Ly, while for |zn| <ely
V(e )l < Jo (20) |+l v2z| < Ly (2] < ¢ (5.25)
- € = € e
and
el
|ze () —u(x)] < |2 (2/,eL1) —u (2’ eLy)] —|—/ |V (ze — u)|dzy < eC.
—ely
Hence, from (5.22) we have for |xy| < €Ly
9 C
\Vums —Vu| < Cse+C, |V ugﬁ‘ <Cs + g (5.26)
It now follows from (5.24) and (5.26) that, for € < h/3L4,
1
/ —77 (IVue,s — Vul) +e |[Vu. 5| dx < ( n(eCs) + Cse ) HN Y (wif) b (5.27)
{o<ys<1} €

+HN 1(w25\w5)2L15(1 (805+C)+E(C§+€%>).

In view of (5.17), (5.18), (5.21) and (5.27)
/ 1W (Vues)+e¢ |V2u575|2 dz < (/ W(0,9(s)) + g ()] d8> HY T (W) (5.28)
Q€ —L

1
+C (gn (eCs) + Cse3 )+ C (77 (eCs +C) + e2Cs + C) HN! (w;&\w;) ,

and letting ¢ — 0% and then § — 0% yields, by (5.19),

1 L
lim sup limsup/ EW (Vues)+e¢ |V2Ua,5‘2 da < (/ W (0,9(s))+ ¢ (3)|2 ds> HY1 (). (5.29)
Q -L

§—0t  e—0+t

Next we claim that

51E(r)1+ hm [te,s = wllyy o (quray = 0 (5.30)

for any 1 < p < oo. Indeed, by (5.24) and (5.26) we have
/ |Vues — Vul' de < ePCsHN 1 (wify) 2h + HY 1 (wis\wi ) 2L12 |eCs + CP — 0 as e — 0.
Q

Since u s (x) = u(z) for |xn| > 2h, by Poincaré’s inequality we have that u. s — w in WP (Q; Rd) .
To conclude the proof of this step, in view of Proposition 5.3 for every k € N consider a piecewise C!
curve gy, : [~L, L] — R?, with gy (L) = —gr (—L) = a, such that

L
1
/ W (0, gx (s)) + |gs (s)|2ds§K*+E. (5.31)
-L
If we denote by u. s the function defined in (5.16) and corresponding to g, by (5.29)—(5.31) we have

1
lim sup lim sup limsup/ W (Vuesi)+e ‘VQUE,@]C‘Q dr < K*HN-1 (), (5.32)
o€

k—oo 6§—0t e—0T
and

lim lim hm llwe 5.6 — uHWw,(Q;R{,) = 0. (5.33)

k—oo §—0T
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On the other hand, Theorem 4.1 entails

1
liminfliminf liminf [ =W (Vucsi) +e |V2u5757k|2 de > K*HN 1 (w).
k—oo 6—0T e—0t Jo €
This, together with (5.32) and (5.33), allow us to diagonalize the triple-indexed sequence w. s to obtain
Ve 1= Ug §(c),k(5(c)) Satisfying
im, llve = ully1.p(@umray =0

and

lim éW(VvE) +e \vzvsf de = K*HY 71 (w).

e—0t Jo

The case where the function v has the form
u(z) = —l|zn|a ae. inQ,

may be treated similarly. We omit the details.
Step 2: Finitely many interfaces. Assume that the number of interfaces is finite, that is

m
S(Vuyne=Ja,,
i=1
where 0, := {x = (2/,2n) € Q: oy =1;} = w; X {I;}, for some finite family Iy < -+ < I,.
Fix 0 <h <imin{liy; —li:i=1,---,m—1} and consider a piecewise C' curve g : [-L, L] — R? as
in Step 1. We may now apply the construction of Step 1 to each interface, precisely we define

e s () = Ysn () 2o i () + (L — s, () u(z) for ey — 1| <2h,i=1,--- ,m—1,
SOV (w) otherwise,

where now s ; is a smooth cut-off function such that is; = 1in wg'i X (li — %, l; + %) and vs; = 0 outside
Wi X (li — %,li + %) , where for s > 0 we denote w;fi = {ﬂc’ c RN=1: dist (27, w;) < s}, and

JZ*Z, s .
mm:u(x:m{ Sy () ds i V() =asen,

— g (2) ds i Va(e) = —awey,

As in Step 1, the argument leading to (5.28) now yields

1 r <
/ gW (Vues) +e ‘V2U575‘2 dx < (/ W (0,9 (s)) + g’ (S)‘Q d3> E HN-1 (wgz)
Q —-L i=1

m

1
+C (gn (eCs) + 0553> +C (77 (eCs 4 C) +%Cs + C) Z RN (w;r&i\wgi)

i=1

and the proof is concluded as before upon letting first ¢ — 0T, then § — 0T, and finally & — +oo where we
consider in place of g a realizing sequence {g} for K*.

Step 3: Countably many interfaces. If the number of interfaces is infinite, we may proceed exactly as in
Step 2 of Theorem 5.5. We omit the details. m

5.4 General domains

Let 7 : R — R be an odd, C*° function, with 7 (0) = 7/ (0) = 0, and such that 7 (¢) = ¢ if |¢| > 1. For € > 0
define

ul (z) == er (x—N> a, uBB (x) == —ul (2), uB (x):=eT (|xE—N|) a, uBA (2) = —utP (z).
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—h/2 |

Figure 6: Construction for one interface in Step 1 of Proposition 5.7. The shaded region represents {0 <
s < 1}, and corresponds to Ay \A; where Ay = wy; x (—h/2,h/2) and A; = wis x (—h/3,h/3). The
function u. s coincides with u?B outside A; and with z. inside Aj5. A similar construction is used in Step
2, with uAP replaced by 44, and 2. replaced by u.

Proposition 5.7 (Lateral matching) Assume that Q = w x (—h, h), where w C RN~ is a bounded, open
connected set with HN 1 (0w) = 0, and let W satisfy (Hy), (H2) and (Hs3). Suppose, in addition, that
W is differentiable at A and B. Let u € W' (;R?), with Vu € BV (;{A, B}). Let {e,} C Ry be a
sequence converging to zero. Then there exists {u,} C W22 (Q;Rd) such that u, — u in WhP (Q;Rd) for
all p € [1, +00), u, = u nearby xy = +h,

_ . FG / o _
up () = u., 7 (x) +u(2',0) nearby 0w x (—h,h) where Vu = { G ifax <0

F,G ¢ {A, B},

and

1
im | —W (Vun) +en [V2un | de = K*HY (S (Va) N Q).
n——4oo Q En
Proof. In light of the argument used in Remark 5.4, we claim that given an arbitrary sequence {e,}
converging to 0T, it suffices to construct a double indexed sequence {u,, \ } satisfying the prescribed boundary
conditions, such that
kll»r-lr—loo nll»r-lr—loo ||Uk’n N u”Ll(Q;Rd) - 07

and

lim sup lim sup iW (Vugn)+e |V2uk7n|2 de < K*HN 71 (w).

k—+4+o0co0 n—-+oo JQ En
We fix one such sequence {e,}, abbreviated ¢ := ¢, and we divide the proof leading to the construction of
the double indexed sequence uy, ,, into two steps corresponding to the cases where Vu has either no interfaces
or one interface in the cylinder €.
Step 1: Assume that Vu = sgn (zn)a ® ey in Q. Without loss of generality we may take u (2) = |zn]|a.
We proceed as in Step 1 of the proof of Theorem 5.6 until (5.16) which should now be replaced by

Ue,s () 1= s (2) 2e () + (1 — s () ulB, (5.34)
where § stands for the elements &, of a sequence converging to 0% as m — +o00, 2. (z) = fO‘TN g (g) ds as
before, s € C° (RN; [0, 1]) is a a smooth cut-off function such that ¥s = 1 in wy,; X (f%, %) and s =0
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outside wy x (=%, %), where for s > 0 we denote w; := {2/ € w : dist (2, 0w) > s} (see Figure 6). In turn
(5.17) becomes

1 1
/ W (Vues)+ ¢ ‘V2u575|2 dx :/ -W(Vz)+e ‘VQZE‘Q dx (5.35)
Q¢ {ps=1} €
1
+/ Ly (VutB) 4 e | V2B da
{ys=0} €
1
+/ SW (Vue,s) + ¢ | V2ue 5| da.
{o<ys<1} €
Then (5.18) should be replaced by
1 2 |2 N—1( — k ’ 2
EW (Vze)+ e |V 25‘ de <H (w25) W (0,g(s))+ 9" (s)]” ds, (5.36)
{ys=1} —L

(5.21) continues to hold, while

1 1
[t ) e[ e < g) [ W0 (s @)+ 1 (P 537
{ys=0} -1

< CHM ! (w\wy ) -
To estimate the right hand side of (5.21) we replace (5.22) with
[Vues — Vul < [Vs| |2e — uP| + s [Vze — Vul + (1 — ¢5) [VuP — V|, (5.38)
(920es] < [V208] |20 — ] + 29| V2o — VulB| 4+ 5|92 + (1 — ) [V2ulP].

Let Ly :=max {1,L}. Then for |zy| > ¢L; we have u8 = |zx|a and so from (5.23) and (5.38) the bound
(5.24) continues to hold for |xy| > L. Moreover

AB r{ TN 2. AB Ly n(, 2N ¢
IV (P — )| < |r (i?) a‘ +Vull <€ [V2ulP < = |r (i?)‘ <= (5.39)
for 0 < |zn| < Ly, and thus
eL
|ze () — ulB ()] < |2 (2 eLy) — uB (z,eLq)| —I—/ | |V (2 — ufP) |daen < eC. (5.40)
—elL,

Hence, from (5.25), (5.38), (5.39) and (5.40) the estimate (5.26) is still valid for |xy| < eLq, while (5.27)

becomes

/ 177 (|Vues — Vul) + ¢ |V2u575|2 dz < (%77 (eCs) + 0553> HN 1 (w) 2k (5.41)
{

o<yps<1} €
N—1( —\, — 1 C
+H (ws \was) 2L -1 (eCs +C) +e|Cs+ =)

In view of (5.35), (5.37), (5.36), (5.21) and (5.41), we now have
1 L
/ W (Vues) e V2| do <CHN ™ (\wiy) + ( / W(0,9(s)) + o' <s>2ds> HY ™ ()
Q -L

1
+C (277 (505) + 0553>
+C (n(eCs +C) +€7Cs + C) HY ™" (wy \wpy) »

and letting ¢ — 0T and then § — 07 yields, by (5.19),

1 L
lim sup limsup/ EW (Vues) +¢ ‘v2uf75|2 de < HY 71 (w) / W (0,9(s) + ¢ (8)|2 ds.
Q -L

5—0+ e—0t
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We can now continue the argument of Step 1 in the proof of Theorem 5.6 from (5.29) onwards.
Step 2: Assume that Vu= A = a ® ey in Q. Without loss of generality we may assume that u (z) = axy.
Fix 6 > 0 and let 95 be defined as in Step 1. Define

Ue,s () =15 (x) u (z) + (1 — s () u?A (2).

For |zn| > € we have uf (z) = u (z) and so u. s (2) = u(z). Since ¥5s = 1 in wyy x (—%,2) and 15 =0
outside wy x (—%, %) , for 0 < e < h we have
1 1
/ W (Vu.s) +e |V2u575‘2 dx g/ W (Vul?) +e \vz’ug‘f“f dx (5.42)
Q€ (w\w;)x(—s,s) €
1
+/ SW (Vues) + ¢ |V2ue | da
(w;\w;é)x(fs,s) €
1
< CHN ! (w\wy) +/ ) —n (|Vue s —a®en|) +e\v2u€,5|2 dz,
w;\w,_;é X (—e,€)

where we used (5.37) (which continues to hold, provided we replace the derivatives of 7 (|-|) with those of
7(-)) and (5.20).
To estimate the last integral on the right hand side of (5.42) note that
[Vue,s () — Vu (z)| < |Vips (z)] ‘U?A (z) —u (ZZ?)‘ + s (x) ‘VU?A () — Vu(z)], (5.43)
[V2ue s ()] < [9205 (2)] [ud4 (&) — u (@) + 2| Vs ()] [V (2) — Ve (@)] + s (&) |24 ()]

The bounds (5.39) and (5.40) are still valid for |xx| < &, with L; := 1 and u2B replaced by u24. Hence
from (5.43) we deduce that (5.26) holds for |zx| < ¢, and thus by (5.42)

1
/ EW (Vues)+e |V2u575‘2 de < CHN ! (w\wy ) + HY 1 (wi \wys) 2 (1 (eCs + C) +£2Cs + C)
Q
and by (5.19), letting ¢ — 0% and then § — 07 yields

1
limsuplimsup [ -W (Vucs)+¢ ‘V2u575|2 dx = 0.
§—0t  e—0t Jaf

The argument of Remark 5.4 brings the proof of this case to a closure. The remaining two cases where
Vu=-a®ey in Q and Vu = —sgn(zy)a ® eyx in § are treated in a way similar to Steps 1 and 2. We
omit the details. m

In preparation for the main result of this section, Theorem 5.10, we establish the following inequality for
level sets.

Lemma 5.8 For eacht € R let Qy :={(2/,xn) € Q: any =t} denote a horizontal interface of Q. Then

hgni?)lip 21—5 _i HY T (Qqe) ds < HN ! (ﬁt) )
Proof. Write Q; = @ x {t}, fix § > 0, and consider an open set ¥ O @ such that
HYTH(E x {th) < HYTH(Qy) 4 6.
We claim that if € is sufficiently small then
{reQ: |ay—tl<e} CEx({t—gt+e).

Indeed, if this was not the case then there would exist a sequence {x,} C Q, with x, = (7, (x,)y), such
that
(xn)y — tand a2, ¢ 3. (5.44)
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By extracting a subsequence, if necessary, we may assume that x,, — (z/,¢). But then (2/,¢) € Q; C X x {t},
which is in contradiction with (5.44) since X is open. Hence the claim holds, and in turn by Fubini’s Theorem

HYN L ( Q) ds = [{z € Q: oy —t] <e}| <|Ex (et t+e) =2HY"1(Dx {t)).

—E&

Hence

1/ , _
= HY 1 (Qupe)ds <HN (S x {t]) <HN T () + 6,

and by letting first ¢ — 0% and then § — 07 we conclude the proof. m
The next result is a generalization of the Isoperimetric Inequality (see [4, 13]).

Theorem 5.9 Let Q C RY be an open, bounded connected domain with Lipschitz boundary. Then there
exists a constant Ciso, depending on N and on 2, such that for every set E C ) of finite perimeter there
holds 1

min {|E|, |[Q\E|}' ™~ < O, Perg(E). (5.45)

Proof. By Poincaré’s inequality there exists a constant C (N, ) such that

/ lv — va|Y VY da < C'|Du| ()
Q

i)
v = — | vdx
Q Jao

for all v € BV (€;R), where

and |Dv| () is the total variation of Dv. If we take v := xg then vg 1= % and so
NN -1 E| N/(N-1)
CPeralE) = 100l (@) > [ o-va” "Mz [ e - 2 da
Q Q

= o NNV — [EYY DB 4 o M E D gIN D 10\ B
> QYN min {|E|, [O\E} TV (|E| + |Q\E))
— |07 min (| B|, |O\E|}' 7~ .

Setting Ciso := C(N, Q) \Q|1/(N71) we conclude the proof. m

Theorem 5.10 Let 2 C RN be an open, bounded, simply connected domain with Lipschitz boundary. As-
sume that W satisfies the conditions (Hy), (Ha)' and (Hs). Suppose, in addition, that W is differentiable
at A and B. Let uw € Wh! (Q;]Rd) , with Vu € BV (Q; {A, B}). Then

- lim I (4;9Q) = K* Perg(E),

e—07t
where Vu(z) = (1 — xp (2)) A+ xg (x) B for LN ae x €.

Proof. Just as in the proofs of the previous I'-limit results, in view of Theorem 4.1 and of Remark 5.4 it
suffices to show that given an arbitrary sequence {¢,,} converging to 07 we may construct a double indexed
sequence {u, r} such that

kll»r-lr—loo nli)IJIrloo ||Uk’n N u”Ll(Q;Rd) = 07

and

1
limsuplimsup | —W (Vug,) +¢ |V2uk7n|2 de < K*HN 1 (w).
k—+o0o0 n—+oo JQ En

We fix one such sequence {e,}, abbreviated ¢ := ¢,, and we divide the proof leading to the construction of
the double indexed sequence uy , into four steps.
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Figure 7: Construction for the case of one hyperplane, with continuously varying interface area, in Step 1 of
Theorem 5.10. The functions ui s and u? s used in the two cylinders have been constructed in Proposition

5.7, and on the cylinder boundaries agree with u® and uZ?, respectively. The shaded region represents
the set F. 5.

Step 1: One hyperplane— case 1. We assume first that
S(Vu)NQ CQy:={z= (2" 2n) € Q: oy =0}

and that (see Figure 1)
t s HN 1 () is continuous at ¢ = 0. (5.46)

Then we may write
QO = U Wy X {0} s
i=1

where the open sets w; C RV™! are pairwise disjoint and connected. Since 2 is bounded we know that

Z'HN_l (w; x {0}) < .

i=1

For fixed § > 0, standing for an arbitrary element of a sequence {8} converging to 0%, choose M > 1 so
large that

oo

> HN N wi x {0}) <6, (5.47)

i=M+1
and for each ¢ =1,--- , M, let w; s CC w; be such that

HN-1 ((wil\wis) x {0}) < 0

e (5.48)

Since w; s x {0} CC 2 there exists h > 0 such that the cylinders w; s x (—h,h) CC Qforeachi=1,--- M
(see Figure 7). In each cylinder w; s x (—h, h) we may apply Proposition 5.7 to obtain sequences {uiﬁ} C
W22 (w5 x (—h, h); R?) such that ul s — w in W2 (w; 5 x (—=h,h);R?) , ul 5 = u nearby xy = =£h,

F inw; s x(0,h),

G inwsx(—h0), FGelA Bl

N €

ul 5 (x) = uf% (x) +u(2’,0) nearby dw; s x (—h, k), where Vu = {
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and

lim / —W (Vuls) +e|V? u55\ de = K*HN 71 (S (Vu) N (wis x {0})). (5.49)
e=0F Jy, sx(=h,h) €
Define
uiﬁ(aﬁ) ifeecwsx(0,h),i=1---,M,
Ve, s (:Z?) = U?A (:Z?) +u (I/7 O) ifz e Q\ Uz 1 Wi, s X ( h7 h) and Vu (:Z?) = A7 (550)
uBB (z) +u(2/,0) if z € Q\ UZ 1wis X (—h,h)} and Vu(z) = B.
We claim that {v. s} C W2 (Q;Rd) , Ves — win L (Q;Rd) and
lim sup limsup/ 1I/V (Vues) +e¢ |V2v575|2 de < K*HN71 (S (Vu) N Q).
§—0t e—0t Q€
Define
M
E57§ = {I S Q\ <U Wi s X (—h, h)) : ‘ZZ?N‘ < E} .
i=1
Since uf'Y (z) + u (2/,0) = u(z) for |zy| > ¢ we have
/ =W (Vues) + € |V? 1}55‘ d:z:—Z/ W (Vuls) +e|V2ul 5\ dx (5.51)
[F} (,><

+/ —W(Vv575)+e|v2v575|2 dx
E.5 ¢

—Z/ (VUE 5) +e |V2u1 5‘ dx
u},(,)(

+ é /EM w (O7 +7’ (ix?N) a) + |7 (i%v) ‘2 dz.

By Fubini’s Theorem we have

E/E w (0.4 (+=2) o) +

M
w( LENN]P 1/ N-1 _ N—-1/
(& - )’ do < O 1 <H () i§=1£ (%5)) ds
L re M
_ 1 N—1 _ N—1,
=C (E %H (Qs)ds — 2 E L (wz75)>

i=1
M
—2C (HN_1 (Q0) — ZHN_l (wi,s % {0})>
i=1
as ¢ — 07, and where we have used (5.46). By (5.47), (5.48), (5.49) and (5.51) we obtain

M
limsup/ W (Ve s) + ¢ |V? 1}55‘ d:z:<K*ZHN LS (Vu) N (wi s x {01))

e—0t i=1

+C Z HY 1 (w; x {0}) + C6

i=M+1
< K*HNTH(S (Vu) N Q) + C6.
It now suffices to let § — 0F.
Step 2: One hyperplane— case 2. Next we remove condition (5.46), and thus we only assume that (see

Figure 2)
S(Vu)yNQ C Qo :i={z=(2"an) € Q: zx =0}.
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Figure 8: Construction for one hyperplane in Step 2 of Theorem 5.10. The function v, s, which is used
everywhere except for the set By :=E; x (—h/2, h/2), is the one constructed in Step 1. Inside By, := =55 x
(—h/3,h/3), the limit u is used directly. The set F¢ s is the shaded region. The two boxes wy s x (—h/2, h/2)
and wy 5 X (—h/2,1/2) are also shown.

Write
NN {z=(a/,an) eRY : ay =0} = (Ex {0}) UE,

where = is an open subset of RV 1 and HY 1 (E) = 0. Fix § > 0 and consider a smooth cut-off function

s such that ¢¥s = 1 in Ejg X (—%, %) and s = 0 outside Z; X (—%,%), where for s > 0 we denote

=y = {2/ € E: dist (¢, 0Z) > s} (see Figure 8). For z € ) define
we s (x) 7= s (2) w(@) + (1 — s (2)) ve s,
where {v. s} is the sequence defined in (5.50). Note that u € W22 (QNE; x (—%,£);RY). Set
M
F.s5:= {ﬂc €O\ <(Eg x (—h, b)) U | (wis x (=, h))> ey < 5} .
i=1

Using (5.51) we have

/ éW(vw&@) +e|V2w. | do :/ LW (Voes) +¢|V2ous|* de
Q {

Ys=0} €

+/ W (Vues) +¢|VPurs| da

{O0<ys<1} €
M 1 2 1 TN TN\ |2

i 2,1 / "
S;/wywx(_h)h) EW (Vusﬁ) +e |V u675| dr + - /ngé w (07 +7 (i?) a) + |7 (i?ﬂ dx
(5.52)

+/ Iw (V. ) + ¢ |V2w.s|” da.

{O0<ys<1} €
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The second integral on the right hand side of (5.52) may be estimated as before to obtain
. 1 | TN

lim sup — w (O, +7 (:I:—) a) +
E*)O+ £ Fs,b' €

. M
< lim sup C’l (HN_I (Q,) — N1 (25) - Z Nt (%‘,6)) ds

e—0t € J—¢

7 (i%) ‘2 dz (5.53)

c M
= Climsup (1 / HN () ds — 2LV (By) -2 LN (wi75)>
i=1

e—0t € J_¢

M
<2C <HN1 Qo) — LN (E) - ZHN*I (wis ¥ {0}))

i=1

<20 (HN1 ((E\=5) x {0}) + i HY T (wi x {0})+5>7

i=M+1

where we have used Lemma 5.8.

The estimate of the third integral on the right hand side of (5.52) is very similar to the proof of Step
2 of Proposition 5.7. Indeed, for |xy| > & we have ul’ () + u (2/,0) = u(x) and so w. s = u in the set
{z€Q:0<¢s(z) <1, |zy| >e}. Hence

1 1
/{0 ey gW (Vwes)+e |V2wg,5‘2 dz < /( e -1 (|Vwe,s — Vul) + ¢ |V§75w|2 dr,  (5.54)
<vs< = \E5) X (e

where we used (5.20) and we have extended u to all of RY as an affine function. The estimates (5.38), (5.39)
and (5.40) continue to hold for = € (Z;5\Z,5) x (—¢,¢), with AP replaced by ul'“. Hence from (5.38) we
deduce that (5.26) is still valid for = € (25 \Z3;) X (—¢,¢€), and thus by (5.52)-(5.54) we obtain

1
limn sup / SW (Vwes) + ¢ [V2wesl do < KV (S (V) n9) 4+ C8 + HY (25\555) 2(n(C) + ).
Q

e—0t

Letting § — 07 concludes the proof.
Step 3: Finitely many hyperplanes. Assume that

M
S(Vvuynec |,

i=1

where ), := {x = (2/,2n) € Q: oy =1;} = w; x {I;} for some finite family 11 < --- < .
Fix 0 < h < dmin{li41 —l;: i=1,--- , M —1} and let {¢} C R} be a sequence converging to zero.
Define '
Q= {QJGQ: ‘.%‘Nfli| <2h}

By Step 2 applied to ' we may find sequences {ug} Cc W22 (Qi; ]Rd) such that u! — u in WhH? (Qi;Rd) ,
ul = u nearby xx = l; + h, and

lim [ =W (Vul) +e |V2ul | de = K*HN = (S (Va) N ).

e—0t Joi €
It suffices to define ) ]

(2) = ul () fxeQi=1,---, M,
e\ =9 ()  otherwise.
Then {u.} C W22 (Q;R?), u. — v in W2 (5 R?) , and
1
lim [ =W (Vu.) + ¢ |V2u.|* de = K*HN 1 (S (Vu) N Q).

e—=0t Jo €
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Step 4: Countably many hyperplanes. Assume that

S(VU)QQZGW;X{L}.

i=1

where w; C RV~1 are connected open sets with 8 (w; x {l;}) € 9 and {l;} is a sequence of real numbers
(not necessarily distinct). Fix 0 < § < min {1, £ ||} . Since

HY (S (Vu) N Q) = i HY L (wi x {I;}) < oo, (5.55)

i=1
there exists an integer M = M (6) such that

o0

> HN N wi x {li}) < Lso 1,
Co

i=M+41

N
where ¢y := max {1, Cl } and Cjg, is the isoperimetric constant introduced in (5.45). As Q is simply

connected, for each i = M +1,--- | the set 2\ (w; x {l;}) may be written as the union of two open connected
disjoint sets E; and Q\FE;, where |F;| > % || . By Theorem 5.9
. N—1 N N—1 S 1
min {|E;|, |OQ\E;|} < coH (OE; N~ =coH (w x {IL})T T <b< §|Q\,

and so |Q\E;| < coHN 1 (w; x {ZZ})% Set uM := u, and for each i = M +1,-- -, define u’ as v’ ! in the

set E;, while we extend v’ as an affine function outside F;. Thus Vu! is continuous across w; x {l;} and

M oo
S(vuynac [ Jw x L |u | | wx{l}H]. (5.56)
j=1 j=i+1

Clearly Vu' € BV (€; {4, B}) and by (5.55) and (5.56)
sup HY ™! (S (V') N Q) < .

In addition, u’ = u on Q\ (U;’;MJA (Q\EJ)) = ;241 By, with

ﬂ Ej > ‘Q| — Co Z HN_l (Wj X {lj})NJX' > |Q‘ — C9 E HN_1 (Wj X {lj}) > u (557)
. . , 2
j=M+1 j=M+1 j=M+1

By Poincaré’s inequality we can extract a subsequence (not relabelled) converging in W11 (Q;Rd) to a
function v, with VoM € BV (Q; {A, B}),

v™ = on ﬂ E;, (5.58)
i=M+1
and
M
S(veMynQc | Jw; x {1}
j=1

In order to assert the latter inclusion, consider a point xq ¢ U;\il w;j x {l;}, and find r > 0 such that

Q (z0,7) C Q\ U wj X {3}
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If i is large enough so that HV =1 (w; x {l;}) < r¥=! then, clearly, and in light of (5.56),
Q (xg,m)N S (Vul) = 0.

We deduce, therefore, that Vu! € Wb (Q (:z:o,r);]RdXN) and thus VoM € Wh> (Q (xo,7) ;RdXN) . In
particular, zg ¢ S (VUM) i

Let {¢} C R, be a sequence converging to zero. By Step 3 we may find sequences {v?/j} c w22 (Q; ]Rd)
such that v — oM in W12 (Q; ]Rd) as e — 01, and

3

M
im [ 1w (Vo) + 2 |V20M " de = K*HY (S (Vo) nQ) < K* ST HYH (wi x (1))
e—0t Jo € Pl
In turn

[eo]

limsup lim éW (Vo) +e |V21)£”|2 dr < K* ZHN*I (w; x {l;})

M—oo €207 Jo P

= K*HY (S (Vu)nQ).

Since vM — oM in W12 (Q;Rd) as ¢ — 07, by means of a standard diagonalization process it suffices to
prove that v — w in L! (Q; Rd) as M — oo. By construction we have

/ |VUM — Vu| dr < / |VUM — Vu‘ dx
Q ?iMju OQ\E;
<2lawen|| |J O\E|<C Y |O\E
i=M+1 i=M+1

<c Y BT <0 Y HY T (wix {1} < O,

i=M+41 i=M+41

and by Poincaré’s inequality and (5.58) we obtain
/ |UM — u| dr < C’/ ‘VUM - Vu‘ dr < C’(S,
Q Q

where the Poincaré constant C' may be taken independently of § in view of (5.57). It now suffices to let
5—0T. m

6 I'—limsup: the upper bound. The symmetry hypotheses.

We introduce the notation

gz(gla"'vgN)eRdx"'dea 5/:(€1a"'angl)GRdX“'XRda
(S —— N e
N times N —1 times

so that &€ = (¢, ¢x) € R(V=1) x Re, Throughout this section we assume that

(Hy) W is continuous, W (£) = 0 if and only if £ € {A, B}, where A = —B = a®ey, for some a € R? \ {0};

(H3)" there exist an exponent p > 2 and a constant C' > 1 such that
1
gl - =W <0 +1)

for all £ ¢ RN
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(Hy) there exist constants p, v > 0 such that

1
;\i—AIPSW(S)SW\S—AIP if |¢—A|l<p,
1
;If—BIPSW(S)SﬂS—B\p if [£— B| < p.

(Hs) W isevenineach variable &;,i=1,--- ,N—1,that is W (&, , =&, -+ ,én) =W (&1, , &, -+ ,EN)
foreachi=1,--- ,N — 1.
Hypothesis (H,) may be improved as

(H,)" there exist a constant p > 0 and a convex function g : [0, 00) — [0, 00), with g (s) = 0 if and only if
s = 0, such that g is derivable in s = 0,

g(2t) <cg(t), (6.1)

for all 0 < t < p,

g(l€=AD W () <cg(l€—AD i |- Al <p,
and

g(|€=B) W (&) <cg(|€-B]) if [£—B| < p,

for some constant ¢ > 0.

Condition (6.1) is called the doubling condition — it prevents g to be too degenerate near ¢t = 0, precisely,
it is satisfied if g (t) ~const.t? as ¢ — 0T, for some p > 1, while it does not hold if g grows exponentially

near the origin, i.e., g (¢) ~const. e/ ast — 0t

Remark 6.1 In what follows, and without loss of generality, we will consider the model case where A =
—B =a®ep. It is easy to check that (Hs)” and (H,) yield

W(&) = Cilg'lP
for all £ € RN and for some constant C'; > 0. Moreover, we claim that
W) < Co(W(n) +1&—nl"), (6.2)

for all £, € RN, and for some constant Cy > 0. Indeed, assume by contradiction that (6.2) does not hold.
Then there exist two sequences {&,}, {7} C R™Y such that

W (&n) > n(W (M) + €0 — mal”) - (6.3)
We have by (Ha)”

1 1
C +1) 2 W (€) > (0¥ (1) + 60— ml) 2 1 (G = O+ F 6w =l )

1
ZTL(W €n|p_c>7

where we have used the inequality |a|” + |b]" > 21,%] la — b" . This clearly implies that the sequence {¢,} is
bounded, and by (6.3) it follows that W (n,,) +|&, — na|P — 0. In view of (H;) we may assume, without loss
of generality, that 7, — A. For n sufficiently large the quantities |&, — A, |7, — A| are so small that (Haz)
may be applied, and (6.3) yields

Y ‘gn - A‘p >W (gn) >n (W (nn) + |§n - nn‘p)
1
>n (— [ — AP+ Jn W)
v

1 1
2p71nmin {1, —} 1€, — AP,
Y

Y

which is clearly a contradiction for n large.
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For simplicity we will present the proof of the analog of the results of Section 5 first under hypothesis
(H,), and then on Section 7 we move on to the general case where (H4)/ holds.

6.1 Characterization of K*
In this subsection we prove that under conditions (Hy), (Hg)”, (Hy) and (Hs)

1
K* = inf{/ LW (Vv)+ = |v2v‘2 de:L>0,veWr® (Q;Rd) 7
Q L
1
Vv =+a® ey nearby xny = :|:§, v periodic of period one in ﬂc’} .

The next two propositions will establish that, for cubes, realizing sequences may be taken periodic in the
transversal directions, and that there is a matching of vertical boundary conditions, precisely:

Proposition 6.2 (Vertical matching) Assume that W satisfies (H,), (Ha)" and (Hy). Then there exist
sequences {e,} C Ry, {c,} C R and {z,} ¢ W22 (Q;R?), such that e, — 0T, ¢, — 0, 2z, — |zy|a in
WP (Q;RY)

1 1
zn () = —x N a nearby xy = —3 zn () = 2N a+ ¢, nearby xy = 3 (6.4)

and

1
lim —W(Vzn)+5n|vzzn|2dx:K*.
n—-4oo Q En

Proof. By definition of K* there exist sequences {&,} C Ry, {u,} € W??2 (Q;R?), such that ¢, — 07,
Un — ug i=|zy|a in L' (Q;R?) and

1
lim —W(Vun)+5n|vzun|2dx:K*.

n——+oo Q En

We abbreviate € := ¢, and u. := wu,. Due to Theorem 3.1 and Remark 3.2 (ii), we may assume, up to
extraction of a subsequence, that u. — w in WP (Q;Rd) . Partition Q" x (%, %) into [%] horizontal layers
of height [%] -t %. In view of Remark 4.4, choose one such layer, L. = Q' x (95 — [%] -t %, 95> , such that

1 1
{g] / EW(VuE)+€|V2u5‘2+\Vug—ao'oeN\er\usfudpdx (6.5)
L.

1
S/ —W(Vu5)+5|v2u5‘2+|VuE —a®@en|! + |uc —ugl’ dz =: a. — 0.

’X(%,%) g

In L. select a height z. € (QE — [l] ! %, 95) such that

€

1
EW (Vue (2, 22)) + € |[VZue (2, zE)|2 + | Vue (2, 2.) —awen|” (6.6)
QI
+ Jue (2, 22) — g (2, 2)|F d2’ < 6a..

First matching: Set
ve () := ug () + Ue (7) + ¢e (2n) (e () — uo (z) — e (2)),

where 4. (z) = u. (', z.) — @ (2.), up(x) =: a(xy), and let p. be a smooth cut-off function such that
0<pe<l}CL,p.=1iay <. — [%]71%, we =01if xny > 0., and

Cc Cc

We claim that
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) fLE |ve — ug|f do — 0;
(i) 3 /;. [Vve —a®en|’dz —0;
(iii) fL = W (Vu.) dz — 0;
(iv) fL55|V2v5|2d33—>0.

It is easy to deduce (i) from (6.5) and (6.6). Now

1 1 1
—/ Vo, —a@en|? de < C/ = [Varue (2, 2)[° + = [Vue —a @ enl’ + — Jue —ug — @[ dz (6.7)
e Jr. L. € € ept
1
<C{/ \Vm/ug(x’,zg)|pd9:’+—/ |Vu5a<x>eN|pdx}
Q' 9 L.
1
< C’{ Vue (2, 2:) —a@ eyl da’ + —/ [Vu. —a® eN|pdx} — 0
Q' € L.
by (6.5) and (6.6), where we have invoked the Poincaré’s inequality
/ \usfuofﬁsfdxgc%p/ WV (ue —a®en)|” dz (6.8)
Lg =3
due to the fact that (u. — up — @.) (2/, z.) = 0, and using the identity | — Vug|P = (\§’|2 +[én £ a\Q)p/Q. In

addition,

1 1 1
—/ W(va)dazg—/ C|va—a(>§)eN\pdaz+—/ C (1+|Vu.|")dx
€ JL. € JL.n{|Vv.—Vug|<p} € JL.n{|Vve—Vug|>p}

C
< —/ |Vve — a®en|” dz,
g L.
where we have used (Hs)", (Hy), and the fact that

1
LY (L. {|Vo. —awen| > p}) < p_p/ Vo, —a®en| da.
L

e

By (ii) we easily deduce (iii).
Finally,

/€|V2v5|2da¢§C/ 5|Vi,ug(x’,zg)|2+5|V2ug|2+§|Vu5—a®6N|2
L. L.

1 1
+ - \Varue (2, 25)\2 + = |te — ug — 125\2 dzx

1
<C {52/ |Vi,ug (x’,zE)|2daz’+€/ ‘Vzug|2d:c+/ —\Vus—aog)em? dx
Q/ L E

= =

) 1 2/p
+/ |Varue (2, 2)|" da’ + —36(1]72)/17 (/ |e — ug — we |’ das)
Q' & L.

1 2/19
SC{ / |V e (2 2 ‘ da’ —1—5/ ‘V2u5|2d33+ (E/ |Vu5—a®eN|pdx>
L Le

E

2/p
+ ( \Vu (2, z) —aooedix’> dz' 5 — 0
Q/
by (6.5), (6.6), Holder’s inequality, and (6.7), (6.8).
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Second matching: Set
we () =g + ce + ¥ (xn) (Te — ce),
where, by (6.6),

Ce 1= / Ue (2 z.)da’ — 0,
and 9 is a smooth cut-off function such that ¥ = 1 nearby zny = 0. (< %) , ¥ = 0 nearby zy = %, and

[P <o "] <c

We claim that
) Jorc(o.,1) lwe = uol"dz — 0;
(ii) fQ’x(@

(iii) fQ,X(ga%) € |V2w5|2 dr — 0.

1
)

) LW (Vw.)dz — 0 or, as seen before, %IQ'X(H ) [Vw. —a®ey|’ dz — 0;

1
2230)

It is clear that (i) is a consequence of (6.6). To prove (ii) and (iii) we notice that

1 1
—/ Vw. —a®ey|? de < C= \Varue (2, 20) [P + |ae — c.|P dz
& /><(957%) & Q’X(ga%)
1
<C= | |Vau: (2, 2)|" do’
€ Jo
1
<C EW (Vue (2, 2:))da’ — 0
Q/

by (6.6), and where we have used Poincaré-Friedrichs’s inequality and Remark 6.1. Furthermore, also by
(6.6), and using Holder’s inequality

/ €|V2w5|2d9:§0 e |V2 . (x’,zs)|2+g\vz/uf (2, 2) dw
Q% (0,%) Q'x(6=,%)

2/p
< Ce {/ V2, ue (x/72E)|2 de’ + (/ V. (2, 2.) —a ey dm/) } — 0.
Q/ /

To conclude the proof, note that the sequence

ue if zy < 0:
Ue={ v if6. [
w, ifzy >0,

satisfies condition (6.4) with

1 1
limsup/ EW(VUE)+5‘V2UE|2dx§ lim gW(qu)—f—g‘quEE dr = K*.
Q Q

e—0*t e—0t

This procedure pins down the boundary conditions at xy = 0, and nearby =y = % we have U, = ug + cc.
Now we repeat the argument in Q' x (,%’0) with the obvious adaptations, in order to change U, on the
bottom half of the cylinder so that the new field V; is equal to ug + ¢ on top and to ug + ¢z on bottom. It

suffices to set z. := V. — C., with C. := ¢ — ¢ and to invoke Theorem 4.1. =

Proposition 6.3 (Transversal Periodicity) Assume that W satisfies conditions (Hy), (Hs)", (Hy) and
(Hs). Then there exist sequences {en} C Ry, {un} C W2 (Q;R?), such that e, — 0T, unp — |on|a in
A (Q;Rd) , Vu, = ta® ey nearby xy = i% (resp. ), un is periodic of period one in x', and

1
liminf [ —W (Vun) + e, [V2un|” dz = K7,
n——4oo Q En
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Proof. We claim that we may find sequences {¢,,} C Ry, {v,} C T/Vlifo (RY;RY) | such that e, — 0T,
vy (2 ) is 2Q"-periodic for all zy € R, Vv, = ta ® ey nearby zn = i% (resp.), and

lim Lw (o) ) + e | V20| da = 2V 1K
n=00 Jo@ix(~4,4) €n

lim |vn(x) — |zN|a|de = 0.
n—00 QQ/X(fi,%)

If the claim holds, then extend v, linearly to 2Q) and define u, (z) := v, (2z) for # € 2Q. Then {u,} C
w2 (]RN ]Rd) , Un (- xn) is Q'-periodic for all 2 € R, Vu,, = +a © ey nearby xy = +1 (resp.), and

loc 2
lim W (Vug) + — tn |V2un‘ do =
n— oo Q En
lim |un(x) — |zN|a| dz =0,

thus completing the proof.
We divide the proof of the claim in two steps, where, as before, for simplicity of notation we write ¢ := ¢,,.
Step 1: The two dimensional case N = 2. In view of Lemma 4.2, consider sequences {¢} C Ry, {u.} C

W22 (Q;R?), such that & — 0%, ue — ug := |22]a in L' (Q;R?), and

lim W(Vug +5|V2u5| de = K*.
e—0t Q

By (Hg)” we may assume, without loss of generality, that {u.} C W22 (Q;Rd) N C? (Q;Rd), and by

Proposition 6.2 that Vu. (#) = £ a ® ey nearby @; = =1 (resp.). By Theorem 4.1 we have

K* = lim W(vuf £ |Vu| d:z:>hm1nf/ —W(qu +e|V? u5| dx
Q\IL, €

e—0+ Q¢ e—0t
o (2L L 1L (12
2w (g gy g) <) = (1-3)
where I = (=3, -3+ 7) U (3 — 7:3)) x (=3, 3), and s0

2
hmsup/ W (Vue) +5‘V2u5‘ d:z:<K*

Divide (—%, —% + %) X (—%, %) into [%] vertical strips of horizontal width -+ [%] -t , and proceed symmetri-
cally in (§ — =, ) x(—3, 5) . Order these strips in pairs (R_,, ;, RT,, ;) with R:’m sC(3-L,H)x(-3 1),
R ... C ( % —% + %) X (—% %) Then for all £ > 0 sufficiently small we have

8 1 ;

Z/ —W(Vug)+5|v2ug|2+mp|Vug—Vu0|p+\us—u0|dx§K*—, (6.9)

i1 /R, OB, ¢ m

where we have used the fact that u. — ug in W7 (Q; R?) (see Theorem 3.1 and Remark 3.2 (ii)). Choose

one pair (R;m,i7 Rj,m,i) , with ¢ =i (e, m), such that
1 2 311"
/ —W(Vug)+€|v2u5| +mP |Vue — Vaug|” + |ue — up|de < K*— [—] . (6.10)
RY, iR mie
For simplicity, from now on we denote R:mz = R, = (be;mCem) X (—3,3) and R_ .. = Ro,, =
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(_CE,TIH _b57m) X (_%, %) . Since

Ce,m
be,mtee,m [
2

[N

EW (Ve (@) + 2 [V2ue @) +m7 [V (ue = uo)l” (2) + | (ue = uo) (=)

N

1
oW (Vue (—an,22)) 4 & [VPue (~en @)+ m? |V (e — o) (~ar,22)]”

(e — o) (—ar, ) o < 2 H

m |e
with ce.m — bE’”;ﬁ = %% [%]_1 , there exists ac m € (W, cgjm> such that
71
2
/ ‘ {EW (Ve (aem, x2)) +€ |V2u5 (Ge,m, x2)| + [(ue — o) (Ge,m, T2)] (6.11)

+m? |V (e — uo) (acm, 22)[" +mP [V (ue — uo) (—ae,m, x2)["

1
+ EW (Vue (—aem,x2)) +€ |V2u5 (—ae m, $2)|2 + [(ue — uo) (—ae,m, $2)|:| dry < 6K™.

be.mtc be.m+e
g
Now (—amm —em + —Qm) C (=Ceym, —be,m) because ac,, € ( S s ’7’,cg7m> and —=mo—em —p o, =

111111 . . 1 :
50 [?] . We will now modify u. on (—ac n, .—bsm?) >< (—5., 5) so that the new sequence will match u,
near T1 = —de m + 5=, hence near —b. ,,, and will coincide with w. (—ac m, ) near x; = —a. m. Let @, be

a smooth cut-off function such that ¢. ., = 1if 21 > —acm + 57, Ye.m = 0 if 1 < —a. m, and

1

, < cm I < em?
el < 2 el < S

Define
We,m () 7= Pem (1) Ue (@) + (1 — @em (21)) Ue (—acm, T2) -

Then {we,,} C W™ (Q;Rd) , and Vwg ,,, () = £a ® ey nearby zg = i% (resp.). We show that

1
lim sup lim sup/ W (Vwe,m) +¢ |V2w€7m|2 dr < K*, limsuplim sup/ [Wem —uglde=0. (6.12)
Q¢ Q

m—oo g0+ m—oo  g—0t

If (6.12) holds, and repeating the argument now nearby x1 = a. m, then after a diagonalization procedure
and invoking Theorem 4.1, we can find a subsequence £, — 0% and a sequence {w,,} C W2 (Q, ]Rd') such
that w,, = wy, (£am, x2) nearby x; = :I:% resp, Vw, () = £a ® ey nearby zg = :i:% (resp.), and

1
lim —W (Vwm) + em ‘Vzwm|2 de=K*, lim / Wy, — ug| da = 0.
m— o0 Q

m— o0 Q 5m

Construct by reflection about a1 = % a new function, still denoted w,,,, x1-periodic with period 2. Precisely,
for 1 € (%, %) , Lo € (—%, %), set Wi (21, X2) 1= w1 — 21, x2). Since the problem is translation invariant,
for simplicity of notation in what follows we identify w with its translation (1, z2) — w(z; — 1/2, 22), and

in this way we work with periodic functions with period (—1,1) x ( 1 1), such that

—23
1
lim — W (V) + em | V2w | de = 2K*,  lim W — ug| dz = 0.
TS (-1L)x(~5,5) Em MO S (=1, 1)x(—4.%)

Note that here we have used condition (Hs), and note also that the new function w,, extended to R x (f%,

)

N N[=

is still in VVI%)’COO (]R X (—%, %) ;]Rd) because w,, does not depend on x; nearby the axis of reflection z; =
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The remainder of Step 1 is devoted to the proof of (6.12), where we use the notation I, 1= (=1/2, —b,;,) X
(=1/2,1/2). We have
W(ngm +e |v2wm| dx _/
Q &

_W(vug —|—5|V2u5| d:z:+/ —W(ng7m)+6|v2wg7m|2dx
Q\I €

Rom €
2 2

1 du. 0% ue
+/ -W (Oa - (a'f,mvx?)) te .
I,;\R;,,, ) 81'2

8_:133 (*aa,maxz)

dzr

/ —W (Vu,) +6|V u5| daz—i—/ éW(ng,m)+€|V2w5m|2dﬂf

£, m

L 2
2 1 ou 0%y
— / ; - ( — ( as,mva)) + e 83:%6 (_as,'rrux?)

dzx.

By Remark 6.1 we have

w (07 % (_as,'rm 5132)) <CW (vus (_as,'rm 5132)) +C
2

p

Oue

(_as m7332) <CWwW (vug (—Clg m,éI?Q)), (613)
3331 ’ ’
hence, by (6.11)
% 1 811/5 82”5 2
~ / . EW <O, g (— asﬂn,a:g)) +e 93 (—Qe,m,x2)| dx
1 2
71 o%u C
< E ; EW (vus (_as,7n7332)) +¢€ ) gs ( Cl57m7332) dr < E7
and, in turn,
1
/ . W (Vwe m) +6‘V2w5m| dz </ W (Vue) +5|V2u5‘ dx (6.14)
Q
2 2 C
+ W (Vwem) + € [Viwe | do+ =
R,
Similarly, again by (6.11),
/ |We,m — uo| dz S/ \ug—uo\daz—i—/ |We,m — uo|dz
Q Q\Ir, Re
L
—/ ‘ |tte (—@e,m, T2) — |22| a] dx
7
C
< lue — up| dz + |wWe,m — wo| dz+ —,
Q\Is, Re m m
and thus, also by (6.14), to prove (6.12) it is sufficient to show that
. 1
) Jim g 0 (V) e
i) i li V2w, | dz = 0;
(i) Jim_ Jm o e |Viuen| de =
(111) 'rr}gnoo EI_I)I(I)1+ fR:nz Wem — Ug‘ dr = 0.
Now
Ou,
Vi (1) = e (1) Vi (1) 4 (1= e (1) (0] T2 (=) ) (6.15)

+ (e (21, %2) — e (—Aeim, T2)) @@L, (1) €1
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By (Hz)"” we have
W (&) <CA+[Ef) <C (142771 [Vuol” + 2P~ ¢ — Vauo|”)
and so, using (6.15),

1
- W (Vwe ) do < C (1 + |Vuo|” + |Vwe 1 — Vug|”) d
RE e RE m

1 1771
sc—H (14 lawesl”)

EM | €
1 Oue P
+C= \Vu. — Vuol” + ‘Vuo — (O, Gl (—Ge,m, .%‘2)) dx
g RZm 8:1:2
1 m\P
+C= (?) e () — e (—aem, 22)|P da

Reom
1
z

11 , 117" ,
<C|—+-= |Vue — Vug|P de + — | = - [V (g — te) (—ae m, 2)|" do
m & R m & £ 7%

\/7 ‘uf (33) — Ue (7@5777“ $2)|p dx

e,

—1 —1
1 13K [1 6K [1]7'1  mP »
=C (‘ R—rsy H T H = Epﬁ/ﬁ [te () = te (—ae,m, 2))| dﬂﬁ) :

+C

ep+1

m  emPtl | e
£,m

where we have used (6.9), (6.10), (6.11). Thus to prove (i) it remains to show that

mP »
lim lim |ue () — e (—Ge,m, x2)|" dz = 0.

m—o00 ¢—0+ gp+1

e,

Indeed, by Hoélder’s inequality

p
Ce,m 8u
‘uf (I17x2) — Ug (_aEmuxQ </ 9 £ S 1132) dS)
b 1 OT1
e p/p’ —Ceym 8“5 p
<C(\— d
- (m) / b, 1071 (s,22)) ds

IA

c(i) / TV (e — o) (s, @) [P ds,

m

bs m

and thus by (6.10)

p—1 —Ce,m
/ e (21, T2) — Ue (—Qe,m, 22)|P dx < C i) / \V (ue — uo) (s, 22)|F dsdz (6.16)
Rz Roy N —bem
1] L ert ep+1
S C |:g:| mp \/7 |VU5 Vuo\p dz < C 2 1

and the (6.12) holds.
To show (ii) note that for x1 € (—be m, —Ce,m)
0?u.

V0 0] = e (1) [V ()] (1 = e (00) |5 (2
2

Ou,
+ [ue (21, 29) = te (=ae,m, 22)| |¢L o (21)] + 2], (21)] ’VUE (z) - (0 ‘axQ (—as,m,x2)> ’,
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and so

2 2 o 12 |0%u. 2

|v ws,m| <C |v u5| + D22 (*as,m:xQ)
&)

du,

+ (%)4 lue — ue (*as,m,9:2)|2 + (%)2 ‘v“f - <O dxo (aE,m,ﬂiz)) 2) .

We now estimate the two terms on the right hand side of (6.17). By (6.16) and Holder’s inequality

(6.17)

2/p
/ e (@1,@2) — te (~em, @2)* de < |Re,, |7 D7 < / e (21, 2) — e <ag,m,x2>de> (6.18)
Re = m
111 -1 (p—2)/p €P+1 2/p 63
= EH (Cm—+> SO

2
<2

while

2

Ou,

Ou,
P (_as,'rm 5132)) “

- (ar)\
—be,m
< 2|Vue — Vug|> 42 </

Vit (0

5 ‘ Ou, _ Oue

8.%’2 (ZZE 31'2 (_as,myl‘Z)

?u,

33323371 (87 IQ)

2
ds)

3 —be
< 2|Vue —Vuo\z—l— E/ |V2u5 (s,xg)fds.

Ceym

m J_

Ceym.

Hence, by (6.10) and Hélder’s inequality,

/RE, m

2
Ou,

V. () — (0 ‘8:1:2 (ag,m,xz))

dz §2/ Ve — Vug|? d (6.19)
R

e,

71)5,771
+ 3 / / |V2u. (s, :132)|2 dsdz
m Jr- —

com 4 —Cem,

<9 |R;m|(p—2)/p (/
RIm

-1
+ % [l] E/ |V2ug|2das
m & R-

e,m

2/p
|V, — Vugl? d:z:)

£ 52

SCEtCE

By (6.17), (6.18) and (6.19) we conclude that

),

2 5
|V2u5|2 dx + C% /Z |V2ug (_as,my C'32)|2 dIZ

Oue
Ve — (O ‘332 (as,m,$2)>

‘us — Ue (_as,my C'32)|2 dl‘

V2w |” da < 05/

Re ,m

2
m
Lot /
€ JRz.

4

e,m

|

b

2
dzr

+C0—
€ JRom

-1
1 1 1
§C<K*3H FOK =+ —+ = >—>o
m m m

m & m

45



as € — 0T and m — .
Finally, note that by (6.18)

/ |Wem — ue|dz < C i/
R m Jr
ase — 07T,

Step 2: The N-dimensional case. Take sequences {e,} C Ry, {u,} € W22 (Q;R?), such that &, — 07,
Up — up := |zy|ain L (Q;Rd) and

1/2
[ue — e (—Ge,m, 332)|2 daz) — 0

£,m £,m

1
im [ —W (V) + e |V, | do = K*.
e—0t Q¢n

By Step 1 there exist a subsequence {e,,} C {e,} such that the corresponding fields u,, may be modified so

as to obtain a new sequence {w%)} C VVI%)COO (R X (f%, %)Nfl ;Rd> , x1-periodic with period 2, such that

ng) (r) =+a®ey nearby xy = i% (resp.) and

1 2
lim —W (Vald) + = ]v%;;)‘ dr — 2K*

Mo J(—1,)x(—4,4)" T Em

lim ‘w%) —uo‘da: =0.
m— oo (—1,1)X(—%,%)N7'

We treat zo just as above. Starting from the w%) above we construct

w® (@) = or (x2) WD) (@) + (1 — pr (€2)) wll) (21, £ by, @3, n) .

17 such that

with by — 3

lim L w (waf)) Yem,

. N—1
Freo (-1 (=4,3)" " Emx

2
Vzw,(f)‘ dr =2K*,

lim ’w,(f) — uo‘ dx = 0.
k—oo (71,1)X(7%,%)N71

Note that w,(f) (z) is still periodic in x; with period 2 and Vw](f) (r) = +a ® en nearby xy = +2 (resp.).

2
After reflection about zo = % we obtain a sequence w,(f) (z) periodic in zy and in x9, of period 2, such that

Vw;(f) (z) = £a®ey nearby zny = :I:% (resp.), and

1 2
lim ,—W (Vo) +2m, Vzw,(f)‘ dv = 4K,
k=00 (-1, )% (=1,1)x (= 4,5)V* Emy
lim 4 ‘wl(f) — uo‘ dz = 0.
k=oo J(—1,1)x (-1, x (=4, 4)"
By repeating this process for all remaining variables z3, - ,xy_1, we obtain sequences fulfilling the claim.
|
Define

Kper 1= inf{/ LW (Vv) + % |v2@‘2 de:L>0,veWr® (Q;Rd) 7
Q

1
Vv =+a ® ey nearby zy = ii’ v periodic of period one in :1:'} .
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Proposition 6.4 Assume that W satisfies conditions (Hy), (Hs)", (Hy) and (Hs). Then
K* = Kper.

Proof By Proposition 6.3 K* > Kper. To prove the opposite inequality, fix § > 0 and let L > 0, v €
loc (Q Rd) v (-, zn) @-periodic for all zy € R, such that Vv = +a ® ey nearby zy = :I:% (resp.) and
/LW(Vv |V%| de < Kper + 6.
Q

Let {€,} be a sequence converging to 07, and writing € := ¢, define

! .
5LU(€_L é)+a($N%) 1fo>%
z : eL
ze () := ¢ €eLv (5_1'7) if [on| < &2, (6.20)
eLv (:—L%) —a (xN + %) ifey < — EL,
so that
a®en if 2y > %
Vz. (x)=< Vv (%) if lzn| < 2, (6.21)
€
—a®enN 1f33N<—EL.
Then

%
/ |VZE—Vu0|pd:z::/ / ‘Vv (i> —a(}g)eN‘pd:Z?/dZZ?N
Q+ ’ EL
p
—5L/ / ( )—a(x)eN
’ L

de'dzy — 0
since v € W2 (Q;Rd) , and where ug = |zy|a, QT = Q' x (O, %) . A similar conclusion holds in @~ :=
Q' x (75,0) and so Vz, — Vug in LP (Q; Rd) . Moreover, by the Riemann-Lebesgue Lemma

/ 2 (Ve e V] dgc*/ /Q/e W(eL))JrgL? v (5L>‘2d$/d$N
S Lo (s () ()

da'dt — LW (Vo) + |V%\ da,
K* < / LW (Vv) + |V2v| dr < Kper + 6.

ol

and so

Tt now suffices to let § — 0F. m

Remark 6.5 If Q = w x (—h, h), where w C RN~! is a bounded open set, and if we consider the sequence
defined in (6.20), then we have by the Riemann-Lebesgue Lemma

_ % 1 €L 2 2 /
L2 G elvead do= [ [ 2w (90(F)) + o V20 ()] adon
= : LW (Vv x—/t lvz’ x—/t i
_/_%/w et TV e
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6.2 z’-connected domains

Theorem 6.6 Let Q C RY be an open, bounded, simply connected domain with Lipschitz boundary. Assume
(5.14) and let W satisfy the conditions (Hy), (Hy) , (Hy) and (Hs). Let u € Wh! (Q;RY), with Vu €
BV (;{A,B}). Then
r-— lir(r)l+ I (u; Q) = K™ Perq(FE),
E—

where Vu(z) = (1 — xg () A+ xg () B for LY a.e. x € Q.

Proof. The proof is very similar to that of Theorem 5.6.
Step 1: One interface. We assume first that v has the form

u(z) =|zy|la a.e. in .

We proceed as in Step 1 of Theorem 5.6 and in place of the function g we consider a function v € W2 (Q, ]Rd)
admissible for K., and, consequently, we define

Ue,5 () 1= Y5 (2) ze (2) + (1 — s (2)) u (2)

where z. is now defined as in (6.20). The estimate (5.18) should be replaced by

7 Vi 2
/ Lw (v +e |2z d:z:_/ / ow (v (S 4)) 4+ 2 v (24
{1/45 1}5 % w:j 5L L 5L

— HY ! (W) (/ LW (V) + \v2v| da:)

do'dt  (6.22)

as € — 07, by Remark 6.5. By (6.20) and (6.21) the bound (5.24) continues to hold, while (5.25) should be
replaced by

\V(zgfu)|§‘Vv(g%)‘JrHVuHooﬁC, V22| < = ‘w(i)‘<9 (6.23)

for |xn| < eL. We can continue essentially as before, using (6.22) in the right hand side of the new formula
corresponding to (5.28). We omit the details.

Steps 2 and 3: In the cases of finitely many and countably many interfaces we may proceed, respectively,
as in Steps 2 and 3 of Theorem 5.5. We omit the details. m

6.3 General domains

In this section we remove the condition (5.14).

Theorem 6.7 Assume that W satisfies the conditions (Hy), (Hz)", (Hy) and (Hs). Let u € Wh1 (4 RY),
with Vu € BV (Q;{A, B}). Then

- lim I (4;Q) = K* Perg(E),

e—0t
where Vu(z) = (1 — xg () A+ xg () B for LY a.e. x € Q.

Proof. The proof follows closely that of Subsection 5.4, with the only differences that in (5.34) of
Proposition 5.7 the function z. is now defined as in (6.20) and, in turn, the estimate (5.25) should be
replaced by (6.23). m

oL /
7 Condition (Hy)
In this section we weaken the condition (Hy) on the bounds of W near the wells.

Theorem 7.1 All the results of the previous section continue to hold if condition (Hy) is replaced by (Hy)" .

48



The next lemma ensures that the function g introduced in (H,)" to control the behavior of W near the
wells may be extended to a function G still satisfying the doubling condition, and such that G (|- — A|) and
G (|- — B|) may be compared with W in the whole R¥*¥ . As before, in what follows we are assuming without
loss of generality that A and B satisfy (2.1).

Lemma 7.2 Let g: [0,00) — [0,00) be a conver function, with g(s) =0 if and only if s =0, such that

6(20) < Co (1) (7.1)
for all0 < t < p,
g(|§ —A) <W (£ <Cg(lg¢ - A) (7.2)
Jor all € € RN with |€ — A| < p, and
g(|€=B[) <W () <Cg(|¢ - Bl) (7.3)

for all ¢ € RN with |€ — B| < p, for some constant C = C (p) > 0. Then there exists a convex function
G : [0,00) — [0,00) such that G (t) = g (t) for allt €0, o],

G(s+1t)<Ci(G(s) +G(t) (7.4)
for all s,t > 0 and for some constant Cy > 0,

<40

t—oo (P

=1, (7.5)

C%G (I€') < Ciz min{G (|£ — A]) .G (| = B))} < W (§) < Comin{G (| — A]), G (£ — B|)} (7.6)
for all € € RN and for some constant Cy > 0,
W(&) <Cs (W () +G (€ =) (7.7)
for all €, € RN and for some constant C3 > 0,
CiG ([§ = A) =W (E) (7.8)
for all € € RN such that |€ — A|, [ — B| > p and for some constant Cy > 0.

Proof. Let a > p be any Lebesgue point for ¢’ (recall that, since g is convex, ¢’ is a function of bounded
variation, precisely ¢’ € BV, ([0, 00))), and define

G(t):{ g(t) for0<t<a, (7.9)

We claim that G is convex. Assume first that g € C? ([0, 00)) . Then

¢ (1) = g () for 0 <t <a,
ptP— 1 4 (g’ (a) — papfl) for t > a,

and
P g" (t) for 0 <t <a,
pp—1)tP2 fort>a.

Hence G’ is continuous and nondecreasing, since G (t) > O for all t # a, and, as G is continuous, this implies
that G is convex. In the general case, consider g. := 7). x g and let G be the corresponding convex functions
defined as in (7.9). Since g. — g pointwise and g. (t) — ¢’ (t) for every Lebesgue point ¢ of g, we obtain
that G. — G pointwise, and thus G is convex. Condition (7.5) is now immediate. To prove (7.4) we first
show that

G (2t) < C1G (1) (7.10)
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for all ¢ > 0 and for some constant Cy > 0. It ¢ < p this follows from (7.1). Let p; > a be so large that
2 >~ (271~ 2) (¢/ (a) -~ 2a)t — (21 1) (g(a) ¢ (@)at (p— 1)a)
for all £ > py. Then

G (2t) = 2Pt + (g’ (a) — pap_l) 2t+g(a)—¢g (a)a+ (p—1)a”
=2HG () — 2t — (2271 —2) (¢' (a) —2a)t — (2PT' — 1) (9 (a) — ¢’ (a)a + (p — 1) a®)
anter(y

for all £ > p;. Thus (7.10) holds for ¢t < p and t > p; taking as a constant max {C’, 2p+1} . For t € [p, p1] we
have
maxap 20, G

G (20) < a (1)

ming, 1 G

and thus (7.10) holds for all ¢ > 0 with

1 - max {o. op+1 M} ,

ming, 1 G

To prove that (7.10) implies (7.4) is standard, note that by convexity and (7.10)

2(s+f)) <l@eyrae < %C1 (G(s)+G (1)

G@+ﬂ:G( — <3

By (7.2) and (7.3) condition (7.6) holds if either |¢ — A] < p or [ —B| < p. For k > 1 set Ej, :=
{£e RPN |6~ A, [~ B|2p, [§] <k}. For € € By

G (€ —Af),

ming, W maxg, W
d — < <
g, G (4] e~ A= WO < S A

and a similar inequality holds when the G (]& — A|) is replaced by G (|/{ — B|). Thus it is sufficient to prove
(7.6) and (7.8) for |¢] > k where & > 1 remains to be chosen. This is an obvious consequence of (Hz)” and
(75). m

Remark 7.3 In light of Lemma 7.2, and in spite of the fact that the qualitative properties of g are only
given nearby zero, in the remaining of this section, and without loss of generality, we will assume that g
satisfies (7.4)-(7.6) and (7.7)-(7.8) with g in place of G.

The next result has been proved by Bhattacharya and Leonetti [12] in the case where 2 is convex and
S = Q, and a generalized version for for open, bounded domains with the cone property may be found in
the Appendix.

Proposition 7.4 Let Q C RY be an open bounded set, starshaped with respect to a set S C Q, with |S| > 0.
Let g : [0,00) — [0,00) be a convex function, with g(0) = 0. Let u € WH (5 R?) be such that g (|Vu|) €

LY (Q). Then
Ju () —Us> (de)l‘ﬁ 0]
gl ———— ) dx < — [ 9(|Vul) dz,
A ( a 0] 81 Jo (V)

where ug = ﬁ fS wdx, d is any number greater or equal than the diameter of , and ay is the volume of
the unit ball in RV,

Proof of Theorem 7.1. Condition (H,) was used only in the proof of Propositions 6.2 and 6.3. Thus
it remains to show that these propositions continue to work under the weaker hypothesis (Hy)’. We begin
with Proposition 6.2.
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Vertical matching— first matching: The proof of the first matching continues to work up to (6.8). By
(7.6) and since g is increasing

1 1
—/ W (Vv ) da < —/ Cg(|Vve —a®ey|)dx (7.11)
€ JL. €JL.
1 , ] 1 _
Sg gl C \Vm/ug(x,zg)\+\Vugfa(><>eN\+g\uEfuofu5\ dx
L.
C , 1 _
S? g(|Vaue (', 2.)]) + g(|Vue —a®en|) + g g|u5—u0—ug\ dx
L.

where we have used (7.4). We now estimate the three terms on the right hand side of (7.11). By (7.6)

2 [ 90V e = H = [ oV 2 (7.12)

£ GEQ

<C | W (Vue (2, 2:))ds’ — 0
Q/

as e — 07 by (6.6). If [Vu. —a®en| < por |[Vu. —a®ey|,|Vu. + a® ey| > p then by (7.8)
g([Vu: —a®@ey|) < CW (Vu,.),
while if [Vu. —a®en| > p and |Vu. + a ® en| < p then

Vue —axen|’

g(|[Vue —awen|) < glp+2la@en]) < glp+2laxen]) 7

Hence

g/ g(|[Vue —a®enl|)dzx < g/ W (Vu.) + [Vu. —a®ey|"dz — 0 (7.13)
L. L.

as € — 07 by (6.5). Finally, by Jensen’s inequality

0
g/ g(l |u5—u0—ug|> dz < g/ g 1/ [Vue (2,t) —a®en|dt | dz (7.14)
e Jr.7 \¢ e Jr.m \€ Jo.—[1] "4

C [ 1 [% , ,
< —= - g (|Vue (2',t) —a @ en|) dtdx
€ Jr. € Jo.—[1] 1%
C
:—/ g(|Vu. —a®en|)dr — 0
€ Jr.

as € — 07 by (6.5). Thus, by (7.11)-(7.14) the claim (iii) holds as before.
Vertical matching—second matching: To prove (ii) in the second matching, note that by (7.6) and
since g is increasing,

1 1
—/ W (Vu.)da < —/ Cg(|Vve —a®en|)dx
Q' x (0., Q% (6.,

€ %) € %)
C _
< — g (|Varue (x/,zE)|)+g(|uE76EDd$
€ JQ x(0:.%)
C
<= W (Vue) + g (|te — cc|) dz,
€ JQx(0:.5)

where we have used (7.4). Thus by (6.5), it suffices to prove that

g 9 (|8e — ce|)dz — 0.

€ JQx(6-,3)

b

b

o1



By Proposition 7.4

- AT (S
— U — Ce|)dx = — gl |t — —
Q'x(6-.4) ol ) : Q']
< —/2/ g (|Vyt.|)da'dzy
€ 0. ’

< g/ g (|Vaerue (2, 20)]) do’
&€ Q'

< ¢ W (Vue (2, 2:))da’ — 0

Q/

e (2, 22) dx’
’

> da'dzy

as e — 07 by (6.6), and where we have used (7.6).

It remains to ensure that Proposition 6.3 still holds.
Transversal periodicity: The proof of Proposition 6.3 continues to work. The only difference is on the
estimate (6.13) which continues to hold since, by (7.6) and the fact that g is increasing, we have

0 e . 0 e 0 e
W (O, i (as,m:xQ)) S 02 min {g <’ - (*as,m:xQ) —a > . g <’ az (70,E7m,.%'2) +a >}
2

85132 8332
< Coymin {g (Ve (=ae,m, 22) —a®ez|), g (Ve (—ae,m, v2) + a @ e2])}
< 022W (VUE (*as,m; $2)) )

and we can now proceed as before. m

8 Example of a non one-dimensional interface

In this section we show that when (Hs) holds but (Hj3) fails, the asymptotic limiting problem may not have
a one dimensional character, namely,
Kper < K.

Consider the case where N = 2, d = 1, so that, with z = (21, 22), we have
Kper i= inf{/ LW (Vv) + |V%\ dxydes : L>0,v € W™ (Q;R),
1 . . . .
Vv = tes nearby xg = ii’ v is periodic of period one in :z:l} .

In what follows we say that v € VVI%)’COO ((—%, 5) x R; ]R) is such that Vv = +ey nearby zo = +oo if there

exists a constant M > 0 such that Vv = %e, for all # € (—4, 1) x R (resp.) with xp > M (resp. zo < —M).

Proposition 8.1

11
pelmf{/ / LW (Vo) + |v%| dxlde:L>o,veWif°(<§,§> XR;R),

Vv = *des nearby 9 = Fo00, v is periodic of period one in x1} =: K.

Proof. By linear continuation it is easy to see that K. < Kpe,. To prove the converse inequality, fix

6§ >0 and let v € W2 ((—%7 %) x R; ]R) be an admissible function for K, such that, for some L > 0,

/ / LW (Vv) + \v%| dvydry < Koo + 6.
1
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Since Vv = +ey nearby zo = +00 we may find a positive integer m such that

[e] = m+)
Koo+62/ / LW (Vo) + |v%| doydzs = / LW (Vo) + |V2v| duydzs

I
5 —m——

and Vv = tey for £29 > m. Due to the periodicity of v with respect to 1, we have

mty 3 1 2
Ko +5>/ LW (Vov(z +—|V21)(x)| dxidxy

-3 %

/m+2 Z/ LW (Vv (z1 + k, z2) +1‘V2v(x +k$)‘2da¢d$

=) mt1 , 1 2) i 1+ K, 22 10T
mtg 3 1 2

:[m l 2m+1 Z /7_ VU $1,.’L’2))+z ‘VQU ($1,.’E2)‘ d$1d$2

mty 1 2
2m+1 /mi_/ LW (Vv ($1,$2))+Z |V2v(9:1,9:2)| dx1dxs

mf—

LW (Vv V2u ( dz.
2m +1 /(2m+1)Q (Vo (@) | |

Via the change of variables z := (2m + 1) y we have

Koo +6> (2m+1)/QLW(Vv((2m+1)y))+%|V20((2m+1)y)|2 dy

- [ om0 LW (V2 )+ g

2
@nT DL V22 (y)|” dy,

where we have set 2 (y) := 1+1U ((2m + 1) y). Note that

2m

2+ 1y2) = v((2m+ 1Dy +2m+1),2m+1)y2)

om 1.
1
T 2m+1

- Z(ylayQ)v

v((2m+1)y1, (2m + 1) yo)

since v periodic of period one in x1, and Vz (y) = +ey if y2 is nearby +1 5, resp. Hence z is admissible for
Kper, and so

Koo+ 06

]. / ]. 2 2
> LW (Vv (x))+ = |Vv(x)| dx
ST S Y (VO T [V @)

- <2m+1>/QLW<v@<<2m+1>y>>+%\V2v<<2m+1>y>|2 dy

1

2 2
— |V dy > Kper.

/Q(2m+1)LW(Vz(y))+

Tt now suffices to let § — 0F. m

Next we exhibit an example of an energy density satisfying (H1), (Hg)”7 (Hy) and (Hs) for which
Kper < K. Define

W(E) =W (6,&) = (1-agt - &) +&,
where oo > 0. Then W (¢) =0 if and only if £ € {(0,1),(0,—1)}. By Lemma 3.5 in [23] we have that

K = inf {/_OO W (0,9 (s)) + |g’ (s)|2 ds : g piecewise C', g(—o0) = —1, g(c0) = 1} (8.1)

= inf {/ (1-¢° (9))2 +|q (s)|2 ds : g piecewise C', g(—o0) = —1, g(o0) = 1} .

— 00
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It is not difficult to see that K is realized by the unique solution of the boundary value problem

{ 9" +29—2¢°=0
g(*OO) - 71; g(OO) - 17

which is given by g (s) := tanh s. Define @ ( fo ) ds = Incosht.
Proposition 8.2 If a is sufficiently large then we have Kper < K.

Proof. Set
v(x) = v (21, 22) = T(x2) + M\ (z1,22),

where ¢ (21, 22) := sin (27x1) f (z2) and f is a smooth nonnegative function with compact support. With
L =1 we have

[.]

+ /\2/ / ‘V%‘z + 2 (3g2 (z2) — 1) sin? (2mz1) (f (:1:2))2 + 4m? cos®(2mxy) f2 (22)

K=

W (Vo) + |V2v|2 dzydze = / (1-4° (9))2 +1g (8)]* ds

.»|H

—87%a (1 —g? (:1:2)) cos? (2mxy) f2 (332)] dxdze

|~

2
+ )\4/ / sin? (27z1) (f (372))2 +4m?acos? (27ay) f2 (.%'2):| dzydxs
1
3
= Il + )\212 (Oé) =+ )\413 (a) .

We now choose a > 0 so large that I (a) < 0, and then X so small that A\2I5 (a) + A I3 (o) < 0. In view of

(8.1)
L.

Let {u,} be a sequence of smooth functions converging to @ strongly in VViCp (R) for all p > 1, and such
that u), (o) = tes (resp.) for all xo > n (resp. zo < —n). Define

oo

W (Vo) —|—|V2v| d:z:ldas2</ (1—g2 (s))2—|—|g'(s)|2ds:K

1
-3 —oo

Up () 1= up (2) + AP (21, 22) .

Then v,, are admissible for K., and so

Ko < lim/ / W (Vo) +‘V2vn| dxidrs
L

/ /? W (Vv) +\v%\ dridzs < K.
1
2

This, together with Proposition 8.1, concludes the proof. m

9 Appendix

In the Appendix we generalize Poincaré’s inequality to Orlicz-Sobolev spaces (see Proposition 9.2). Although
it is probably known to experts, we have not been able to find it in the literature. The proof follows that of
Maz’ja [29] for the case g (s) = |s|”. A first version has been proved by Bhattacharya and Leonetti [12] in
the case where €1 is convex and § = (2.

We recall that an open set Q C RY is starshaped with respect to a set S C € if Q is starshaped with
respect to each point of S, i.e. if x € Q and s € S then fx + (1 —0)s € Q for all § € (0,1).
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Proposition 9.1 Let Q C RY be an open bounded set, starshaped with respect to a set S C Q, with |S| > 0.
Let g : [0,00) — [0,00) be a convex function, with g(0) = 0. Let u € WH! (5 R?) be such that g(|Vu|) €

LY (Q). Then 7
Ju () us> (cde)l‘W [e]
gl ————— | dx < r g (|Vu|) du,
/Q ( a 0] 5T Jo ¢ (VD)

where ug = ﬁ fS wdzx, d is any number greater or equal than the diameter of Q, and ay is the volume of
the unit ball in RV,

Proof. We follow Lemma 7.16 in Gilbarg and Trudinger [24]. Assume first that u € Wh! (Q;Rd) N
ot (Q; ]Rd) . Since € is starshaped with respect to S C Q, for x € 2 and y € § we have

|z—y| y—x
u(gc)fu(y):f/ Dyu(z+rw)dr, w=——:.
0 K

Averaging with respect to y over S yields

le—y]
u(ﬂc)uS%/de/o D,u(z + rw)dr.

Since |z — y| < d we have

lu(x) —us| 1 1 /lw—y
—_— = < — — | Dy (x + rw)| drdy.
d 1S Js |z =yl Jo

As g is convex, it now follows from applying twice Jensen’s inequality that

u () — us> 1 1 /Hl
—— | <= | —— D,u(z + rw)|) drdy.
o (2 5 [ eUpu s aray

Defining
Vu(z)| zeq,
and, as g is increasing, we have
— 1 1 h
g(u(x)—us> < = —/ g(V (x4 rw))drdy
d |S| {y:|lz—y|<d} ‘ZIE _y‘ 0

e d
B ﬁ/o /|1/() g(V (w +rw)) p" ~*dpduwdr
dN-1 o0
- m/o /lwlg(V (z +rw)) dwdr

dN—l

~ oy Ll Y e dn

where we have used the fact that g (0) = 0. The theory of Riesz potentials (Lemma 7.12 in Gilbarg and
Trudinger [24]) now yields

[u(z) — ug| 1 I
/QQ<T> dr < = (an) "7V (9 (N_l)‘S‘/Qg(Wu(:z:)Dd:z:

and the proof is complete. m
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Proposition 9.2 Let Q@ C RY be an open bounded domain having the cone property, let g : [0, 00) — [0, o0)
be a convex function satisfying the doubling condition, with g (0) = 0. Let uw € W11 (Q;Rd) be such that

g(|Vu]) € L1 (Q). Then
/9(\u(w)—u3\) d:z:gc/g(\w) dx
Q Q

= )d
Up |B‘/ Y,

B is any fized ball whose closure is contained in 2, and C' is a positive constant depending only on 0 and
on the ball B.

where

Proof. Since 2 has the cone property, it is the union of a finite number of domains starshaped with
respect to a ball. Let d be a number greater than the diameter of all these domains, and let A be any of these
subdomains with D being the corresponding ball. Construct a finite family of balls By, - - - , By contained
in ©Q and such that By = D, B; N Bi11 # W, By = B. Since A is starshaped with respect to any fixed ball
B contained in By N By, by Proposition 7.4 we obtain

foo () e (QTAdN> {2‘ [ 5wl ds

By Remark 7.3 and (7.4)

ey eson) <>r

where we have used Jensen’s inequality. Hence

[o(=) s o () s (357) T fy foumane

Similarly, since for i = 1,--- , M — 1 the ball B; is starshaped with respect to any fixed ball B; contained in

B; N Bi11 # 0, we obtain
1—-L
aN N |B;
g(u($)>dy +C<aN ) ‘N ‘/ g(|Vul) dz.
B; ﬂBl+1 d ‘BZ‘ ’BZ B,

[ () <c‘B‘
Therefore
/Ag(h‘ff)> dx<c(/Bg<“ff)> dx+/ﬂg(Vu)dx).

Summing over all A gives

/Qg(%) d:z:SC’(/Bg<uEf)> d —I—/Qg(Vu)daz). (9.1)

Since B is convex, by Proposition 7.4

/Bg (M) de < (QNBCTNY_#/Bg(Vu) dz,




where up := - J5 wdz. Replacing u by u — up in (9.1) we obtain

|B|
[ () ([ () s v

< c/ﬂguwbdaa

Applying the latter inequality to du in place of u yields

[ o(ute) —usl) dz < C [ gtaivuhar <y [ g(upan.

where we have used the fact that g (dz) <const. g (z) for all z > 0 (see Remark 7.3 and (7.4)). This concludes
the proof. m
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