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Abstract

In this poster we present the results contained in [9]; in that paper we generalise
to all sets with finite perimeter an equality concerning the short time behaviour of
the heat semigroup proved for balls in [8] and exploited there in connection with the
isoperimetric inequality. For sets with smooth boundary a more precise result is shown.
The above result for sets with finite perimeter gives also a characterization of the
perimeter using the heat semigroup very similar to the one used by De Giorgi in [7]
to define the perimeter. We also extend these results to all the function with bounded
variation, giving a relation between the jump part of the total variation measure and
the small time diffusion of the level sets.
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Introduction

Sets with finite perimeter have been introduced by E. De Giorgi in the fifties (see [6], [7]), as
a part of the theory of functions of bounded variation, in order to deal with geometric vari-
ational problems and have proved to be very useful in several contexts. The first researches
of De Giorgi were connected with the investigations of R. Caccioppoli, and in fact sets with
finite perimeter are also called Caccioppoli sets. Let us refer to [2] for a comprehensive treat-
ment of BV functions and the properties of sets with finite perimeter. De Giorgi’s original
definition of the perimeter of a (measurable) set E ⊂ RN was based on the heat semigroup
(T (t))t≥0 in RN , because of its regularising effects, and can be phrased as follows:

P (E) = lim
t→0
‖∇xT (t)χE‖L1(RN ),(1)

where χE denotes the characteristic function of E and, for any function f ∈ L1(RN ),

T (t)f(x) =
1

(4πt)N/2

∫
RN

f(y)e−|x−y|
2/4tdy

∫
RN

f(y)pN (x, y, t)dy.
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e-mail: michele.miranda@unile.it, diego.pallara@unile.it, fabio.paronetto@unile.it
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In [8] M. Ledoux investigated in a different perspective some connections between the
heat semigroup (T (t))t≥0 on L2(RN ) and the isoperimetric inequality, observing that the
L2-inequality

‖T (t)χE‖2 ≤ ‖T (t)χB‖2(2)

for all sets with smooth boundary E with the same volume as the ball B implies the
isoperimetric inequality. By the self-adjointness of the operators T (t) and

‖T ( t2 )χE‖22〈T ( t2 )χE , T ( t2 )χE〉 = 〈T (t)χE , χE〉,

the behaviour of 〈T (t)χE , χE〉 is related to the L2-norm of T (t)χE . Here we have used the
notation 〈f, g〉 =

∫
RN fgdx whenever the integral is finite. Inequality (2), in turn, had been

deduced by the isoperimetric inequality by Baernstein ([3]). In [8] one important point has
been the formula

lim
t→0

√
π

t
〈T (t)χB , χBc〉 = P (B),(3)

where B is a ball, and the inequality√
π

t
〈T (t)χE , χEc〉 ≤ P (E) for every t ≥ 0,(4)

which has been generalised in [10] for all E ⊂ RN such that either E or its complementary
set Ec has a finite volume (otherwise, both terms are infinite). If E and B have the same
volume, |E| = |B|, from the elementary relation

〈T (t)χE , χEc〉 = 〈T (t)χE , 1〉 − 〈T (t)χE , χE〉|E| − 〈T (t)χE , χE〉 for every t ≥ 0

it follows that the L2-inequality (2) is equivalent to

〈T (t)χE , χEc〉 ≥ 〈T (t)χB , χBc〉 for every t ≥ 0,

and the semigroup inequality (2) implies the isoperimetric inequality for Caccioppoli sets in
RN . In connection with these results, it seems to be interesting to pursue the investigation
of the relationships between the perimeter of a set and the short-time behaviour of the heat
semigroup.

In [9] we present two different proofs of formula (3); the first one applies when ∂A admits
a tubular neighbourghood with the unique projection property, which is exactly the case
when ∂A is uniformly C1,1. The second proof is based on weak∗ convergence of measures
and applies to every Caccioppoli set. Both proofs use heavily the fact that the heat kernel
can be factorised, that is

pN (x, y, t) = pN−1(x′, y′, t)p1(xN , yN , t), x = (x′, xN ), y = (y′, yN ),

and on the fact that the heat kernel is given by a convolution.
The result given for general Caccioppoli set can be extended also to BV function; this

extension gives, among other properties, that the diffusion for graphs of BV functions only
occours on the jump set, in the sense that will be clarified in Theorem 2.5.

Let us point out that the same characterisation of finite perimeter sets and of BV
functions, though formulated in different terms, is also proved, following a different approach,
in the papers [4] and [5] (see also [1]), where convolution kernels more general than the
Gauss-Weierstrass one are considered.
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1 Diffusion for smooth sets

The aim of this paper is twofold: we prove that equality (3) holds true not only for balls,
but for all Caccioppoli sets, and we also prove a more precise result for sets with smooth
boundary (see Theorem 1 below). By smooth we mean the minimal regularity ensuring the
unique projection property in a tubular neighbourhood of the boundary. To this end, the
Lipschitz continuity of the unit normal vector field is the natural requirement. We say that
A ⊂ RN is uniformly C1,1-regular if there are %, L > 0 such that for every p ∈ ∂A the set
∂A ∪B%(p) is the graph of a C1,1 function ψ with ‖∇ψ‖∞ ≤ L. Setting

Aδ := {x ∈ Ac : dist(x, ∂A) ≤ δ}, Aε := {x ∈ A : dist(x, ∂A) ≤ ε}(5)

for δ, ε > 0, we prove the following Theorem, where we denote by HN−1 the (N − 1)-
dimensional Hausdorff measure.

Theorem 1 Let A ⊂ RN be C1,1-regular. Let Aε and Aδ be an inner and outer tubular
neighbourhood of ∂A defined in (5). Then for every continuous ϕ : RN → R with compact
support the equality

lim
t→0

√
π

t
〈T (t)χAε , ϕχAδ〉

∫
∂A

ϕdHN−1

holds.

Equality (3) for bounded uniformly C1,1-regular sets follows easily from Theorem 1, since
by direct computation

〈T (t)χAε , χAδ〉 ≤ 〈T (t)χAε , χAc〉 ≤ 〈T (t)χA, χAc〉

and then

P (A) = lim
t→0

√
π

t
〈T (t)χAε , χAδ〉 ≤ lim inf

t→0

√
π

t
〈T (t)χA, χAc〉 ≤ P (A),

where the last inequality has been proved in [10]. It is important to notice that the perimeter
of a regular set A can be recovered by the heat amount in the tubular neighbourhoods Aδ

and Aε and not by the heat amount in the interior of A.
Concerning the proof of Theorem 1, it is divided into several steps. The first one starts
assuming thatA is an halfspace and the function ϕ doesn’t depend on the direction othogonal
to ∂A; in this case the computation is very simple, thanks to the factorisation property of
the heat kernel. In the second step, we deal again with an halfspace and we consider a
general function ϕ; this step shows in particular that the heat diffusion for the halfspace is
orthogonal to the boundary. In the last step, we show that also for a general smooth set A
the diffusion is transversal to ∂A; the result follows from a partition of unity argument. In
this last step we also use the fact that the transversal diffusion is given by the heat amount
contained in a fixed set of the covering of the partition of unity, and the contributions coming
from the other elements vanish as t tends to 0.

Remark 1.1 Since for compact subsets A ⊂ RN with smooth boundary ∂A the perimeter
P (A) and the (N−1)-dimensional Hausdorff measure HN−1(∂A) coincide (cf [2, Proposition
3.62]), we also have

lim
t→0

√
π

t
〈T (t)χA, χAc〉 = HN−1(∂A).
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2 Diffusion for Caccioppoli sets and for BV functions

In the case of Caccioppoli sets, it is possible to prove the following result, which gives the
heat amount coming from a given set E into another set F .

Theorem 2.1 Let E,F ⊂ RN be sets of finite perimeter; then the following equality holds:

lim
t→0

√
π

t
〈χE − T (t)χE , χF 〉 =

∫
FE∩FF

νE(x) · νF (x)dHN−1(x).(6)

The proof of Theorem 2.1 is based on a weak∗ convergence result: more precisely, for
x ∈ FE, the measures

dµs,x = LN
(
E − x√

s

)
,

are weakly∗ convergent, as s→ 0, to the Lebesgue measure restricted to the halfspace

HνE(x) =
{
z ∈ RN : z · νE(x) ≥ 0

}
.

This convergence property implies in particular that one can still consider the heat diffusion
as to be transversal to the boundary FE of E and the result again relies on the factorisation
property of the heat kernel.
An important corollary of the previous Theorem is given by the following.

Theorem 2.2 Let E ⊂ RN be a set of finite perimeter; then the following equality holds

lim
t→0

√
π

t
〈T (t)χE , χEc〉 = P (E).

The proof simply follows from Theorem 2.1 by taking F = E and noticing that

〈χE − T (t)χE , χE〉〈χE − T (t)χE , 1− χEc〉〈T (t)χE , χEc〉.

We point out that this result is more general regarding the sets to which it applies, but is less
precise since we cannot conclude that the heat amount comes only from a neighbourhood
of any given point of the boundary.

It is also possible to prove that Theorem 2.2 is in some sense optimal, that is, the only
sets with a finite diffusion are the Caccioppoli sets. More precisely, the following Theorem
holds.

Theorem 2.3 Let E ⊂ RN be a set such that either E or Ec has finite mesure, and

lim inf
t→0+

〈T (t)χE , χEc〉√
t

< +∞;

then E has finite perimeter.

The proof of this Theorem essentially relies on the fact that a set E with finite diffusion
has almost every directional derivative bounded in L1, whence the fact that E has finite
perimeter.

Starting from Theorem 2.2, if E is the level set of a function u ∈ BV and integrating on
these level sets, using the coarea formula, it is possible to prove the following.
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Theorem 2.4 Let u ∈ BV (RN ); then the following equality holds:

|Du|(RN ) = lim
t→0

√
π

2
√
t

∫
RN×RN

|u(x)− u(y)|pN (x, y, t)dxdy.

Finally, using Theorem 2.1, when E and F are the level sets of two functions u, v ∈ BV
respectively, it is possible to prove the following Theorem, which says that the diffusion of
the graphs of two BV function is concentrated on the jump sets Su and Sv of u and v.

Theorem 2.5 Let u, v ∈ BV (RN ); then the following formula holds:

lim
t→0

√
π

t
〈u− T (t)u, v〉 =

∫
Su∩Sv

(u∨ − u∧)(v∨ − v∧)νu · νv dHN−1.

As an immediate Corollary of this Theorem, we have an interpolation-like result, that is, if
u ∈ BV (RN ) ∩ L2(RN ), the following limit formula holds

lim
t→0

√
π

2
√
t
‖u− T (t)u‖L2(RN ) =

∫
Su

(u∨ − u∧)2dHN−1.

Remark 2.6 We want to stress out the fact that in the proofs of previous Theorems it was
important the precise formulation of the heat kernel and the fact that the representation of
the heat semigroup is given by a convolution. In fact, also the definition of the perimeter
of a set in an open subset Ω ⊂ RN using the heat semigroup as in (1) is not clear. In fact,
in this case one generally can’t write explicitly the heat kernel, and so the same proof can’t
be repeated.
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