
SPECIAL LAGRANGIAN CONIFOLDS, I: MODULI SPACES

TOMMASO PACINI

Abstract. We discuss the deformation theory of special Lagrangian (SL) conifolds in Cm.
Conifolds are a key ingredient in the compactification problem for moduli spaces of compact
SLs in Calabi-Yau manifolds. This category allows for the simultaneous presence of conical
singularities and of non-compact, asymptotically conical, ends.

Our main theorem is the natural next step in the chain of results initiated by McLean [16]
and continued by the author [18] and Joyce [11]. We survey all these results, providing a
unified framework for studying the various cases and emphasizing analogies and differences.
This paper also lays down the geometric foundations for our paper [20] concerning gluing
constructions for SL conifolds in Cm.
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1. Introduction

Let M be a Calabi-Yau (CY) manifold. Roughly speaking, a submanifold L ⊂M is special
Lagrangian (SL) if it is both minimal and Lagrangian with respect to the ambient Riemannian
and symplectic structures.

From the point of view of Riemannian Geometry it is of course natural to focus on the
minimality condition. It turns out that SLs are automatically volume-minimizing in their
homology class. In fact, this was Harvey and Lawson’s main motivation for defining and
studying SLs within the general context of Calibrated Geometry [3]. This is still the most
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common point of view on SLs and leads to emphasizing the role of analytic and Geometric
Measure Theory techniques. It also provides a connection with various classical problems in
Analysis such as the Plateau problem and the study of area-minimizing cones. In many ways
it is the point of view adopted here.

From the point of view of Symplectic Geometry it is instead natural to focus on the La-
grangian condition. Specifically, SLs are examples of Maslov-zero Lagrangian submanifolds.
This leads to emphasizing the role of Symplectic Topology techniques, both classical (such
as the h-principle and moment maps) and contemporary (such as Floer homology). An early
instance of this point of view is the work of Audin [1]; it also permeates the paper [6] by
Haskins and the author.

Given this richness of ingredients it is perhaps not surprising that SLs are conjectured to
play an important role in Mirror Symmetry [14], [22] and to produce interesting new invariants
of CY manifolds [7]. Likewise, and more intrinsically, they also tend to exhibit other nice
technical features. In particular it is by now well understood that SLs often generate smooth,
finite-dimensional, moduli spaces. This SL deformation problem has been studied by a number
of authors under various topological and geometric assumptions. One clear path is the chain of
results initiated by McLean [16], who studied deformations of smooth compact SLs; continued
by the author [18] and Marshall [15], who adapted that set-up to study certain smooth non-
compact (asymptotically conical, AC) SLs; and further advanced by Joyce, who presented
analogous results for compact conically singular (CS) SLs [11].

The above three classes of SLs are intimately linked, as follows. One of the main open ques-
tions in SL geometry is how to compactify McLean’s moduli spaces. This problem is currently
one of the biggest obstructions to progress on the above conjectures. Roughly speaking, com-
pactifying the moduli space requires adding to it a “boundary” containing singular compact
SLs. By definition, CS SLs have isolated singularities modelled on SL cones in Cm: they would
be the simplest objects appearing in this boundary. If a CS SL appears in the boundary, it
must be a limit of a 1-parameter family of smooth compact SLs. These smooth SLs can be
recovered via a gluing construction which desingularizes the CS SL: (i) each singularity of the
CS SL defines a SL cone in Cm; (ii) each of these cones must admit a 1-parameter family of
SL desingularizations, i.e. AC SLs in Cm converging to the cone as the parameter t tends to
0; (iii) the family of smooth SLs is obtained by gluing the AC SLs into a neighbourhood of
the singularities of the CS SL. This picture is made precise by Joyce’s gluing results [12], [13],
[9]. Section 8 of [9] then shows that, in some cases and near the boundary, the compactified
moduli space can be locally written as a product of moduli spaces of AC and CS SLs.

The above classes of submanifolds are special cases within the broader category of Riemann-
ian conifolds, which includes manifolds exhibiting both AC and CS ends. In other words, it
allows CS SLs to become non-compact by allowing the presence of AC ends. This is of fun-
damental importance for the construction of SLs in Cm: it is well-known that Cm does not
admit any compact (smooth or singular) volume-minimizing submanifolds. Cones in Cm with
an isolated singularity at the origin are the simplest example of conifold: the construction of
new examples and the study of their properties is currently one of the most active areas of
SL research [3], [4], [5], [6], [8], [17]. Conifolds provide the appropriate framework in which
to extend all the above research. In particular, they might also substitute AC SLs in Joyce’s
gluing results: one could try to cut out a conical singularity of the CS SL and replace it with
a different singular conifold, thus jumping from one area of the boundary of the compactified
moduli space, containing certain CS SLs, to another.

The paper at hand is Part I of a multi-step project aiming to set up a general theory
of SL conifolds and, more generally, of calibrated conifolds. Two other papers related to
this project are currently available: [19], [20]. Further work is in progress. The goal of



SL CONIFOLDS, I 3

this paper is to provide a general deformation theory of SL conifolds in Cm. The best set-
up for the SL deformation problem is the one provided by Joyce [11]. It is based on his
Lagrangian neighbourhood and regularity theorems [10]. Joyce’s framework has two benefits:
(i) it simplifies the Analysis via a reduction from the semi-elliptic operator d⊕d∗ on 1-forms to
the elliptic Laplace operator on functions, (ii) it nicely emphasizes the separate contributions
to the dimension ofML coming from the topological and from the analytic components. Along
with the main result Theorem 8.8 concerning moduli spaces of CS/AC SL submanifolds in Cm,
we thus present new proofs of the previously-known results, emphasizing this point of view.
In this sense, this paper also serves the purpose of surveying and unifying those results. More
importantly, it lays down the geometric foundations for [20]; the analytic foundations are
provided by [19].

We now summarize the contents of this paper. Section 2 introduces the category of m-
dimensional Riemannian conifolds. The main definitions are standard but Section 2.2 contains
an investigation into the structure of various spaces of closed 1-forms on these manifolds. This
is a fundamental component of the Lagrangian and SL deformation theory. The correspond-
ing notion of “subconifolds” is presented in Section 3, leading to the concept of Lagrangian
conifolds. Deformation theory begins in Section 4. From various points of view it seems most
satisfying to begin with the general (infinite-dimensional) theory of Lagrangian deformations.
This is presented as a direct consequence of Joyce’s Lagrangian neighbourhood theorems, cou-
pled with the material of Section 2.2. The case of Lagrangian cones is studied in particular
detail in Section 4.2 as it provides the backbone for all other cases. After presenting the
necessary definitions in Section 5, the analogous framework for deforming SL conifolds is de-
veloped in Section 6. With the aim of making this paper reasonably self-contained, Section 7
summarizes from [19] some results concerning harmonic functions on conifolds. The SL defor-
mation theory is then completed in Section 8. The proofs rely upon a fair amount of analytic
machinery: weighted Sobolev spaces, embedding theorems and the theory of elliptic operators
on conifolds. Full details are provided in [19].

Important remark: To simplify certain arguments, throughout this paper we assume
m ≥ 3.

2. Geometry of conifolds

2.1. Asymptotically conical and conically singular manifolds. We introduce here the
categories of differentiable and Riemannian manifolds mainly relevant to this paper, referring
to [19] for further details. Following [10], however, we introduce a small variation of the notion
of “conically singular” manifolds: presenting them in terms of the compactification L̄ will allow
us to keep track of the singular points xi. This plays no role in this section but in Section 4
it will become very useful.

Definition 2.1. Let Lm be a smooth manifold. We say L is a manifold with ends if it satisfies
the following conditions:

(1) We are given a compact subset K ⊂ L such that S := L \ K has a finite number of
connected components S1, . . . , Se, i.e. S = qei=1Si.

(2) For each Si we are given a connected (m−1)-dimensional compact manifold Σi without
boundary.

(3) There exist diffeomorphisms φi : Σi × [1,∞)→ Si.

We then call the components Si the ends of L and the manifolds Σi the links of L. We denote
by S the union of the ends and by Σ the union of the links of L.

Definition 2.2. Let L be a manifold with ends. Let g be a Riemannian metric on L. Choose
an end Si with corresponding link Σi.
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We say that Si is a conically singular (CS) end if the following conditions hold:

(1) Σi is endowed with a Riemannian metric g′i.
We then let (θ, r) denote the generic point on the product manifold Ci := Σi×(0,∞)

and g̃i := dr2 + r2g′i denote the corresponding conical metric on Ci.

(2) There exist a constant νi > 0 and a diffeomorphism φi : Σi × (0, ε]→ Si such that, as
r → 0 and for all k ≥ 0,

|∇̃k(φ∗i g − g̃i)|g̃i = O(rνi−k),

where ∇̃ is the Levi-Civita connection on Ci defined by g̃i.

We say that Si is an asymptotically conical (AC) end if the following conditions hold:

(1) Σi is endowed with a Riemannian metric g′i.
We again let (θ, r) denote the generic point on the product manifold Ci := Σi×(0,∞)

and g̃i := dr2 + r2g′i denote the corresponding conical metric on Ci.

(2) There exist a constant νi < 0 and a diffeomorphism φi : Σi × [R,∞) → Si such that,
as r →∞ and for all k ≥ 0,

|∇̃k(φ∗i g − g̃i)|g̃i = O(rνi−k),

where ∇̃ is the Levi-Civita connection on Ci defined by g̃i.

In either of the above situations we call νi the convergence rate of Si.

We refer to [19] for a better understanding of the asymptotic conditions introduced in
Definition 2.2.

Definition 2.3. Let (L̄, d) be a metric space. L̄ is a Riemannian manifold with conical
singularities (CS manifold) if it satisfies the following conditions.

(1) We are given a finite number of points {x1, . . . , xe} ∈ L̄ such that L := L̄\{x1, . . . , xe}
has the structure of a smooth m-dimensional manifold with e ends.

More specifically, we assume given ε ∈ (0, 1) such that any pair of distinct points
satisfies d(xi, xj) > 2ε. Set Si := {x ∈ L : 0 < d(x, xi) < ε}. We then assume that Si
are the ends of L with respect to some given connected links Σi.

(2) We are given a Riemannian metric g on L inducing the distance d.
(3) With respect to g, each end Si is CS in the sense of Definition 2.2.

It follows from our definition that any CS manifold L̄ is compact. We will often not distinguish
between L̄ and L, but notice that (L, g) is neither compact nor complete. We call xi the
singularities of L̄.

Definition 2.4. Let (L, g) be a Riemannian manifold. L is a Riemannian manifold with
asymptotically conical ends (AC manifold) if it satisfies the following conditions.

(1) L is a smooth manifold with e ends Si and connected links Σi.
(2) Each end Si is AC in the sense of Definition 2.2.

One can check that AC manifolds are non-compact but complete.

Definition 2.5. Let (L̄, d) be a metric space. We say that L̄ is a Riemannian CS/AC manifold
if it satisfies the following conditions.

(1) We are given a finite number of points {x1, . . . , xs} and a number l such that L :=
L̄\{x1, . . . , xs} has the structure of a smooth m-dimensional manifold with s+ l ends.

(2) We are given a metric g on L inducing the distance d.
(3) With respect to g, neighbourhoods of the points xi have the structure of CS ends in

the sense of Definition 2.2. These are the “small” ends. We also assume that the
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remaining ends are “large”, i.e. they have the structure of AC ends in the sense of
Definition 2.2.

We will denote the union of the CS links (respectively, of the CS ends) by Σ0 (respectively,
S0) and those corresponding to the AC links and ends by Σ∞, S∞.

Definition 2.6. We use the generic term conifold to indicate any CS, AC or CS/AC manifold.
If (L, g) is a conifold and C := qCi is the union of the corresponding cones as in Definition
2.2, endowed with the induced metric g̃, we say that (L, g) is asymptotic to (C, g̃).

Remark 2.7. If we think of L̄ as a generic compactification of the manifold with ends L, we
should allow several CS ends to become connected by the addition of a single singular point.
Notice however that we have imposed that our links be connected. We should thus allow that
our points xi be not necessarily distinct. This apparent detail becomes extremely relevant
when working with “parametric connect sums”, as in [19], [20]. In [19], however, we do not
need to mention it because there the connect sum Lt is defined in terms of L: in some sense,
the compactification L̄ appears only a posteriori with respect to the connect sum, as the limit
of Lt as t→ 0. In [20] we again do not need to mention it, this time because the connect sum
is defined in terms of an immersion: by definition, the immersion is allowed to identify points
so we might as well assume that the xi and cones are initially distinct. The connect sum then
depends only on the identifications determined by the immersion.

Cones in Rn are of course the archetype of CS/AC manifold, as follows.

Definition 2.8. A subset C̄ ⊆ Rn is a cone if it is invariant under dilations of Rn, i.e. if
t · C̄ ⊆ C̄, for all t ≥ 0. It is uniquely identified by its link Σ := C̄

⋂
Sn−1. We will set C := C̄ \0.

The cone is regular if Σ is smooth. From now on we will always assume this.
Let g′ denote the induced metric on Σ. Then C with its induced metric is isometric to

Σ × (0,∞) with the conical metric g̃ := dr2 + r2g′. In particular C̄ is a CS/AC manifold; it
has as many AC and CS ends as the number of connected components Σi of Σ. Each Σi thus
defines a singular point xi but these singular points are not distinct: they all coincide with
the origin. Notice that Σ is a subsphere Sm−1 ⊆ Sn−1 iff C̄ is an m-plane in Rn.

Let E be a vector bundle over (L, g). Assume E is endowed with a metric and metric
connection ∇: we say that (E,∇) is a metric pair. In later sections E will usually be a bundle
of differential forms Λr on L, endowed with the metric and Levi-Civita connection induced
from g. We can define two types of Banach spaces of sections of E, referring to [19] for further
details regarding the structure and properties of these spaces.

Regarding notation, given a vector β = (β1, . . . , βe) ∈ Re and j ∈ N we set β + j :=
(β1 + j, . . . , βe + j). We write β ≥ β′ iff βi ≥ β′i.
Definition 2.9. Let (L, g) be a conifold with e ends. We say that a smooth function ρ : L→
(0,∞) is a radius function if ρ(x) ≡ r on each end. Given any vector β = (β1, . . . , βe) ∈ Re,
choose a function β on L which, on each end Si, restricts to the constant βi.

Given any metric pair (E,∇), the weighted Sobolev spaces are defined by

(2.1) W p
k;β(E) := Banach space completion of the space {σ ∈ C∞(E) : ‖σ‖W p

k;β
<∞},

where we use the norm ‖σ‖W p
k;β

:= (Σk
j=0

∫
L |ρ
−β+j∇jσ|pρ−m volg)

1/p.

The weighted spaces of Ck sections are defined by

(2.2) Ckβ(E) := {σ ∈ Ck(E) : ‖σ‖Ckβ <∞},

where we use the norm ‖σ‖Ckβ :=
∑k

j=0 supx∈L|ρ−β+j∇jσ|. Equivalently, Ckβ(E) is the space

of sections σ ∈ Ck(E) such that |∇jσ| = O(rβ−j) as r → 0 (respectively, r → ∞) along each
CS (respectively, AC) end. These are also Banach spaces.
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To conclude, the weighted space of smooth sections is defined by

C∞β (E) :=
⋂
k≥0

Ckβ(E).

Equivalently, this is the space of smooth sections such that |∇jf | = O(ρβ−j) for all j ≥ 0.
This space has a natural Fréchet structure.

When E is the trivial R bundle over L we obtain weighted spaces of functions on L. We
usually denote these by W p

k,β(L) and Ckβ(L). In the case of a CS/AC manifold we will often

separate the CS and AC weights, writing β = (µ,λ) for some µ ∈ Rs and some λ ∈ Rl. We
then write Ck(µ,λ)(E) and W p

k,(µ,λ)(E).

For these spaces one can prove the validity of the following weighted version of the Sobolev
Embedding Theorems, cf. [19].

Theorem 2.10. Let (L, g) be an AC manifold. Let (E,∇) be a metric pair over L. Assume
k ≥ 0, l ∈ {1, 2, . . . } and p ≥ 1. Set p∗l := mp

m−lp . Then, for all β′ ≥ β,

(1) If lp < m then there exists a continuous embedding W p
k+l,β(E) ↪→W

p∗l
k,β′

(E).

(2) If lp = m then, for all q ∈ [p,∞), there exist continuous embeddings W p
k+l,β(E) ↪→

W q
k,β′

(E).

(3) If lp > m then there exists a continuous embedding W p
k+l,β(E) ↪→ Ck

β′
(E).

Furthermore, assume lp > m and k ≥ 0. Then the corresponding weighted Sobolev spaces are
closed under multiplication, in the following sense. For any β1 and β2 there exists C > 0 such
that, for all u ∈W p

k+l,β1
and v ∈W p

k+l,β2
,

‖uv‖W p
k+l,β1+β2

≤ C‖u‖W p
k+l,β1

‖v‖W p
k+l,β2

.

Let (L, g) be a CS manifold. Then the same conclusions hold for all β′ ≤ β.
Let (L, g) be a CS/AC manifold. Then, setting β = (µ,λ), the same conclusions hold for

µ′ ≤ µ on the CS ends and λ′ ≥ λ on the AC ends.

2.2. Weighted 1-forms and cohomology. Any smooth compact manifold or smooth man-
ifold with ends L has topology of finite type. In particular, the first cohomology group

H1(L;R) :=
{Smooth closed 1-forms on L}

d(C∞(L))

has finite dimension b1(L), proving the following statement concerning the structure of the
space of smooth closed 1-forms.

Decomposition 1 (for compact manifolds or manifolds with ends). Let L be a smooth com-
pact manifold or a smooth manifold with ends. Choose a finite-dimensional vector space H of
closed 1-forms on L such that the map

(2.3) H → H1(L;R), α 7→ [α]

is an isomorphism. Then

(2.4) {Smooth closed 1-forms on L} = H ⊕ d(C∞(L)).

We now want to show that in the case of a manifold with ends there exist natural conditions
on the space of 1-forms H.

Definition 2.11. Given a manifold Σ, set C := Σ × (0,∞). Consider the projection π :
Σ × (0,∞) → Σ. A p-form η on C is translation-invariant if it is of the form η = π∗η′, for
some p-form η′ on Σ.
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Lemma 2.12. Let L be a smooth manifold with ends Si. Let α be a smooth closed 1-form on
L. Then there exist a smooth closed 1-form α′ and a smooth function A on L such that α′|Si
is translation-invariant and α = α′ + dA. If furthermore α has compact support then we can
choose α′ to have compact support.

Proof. The proof follows the scheme of the Poincaré Lemma for de Rham cohomology, cf. e.g.
[2]. Given any p-form η on Si = Σi × (1,∞), we can write

η = η1(θ, r) + η2(θ, r) ∧ dr
for some r-dependent p-form η1 and (p − 1)-form η2 on Σ. Specifically, η1 is the restriction
of η to the cross-sections Σi × {r} and η2 := i∂rη. For a fixed R0 > 1 we then define
(Kη)(θ, r) :=

∫ r
R0
η2(θ, ρ) dρ.

Let us apply this to the 1-form obtained by restricting α to Si, writing

α|Si = α1(θ, r) + α2(θ, r) dr

for some r-dependent 1-form α1 and function α2 on Σi. It is then easy to check that

dα|Si = dΣα1 − (
∂

∂r
α1) ∧ dr + (dΣα2) ∧ dr,

Kα|Si =

∫ r

R0

α2(θ, ρ) dρ,

d(Kα|Si) =

∫ r

R0

dΣα2(θ, ρ) dρ+ α2(θ, r) dr.

From dα = 0 it follows that α1(θ,R0) + d(Kα) = α|Si and that α1(θ,R0) is closed. Setting
α′i := α1(θ,R0) and Ai := Kα we can rewrite this as α|Si = α′i + dAi. Interpolating between
the Ai yields a global smooth function A on L such that α|Si = α′i +dA|Si . We can now define
α′ := α− dA to obtain the global relationship

α = α′ + dA.

It is clear from this construction that if α has compact support then (choosing R0 large enough)
α′ also has compact support. �

Recall that compactly-supported forms give rise to the following theory. Let L be a smooth
manifold with ends. We denote by Λpc(L;R) the space of smooth compactly-supported p-forms
on L and by Hp

c (L;R) the corresponding cohomology groups. Let Σ denote the union of the
links of L. Notice that L is deformation-equivalent to a compact manifold with boundary Σ.
Standard algebraic topology (see also [10] Section 2.4) proves that the inclusion Σ ⊂ L gives
rise to a long exact sequence in cohomology

(2.5) 0→ H0(L;R)→ H0(Σ;R)
δ→ H1

c (L;R)
γ→ H1(L;R)

ρ→ H1(Σ;R)→ . . . .

Here, γ is induced by the injection Λ1
c(L;R) → Λ1(L;R) and ρ is induced by the restriction

Λ1(L;R)→ Λ1(Σ0;R). We set H̃1
c := Im(γ) = Ker(ρ). Exactness implies that

dim(H̃1
c ) = dim(H1

c (L;R))− dim(H0(Σ;R)) + dim(H0(L;R))(2.6)

= b1c(L)− e+ 1.

Remark 2.13. The sequence 2.5 shows that

(2.7) H1
c (L,R) ' H̃1

c ⊕Ker(γ) = H̃1
c ⊕ Im(δ).

This decomposition can be expressed in words as follows. By definition, H1
c (L;R) is determined

by the classes of compactly-supported 1-forms which are not the differential of a compactly-
supported function. Given any such form, there are two cases: (i) it is not the differential
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of any function, in which case γ maps its class to a non-zero element of H̃1
c , (ii) it is the

differential of some function, in which case γ maps its class to zero. However, this function
is necessarily constant on the ends of L: these constants can be parametrized via H0(Σ;R).
Notice that the function is only well-defined up to a constant; likewise, Im(δ) coincides with
H0(Σ;R) only up to H0(L;R) ' R.

We can now choose H as follows. For i = 1, . . . , k = dim(H̃1
c ) let [αi] be a basis of H̃1

c .
According to Lemma 2.12 we can choose α′i with compact support such that [α′i] = [αi].
For i = 1, . . . , N = dim(H1) let [αi] denote an extension to a basis of H1(L;R). Again
using Lemma 2.12 we can choose an extension α′i of translation-invariant 1-forms such that
[α′i] = [αi]. Set

(2.8) H̃ := span{α′1, . . . , α′k}, H := span{α′1, . . . , α′N}.
Then H satisfies the assumptions of Decomposition 1. One advantage of this choice of H is

that it reflects the relationship of H̃1
c to H1. Specifically, if we apply Decomposition 1 to α

writing α = α′ + dA with α′ ∈ H, then [α] ∈ H̃1
c iff α′ ∈ H̃, i.e. iff α′ has compact support.

We now want to achieve analogous decompositions for CS and AC manifolds, in terms of
weighted spaces of closed and exact 1-forms.

Lemma 2.14. Let (Σ, g′) be a Riemannian manifold. Let the corresponding cone C have
the conical metric g̃ := dr2 + r2g′. Then any translation-invariant p-form η = π∗η′ belongs
to the weighted space C∞(−p,−p)(Λ

p). For any β > 0, η belongs to the smaller weighted space

C∞(−p+β,−p−β)(Λ
p) iff η′ = 0.

Proof. As seen in the proof of Lemma 2.12, the general p-form η on C can be written η =
η1(θ, r) + η2(θ, r) ∧ dr. The form is translation-invariant iff η1 is r-independent and η2 = 0.
In this case |η|g̃ = r−p|η1|g′ so |η|g̃ = O(r−p) both for r → 0 and for r →∞. This proves that

η ∈ C0
(−p,−p)(Λ

p). To show that η ∈ C∞(−p,−p)(Λ
p) it is necessary to estimate |∇̃kη|g̃, where ∇̃ is

the Levi-Civita connection. This can be done fairly explicitly in terms of Christoffel symbols.
In particular one can choose local coordinates on U ⊂ Σ defining a local frame ∂1, · · · , ∂m−1.
Set ∂0 := ∂r, the standard frame on (0,∞). The Christoffel symbols for the corresponding
frame on (0,∞) × U and the metric g̃ can then be computed explicitly: for i, j, k ≥ 1 one

finds that Γ̃ki,j is bounded, Γ̃0
i,j = O(r), Γ̃ki,0 = O(r−1), Γ̃k0,0 = Γ̃0

i,0 = Γ̃0
0,0 = 0. The Christoffel

symbols defined by g̃ for the other tensor bundles depend linearly on these, so they have the

same bounds. Using these calculations one finds that |∇̃kη|g̃ = O(r−p−k), as desired.
It is clear from the proof that η satisfies stronger bounds iff it vanishes. �

Decomposition 2 (for CS or AC manifolds and forms with allowable growth). Let L be a
CS manifold. Choose a finite-dimensional vector space H of smooth closed 1-forms on L as in
Equation 2.8. Then, for any β < 0,

(2.9) {Closed 1-forms on L in C∞β−1(Λ1)} = H ⊕ d(C∞β (L)).

Analogously, let L be an AC manifold. Choose H as above. Then, for any β > 0,

(2.10) {Closed 1-forms on L in C∞β−1(Λ1)} = H ⊕ d(C∞β (L)).

Proof. Consider the CS case. Since β < 0, Lemma 2.14 proves that H ⊕ d(C∞β (L)) ⊆
{Closed 1-forms in C∞β−1(Λ1)}. Now choose a closed α ∈ C∞β−1(Λ1). By Decomposition 1 we

can write α = α′+dA, for some α′ ∈ H and A ∈ C∞(L). Notice that dA = α−α′ ∈ C∞β−1(Λ1).

By integration, again using the fact β < 0, we conclude that A ∈ C∞β (L). This proves the
opposite inclusion, thus the identity. The AC case is analogous. �
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Lemma 2.15. Assume L is a CS manifold. If α is a smooth closed 1-form on L belonging to
the space C∞β−1(Λ1) for some β > 0 then there exists a smooth closed 1-form α′ with compact

support on L and a smooth function A ∈ C∞β (L) such that α = α′ + dA.
Assume L is an AC manifold. If α is a smooth closed 1-form on L belonging to the space

C∞β−1(Λ1) for some β < 0 then there exists a smooth closed 1-form α′ with compact support

on L and a smooth function A ∈ C∞β (L) such that α = α′ + dA.

Proof. The proof is a variation of the proof of Lemma 2.12, as follows. Consider the AC case.
Write α|Si = α1 + α2 ∧ dr. Define Kα := −

∫∞
r α2(θ, ρ) dρ: this converges because β < 0. It

is simple to check that d(Kα) = α; in particular, this shows that α is exact on each end Si.
Setting A := Kα and extending as in Lemma 2.12 leads to a global decomposition α = α′+dA
on L. By construction α′ has compact support and A ∈ C∞β . The CS case is analogous, with

Kα :=
∫ r

0 α2(θ, ρ) dρ. �

Decomposition 3 (for CS or AC manifolds and forms with allowable decay). Let L be a CS
manifold. Assume β > 0. Choose a finite-dimensional vector space H of closed 1-forms on L

as in Equation 2.8, using H̃0 to denote the space H̃. For any i = 1, . . . , e choose a smooth
function fi on L such that fi ≡ 1 on the end Si and fi ≡ 0 on the other ends. We can do this
in such a way that

∑
fi ≡ 1. Let E0 denote the e-dimensional vector space generated by these

functions. By construction E0 contains the constant functions so d(E0) has dimension e − 1.
It is simple to check that d(E0) ∩ d(C∞β (L)) = {0}. Then

(2.11) {Closed 1-forms on L in C∞β−1(Λ1)} = H̃0 ⊕ d(E0)⊕ d(C∞β (L)).

Analogously, let L be an AC manifold. Assume β < 0. Choose spaces as above, this time

using the notation H̃∞ and E∞. Then

(2.12) {Closed 1-forms on L in C∞β−1(Λ1)} = H̃∞ ⊕ d(E∞)⊕ d(C∞β (L)).

Proof. Consider the CS case. The inclusion ⊇ is clear. Conversely, let α ∈ C∞β−1(Λ1) be closed.

Decomposition 1 allows us to write α = α′ + dA, for some uniquely defined α′ ∈ H and some
A ∈ C∞(L), well-defined up to a constant. Lemma 2.15 implies that the cohomology class

of α belongs to the space H̃1
c , i.e. that α′ ∈ H̃0 so it has compact support. This shows that

dA ∈ C∞β−1(Λ1). Writing Ai := A|Si we find dAi = dΣiAi + ∂Ai
∂r dr, thus ∂Ai

∂r ∈ C
∞
β−1(L). This

shows that
∫ r

0
∂Ai
∂r dρ ∈ C

∞
β (L). This determines Ai up to a constant ci on each end. Together

with Equation 2.7 this proves the claim. The AC case is analogous. �

We now turn to the case of CS/AC manifolds, concentrating on the situations of most
interest to us.

Decomposition 4 (for CS/AC manifolds). Let L be a CS/AC manifold with s CS ends and
l AC ends. As usual we denote the union of the CS links by Σ0 and the union of the AC links
by Σ∞. Choose a finite-dimensional vector space H of closed 1-forms on L as in Equation 2.8,

using H̃0,∞ to denote the space H̃. For any i = 1, . . . , s + l choose a function fi such that
fi ≡ 1 on the end Si and fi ≡ 0 on the other ends. We can assume that

∑
fi ≡ 1. Let E0,∞

denote the (s+ l)-dimensional vector space generated by these functions. Then, for any µ > 0
and λ < 0,

(2.13) {Closed 1-forms on L in C∞(µ−1,λ−1)(Λ
1)} = H̃0,∞ ⊕ d(E0,∞)⊕ d(C∞(µ,λ)(L)).

Now let Λpc,•(L;R) denote the space of p-forms on L which vanish in a neighbourhood of the
singularities, with no condition on the large ends. Let Hp

c,•(L;R) denote the corresponding

cohomology groups. Let H̃1
c,• denote the image of the map γ : H1

c,•(L;R)→ H1(L;R). Choose
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a finite-dimensional vector space H̃0,• of translation-invariant closed 1-forms on L with compact
support in a neighbourhood of the singularities and such that the map

(2.14) H̃0,• → H̃1
c,•, α 7→ [α]

is an isomorphism. For any i = 1, . . . , s choose a function fi such that fi ≡ 1 on the CS
end corresponding to the singularity xi and fi ≡ 0 on the other ends. Let E0 denote the
s-dimensional vector space generated by these functions. Then, for any µ > 0 and λ > 0,

(2.15) {Closed 1-forms on L in C∞(µ−1,λ−1)(Λ
1)} = H̃0,• ⊕ d

(
E0 ⊕ C∞(µ,λ)(L)

)
.

Proof. The proof is similar to the proofs of the previous decompositions. It may however be
good to emphasize that, in the case µ > 0 and λ > 0, d(E0) ∩ d(C∞(µ,λ)(L)) 6= {0} (it is

one-dimensional). This explains the slightly different statement of Decomposition 2.15. �

Remark 2.16. The weight β = 0 corresponds to an exceptional case in Lemma 2.15: integra-
tion will generally generate log terms, so we cannot conclude that A ∈ C∞β there. One can

analogously argue that C∞−1(Λ1)/d(C∞0 (L)) is not finite-dimensional.
Similar decompositions hold for k-forms: in this setting the exceptional case corresponds to

β = k − 1.

Remark 2.17. Notice that the above decompositions do not cover all possibilities: for example,
given a CS manifold we could decide to study the space of closed 1-forms in C∞β−1(Λ1) corre-

sponding to a weight β = (β1, . . . , βe) with some βi positive and others negative. However, it
should be clear from the above discussion how to use the same ideas to cover any other case
of interest. We have restricted our attention to the cases most relevant to this paper.

For future reference it is useful to emphasize the topological interpretation of some of the
previous results. The reasons underlying our interest for each case will become apparent in
Section 8.

Corollary 2.18. Let L be a smooth compact manifold. Then

{Closed 1-forms on L} ' H1(L;R)⊕ d(C∞(L)).

Let (L, g) be an AC manifold. Then for β < 0

{Closed 1-forms on L in C∞β−1(Λ1)} ' H1
c (L;R)⊕ d(C∞β (L)),

while for β > 0

{Closed 1-forms on L in C∞β−1(Λ1)} ' H1(L;R)⊕ d(C∞β (L)).

Let (L, g) be a CS manifold with link Σ0. Then for β > 0

{Closed 1-forms on L in C∞β−1(Λ1)}

' Ker
(
H1(L)

ρ→ H1(Σ0)
)
⊕ d(E0)⊕ d(C∞β (L)).

Let (L, g) be a CS/AC manifold with link Σ = Σ0 q Σ∞. Then for µ > 0 and λ < 0

{Closed 1-forms on L in C∞(µ−1,λ−1)(Λ
1)}

' Ker
(
H1
•,c(L)

ρ→ H1(Σ0)
)
⊕ d(E0)⊕ d(C∞(µ,λ)(L)),

while for µ > 0 and λ > 0

{Closed 1-forms on L in C∞(µ−1,λ−1)(Λ
1)}

' Ker
(
H1(L)

ρ→ H1(Σ0)
)
⊕ d

(
E0 ⊕ C∞(µ,λ)(L)

)
.
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Proof. The compact case coincides with Equation 2.4. The AC case with β < 0 follows from
Equation 2.12 and Remark 2.13. The AC case with β > 0 coincides with Equation 2.10. The
CS case coincides with Equation 2.11.

Let us now focus on the CS/AC case with λ < 0. Using the notation of Decomposition 4, let
E′ denote a complement of E0⊕R in E0,∞, i.e. E0,∞ = E0⊕R⊕E′. Notice that the long exact

sequence 2.5 with Σ = Σ0 q Σ∞ leads to an identification H1
c (L;R) ' H̃1

c (L)⊕ d(E0,∞). One
can also set up the “relative” analogue of Sequence 2.5 using the inclusion of pairs (Σ0, ∅) ⊂
(L,Σ∞). Using notation analogous to that of Decomposition 4 this leads to the long exact
sequence

0→ H0
c (L;R)→ H0

•,c(L;R)→ H0(Σ0;R)→ H1
c (L;R)

γ→ H1
•,c(L;R)

ρ→ H1(Σ0;R)→ . . .

Since H0
c (L;R) = 0 and H0

•,c(L;R) = 0, one obtains an identification H1
c (L;R) ' E0 ⊕

Ker
(
H1
•,c(L)

ρ→ H1(Σ0)
)

. Comparing these identifications yields an identification H̃1
c (L;R)⊕

d(E′) ' Ker
(
H1
•,c(L)

ρ→ H1(Σ0)
)

. The claim follows.

Now consider the CS/AC case with λ > 0. The long exact sequence 2.5 with Σ = Σ0 yields

(2.16) 0→ H0(L;R)→ H0(Σ0;R)→ H1
c,•(L;R)

γ→ H1(L;R)
ρ→ H1(Σ0;R)→ . . .

This proves the final claim. �

3. Lagrangian conifolds

A priori, a CS/AC submanifold might simply be defined as an immersed submanifold whose
topology and induced metric is of the type defined in Section 2.1. However, for the purposes
of this article it is convenient to strengthen the hypotheses by adding the requirement that
the submanifold have a well-defined cone at each singularity and at each end. The precise
definitions are as follows. We restrict our attention to Lagrangian submanifolds in Kähler
ambient spaces, but it is clear how one might extend these definitions to other settings.

Definition 3.1. Let (M2m, ω) be a symplectic manifold. An embedded or immersed subman-
ifold ι : Lm → M is Lagrangian if ι∗ω ≡ 0. The immersion allows us to view the tangent
bundle TL of L as a subbundle of TM (more precisely, of ι∗TM). When M is Kähler with
structures (g, J, ω) it is simple to check that L is Lagrangian iff J maps TL to the normal
bundle NL of L, i.e. J(TL) = NL.

Definition 3.2. Let Lm be a smooth manifold. Assume given a Lagrangian immersion ι : L→
Cm, the latter endowed with its standard structures J̃ , ω̃. We say that L is an asymptotically
conical Lagrangian submanifold with rate λ if it satisfies the following conditions.

(1) We are given a compact subset K ⊂ L such that S := L \ K has a finite number of
connected components S1, . . . , Se.

(2) We are given Lagrangian cones Ci ⊂ Cm with smooth connected links Σi := Ci
⋂
S2m−1.

Let ιi : Σi × (0,∞)→ Cm denote the natural immersions, parametrizing Ci.
(3) We are finally given an e-tuple of convergence rates λ = (λ1, . . . , λe) with λi < 2,

centers pi ∈ Cm and diffeomorphisms φi : Σi × [R,∞)→ Si for some R > 0 such that,
for r →∞ and all k ≥ 0,

(3.1) |∇̃k(ι ◦ φi − (ιi + pi)| = O(rλi−1−k)

with respect to the conical metric g̃i on Ci.

Notice that the restriction λi < 2 ensures that the cone is unique but is weak enough to
allow the submanifold to converge to a translated copy Ci + p′i of the cone (e.g. if λi = 1), or
even to slowly pull away from the cone (if λi > 1).
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Definition 3.3. Let L̄m be a smooth manifold except for a finite number of possibly singular
points {x1, . . . , xe}. Assume given a continuous map ι : L̄ → Cm which restricts to a smooth
Lagrangian immersion of L := L̄ \ {x1, . . . , xe}. We say that L̄ (or L) is a conically singular
Lagrangian submanifold with rate µ if it satisfies the following conditions.

(1) We are given open connected neighbourhoods Si of xi.
(2) We are given Lagrangian cones Ci ⊂ Cm with smooth connected links Σi := Ci

⋂
S2m−1.

Let ιi : Σi × (0,∞)→ Cm denote the natural immersions, parametrizing Ci.
(3) We are finally given an e-tuple of convergence rates µ = (µ1, . . . , µe) with µi > 2,

centers pi ∈ Cm and diffeomorphisms φi : Σi × (0, ε] → Si \ {xi} such that, for r → 0
and all k ≥ 0,

(3.2) |∇̃k(ι ◦ φi − (ιi + pi))| = O(rµi−1−k)

with respect to the conical metric g̃i on Ci. Notice that our assumptions imply that
ι(xi) = pi.

It is simple to check that AC Lagrangian submanifolds, with the induced metric, satisfy
Definition 2.4 with νi = λi − 2. The analogous fact holds for CS Lagrangian submanifolds.

Definition 3.4. Let L̄m be a smooth manifold except for a finite number of possibly singular
points {x1, . . . , xs} and with l ends. Assume given a continuous map ι : L̄ → Cm which
restricts to a smooth Lagrangian immersion of L := L̄ \ {x1, . . . , xs}. We say that L̄ (or L) is
a CS/AC Lagrangian submanifold with rate (µ,λ) if in a neighbourhood of the points xi it
has the structure of a CS submanifold with rates µi and in a neighbourhood of the remaining
ends it has the structure of an AC submanifold with rates λi.

We use the generic term Lagrangian conifold (even though “subconifold” would be more
appropriate) to indicate any CS, AC or CS/AC Lagrangian submanifold.

Example 3.5. Let C be a cone in Cm with smooth link Σm−1. It can be shown that C is a
Lagrangian iff Σ is Legendrian in S2m−1 with respect to the natural contact structure on the
sphere. Then C is a CS/AC Lagrangian submanifold of Cm with rate (µ, λ) for any µ and λ.

The definition of CS Lagrangian submanifolds can be generalized to Kähler ambient spaces
as follows. Once again we denote the standard structures on Cm by J̃ , ω̃.

Definition 3.6. Let (M2m, J, ω) be a Kähler manifold and L̄m be a smooth manifold except
for a finite number of possibly singular points {x1, . . . , xe}. Assume given a continuous map
ι : L̄ → M which restricts to a smooth Lagrangian immersion of L := L̄ \ {x1, . . . , xe}.
We say that L̄ (or L) is a Lagrangian submanifold with conical singularities (CS Lagrangian
submanifold) if it satisfies the following conditions.

(1) We are given isomorphisms υi : Cm → Tι(xi)M such that υ∗i ω = ω̃ and υ∗i J = J̃ .
According to Darboux’ theorem, cf. e.g. [23], there then exist an open ball BR in

Cm (of small radius R) and diffeomorphisms Υi : BR → M such that Υ(0) = ι(xi),
dΥi(0) = υi and Υ∗iω = ω̃.

(2) We are given open neighbourhoods Si of xi in L̄. We assume Si are small, in the sense
that the compositions

Υ−1
i ◦ ι : Si → BR

are well-defined.
We are also given Lagrangian cones Ci ⊂ Cm with smooth connected links Σi :=

Ci
⋂

S2m−1. Let ιi : Σi × (0,∞) → Cm denote the natural immersions, parametrizing
Ci.
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(3) We are finally given an e-tuple of convergence rates µ = (µ1, . . . , µe) with µi ∈ (2, 3)
and diffeomorphisms φi : Σi × (0, ε]→ Si \ {xi} such that, as r → 0 and for all k ≥ 0,

(3.3) |∇̃k(Υ−1
i ◦ ι ◦ φi − ιi)| = O(rµi−1−k)

with respect to the conical metric g̃i on Ci.
We call xi the singularities of L̄ and υi the identifications.

One can check that, when M = Cm, Definition 3.6 coincides with Definition 3.3 if we choose
Υi(x) := x+ ι(xi). Notice that the local identifications of M with Cm are prescribed only up
to first order: we correspondingly introduce a constraint on the range of µi to ensure that the
rate depends only on υi, not on Υi.

1

Remark 3.7. One could also define and study AC Lagrangian submanifolds in M , but this
would require a preliminary study of AC metrics on Kähler manifolds, going beyond the scope
of this article. We refer to [18] for some details in this direction.

4. Deformations of Lagrangian conifolds

We now want to understand how to parametrize the Lagrangian deformations of a given
Lagrangian conifold L ⊂M . Since the Lagrangian condition is invariant under reparametriza-
tion of L, to avoid huge amounts of geometric redundancy it is best to work in terms of
non-parametrized submanifolds; in other words, in terms of equivalence classes of immersed
submanifolds, where two immersions are equivalent if they differ by a reparametrization. Then,
to parametrize the possible deformations of L, it is sufficient to prove a Lagrangian neighbour-
hood theorem.

Remark 4.1. The analogous situation in the Riemannian setting is well-known. The set
Imm(L,M) of immersions L → (M, g) can be topologized via the C1 or Whitney topology,
i.e. in terms of the natural topology on the first jet bundle J1(L,M). The group of diffeomor-
phisms Diff(L) acts on this space by reparametrization. Choose an element ι ∈ Imm(L,M).
Let NL denote the normal bundle. Using the tubular neighbourhood theorem one can define a
natural injection

Λ0(NL)→ Imm(L,M)/Diff(L).

In standard situations (for example when L is compact) this actually defines a local homeo-
morphism between the natural topologies on these spaces.

A foundation for the theory of Lagrangian neighbourhoods is provided by the following
linear-algebraic construction. Let W be a finite-dimensional real vector space. Then W ⊕W ∗
admits a canonical symplectic structure ω̂ defined as follows:

(4.1) ω̂(w1 + α1, w2 + α2) := α2(w1)− α1(w2).

It turns out that this example of symplectic vector space is actually very general, in the
following sense. Let (V, ω) be a symplectic vector space. Let W ⊂ V be a Lagrangian
subspace. Choose a Lagrangian complement Z ⊂ V , so that V = W ⊕Z. It is simple to check
that the restriction of ω to Z defines an isomorphism

(4.2) ω|Z : Z →W ∗, z 7→ ω(z, ·)
and that, using this isomorphism, one can build an isomorphism γ : (W ⊕W ∗, ω̂) ' (V, ω).
Furthermore, such γ is unique if we impose that it coincide with the identity on W . Adding
this condition thus implies that γ is uniquely defined by the choice of Z.

It is a well-known fact, first noticed by Souriau [21], that a similar construction exists also
for symplectic manifolds. The construction is based on the following standard facts. Given any

1it would be better to invert υi, Υi so as to get rid of all inverts.
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manifold L, the cotangent bundle T ∗L admits a canonical symplectic structure ω̂. Specifically,
consider the tautological 1-form on T ∗L defined by λ̂[α](v) := α(π∗(v)), where π : T ∗L → L

is the natural projection. Then ω̂ := −dλ̂. Notice that a section of T ∗L is simply a 1-form
α on L. The graph Γ(α) is Lagrangian in T ∗L iff α is closed. In particular the zero section
L ⊂ T ∗L is Lagrangian. Furthermore each fibre π−1(p) = T ∗pL is a Lagrangian submanifold.
The fibres thus define a Lagrangian foliation of T ∗L transverse to the zero section. Finally,
every 1-form α defines a translation map

(4.3) τα : T ∗L→ T ∗L, τα(x, η) := (x, α(x) + η).

If α is closed then this map is a symplectomorphism of (T ∗L, ω̂).

4.1. First case: smooth compact Lagrangian submanifolds. We can now quote Souriau’s
result, following Weinstein [23] Corollary 6.2.

Theorem 4.2. Let (M,ω) be a symplectic manifold. Let L ⊂ M be a smooth compact La-
grangian submanifold. Then there exist a neighbourhood U of the zero section of L inside its
cotangent bundle T ∗L and an embedding ΦL : U → M such that ΦL|L = Id : L → L and
Φ∗Lω = ω̂.

Proof. For each x ∈ L, TxL is a Lagrangian subspace of TxM . The first step is to choose
a Lagrangian complement Zx, so that TxM = TxL ⊕ Zx. This can be done smoothly with
respect to x using the fact that the space of Lagrangian complements is a contractible set inside
the Grassmannian of m-planes in TxM . As seen following Equation 4.2, ω then provides
an isomorphism γx : (TxL ⊕ T ∗xL, ω̂) → (TxM,ω), uniquely defined by the condition that
γx = Id on TxL. Now choose a diffeomorphism ΨL : U → M such that (ΨL)∗ extends γ.
By construction, the pull-back form (ΨL)∗ω coincides with ω̂ at each point of L. We now
need to perturb ΨL so that the pull-back form coincides with ω̂ in a neighbourhood of L. Set
ω0 := ω̂ and ω1 := (ΨL)∗ω. One can use an argument due to Moser together with the Poincaré
Lemma to prove that there exists a diffeomorphism k : T ∗L→ T ∗L such that k∗ω1 = ω0 and
k|L = Id : L→ L. Thus ΦL := ΨL ◦k has the required properties. For later use it is also useful
to note that, using the same argument as in [23] Theorem 7.1, one can further show that, at
each x ∈ L, k∗ preserves T ∗xL. A linear-algebraic argument then shows that this implies that
k∗ = Id at each x ∈ L. Thus (ΦL)∗ = (ΨL)∗ at each x ∈ L. �

Remark 4.3. Although the statement and proof are for embedded submanifolds it is not difficult
to extend them to immersed compact Lagrangian submanifolds by working locally. In this case
ΦL will only be a local embedding.

Let C∞(U) denote the space of smooth 1-forms on L whose graph lies in U . Theorem 4.2
leads immediately to the following conclusion.

Corollary 4.4. Let (M,ω) be a symplectic manifold. Let L ⊂ M be a smooth compact
Lagrangian submanifold. Then ΦL defines by composition an injective map

(4.4) ΦL : C∞(U)→ Imm(L,M)/Diff(L).

A section α ∈ C∞(U) is closed iff the corresponding (non-parametrized) submanifold ΦL ◦α is
Lagrangian.

An important point about the map ΦL in Equation 4.4 is that any submanifold which admits
a parametrization which is C1-close to some parametrization of L belongs to the image of ΦL,
i.e. corresponds to a 1-form α.

Let Lag(L,M) denote the set of Lagrangian immersions from L into M . Using Corollary 4.4
and the Fréchet topology on C∞(U) we can locally define a topology on Lag(L,M)/Diff(L);
one can then check that on the intersection of any two open sets these topologies coincide, so
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we obtain a global topology on Lag(L,M)/Diff(L). The connected component containing the
given L ⊂ M defines the moduli space of Lagrangian deformations of L. Coupling Corollary
4.4 with Decomposition 1 gives a good idea of the local structure of this space.

4.2. Second case: Lagrangian cones in Cm. Let C be a Lagrangian cone in Cm with link
(Σ, g′) and conical metric g̃. The goal of this section is to provide an analogue of the theory
of Section 4.1 for this specific submanifold, giving a correspondence between closed 1-forms in
C∞(µ−1,λ−1)(Λ

1) and Lagrangian deformations of C with rate (µ, λ).

Let θ denote the generic point on Σ. We will identify Σ× (0,∞) with C via the immersion

(4.5) ι : Σ× (0,∞)→ Cm, (θ, r) 7→ rθ.

Remark 4.5. Let θ(t) be a curve in Σ such that θ(0) = θ. Let r(t) be a curve in R+ such that
r(0) = r. Differentiating ι at the point (θ, r) gives identifications

(4.6)
ι∗ : TθΣ⊕ R → TrθC ⊂ Cm
(θ′(0), r′(0)) 7→ d/dt (r(t)θ(t))|t=0 = r′(0)θ + rθ′(0) ∈ Cm.

This leads to the general formula ι∗|θ,r(v, a) = aθ + rv.

We can build an explicit (local) identification ΨC of T ∗C with Cm as follows.
Firstly, the metric g̃ gives an identification

(4.7) T ∗C → TC, (θ, r, α1 + α2 dr) 7→ (θ, r, r−2A1 + α2∂r),

where g′(A1, ·) = α1 and we use the notation of Section 2.2. Notice that, according to Remark
4.5, the corresponding vector in Cm is ι∗(r

−2A1 + α2∂r) = α2θ + r−1A1. Notice also that

Equation 4.7 defines a fibrewise isometry between vector bundles over C. Let ∇̃ denote the
standard connection on the tangent bundle of Cm. Since C has the induced metric, the Levi-

Civita connection on TC coincides with the tangential projection ∇̃T . Let T ∗C have the
induced Levi-Civita connection. Then Equation 4.7 also defines an isomorphism between the
two connections.

Secondly, since C is Lagrangian the complex structure provides an identification

(4.8) J̃ : TC ' NC.

This is again a fibrewise isometry. The perpendicular component ∇̃⊥ defines a connection

on NC. Since Cm is Kähler, ∇̃J̃ = J̃∇̃. Thus ∇̃⊥J̃ = J̃∇̃T , so Equation 4.8 defines an
isomorphism between the two connections.

Thirdly, the Riemannian tubular neighbourhood theorem gives an explicit (local) identifi-
cation

(4.9) NC → Cm, v ∈ NrθC 7→ rθ + v.

By composition we now obtain the required identification

(4.10) ΨC : U ⊂ T ∗C → Cm, (θ, r, α1 + α2 dr) 7→ rθ + J̃(α2θ + r−1A1).

Now let α be a 1-form on C. Then, under the above identifications, (ΨC ◦ α) − ι ' α. This
shows that if α ∈ C∞(µ−1,λ−1)(U) for some µ > 2, λ < 2 then ΨC ◦ α is a CS/AC submanifold

in Cm asymptotic to C with rate (µ, λ).
Notice also that

(4.11) ΨC(θ, tr, t
2α1 + tα2 dr) = tΨC(θ, r, α1 + α2 dr).

This suggests that we define an action of R+ on T ∗C as follows:

(4.12) R+ × T ∗C → T ∗C, t · (θ, r, α1 + α2 dr) := (θ, tr, t2α1 + tα2 dr).
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With respect to this action on T ∗C and the standard action by dilations on Cm, Equation 4.11
shows that ΨC is an equivariant map.

Remark 4.6. Equation 4.12 introduces an action on T ∗C which rescales both the base space
and the fibres. We can also obtain it as follows. On any cotangent bundle T ∗L there is a
natural action

R+ × T ∗L→ T ∗L, t · (x, α) := (x, t2α).

The induced action on 1-forms is such that, for the tautological 1-form λ̂, t∗λ̂ = t2λ̂.
When L = Σ× (0,∞) there is also a natural action

R+ × L→ L, t · (θ, r) := (θ, tr).

This induces an action on T ∗L as follows:

R+ × T ∗(Σ× (0,∞))→ T ∗(Σ× (0,∞)), t · (θ, r, α1 + α2 dr) := (θ, tr, α1 + t−1α2 dr).

The induced action on 1-forms preserves λ̂ : t∗λ̂ = λ̂. Equation 4.12 coincides with the
composed action and thus satisfies t∗λ̂ = t2λ̂, so t∗ω̂ = t2ω̂.

We now want to investigate the symplectic properties of the map ΨC . Let ω̃ denote the
standard symplectic structure on Cm. Since C is Lagrangian, the fibres of the normal bundle
define (locally) a Lagrangian foliation of Cm, transverse to C. Using the fact that ΨC is the
identity on C and is linear on each fibre, one can check that, at each point of C, (ΨC)

∗ω̃ = ω̂.
Notice also that ΨC identifies the foliation of Cm with the foliation of T ∗C defined by the fibres.

As in the proof of Theorem 4.2, we now want to perturb ΨC so as to obtain a local sym-
plectomorphism U ⊂ T ∗C → Cm. As in that case, the idea is to build a (local) diffeomorphism
k : T ∗C → T ∗C such that k∗ = Id at each point of C and k∗(ΨC)

∗ω̃ = ω̂. The construction
of such k is sufficiently explicit in [23] p. 333 to allow us to prove that k is equivariant with
respect to the R+-action. Furthermore, the fact that the fibres of T ∗C are Lagrangian for both
symplectic forms implies that k preserves these fibres, see [23] Theorem 7.1 for details. Now
define

(4.13) ΦC := ΨC ◦ k : U ⊂ T ∗C → Cm.

By construction, ΦC satisfies (ΦC)
∗ω̃ = ω̂. Furthermore, ΦC is equivariant and its fibrewise

linearization at each x ∈ C coincides with ΨC . Thus ΦC = ΨC +R, for some R satisfying

(4.14) |R(θ, 1, α1, α2)| = O(|α1|2g′ + |α2|2), as |a1|g′ + |a2| → 0.

Clearly R is also equivariant. Thus

(4.15) |R(θ, t, α1, α2)| = |R(θ, t · 1, t2t−2α1, tt
−1α2)| = t ·O(t−4|α1|2g′ + t−2|α2|2).

The equivariance of R can be used to determine its asymptotic behaviour with respect to r
after composition with 1-forms on C. For example, given any µ > 2 and λ < 2, choose α in
the space C∞(µ−1,λ−1)(U). Notice that, as r → ∞, r−1|α1|g′ = |α1|g = O(rλ−1). This implies

r−4|α1|2g′ = O(r2λ−4). Analogously, |α2| = O(rλ−1) so r−2|α2|2 = O(r2λ−4). Equation 4.15

then shows that (R ◦ α)(θ, r) = R(θ, r, α(θ, r)) satisfies |R ◦ α| = O(r2λ−3) as r →∞. Further
calculations show that the derivatives of R ◦ α scale correspondingly, e.g.

(4.16) |(R ◦ α)∗(∂r)| = O(r2λ−4), |(R ◦ α)∗(r
−1∂θi)| = O(r2λ−4).

More generally, |∇̃k(R ◦ α)| = O(r2λ−3−k). As a result,

|∇̃k(ΦC ◦ α− ι)| = |∇̃k((ΨC +R) ◦ α− ι)| ≤ |∇̃k(ΨC ◦ α− ι)|+ |∇̃k(R ◦ α)|
= O(rλ−1−k) +O(r2λ−3−k) = O(rλ−1−k),
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where we use λ < 2. This shows that ΦC ◦ α is a CS/AC Lagrangian submanifold asymptotic
to C with rate (µ, λ). Conversely, one can show that any Lagrangian submanifold L of Cm
which admits a parametrization which is C1-close to ι and which is asymptotic to ι in the
sense of Equations 3.1 and 3.2 corresponds to a closed 1-form α ∈ C∞(µ−1,λ−1)(U).

In complete analogy with Section 4.1 we can use ΦC and the closed forms in the space
C∞(µ−1,λ−1)(U) to define a topology on the set of Lagrangian submanifolds which admit a

parametrization ι : Σ × R+ → Cm which is asymptotic to C with rate (µ, λ). The connected
component containing C defines the moduli space of CS/AC Lagrangian deformations of C with
rate (µ, λ).

We conclude with a last comment on the differential properties of ΨC . Recall the following
general fact.

Lemma 4.7. Let E → M be a vector bundle, endowed with a connection ∇. Let σ : M → E
be a section of E. Choose v ∈ TpM . The connection defines a decomposition into “vertical”
and “horizontal” subspaces

(4.17) Tσ(p)E = Vσ(p) ⊕Hσ(p), with Vσ(p) ' Ep, Hσ(p) ' Tp(M).

Under these identifications, σ∗(v) ' ∇vσ + v.

We can apply Lemma 4.7 as follows. Let α be a section of T ∗C so that ΨC ◦α : C → Cm is a
submanifold of Cm. Choose v ∈ TrθC. Then, using the identifications 4.7, 4.8, 4.9 and Lemma
4.7,

(4.18) (ΨC ◦ α)∗(v) ' ∇̃vα+ v,

where ∇̃ denotes the Levi-Civita connection on T ∗C.

4.3. Third case: CS/AC Lagrangian submanifolds in Cm. Let ι : L → Cm be an AC
Lagrangian submanifold with rate λ, centers pi and ends Si. Using the notation of Section
4.2, the map ΦCi + pi : T ∗Ci → Cm identifies ι(Si) ⊂ Cm with the graph Γ(αi) of some closed
1-form αi. This construction also determines a distinguished coordinate system φi by imposing
the relation

φi : Ci → Si, ι ◦ φi = ΦCi ◦ αi.
Letting (dφi)

∗ : T ∗Si → T ∗Ci denote the corresponding identification of cotangent bundles, we
obtain an identification of the zero section Ci with the zero section Si. We can use the sym-
plectomorphism ταi defined in Equation 4.3 to “bridge the gap” between these identifications,
obtaining a symplectomorphism

(4.19) ΦSi : Ui ⊂ T ∗Si → Cm, ΦSi := ΦCi ◦ ταi ◦ (dφi)
∗ + pi

which restricts to the identity on Si. These maps provide a Lagrangian neighbourhood for
each end of L. Using the same methods as in the proof of Theorem 4.2 one can interpolate
between these maps. The final result is a symplectomorphism

(4.20) ΦL : U ⊂ T ∗L→ Cm

which restricts to the identity along L. This allows us to parametrize AC deformations of L
with rate λ in terms of closed 1-forms in the space C∞λ−1(U).

More generally, given a CS or CS/AC Lagrangian submanifold L in Cm, the same ideas
define a symplectomorphism ΦL as in Equation 4.20. The same is true for a CS submanifold
in M : this time it is necessary to insert appropriate compositions by Υi. We refer to Joyce
[10] for additional details concerning constructions of this type.

Coupling these results with Decompositions 2, 3 and 4 now gives a good idea of the local
structure of the corresponding moduli spaces of Lagrangian deformations, defined as in Sections
4.1 and 4.2.
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4.4. Lagrangian deformations with moving singularities. In Section 4.3 the given La-
grangian submanifold L is deformed keeping the singular points fixed in the ambient manifold
Cm or M . It is also natural to want to deform L allowing the singular points to move within
the ambient space. Analogously, one might want to allow the corresponding Lagrangian cones
Ci to rotate in Cm. The correct set-up for doing this when ι : L → M is a CS Lagrangian
submanifold with singularities {x1, . . . , xs} and identifications υi is as follows. The ideas are
based on [11] Section 5.1. Define

(4.21) P := {(p, υ) : p ∈M, υ : Cm → TpM such that υ∗ω = ω̃, υ∗J = J̃}.
P is a U(m)-principal fibre bundle over M with the action

U(m)× P → P, M · (p, υ) := (p, υ ◦M−1).

As such, P is a smooth manifold of dimension m2 + 2m.
Our aim is to use one copy of P to parametrize the location of each singular point pi = ι(xi) ∈

M and the direction of the corresponding cone Ci ⊂ Cm: the group action will allow the cone
to rotate leaving the singular point fixed. As we are interested only in small deformations of L
we can restrict our attention to a small open neighbourhood of the pair (pi, υi) ∈ P . In general
the Ci will have some symmetry group Gi ⊂ U(m), i.e. the action of this Gi will leave the cone
fixed. To ensure that we have no redundant parameters we must therefore further restrict our
attention to a slice of our open neighbourhood, i.e. a smooth submanifold transverse to the
orbits of Gi. We denote this slice Ei: it is a subset of P containing (pi, υi) and of dimension
m2 + 2m− dim(Gi). We then set E := E1 × · · · × Es. The point e := (p1, υ1), . . . , (ps, υs)) ∈ E
will denote the initial data as in Definition 3.6.

We now want to extend the datum of (L, ι) to a family of Lagrangian submanifolds (L, ιẽ)
parametrized by ẽ = ((p̃1, υ̃1), . . . , (p̃s, υ̃s)) ∈ E (making E smaller if necessary). Each (L, ιẽ)
should satisfy ιẽ(pi) = p̃i and admit identifications υ̃i and cones Ci as in Definition 3.6. We
further require that ιe = ι globally and that ιẽ = ι outside a neighbourhood of the singularities.
The construction of such a family is actually straight-forward: using the maps Υi, it reduces
to a choice of an appropriate family of compactly-supported symplectomorphisms of Cm.

It is now possible to choose an open neighbourhood U ⊂ T ∗L and embeddings Φẽ
L : U →M

which, away from the singularities, coincide with the embedding ΦL introduced in Section 4.3.
The final result is that, after such a choice, the moduli space of CS Lagrangian deformations
of L with rate µ and moving singularities can be parametrized in terms of pairs (ẽ, α) where
ẽ ∈ E and α is a closed 1-form on L belonging to the space C∞µ−1(U).

Analogous results hold of course for CS and CS/AC submanifolds in Cm. In this case it is
sufficient to set P := {(p, υ)}, with p ∈ Cm and υ ∈ U(m).

5. Special Lagrangian conifolds

Definition 5.1. A Calabi-Yau (CY) manifold is the data of a Kähler manifold (M2m,g,J ,ω)
and a non-zero (m, 0)-form Ω satisfying ∇Ω ≡ 0 and normalized by the condition ωm/m! =

(−1)m(m−1)/2(i/2)mΩ ∧ Ω̄.
In particular Ω is holomorphic and the holonomy of (M, g) is contained in SU(m). We will

refer to Ω as the holomorphic volume form on M .

Example 5.2. The simplest example of a CY manifold is Cm with its standard structures g̃,
J̃ , ω̃ and Ω̃ := dz1 ∧ · · · ∧ dzm.

Definition 5.3. Let M2m be a CY manifold and Lm → M be an immersed or embedded
Lagrangian submanifold. We can restrict Ω to L, obtaining a non-vanishing complex-valued
m-form Ω|L on L. We say that L is special Lagrangian (SL) iff this form is real, i.e. Im Ω|L ≡ 0.
In this case Re Ω|L defines a volume form on L, thus a natural orientation.
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Lagrangian submanifolds (especially the immersed ones) tend to be very “soft” objects: for
example, Section 4 shows that they have infinite-dimensional moduli spaces. They also easily
allow for cutting, pasting and desingularization procedures. The “special” condition rigidifies
them considerably: the corresponding deformation, gluing and desingularization processes
require much “harder” techniques. Cf. e.g. [5], [12], [13], [20] for recent gluing results and [6]
for local desingularization issues.

Definition 5.4. We can define AC, CS and CS/AC special Lagrangian submanifolds in Cm
exactly as in Definitions 3.2, 3.3 and 3.4, simply adding the requirement that the submanifolds
be special Lagrangian. In particular this implies that the cones Ci are SL in Cm. Following
Definition 3.6 we can also define CS special Lagrangian submanifolds in a general CY manifold
M : in this case it is necessary to also add the requirement that υ∗i Ω = Ω̃.

We use the generic term special Lagrangian conifold to refer to any of the above.

Remark 5.5. It follows from Joyce [10] Theorem 5.5 that if L is a CS or CS/AC SL submanifold
with respect to some rate µ = 2+ε with ε in a certain range (0, ε0) then it is also CS or CS/AC
with respect to any other rate of the form µ′ = 2 + ε′ with ε′ ∈ (0, ε0). The precise value of
ε0 is determined by certain exceptional weights for the cones Ci, introduced in Section 7. We
refer to [10] for details.

Example 5.6. Let C be a Lagrangian cone in Cm with smooth link Σm−1. It can be shown
that C is SL (with respect to some holomorphic volume form eiθΩ̃) iff Σ is minimal in S2m−1

with respect to the natural metric on the sphere. Then C is a CS/AC SL in Cm. Cf. e.g. [3],
[4], [5], [6], [8] for examples.

We refer to Joyce [9] Section 6.4 for examples of AC SLs in Cm with various rates.

6. Setting up the SL deformation problem

If ι : L → M is a SL conifold we can specialize the framework of Section 4 to study the
SL deformations of L. Notice that the SL condition is again invariant under reparametriza-
tions. Thus, if L is smooth and compact, the moduli space ML of SL deformations of L
can be defined as the connected component containing L of the subset of SL submanifolds in
Lag(L,M)/Diff(L). As seen in Sections 4.2 and 4.3, if L is an AC, CS or CS/AC Lagrangian
submanifold with specific rates of growth/decay on the ends, we can obtain moduli spaces of
Lagrangian or SL deformations of L with those same rates by simply restricting our attention
to closed 1-forms on L which satisfy corresponding growth/decay conditions.

Our ultimate goal is to prove that moduli spaces of SL conifolds often admit a natural
smooth structure with respect to which they are finite-dimensional manifolds. Failing this, we
want to identify the obstructions which prevent this from happening. Generally speaking, the
strategy for proving these results will be to view ML locally as the zero set of some smooth
map F defined on the space of closed forms in C∞(U) (when L is smooth and compact) or in
C∞(µ−1,λ−1)(U) (when L is CS/AC with rate (µ,λ)): we can then attempt to use the Implicit

Function Theorem to prove that this zero set is smooth.
The choice of F is dictated by Definition 5.3. Let Ω denote the given holomorphic volume

form on M . Then F must compute the values of Im Ω on each Lagrangian deformation of L.
In the following sections we present the precise construction of F and study its properties, for
each case of interest.

Note: To simplify the notation, from now on we will drop the immersion ι : L → M and
simply identify L with its image. In particular we will identify the singularities xi with their
images ι(xi).
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6.1. First case: smooth compact special Lagrangians. Let L ⊂M be a smooth compact
SL submanifold, endowed with the induced metric g and orientation. Define ΦL : U → M as
in Section 4.1. Consider the pull-back real m-form Φ∗L(Im Ω) defined on U . Given any closed
α ∈ C∞(U), let Γ(α) denote the submanifold in U defined by its graph. It is diffeomorphic to
L via the projection π : T ∗L → L. The pull-back form restricts to an m-form Φ∗L(Im Ω)|Γ(α)

on Γ(α). It is clear from Definition 5.3 that Γ(α) is SL iff this form vanishes. We can now pull
this form back to L via α (equivalently, push it down to L via π∗), obtaining a real m-form on
L: then Γ(α) is SL iff this form vanishes on L. Finally, let ? denote the Hodge star operator
defined on L by g and the orientation. Using this operator we can reduce any m-form on L to
a function.

Summarizing, let DL denote the space of closed 1-forms on L whose graph lies in U . We
then define the map F as follows.

(6.1) F : DL → C∞(L), α 7→ ?(α∗(Φ∗L Im Ω)) = ?((ΦL ◦ α)∗ Im Ω).

Proposition 6.1. The non-linear map F has the following properties:

(1) The set F−1(0) parametrizes the space of all SL deformations of L which are C1-close
to L.

(2) F is a smooth map between Fréchet spaces. Furthermore, for each α ∈ DL,
∫
L F (α) volg =

0.
(3) The linearization dF [0] of F at 0 coincides with the operator d∗, i.e.

(6.2) dF [0](α) = d∗α.

Proof. These results are standard, cf. [16] or [10] Prop. 2.10. However for the reader’s
convenience we give a sketch of the argument with respect to our own set of conventions. To
simplify the notation we identify U with its image in M via ΦL. This allows us to write

(6.3) F (α) = ?(π∗(Im Ω|Γ(α))).

We also identify L with the zero section in T ∗L.
The first statement follows directly from the definition of F and the results of Section 4.1.

More precisely the statement is that, up to composition with ΦL, F−1(0) coincides with the set
of SL submanifolds which admit a parametrization which is C1-close to some parametrization
of L.

To prove the second statement, notice that
∫
L F (α) volg =

∫
Γ(α) Im Ω. The fact that Ω

is closed implies that Im Ω is closed. Furthermore the submanifold Γ(α) is homotopic, thus
homologous, to the zero section L. Thus

∫
Γ(α) Im Ω =

∫
L Im Ω = 0 because L is SL. The

smoothness of F is clear from its definition.
To prove Equation 6.2, fix any α ∈ Λ1(L) and let v denote the normal vector field along

L determined by imposing α(·) ≡ ω(v, ·). We can extend v to a global vector field v on M .
Let φs denote any 1-parameter family of diffeomorphisms of M such that d/ds(φs(x))|s=0 =
v(x). Then the two 1-parameter families of m-forms on L, (sα)∗(Im Ω) = π∗(Im Ω|Γ(sα)) and
(φ∗s Im Ω)|L, coincide up to first order so that standard calculus of Lie derivatives shows that

dF [0](α) volg = d/ds(F (sα) volg)|s=0 = d/ds(π∗(Im Ω|Γ(sα)))|s=0

= d/ds(φ∗s Im Ω)|L; s=0 = (Lv Im Ω)|L

= (div Im Ω)|L

where in the last equality we use Cartan’s formula Lv = div + ivd and the fact that Im Ω is
closed.

We now claim that (iv Im Ω)|L ≡ − ? α on L. This is a linear algebra statement so we can
check it point by point. We can also assume that v is a unit vector at that point. Fix a point
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x ∈ L and an isomorphism TxM ' Cm identifying the CY structures on TxM with the standard
structures on Cm. This map will identify TxL with a SL m-plane Π in Cm. Consider the action
of SU(m) on the Grassmannian of m-planes in Cm. In [3] page 89 it is shown that SU(m) acts
transitively on the subset of SL m-planes and that the isotropy subgroup corresponding to the
distinguished SL plane Rm := span{∂x1, . . . , ∂xm} is SO(m) ⊂ SU(m); in other words, the set
of SL m-planes in Cm can be identified with the homogeneous space SU(m)/SO(m). Up to a
rotation in SU(m) we can assume that Π = Rm. Up to a rotation in SO(m) we can further
assume that v(x) = ∂y1. It is thus sufficient to check our claim in this case only. We can write
Im Ω = dy1 ∧ dx2 ∧ · · · ∧ dxm + (. . . ). It follows that (iv Im Ω)|Rm = dx2 ∧ · · · ∧ dxm. On the

other hand α = −dx1, proving the claim, thus Equation 6.2. �

Remark 6.2. Notice that ? depends on x ∈ L, Γ(α) depends on α and Φ∗L Im Ω|Γ(α) depends
on α and ∇α. We can thus think of F as being obtained from an underlying smooth function

(6.4) F ′ = F ′(x, y, z) : U ⊕ (T ∗L⊗ T ∗L)→ R
via the following relationship:

(6.5) F (α) = F ′(x, α(x),∇α(x)).

More specifically, F ′ can be defined as follows. Choose a point (x, y) ∈ U . Let e1, . . . , em be
an orthonormal positive basis of TxL. Now choose any z ∈ T ∗xL ⊗ T ∗xL. Recall from Lemma
4.7 that, using the Levi-Civita connection, T(x,y)U ' T ∗xL ⊕ TxL. Thus the vectors (ieiz, ei)
span an m-plane in T(x,y)U ; when y = α and z = ∇α, this m-plane coincides with T(x,α)Γ(α).
We can now define

(6.6) F ′(x, y, z) := Φ∗L Im Ω|(x,y)((ie1z, e1), . . . , (iemz, em)).

For any fixed x ∈ L, y and z vary in the linear space T ∗xL⊕ (T ∗xL⊗ T ∗xL) so Taylor’s theorem
shows

(6.7) F ′(x, y, z) = F ′(x, 0, 0) +
∂F ′

∂y
(x, 0, 0) y +

∂F ′

∂z
(x, 0, 0) z +Q′(x, y, z)

for some smooth Q′ = Q′(x, y, z) satisfying Q′(x, y, z) = O(|y|2 + |z|2) for each x, as |y| → 0
and |z| → 0. By substitution we find

F (α) = F ′(x, α(x),∇α(x))

= F ′(x, 0, 0) +
∂F ′

∂y
(x, 0, 0)α(x) +

∂F ′

∂z
(x, 0, 0)∇α(x) +Q′(x, α(x),∇α(x)).

The fact that L is SL implies that F ′(x, 0, 0) ≡ 0. Notice also that by the chain rule

d/ds(F (sα))|s=0 = d/ds(F ′(x, sα(x), s∇α(x))|s=0 =
∂F ′

∂y
(x, 0, 0)α(x) +

∂F ′

∂z
(x, 0, 0)∇α(x).

On the other hand, d/ds(F (sα))|s=0 = dF [0](α) = d∗α. Combining these equations leads to

(6.8) F (α) = d∗α+Q′(x, α(x),∇α(x)).

6.2. Second case: special Lagrangian cones in Cm. Let C be a SL cone in Cm, endowed
with the induced metric g̃ and orientation. Define ΦC : U → Cm as in Section 4.2. Fix any
µ > 2, λ < 2. Let DC denote the space of closed 1-forms in C∞(µ−1,λ−1)(Λ

1) whose graph lies in

U . Given α ∈ DC , define F (α) as in Equation 6.1.

Proposition 6.3. The non-linear map F has the following properties:

(1) The set F−1(0) parametrizes the space of all SL deformations of C which are C1-close
to L and are asymptotic to C with rate (µ, λ).
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(2) F is a well-defined smooth map

F : DC → C∞(µ−2,λ−2)(C).

In particular, for each α ∈ DC, F (α) ∈ C∞(µ−2,λ−2)(C).
(3) The linearization dF [0] of F at 0 coincides with the operator d∗, i.e.

(6.9) dF [0](α) = d∗α.

Proof. The first statement follows from the definition of F and the results of Section 4.2.
Concerning the second statement, we may write

F (α) = ?(α∗(Φ∗C Im Ω̃)) = Im Ω̃((ΦC ◦ α)∗(e1), . . . , (ΦC ◦ α)∗(em))

= Im Ω̃((ΨC ◦ α)∗(e1) + (R ◦ α)∗(e1), . . . , (ΨC ◦ α)∗(em) + (R ◦ α)∗(em))

= Im Ω̃((ΨC ◦ α)∗(e1), . . . , (ΨC ◦ α)∗(em)) + . . . ,

where ei is a local g̃-orthornomal basis of TC.
Consider this last equation as r →∞. Equation 4.18 shows that its first term is of the form

Im Ω̃(e1, . . . , em) + O(rλ−2). The first term here vanishes because C is SL, leaving the term
O(rλ−2). Equation 4.16 shows that the remaining terms in F (α) are of the form O(r2λ−4).
Analogous methods apply for r → 0, showing that F (α) ∈ C0

(µ−2,λ−2)(C).
To study the derivatives of F (α) we endow U with the metric and Levi-Civita connection ∇

pulled back from Cm via ΦC , so that ∇(Φ∗C Im Ω̃) = Φ∗C(∇̃ Im Ω̃) = 0. Let g denote the induced

metric on Γ(α). Then C can be endowed with either the metric g̃ and induced connection ∇̃ or
with the metric α∗g and induced connection ∇. One can check, or cf. [19], that the fact that

α∗g is asymptotic to g̃ implies that the difference tensor A := ∇− ∇̃ satisfies |A| = O(rλ−3),
as r →∞. Notice that

F (α) volg̃ = (ΦC ◦ α)∗ Im Ω̃

so, taking derivatives,

∇(F (α) volg̃) = ∇((ΦC ◦ α)∗ Im Ω̃) = (ΦC ◦ α)∗(∇̃ Im Ω̃) = 0.

This implies

|(∇F (α))⊗ volg̃| = |F (α) · ∇(volg̃)| = O(rλ−2)|∇(volg̃)|.
Write volg̃ = e∗1 ⊗ · · · ⊗ e∗m so that ∇(volg̃) = ∇e∗1 ⊗ · · · ⊗ e∗m + · · ·+ e∗1 ⊗ · · · ⊗ ∇e∗m. We may

assume that ∇̃e∗i = 0. Then ∇e∗i = (∇ − ∇̃)e∗i = Ae∗i , leading to |∇(volg̃)| = O(rλ−3). This
shows that F (α) ∈ C1

(µ−2,λ−2)(C). Further calculations of the same type apply to the higher

derivatives, showing that F (α) ∈ C∞(µ−2,λ−2)(C). It is clear that F is smooth.

The third statement can be proved as in Proposition 6.1. �

6.3. Third case: CS/AC special Lagrangians in Cm. Let L be a AC, CS or CS/AC SL
in Cm or a CS SL in M . The moduli space of SL deformations of L with fixed singularities
coincides locally with the zero set of a map F defined as in Equation 6.1. The methods and
results of Sections 4.3 and 6.2 then lead to a good understanding of the properties of F ,
analogous to those described in Propositions 6.1 and 6.3. For example, assume L is a CS/AC
SL in Cm with rate (µ,λ). Let DL denote the space of closed 1-forms in C∞(µ−1,λ−1)(Λ

1) whose

graph lies in U . Choose α ∈ DL. Then it is simple to check that F (α) ∈ C∞(µ−2,λ−2)(L), etc.

We now want to understand how to parametrize the SL deformations of L whose singularities
are allowed to move in the ambient space as in Section 4.4. For example, assume L is a CS SL
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submanifold in M . The constructions of Section 4.4 must then be modified as follows. This
time we set

(6.10) P̃ := {(p, υ) : p ∈M, υ : Cm → TpM such that υ∗ω = ω̃, υ∗Ω = Ω̃},
so that P̃ is a SU(m)-principal fibre bundle over M of dimension m2+2m−1. For each end, the

cone Ci will now have symmetry group Gi ⊂ SU(m). As in Section 4.4, let Ẽi denote a smooth

submanifold of P̃ transverse to the orbits of Gi. It has dimension m2 + 2m− 1−dim(Gi). Set

Ẽ := Ẽ1 × · · · × Ẽs. We then define CS Lagrangian submanifolds Lẽ and embeddings Φẽ
L with

the same properties as before.
Now let DL denote the space of closed 1-forms in C∞µ−1(Λ1) whose graph lies in U . We

define a map

(6.11) F : Ẽ × DL → C∞µ−2(L), (ẽ, α) 7→ ?(α∗(Φẽ∗
L Im Ω)).

Proposition 6.4. Let L be a CS SL in M . Then the map F has the following properties:

(1) The set F−1(0) parametrizes the space of all SL deformations of L which are C1-close
to L away from the singularities and are asymptotic to Ci with rate µi for some choice
of (p̃i, υ̃i) near (pi, υi).

(2) F is a (locally) well-defined smooth map between Fréchet spaces. In particular, for
each α ∈ DL, F (α) ∈ C∞µ−2(L). Furthermore,

∫
L F (α) volg = 0.

(3) There exists an injective linear map χ : TeẼ → C∞0 (L) such that (i) χ(y) ≡ 0 away

from the singularities and (ii) the linearized map dF [0] : TeẼ ⊕ C∞µ−1(Λ1) → C∞µ−2(L)
satisfies

(6.12) dF [0](y, α) = ∆g χ(y) + d∗α.

Proof. The first statement should be interpreted as explained in the proof of Proposition 6.1.
The proof follows from the definitions of Ẽ and F and from the results of Section 4.4. The
second statement can be proved as in Propositions 6.1 and 6.3.

Regarding the third statement, the linearization of F with respect to directions in C∞µ−1(Λ1)

can be computed as in Proposition 6.1. Now choose y ∈ TeẼ corresponding to a curve ẽs ∈ Ẽ
such that ẽ0 = e. Up to identifying U with M via Φe

L, Φẽs
L defines a 1-parameter curve of

symplectomorphisms φs of M such that d/ds(φs)|s=0 = v, for some vector field v on M . Thus,
as in Proposition 6.1,

dF [0](y) volg = d/ds(F (ẽs, 0) volg)|s=0 = d/ds((φs)
∗ Im Ω)|L;s=0

= (Lv Im Ω)L = (div Im Ω)|L

= −d ? α,
where α := ω(v, ·)|L is a closed 1-form on L. Notice that, by definition, φs ≡ Id away from
the singularities of L, so α ≡ 0 there. Thus, by the Poincaré Lemma (cf. e.g. Lemma 2.12),
α must be exact on L, i.e. α = dχ for some function χ : L→ R. We can define χ uniquely by
imposing that χ ≡ 0 away from the singularities of L. The function χ depends linearly on y,
and we can write dF [0](y, 0) = ∆g χ(y), as claimed. Furthermore, if χ(y) = 0 then α = 0 and

v = 0. Since Ẽ is defined so as to parametrize geometrically distinct immersions, this implies
y = 0.

Roughly speaking, near each singularity and up to the appropriate identifications, ẽs should
be thought of as a 1-parameter curve in the group SU(m) n Cm acting on Cm. This action
admits a moment map µ : Cm → (Lie(SU(m) n Cm))∗. Recall that this means that µ is
equivariant and that, for all w ∈ Lie(SU(m) nCm), the corresponding function µw : Cm → R
satisfies dµw = iwω̃, i.e. w is a Hamiltonian vector field with Hamiltonian function µw. The
moment map can be written explicitly, cf. e.g. [6] Section 2.6, showing that each µw is at most
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a quadratic polynomial on Cm. Notice, for future reference, that for any SL cone C ⊂ Cm the
calculations in the proof of Proposition 6.1 show that

∆g(µw|C) = d∗(dµw|C) = − ? d ? (iwω̃|C) = ?(diw Im Ω̃)|C = ?(Lw Im Ω̃)|C = 0,

i.e. each µw restricts to a harmonic function on each SL cone.
In this set-up our vector field v is (locally) an element of Lie(SU(m) nCm) and χ(y) = µv.

Thus χ(y) is bounded as r → 0. This implies that χ(y) ∈ C0
0(L). Further calculations show

that χ(y) ∈ C∞0 (L), as claimed. �

Now let L be a CS/AC SL in Cm. Define P̃ , Ẽ , etc. analogously to the above (cf. Section
4.4 for the necessary modifications for the ambient space Cm). Let DL denote the space of
closed 1-forms in C∞(µ−1,λ−1)(Λ

1) whose graph lies in U . Define F as in Equation 6.11. The

following result can then be proved similarly to Proposition 6.4.

Proposition 6.5. Let L be a CS/AC SL in Cm. Then the map F has the following properties:

(1) The set F−1(0) parametrizes the space of all SL deformations of L which are C1-close
to L away from the singularities and are asymptotic to Ci with rate (µ,λ) for some
choice of (p̃i, υ̃i) near (pi, υi).

(2) F is a (locally) well-defined smooth map between Fréchet spaces. In particular, for
each α ∈ DL, F (α) ∈ C∞(µ−2,λ−2)(L).

(3) There exists an injective linear map χ : TeẼ → C∞0 (L) such that (i) χ(y) ≡ 0 away

from the singularities and (ii) the linearized map dF [0] : TeẼ ⊕ C∞(µ−1,λ−1)(Λ
1) →

C∞(µ−2,λ−2)(L) satisfies

(6.13) dF [0](y, α) = ∆g χ(y) + d∗α.

If the spaces C∞(L), C∞β (L) were Banach spaces and the relevant maps were Fredholm, we

could now apply the Implicit Function Theorem to conclude that the sets F−1(0), and thus
ML, are smooth. As however they are actually only Frèchet spaces, it is instead necessary to
first take the Sobolev space completions of these spaces, then study the Fredholm properties
of the linearized maps. We do this in Section 8. This will require some results concerning the
Laplace operator on conifolds, summarized in Section 7.

7. Review of the Laplace operator on conifolds

We summarize here some analytic results concerning the Laplace operator on conifolds,
referring to [19] for further details and references.

Definition 7.1. Let (Σ, g′) be a compact Riemannian manifold. Consider the cone C :=
Σ× (0,∞) endowed with the conical metric g̃ := dr2 + r2g′. Let ∆g̃ denote the corresponding
Laplace operator acting on functions.

For each component (Σj , g
′
j) of (Σ, g′) and each γ ∈ R, consider the space of homogeneous

harmonic functions

(7.1) V j
γ := {rγσ(θ) : ∆g̃(r

γσ) = 0}.

Set mj(γ) := dim(V j
γ ). One can show that mj

γ > 0 iff γ satisfies the equation

(7.2) γ =
(2−m)±

√
(2−m)2 + 4ejn

2
,

for some eigenvalue ejn of ∆g′j
on Σj . Given any weight γ ∈ Re, we now set m(γ) :=∑e

j=1m
j(γj). Let D ⊆ Re denote the set of weights γ for which m(γ) > 0. We call these the

exceptional weights of ∆g̃.
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Let (L, g) be a conifold. Assume (L, g) is asymptotic to a cone (C, g̃) in the sense of
Definition 2.6. Roughly speaking, the fact that g is asymptotic to g̃ in the sense of Definition
2.2 implies that the Laplace operator ∆g is “asymptotic” to ∆g̃. Applying Definition 7.1 to C
defines weights D ⊆ Re: we call these the exceptional weights of ∆g. This terminology is due
to the following result.

Theorem 7.2. Let (L, g) be a conifold with e ends. Let D denote the exceptional weights of
∆g. Then D is a discrete subset of Re and the Laplace operator

∆g : W p
k,β(L)→W p

k−2,β−2(L)

is Fredholm iff β /∈ D.

The above theorem, coupled with the “change of index formula”, leads to the following
conclusion, cf. [19].

Corollary 7.3. Let (L, g) be a compact Riemannian manifold. Consider the map ∆g :
W p
k (L)→W p

k−2(L). Then

Im(∆g) = {u ∈W p
k−2(L) :

∫
L
u volg = 0}, Ker(∆g) = R.

Let (L, g) be an AC manifold. Consider the map ∆g : W p
k,λ(L)→W p

k−2,λ−2(L). If λ > 2−m
is non-exceptional then this map is surjective. If λ < 0 then this map is injective, so for
λ ∈ (2−m, 0) it is an isomorphism.

Let (L, g) be a CS manifold with e ends. Consider the map ∆g : W p
k,µ(L) → W p

k−2,µ−2(L).

If µ ∈ (2−m, 0) then

Im(∆g) = {u ∈W p
k−2,µ−2(L) :

∫
L
u volg = 0}, Ker(∆g) = R.

If µ > 0 is non-exceptional then this map is injective and

dim(Coker(∆g)) = e+
∑

0<γ<µ

m(γ),

where m(γ) is as in Definition 7.1.
Let (L, g) be a CS/AC manifold with s CS ends and l AC ends. Consider the map

∆g : W p
k,(µ,λ)(L)→W p

k−2,(µ−2,λ−2)(L).

If (µ,λ) ∈ (2−m, 0) then this map is an isomorphism. If µ > 0 and λ < 0 are non-exceptional
then this map is injective and

dim(Coker(∆g)) = s+
∑

0<γ<µ

m(γ),

where m(γ) is as in Definition 7.1. Notice in particular that this dimension depends only on
the harmonic functions on the CS cones.

8. Moduli spaces of special Lagrangian conifolds

Recall the statement of the Implicit Function Theorem.

Theorem 8.1. Let F : E1 → E2 be a smooth map between Banach spaces such that F (0) = 0.
Assume P := dF [0] is surjective and Ker(P ) admits a closed complement Z, i.e. E1 =
Ker(P )⊕ Z. Then there exists a smooth map Φ : Ker(P )→ Z such that F−1(0) coincides lo-
cally with the graph Γ(Φ) of Φ. In particular, F−1(0) is (locally) a smooth Banach submanifold
of E1.
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The following result is straight-forward.

Proposition 8.2. Let F : E1 → E2 be a smooth map between Banach spaces such that
F (0) = 0. Assume P := dF [0] is Fredholm. Set I := Ker(P ) and choose Z such that
E1 = I ⊕ Z. Let O denote a finite-dimensional subspace of E2 such that E2 = O ⊕ Im(P ).
Define

G : O ⊕ E1 → E2, (γ, e) 7→ γ + F (e).

Identify E1 with (0, E1) ⊂ O ⊕ E1. Then:

(1) The map dG[0] = Id⊕P is surjective and Ker(dG[0]) = Ker(P ). Thus, by the Implicit
Function Theorem, there exist Φ : I → O ⊕ Z such that G−1(0) = Γ(Φ).

(2) F−1(0) = {(i,Φ(i)) : Φ(i) ∈ Z} = {(i,Φ(i)) : πO ◦ Φ(i) = 0}, where πO : O ⊕ Z → O
is the standard projection.

(3) Let πI : I ⊕Z → I denote the standard projection. Then πI is a continuous open map
so it restricts to a homeomorphism

πI : F−1(0)→ (πO ◦ Φ)−1(0)

between F−1(0) and the zero set of the smooth map πO ◦ Φ : I → O, which is defined
between finite-dimensional spaces.

We now have all the ingredients necessary to prove various smoothness results for SL moduli
spaces. In all cases we follow the same steps. Section 6 described each moduli space as the
zero set of a map F . The first step is to use regularity to show that one can equivalently
study the zero set of a map F̃ . The domain of F̃ is of the form K ×W p

k,(µ,λ)(L) where K is

a finite-dimensional vector space defined in terms of spaces introduced in Sections 2.2 and 6.
Roughly speaking, this corresponds to separating the obvious Hamiltonian deformations of L
from a finite-dimensional space of other Lagrangian deformations. The geometric description
of the latter depends on the case in question. The differential dF̃ [0] is then a finite-dimensional
perturbation of the Laplace operator ∆g acting on functions. The second step is to analyze
this linearized operator, showing that under appropriate conditions it is surjective. The third
step is to identify the kernel of dF̃ [0], at least up to projections. One can then apply the
Implicit Function Theorem and conclude.

Smooth compact special Lagrangians. The following result was first proved by McLean [16].

Theorem 8.3. Let L be a smooth compact SL submanifold of a CY manifold M . Let ML

denote the moduli space of SL deformations of L. ThenML is a smooth manifold of dimension
b1(L).

Proof. Choose k ≥ 3 and p > m. Consider the space Ker(d) of closed 1-forms in W p
k−1(Λ1). Let

DL denote the forms α ∈ Ker(d) whose graph Γ(α) lies in U . Notice that Γ(α) is a well-defined
C1 Lagrangian submanifold in U by the standard Sobolev embedding W p

k−1(Λ1) ↪→ C1(Λ1).
For the same reason, DL is an open neighbourhood of the origin in Ker(d). Consider the map

(8.1) F : DL → {u ∈W p
k−2(L) :

∫
L
u volg = 0}, α 7→ ?(π∗((Φ

∗
L Im Ω)|Γ(α))).

Recall that W p
k−2(L) is closed under multiplication. Together with the ideas of Proposition

6.1, this shows that F is a (locally well-defined) smooth map between Banach spaces with
differential dF [0](α) = d∗α. Assume α ∈ F−1(0). Then, by composition with ΦL, α defines
a C1 SL submanifold in M . Standard regularity results for minimal submanifolds then show
that α is smooth. Thus ML is locally homeomorphic, via ΦL, to F−1(0).

Decomposition 1 shows that any α ∈ F−1(0) is of the form α = β + df for some unique
β ∈ H and some f ∈ C∞(L), defined up to a constant. We can thus re-phrase the SL
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deformation problem as follows. Define D̃L as the space of pairs (β, f) in H ×W p
k (L) such

that α := β + df ∈ DL. Clearly D̃L is an open neighbourhood of the origin. Then D̃L is the
domain of the (locally defined) map between Banach spaces

(8.2) F̃ : H ×W p
k (L)→ {u ∈W p

k−2(L) :

∫
L
u volg = 0}, F̃ (β, f) := F (β + df).

Clearly, dF̃ [0](β, f) = d∗β + ∆gf . Let R denote the space of constant functions in W p
k (L).

Notice that both D̃L and F̃ are invariant under translations in R. Assume F̃ (β, f) = 0. With
respect to f this is a second-order elliptic equation. Standard regularity results show that f is
smooth. This proves that ML is locally homeomorphic to the quotient space F̃−1(0)/R. To

conclude, it is sufficient to prove that F̃−1(0) is smooth. According to Corollary 7.3, the map

(8.3) ∆g : W p
k (L)→ {u ∈W p

k−2(L) :

∫
L
u volg = 0}

is surjective. This implies that dF̃ [0] is surjective. Let βi be a basis for H. For each βi the

equation dF̃ [0](βi, f) = 0 admits a solution fi. Another solution is given by the pair β = 0,

f = 1. It is simple to check that these give a basis for the kernel of dF̃ [0]. Applying the

Implicit Function Theorem we conclude that F̃−1(0) is smooth of dimension b1(L) + 1, thus
ML is smooth of dimension b1(L). �

AC special Lagrangians. The analogous result for AC SLs was originally proved independently
by the author [18] and by Marshall [15]. We present here a simplified proof, starting with the
following weighted regularity result due to Joyce, cf. [10] Theorems 5.1 and 7.7.

Lemma 8.4. Let C be a SL cone in Cm, endowed with the induced metric g̃ and orientation.
Define ΦC : U → Cm and the map F as in Section 6.2. Fix any µ > 2 and λ < 2 with
λ 6= 0. Assume given a closed 1-form α ∈ C1

(µ−1,λ−1)(U) satisfying F (α) = 0. Analogously to

Decomposition 4, we can write α = α′ + dA where (i) α′ is compactly-supported on the small
end and translation-invariant on the large end, and (ii) A ∈ C1

(µ,λ)(L). Then α′ is smooth and

A ∈ C∞(µ,λ)(L), so α ∈ C∞(µ−1,λ−1)(U).

Proof. Standard regularity results for minimal submanifolds show that α ∈ C1
(µ−1,λ−1)(U) ∩

C∞(U). Using the same ideas as in the proof of Decomposition 4, this suffices to prove that
α′ and A are smooth. It is thus enough to show that the higher derivatives of A converge at
the correct rate as r →∞ and r → 0. We sketch here a proof for r →∞, referring to [10] for
details; the other case is analogous.

In terms of A, i.e. absorbing the α′-terms into the operator, the equation F (α) = 0

corresponds to an equation F̃ (A) = 0. Given r0 > 0 and ε << 1, consider the equivalent
equation

(8.4) r2F̃ (A) = 0 restricted to Σ× (r0 − εr0, r0 + εr0).

As in Theorem 8.3 the linearization of F̃ is ∆g̃. One can check that the change of coordinates
r = ez transforms Equation 8.4 into an equation of the form

(8.5) ∆h̃(A) + · · · = 0 restricted to Σ× (r′0 − ε′, r′0 + ε′),

where h̃ is the “cylindrical metric” h̃ := r−2g̃ = dz2 + g′. Up to a translation we can identify
Σ × (r′0 − ε′, r′0 + ε′) with the fixed, i.e. r0-independent, domain Σ × (−ε′, ε′). One can show
that Equation 8.5 converges to the equation ∆h̃(A) = 0 on this domain in such a way that



28 T. PACINI

interior estimates for the solutions are uniform as r0 → ∞. In particular, in terms of Hölder
norms, there exists a constant C = C(k, β) independent of r0 such that

(8.6) ‖A‖Ck,β ≤ C · ‖A‖C1

on the domain Σ × (−ε′, ε′) and with respect to the metric h̃. To be precise, as this is an
“interior” estimate, the domain on the left hand side is slightly smaller than the domain on
the right hand side.

Let us now write this estimate in terms of the coordinate r and multiply both sides by r−λ.
We can then check that

(8.7) ‖A‖Ckλ ≤ C · ‖A‖C1
λ

on the domain Σ× (r0− εr0, r0 + εr0) and with respect to the metric g̃. As r0 is arbitrary and
‖A‖C1

λ
is bounded on the large end, this shows that ‖A‖Ckλ is bounded for all k so A ∈ C∞λ . �

Theorem 8.5. Let L be an AC SL submanifold of Cm with rate λ. LetML denote the moduli
space of SL deformations of L with rate λ. Consider the operator

(8.8) ∆g : W p
k,λ(L)→W p

k−2,λ−2(L).

(1) If λ ∈ (0, 2) is a non-exceptional weight for ∆g then ML is a smooth manifold of
dimension b1(L) + dim(Ker(∆g))− 1.

(2) If λ ∈ (2−m, 0) then ML is a smooth manifold of dimension b1c(L).

Proof. As in Theorem 8.3, choose k ≥ 3 and p > m so that W p
k−1,λ−1(Λ1) ⊂ C1

λ−1(Λ1). Let

DL denote the space of closed 1-forms in W p
k−1,λ−1(Λ1) whose graph Γ(α) lies in U . Consider

the map

(8.9) F : DL →W p
k−2,λ−2(L), α 7→ ?(π∗((Φ

∗
L Im Ω)|Γ(α))).

Assume λ < 2. In this case Theorem 2.10 shows that W p
k−2,λ−2(L) is closed under multiplica-

tion. Together with the ideas of Proposition 6.1, this shows that F is a (locally well-defined)
smooth map between Banach spaces with differential dF [0](α) = d∗α. Assume F (α) = 0. The-
orem 2.10 and Lemma 8.4 then show that α ∈ C∞λ−1(Λ1) so F−1(0) is locally homeomorphic,
via ΦL, to ML.

Now assume λ ∈ (0, 2). Decomposition 2 shows that any α ∈ F−1(0) is of the form

α = β + df , for some β ∈ H and some f ∈ C∞λ (L). Define D̃L as the space of pairs (β, f) in

H ×W p
k,λ(L) such that α := β+ df ∈ DL. Clearly D̃L is an open neighbourhood of the origin.

Then D̃L is the domain of the (locally defined) smooth map between Banach spaces

(8.10) F̃ : H ×W p
k,λ(L)→W p

k−2,λ−2(L), F̃ (β, f) := F (β + df)

with dF̃ [0](β, f) = d∗β + ∆gf and invariant under translations in R. Assume F̃ (β, f) = 0.
Theorem 2.10 and Lemma 8.4 then show that f ∈ C∞λ (L). This proves that ML is locally

homeomorphic, via ΦL, to the quotient space F̃−1(0)/R. To conclude, it is thus sufficient to

prove that F̃−1(0) is smooth. For this we need to further assume that λ is non-exceptional.

Then Corollary 7.3 shows that the map of Equation 8.8 is surjective, so dF̃ [0] is surjective.

Let βi be a basis for H. For each βi the equation dF̃ [0](βi, f) = 0 admits a solution fi. More
solutions are given by the pairs β = 0, f ∈ Ker(∆g). It is simple to check that these give

a basis for the kernel of dF̃ [0]. Applying the Implicit Function Theorem we conclude that

F̃−1(0) is smooth of dimension dim(H ⊕Ker(∆g)). Thus ML is smooth and has the claimed
dimension.
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Now assume λ ∈ (2 − m, 0). In this case Decomposition 3 shows that any α ∈ F−1(0)

is of the form α = β + dv + df , for some β ∈ H̃∞, dv ∈ d(E∞) and df ∈ d(C∞λ (L)). We
can use regularity as before to prove that ML is locally homeomorphic to the quotient space
F̃−1(0)/R, for the (locally defined) map

(8.11) F̃ : H̃∞ × E∞ ×W p
k,λ(L)→W p

k−2,λ−2(L), F̃ (β, v, f) = F (β + dv + df).

Notice that this time the constant functions R are contained in E∞. We conclude as before
that F̃−1(0) is smooth, this time of dimension dim(H̃∞ ⊕E∞). Remark 2.13 then shows that
ML is smooth of dimension b1c(L). �

CS special Lagrangians. Now assume that L is CS SL with singularities modelled on cones
Ci. It turns out that smoothness ofML then requires an additional “stability” assumption on
Ci. Roughly speaking, it is required that the cones Ci admit no additional harmonic functions
with prescribed growth, beyond those which necessarily exist for geometric reasons.

Definition 8.6. Let C be a SL cone in Cm. Let (Σ, g′) denote the link of C with the induced
metric. Assume C has a unique singularity at the origin; equivalently, assume that Σ is smooth
and that it is not a sphere Sm−1 ⊂ S2m−1. Recall from the proof of Proposition 6.4 that the
standard action of SU(m) n Cm on Cm admits a moment map µ and that the components of
µ restrict to harmonic functions on C. Let G denote the subgroup of SU(m) which preserves
C. Then µ defines on C 2m linearly independent harmonic functions of linear growth; in the
notation of Definition 7.1 these functions are contained in the space Vγ with γ = 1. The
moment map also defines on C m2 − 1 − dim(G) linearly independent harmonic functions of
quadratic growth: these belong to the space Vγ with γ = 2. Constant functions define a third
space of homogeneous harmonic functions on C, i.e. elements in Vγ with γ = 0. In particular,
these three values of γ are always exceptional values for the operator ∆g̃ on any SL cone, in
the sense of Definition 7.1.

We say that C is stable if these are the only functions in Vγ for γ = 0, 1, 2 and if there are no
other exceptional values γ in the interval [0, 2]. More generally, let L be a CS or CS/AC SL
submanifold. We say that a singularity xi of L is stable if the corresponding cone Ci is stable.

The following result is due to Joyce [11].

Theorem 8.7. Let L be a CS SL submanifold of M with s singularities and rate µ. Let ML

denote the moduli space of SL deformations of L with moving singularities and rate µ. Assume
µ is non-exceptional for the map

(8.12) ∆g : W p
k,µ(L)→ {u ∈W p

k−2,µ−2(L) :

∫
L
u volg = 0}.

ThenML is locally homeomorphic to the zero set of a smooth map Φ : I → O defined (locally)
between finite-dimensional vector spaces. If µ = 2 + ε and all singularities are stable then
O = {0} and ML is smooth of dimension dim(I) = b1c(L)− s+ 1.

Proof. Start with a map F defined as in Section 6.3 on Ẽ ×W p
k−1,µ−1(Λ1). As in Theorem 8.5,

regularity and Decomposition 3 show that ML is locally homeomorphic to F̃−1(0)/R, where

F̃ is the (locally-defined) map

F̃ : Ẽ × H̃0 × E0 ×W p
k,µ(L) → {u ∈W p

k−2,µ−2(L) :

∫
L
u volg = 0}

(ẽ, β, v, f) 7→ F (ẽ, β + dv + df),
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invariant under translations in R ⊂ E0. As in Proposition 6.4, dF̃ [0](y, β, v, f) = d∗β +
∆g(χ(y) + v + f). Now consider the restricted map

(8.13) dF̃ [0] : TeẼ ⊕ E0 ⊕W p
k,µ(L)→ {u ∈W p

k−2,µ−2(L) :

∫
L
u volg = 0}.

We claim that the kernel of this map is given by the constant functions R. To prove this,
assume dF̃ [0](χ(y) + v + f) = 0. Since χ(y) + v + f ∈ W p

k,−ε(L), Corollary 7.3 shows that

χ(y) + v+ f is constant, i.e. d(χ(y) + v+ f) = 0. In other words the infinitesimal Lagrangian
deformation of L defined by (y, v, f) is trivial, so in particular y = 0. This implies χ(y) = 0
and it is simple to conclude that f = 0 and v ∈ R.

Let O denote the cokernel of the map of Equation 8.13. More precisely, we define it to be
a finite-dimensional space of W p

k−2,µ−2(L) such that

(8.14) O ⊕ dF̃ [0]
(
TeẼ ⊕ E0 ⊕W p

k,µ

)
= {u ∈W p

k−2,µ−2(L) :

∫
L
u volg = 0}.

Consider the map

G : O × Ẽ × H̃0 × E0 ×W p
k,µ(L) → {u ∈W p

k−2,µ−2(L) :

∫
L
u volg = 0}

(γ, ẽ, β, v, f) 7→ γ + F̃ (ẽ, β, v, f).

Again, G is invariant under translations in R. By construction, the restriction of dG[0] to the

space O⊕TeẼ ⊕E0⊕W p
k,µ is surjective with kernel R. We now have the following information

about the map G. Firstly, Ker(dG[0]) = V ⊕ R, where V is some vector space projecting

isomorphically onto H̃0. Secondly, by the Implicit Function Theorem, the set G−1(0) is smooth
and can be locally written as the graph of a smooth map Φ defined on the kernel of dG[0], thus

on H̃0 ⊕ R. As in Proposition 8.2 we can conclude that the projection onto H̃0 ⊕ R restricts
to a homeomorphism F̃−1(0) ' (πO ◦ Φ)−1(0). It is simple to check that Φ is invariant under

translations in R. Restricting Φ to I := H̃0 proves the first claim.
Now let us further assume that µ = 2 + ε and that all singularities are stable. Here, ε is to

be understood as in Remark 5.5; in particular, the moduli space we will obtain is independent
of the particular ε chosen. Recall from Corollary 7.3 that for µ > 2−m we can compute the
dimension of Coker(∆g) in terms of the number of harmonic functions on the cones Ci. Recall
from Definition 8.6 that SL cones always admit a certain number of harmonic functions. This
implies that, for the operator ∆g : W p

k,µ(L)→W p
k−2,µ−2(L),

(8.15) dim(Coker(∆g)) ≥ d, where d :=
e∑
i=1

(
1 + 2m+m2 − 1− dim(Gi)

)
.

The stability condition is equivalent to dim(Coker(∆g)) = d. This means that the cokernel of
the operator in Equation 8.12 has dimension d− 1. Notice that d is also the dimension of the
space TeẼ ⊕ E0. Our calculation of the kernel thus implies that the map dF̃ [0] of Equation
8.13 is surjective. Thus O = {0}. We can now apply the Implicit Function Theorem directly

to F̃ to obtain that F̃−1(0) is smooth, of dimension dim(H̃0) + 1. Quotienting by R and using
Equation 2.6 gives the desired result. �

We call O the obstruction space of the SL deformation problem.
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CS/AC special Lagrangians in Cm. We can now state and prove the main result of this paper.

Theorem 8.8. Let L be a CS/AC SL submanifold of Cm with s CS ends, l AC ends and rate
(µ,λ). Let ML denote the moduli space of SL deformations of L with moving singularities
and rate (µ,λ). Assume (µ,λ) is non-exceptional for the map

(8.16) ∆g : W p
k,(µ,λ)(L)→W p

k−2,(µ−2,λ−2)(L).

We will restrict our attention to the two cases λ ∈ (2−m, 0) or λ ∈ (0, 2). In either case ML

is locally homeomorphic to the zero set of a smooth map Φ : I → O defined (locally) between
finite-dimensional vector spaces. If furthermore µ = 2 + ε and all singularities are stable then
O = {0} and ML is smooth of dimension dim(I). Specifically:

(1) If λ ∈ (2−m, 0) then dim(I) = b1c(L)− s.
(2) If λ ∈ (0, 2) then dim(I) = b1c,•(L)− s+

∑l
i=1 di, where di is the number of harmonic

functions on the AC end Si of the form rγσ(θ) with γ ∈ [0, λi].

Proof. Start with a map F defined as in the previous theorems on Ẽ ×W p
k−1,(µ−1,λ−1)(Λ

1),

such that ML ' F−1(0). Let ∆µ,λ denote the map of Equation 8.16.
We split the proof into two parts, depending on the range of λ. To begin, assume λ ∈

(2 − m, 0). By regularity and Decomposition 4, ML is locally homeomorphic to F̃−1(0)/R,

where F̃ is the (locally-defined) map

F̃ : Ẽ × H̃0,∞ × E0,∞ ×W p
k,(µ,λ)(L) → W p

k−2,(µ−2,λ−2)(L)

(ẽ, β, v, f) 7→ F (ẽ, β + dv + df).

As in Proposition 6.5, dF̃ [0](y, β, v, f) = d∗β + ∆g(χ(y) + v+ f). Now consider the restricted
map

(8.17) dF̃ [0] : TeẼ ⊕ E0 ⊕W p
k,(µ,λ)(L)→W p

k−2,(µ−2,λ−2)(L),

where E0 is the subspace of functions in E0,∞ which vanish on the AC ends. Notice that
χ(y) + v + f ∈ W p

k,(−ε,λ)(L). As in Theorem 8.7 we can use Corollary 7.3 to prove that the

map of Equation 8.17 is injective.
Let O denote the cokernel of the map of Equation 8.17. More precisely, we define it to be

a finite-dimensional subspace of W p
k−2,(µ−2,λ−2)(L) such that

(8.18) O ⊕ dF̃ [0]
(
TeẼ ⊕ E0 ⊕W p

k,(µ,λ)

)
= W p

k−2,(µ−2,λ−2)(L).

Consider the map

G : O × Ẽ × H̃0,∞ × E0,∞ ×W p
k,(µ,λ)(L) → W p

k−2,(µ−2,λ−2)(L)

(γ, ẽ, β, v, f) 7→ γ + F̃ (ẽ, β, v, f).

By construction the restriction of dG[0] to the space O⊕TeẼ ⊕E0⊕W p
k,(µ,λ) is an isomorphism.

Let E′ denote a complement of E0 ⊕ R in E0,∞, i.e. E0,∞ = E0 ⊕ R ⊕ E′. As in Theorem

8.7, G−1(0) is smooth and can be written as the graph of a smooth map Φ defined on H̃0,∞⊕
(R ⊕ E′). Restricting Φ to I := H̃0,∞ ⊕ E′ and using the same arguments as in Proposition
8.2 and Theorem 8.7 then proves the first claim regardingML for this range of λ. Notice that

dim(H̃0,∞) = b1c(L)− (s+ l) + 1 and dim(E′) = l − 1 so dim(I) = b1c(L)− s.
Now let us further assume that µ = 2 + ε and that all singularities are stable. Here, as in

Theorem 8.7, ε is to be understood as in Remark 5.5. By Corollary 7.3 and the definition of
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stability,

(8.19) dim(Coker(∆µ,λ)) = d, where d :=
s∑
i=1

(
1 + 2m+m2 − 1− dim(Gi)

)
.

Again, d is also the dimension of the space TeẼ ⊕E0. Our previous injectivity calculation thus
implies that the map dF̃ [0] of Equation 8.17 is an isomorphism. In particular, O = {0}. We

can now apply the Implicit Function Theorem directly to F̃ to obtain that F̃−1(0) is smooth.
Quotienting by R shows that ML is smooth.

We now start over again, under the assumption λ ∈ (0, 2). In this case we use the map

F̃ : Ẽ × H̃0,• × E0 ×W p
k,(µ,λ)(L) → W p

k−2,(µ−2,λ−2)(L)

(ẽ, β, v, f) 7→ F (ẽ, β + dv + df)

and the restricted map

(8.20) dF̃ [0] : TeẼ ⊕ E0 ⊕W p
k,(µ,λ)(L)→W p

k−2,(µ−2,λ−2)(L).

Recall the construction of E0 in Decomposition 4: it is clear that we may assume that χ(TeẼ)
and E0 are linearly independent in W p

k,(−ε,−ε)(L). Corollary 7.3 proves that ∆g is injective on

this space. Define a decomposition

(8.21) TeẼ ⊕ E0 = Z ′ ⊕ Z ′′

by imposing ∆g(Z
′) = ∆g(TeẼ ⊕E0)∩ Im(∆µ,λ) and choosing any complement Z ′′. Then one

can check that the kernel of the map of Equation 8.20 is isomorphic to Z ′ ⊕Ker(∆µ,λ).
Choose O in W p

k−2,(µ−2,λ−2)(L) such that

(8.22) O ⊕ dF̃ [0]
(
TeẼ ⊕ E0 ⊕W p

k,(µ,λ)

)
= W p

k−2,(µ−2,λ−2)(L).

Consider the map

G : O × Ẽ × H̃0,• × E0 ×W p
k,(µ,λ)(L) → W p

k−2,(µ−2,λ−2)(L)

(γ, ẽ, β, v, f) 7→ γ + F̃ (ẽ, β, v, f).

The restriction of dG[0] to the space O ⊕ TeẼ ⊕ E0 ⊕W p
k,(µ,λ) is surjective. As before, this

implies that G−1(0) can be parametrised via a smooth map Φ defined (locally) on the space

H̃0,• ⊕ Z ′ ⊕ Ker(∆µ,λ). As usual, these maps are invariant under translations in R ⊂ Z ′ ⊕
Ker(∆µ,λ). Setting I := (H̃0,• ⊕ Z ′ ⊕Ker(∆µ,λ))/R and considering the natural map on this
quotient then proves the first claim regarding ML for this range of λ.

Now assume that µ = 2 + ε and that all singularities are stable. Choose λ′ ∈ (2 −m, 0).
We can restrict the map of Equation 8.20 to the map

(8.23) dF̃ [0] : TeẼ ⊕ E0 ⊕W p
k,(µ,λ′)

(L)→W p
k−2,(µ−2,λ′−2)

(L).

Exactly as for Equation 8.17, it is simple to prove that Equation 8.23 defines an isomorphism
and that dim(TeẼ ⊕ E0) = dim(Coker(∆µ,λ′)), where

∆µ,λ′ := ∆g : W p
k,(µ,λ′)

(L)→W p
k−2,(µ−2,λ′−2)

(L).

One can check that the dimension of Coker(∆µ,λ) decreases as λ increases. We can actually
assume, cf. [19], that Coker(∆µ,λ) ⊆ Coker(∆µ,λ′). This proves that the map of Equation
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8.20 is surjective, i.e. O = {0}, so F̃−1(0) andML are smooth. To compute the dimension of
this moduli space notice that Z ′′ ' Coker(∆µ,λ) so

dim(Ker(dF̃ [0])) = dim(Ker(∆µ,λ)) + dim(Z ′)

= dim(Ker(∆µ,λ)) + dim(Coker(∆µ,λ′))− dim(Coker(∆µ,λ))

= i(∆µ,λ)− i(∆µ,λ′),(8.24)

where i denotes the index of the Fredholm map. This implies that the kernel of the full map

dF̃ [0] has dimension dim(H̃0,•) + i(∆µ,λ) − i(∆µ,λ′). The conclusion follows from Equation
2.16 and the change of index formula, cf. [19]. �

Remark 8.9. Notice that, when λ < 0 and the stability condition is verified, the dimension of
the SL moduli spaces appearing in Theorems 8.3, 8.5, 8.7 and 8.8 is purely topological. The
cases analyzed in the theorems correspond exactly to the cases analyzed in Corollary 2.18, in
the sense that the moduli spaces should be thought of as being modelled on the cohomology
spaces which appear in Corollary 2.18.

It is interesting to notice how decay conditions on AC and CS ends are incorporated dif-
ferently into these cohomology spaces: decay conditions on AC ends correspond to using
compactly-supported forms while decay conditions on CS ends correspond to the condition
that a certain restriction map vanishes.

Allowing λ > 0 changes the topological data, again in agreement with Corollary 2.18. It
also introduces new SL deformations which depend on analytic data.

Example 8.10. Let C be a SL cone in Cm. Assume C is stable and that its link Σ is connected
so that s = 1. Using Poincaré Duality and the fact that C ' Σ× (0,∞) we see that

(8.25) b1c(C) = bm−1(C) = bm−1(Σ) = 1.

Theorem 8.8 then shows that, for λ ∈ (2 −m, 0), MC has dimension 0, i.e. C is rigid within
this class of deformations.

Notice also that restriction defines isomorphisms H i(C;R) ' H i(Σ;R) so the long exact
sequence 2.16, using Σ0 = Σ, leads to H i

c,•(C;R) = 0. Theorem 8.8 then shows that MC
has dimension 0 if λ ∈ (0, 1) and has dimension 2m if λ ∈ (1, 2). In the latter case the SL
deformations are simply the translations of C in Cm.
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