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Abstract. We consider the definition and regularity properties of con-
vex functions in Carnot groups. We show that various notions of con-
vexity in the subelliptic setting that have appeared in the literature are
equivalent. Our point of view is based on thinking of convex functions
as subsolutions of homogeneous elliptic equations.

1. Introduction

In this article we consider convex functions on general Carnot groups.
We consider several definitions, prove their equivalence, and establish basic
regularity properties. The simpler case of the Heisenberg group was treated
in [LMS].

A key observation is the realization that convexity depends only on the
horizontal distribution and not on the particular base chosen to represent it
(see section §3 below.) This allows us to use potential theoretic representa-
tion formulas developed by Bonfiglioli and Lanconelli [BL] to approximate
convex functions by smooth convex functions. Another new ingredient is
Wang’s extension [W1] to Carnot groups of Bieske’s uniqueness result for
∞-harmonic functions in the Heisenberg group.

Let us briefly recall some basic facts about Carnot groups. A Carnot
group G of step r ≥ 1 is a simply connected nilpotent Lie group whose Lie
algebra g is stratified. This means that g admits a decomposition as a vector
space sum

g = g1 ⊕ g2 ⊕ · · · ⊕ gr

such that
[g1, gj] = gj+1

for j = 1, . . . , r with gk = {0} for k > r. Note that g is generated as a Lie
algebra by g1.

1991 Mathematics Subject Classification. Primary: 49L25, 35J70; Secondary: 35J67,
22E30.

Key words and phrases. horizontal convexity, viscosity convexity, Carnot groups, subel-
liptic equations.

First author supported by the Academy of Finland, project #80566. Third author
partially supported by NSF award DMS-0100107. Fourth author partially supported by
COFIN02-MIUR, National Project “Calculus of Variations”.

1



2 JUUTINEN, LU, MANFREDI, AND STROFFOLINI

Let mj = dim(gj) and choose a basis of gj formed by left-invariant vector
fields

X = {Xi,j : i = 1, . . . ,mj, j = 1, . . . , r}.
The dimension of G as a manifold is n = m1 + · · · + mr. The horizontal
tangent space at a point p ∈ G is the m1-dimensional subspace of g spanned
by {X1,1(p), · · ·X1,m1(p)}. From now on we will drop the first index and
indicate by {X1, · · ·Xm1} a frame of vector fields that span the first layer
g1. With the above notations the horizontal subspace can be identified with
the left translation by p of G1 = exp(g1), the horizontal subspace at the
origin, via the exponential mapping; that is, we have

p · G1 = linear-span {X1(p), · · · , Xm1(p)} .

A horizontal curve γ(t) is a piece-wise smooth curve whose tangent vector
γ′(t) is in the horizontal tangent space γ(t) ·G1 whenever it exists. Given two
points p and q we consider the set of all possible horizontal curves joining
these points:

Γ(p, q) = {γ horizontal curve : γ(0) = p, γ(1) = q}.

This set is never empty by Chow’s theorem (see for example [BR]). For
convenience, we fix an ambient Riemannian metric in g so that X is an
orthonormal frame and the Riemannian volume element agrees with the
Haar measure of G, and this Haar measure is the Lebesgue measure in Rn.
This is always possible, see [FS], Chapter 1.

The Carnot-Carathéodory distance is then defined as the infimum of the
length of horizontal curves of the set Γ:

dCC(p, q) = inf
Γ(p,q)

∫ 1

0

|γ′(t)|dt.

It depends only of the restriction of the ambient Riemannian metric to the
horizontal distribution generated by the horizontal tangent spaces. The
Carnot-Carathéodory ball of radius R centered at a point p is given by

B(p, R) = {q ∈ G : dCC(p, q) < r}.

Using the so-called ball-box theorem ([BR]), the volume of a ball can be
easily estimated to be

vol(B(0, R)) ∼ rQ,

where Q =
∑mj

j=1 jmj is the homogeneous dimension of G.
The natural (non-isotropic) dilations δt in G are given in exponential

coordinates by

δt

(
exp

(
r∑

j=1

mj∑
i=1

pi,jXi,j

))
= exp

(
r∑

j=1

mj∑
i=1

tjpi,jXi,j

)
,
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for t > 0. These dilations are group homomorphisms. For negative t > 0 we
define δt = (δ−t)

−1.
For a smooth function u : G 7→ R the gradient can be written relative to

X as the vector

DXu = (Xi,ju)j=1...r,i=1,...mj
.

The horizontal gradient of u at a point p is then the projection of the gradient
of u at p onto the horizontal subspace p · G1, and is given by

Dhu = (X1u, . . . , Xm1u).

The symmetrized horizontal second derivative matrix, denoted by (D2
hu)∗,

is the m1 ×m1 matrix with entries

(D2
hu)∗ij =

1

2
(XiXju + XjXiu)

for i, j = 1, 2, . . . ,m1.
Let us recall the definition of convexity in the viscosity sense:

Definition 1.1. Let Ω ⊂ G be an open set and u : Ω → R be an upper-
semicontinuous function. We say that u is convex in Ω if

(D2
hu)∗ ≥ 0

in the viscosity sense. That is, if p ∈ Ω and φ ∈ C2 touches u from above
at p (φ(p) = u(p) and φ(q) ≥ u(q) for q near p) we have (D2

hφ)∗(p) ≥ 0.

This definition is compatible with the stratified group structure since
convexity is preserved by left-translations and by dilations. As in the case
of the Heisenberg group, uniform limits of convex functions are convex and
the supremum of a family of convex functions is convex, since these results
hold for viscosity subsolutions in general.

Notice that we require the a-priori regularity assumption of upper-semicontinuity
as it is done in the definition of sub-harmonic functions. This is not needed
when horizontally convex functions are considered. These are defined by
requiring that whenever p ∈ Ω and the horizontal segment h ∈ G1 are such
that the segment [p · h−1, p · h] ⊂ Ω the function of one real variable

(1.1) t 7→ u (p · δt(h))

is convex for −1 < t < 1.
It was established in [LMS] that upper-semicontinuous horizontally con-

vex functions are indeed convex in the sense of Definition 1.1. In this paper
we will show that the reciprocal is also true (see Theorem 3.1 below.) This
equivalence has also been established independently by Wang [W2] and Mag-
nani [M].

In the Heisenberg group Balogh and Rickley [BR] proved that condition
(1.1) by itself, without requiring upper-semicontinuity, suffices to guarantee
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that u is continuous - and therefore Lipschitz continuous - and also showed
that horizontally convex functions are convex in the sense of Definition 1.1.

While this manuscript was in preparation we learned about the mono-
tonicity and comparison results of Gutiérrez and Montanari [GM1], [GM2]
in groups of Heisenberg type. It follows from these results that a convex
function is in the space BV 2

loc of functions whose second derivatives (in the
homogeneous sense) are measures. A theorem of Ambrosio and Magnani
[AM] implies then the twice pointwise differentiability a.e. of convex func-
tions. Theorems of Aleksandrov type for Carnot groups of step 2 can also
be found in [DGNT] and [M].

2. Convexity in the Viscosity Sense in Rn

In order to illustrate our approach in the case of general Carnot groups, we
present here the Euclidean version of Theorem 3.1 below. Let Ω be a domain
in Rn. Consider a continuous function F (x, z, p,M) in Ω×R×Rn×Sn that
satisfies  F (x, z, p, 0) = 0,

F (x, z, p,M) ≤ F (x, z′, p, M) if z ≤ z′, and
F (x, z, p,M) ≤ F (x, z, p,M ′) if M ′ ≤ M.

(2.1)

The last two conditions indicate that F is proper and degenerate elliptic
according to the terminology of [CIL]. Here Sn denotes the class of n × n
real symmetric matrices.

Theorem 2.1. Let Ω ⊂ Rn be an open set and u : Ω → R be an upper-
semicontinuous function. The following statements are equivalent:

i) whenever x, y ∈ Ω and the segment joining x and y is also in Ω we
have

(2.2) u(λx + (1− λ)y) ≤ λu(x) + (1− λ)u(y)

for all 0 ≤ λ ≤ 1.
ii) u is a viscosity subsolution of all equations

F (x, u(x), Du(x), D2u(x)) = 0,

where F (x, z, p,M) is a continuous function in Ω × R × Rn × Sn

satisfying (2.1).
iii) u is a viscosity subsolution of all linear equations with constant co-

efficients

F (x, u, Du,D2u) = − trace
(
A ·D2u

)
= 0,

where A ∈ Sn is positive definite.
iv) x → u(Ax) is subharmonic for all A ∈ Sn positive definite;
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v) u satisfies the inequality

D2u ≥ 0

in the viscosity sense;
vi) u satisfies − trace(A ·D2u) ≤ 0 in the sense of distributions for all

A ∈ Sn positive definite.

A function u is convex if one of the above equivalent statements holds.

The equivalence between i), ii), iii), and v) was established in [LMS]. The
two new conditions added in this theorem are iv) and vi).

Proof. The equivalence between vi) and iii) for any given matrix A is part
of viscosity folklore. This is just the simplest case of the theory of Hessian
measures of Trudinger and Wang [TW1]. To prove the equivalence between
iv) and iii) observe that x → u(Ax) is subharmonic for all A > 0 if and only
if trace(A ·D2u(x)At) ≥ 0 in the sense of distributions for all A > 0. This
occurs precisely when trace(At ·A ·D2u(x)) ≥ 0 in the sense of distribution
for all A > 0. Since every positive definite matrix B has a positive definite
square root B = A2 = At ·A, we see that x → u(Ax) is subharmonic for all
A > 0 if and only if trace(B ·D2u(x)) ≥ 0 in the sense of distribution for all
B > 0. �

3. Convexity in Carnot Groups

A key observation is that the notion of convexity depends only on the
horizontal distribution and not on the particular choice of a basis of g1.
More precisely, let us consider two linearly independent horizontal frames

Xh = {X1, . . . , Xm1}, Yh = {Y1, . . . , Ym1}
and write Xi =

∑m1

j=1 aijYj, for some constants aij. Let A be the matrix with
entries aij. The matrix A is not singular and the following formula holds for
any smooth function φ

(D2
h,Xφ(p))∗ = A(D2

h,Yφ(p))∗At.

Thus the matrix (D2
h,Xφ(p))∗ is positive definite if and only if (D2

h,Yφ(p))∗ is
positive definite.

Given a frame X we denote by

∆Xu =

m1∑
i=1

X2
i u

the corresponding Hörmander-Kohn Laplacian.
The main result of this section is the analogue to Theorem 2.1. Consider

continuous functions

F : G × R× Rm1 × Sm1 → R



6 JUUTINEN, LU, MANFREDI, AND STROFFOLINI

that are homogeneous, proper, and degenerate elliptic: F (p, z, h, 0) = 0,
F (p, z, h, M) ≤ F (p, z′, h, M) if z ≤ z′, and
F (p, z, h, M) ≤ F (p, z, h,M ′) if M ′ ≤ M.

(3.1)

Theorem 3.1. Let Ω ⊂ G be an open set and u : Ω → R be an upper-
semicontinuous function. The following statements are equivalent:

i) whenever p ∈ Ω and h ∈ G1 are such that [p · h−1, p · h] ⊂ Ω we have
that the function of one real variable

t 7→ u (p · δt(h))

is convex for −1 < t < 1.
ii) u is a viscosity subsolution of all equations

F (p, u(p), Dhu(p), (D2
hu(p))∗) = 0,

where F (x, z, p,M) satisfies (3.1).
iii) u is a viscosity subsolution of all linear equations with constant co-

efficients

F (p, u, Dhu, (D2
hu)∗) = − trace

(
A · (D2

hu
)∗

) = 0,

where A ∈ Sm1 is positive definite.
iv) u satisfies the inequality −∆Yu ≤ 0 in the viscosity sense for all

frames Y such that Yh = AXh, where A ∈ Sm1 is positive definite.
v) u satisfies the inequality

(D2
hu)∗ ≥ 0

in the viscosity sense.
vi) u satisfies − trace(A · (D2

hu)∗) ≤ 0 in the sense of distributions for
all A ∈ Sm1 positive definite.

A few remarks are in order. Condition i) is called horizontal convexity
in [LMS] and H-convexity in [DGN]. Note that iv) is indeed the analogue
of iv) in Theorem 2.1. Condition v) is called v-convexity in [LMS] and in
[W2].

The equivalence of the four viscosity related conditions ii), iii), iv), and v)
follows easily from elementary linear algebra facts as in Theorem 2.1. More-
over if one of these conditions holds, then u is locally bounded. This is the
case because u is always a subsolution of the corresponding∞-Laplacian (see
(4.1) below). The details in the case of the Heisenberg group are contained
in the proof of Lemma 3.1 in [LMS].

To show that iv) implies vi) we may do it one matrix A ∈ Sm1 at a
time. Thus, we may assume that A is the identity matrix. If u is a bounded
viscosity subsolution of the Hörmander-Kohn Laplacian, it follows using the
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same proofs as in Lemma 2.2 and Lemma 2.3 from [LMS] that u is weak-
subsolution with first horizontal derivatives locally square integrable. If u
is not bounded below, we use the truncation uM(x) = max{−M, u(x)} and
standard limit theorems (see [TW2].)

To prove the equivalence of (i) with the other conditions we need to estab-
lish that convex functions can be approximated by smooth convex functions.
Note that this is relatively easy to do for horizontally convex functions since
the inequality (1.1) is preserved by convolution with a smooth mollifier (see
the proof of Theorem 4.2 in [LMS].) Fortunately for us, Bonfiglioli and Lan-
conelli [BL] have characterized subharmonic functions by a sub-mean value
property and proved that subharmonic functions can be approximated by
smooth subharmonic functions.

The following is a restatement of Lemma 4.2 in [BL] adapted to our needs:

Lemma 3.1. Let J ∈ C∞
0 (G) be a nonnegative function supported in the

unit ball B(0, 1) satisfying the condition
∫
G J(p) dp = 1. For ε > 0 set

Jε(p) = ε−QJ(δ1/ε(p)). Suppose that Ω ⊂ G is a domain and that u ∈ L1
loc(Ω)

is an upper semicontinuous functions.
For p ∈ Ωε = {q ∈ G : B(q, ε) ⊂ Ω} define

uε(p) =

∫
G

u(p)Jε(p · q−1) dq.

Then if u is subharmonic in Ω we have that uε is subharmonic in Ωε and uε ∈
C∞(Ωε). Here subharmonic means −∆Xu ≤ 0 in the sense of distributions.

An immediate consequence of this lemma is that vi) implies iv) since
the implication holds for smooth functions, and viscosity subsolutions are
preserved by locally uniform limits. The important feature of this lemma
for our purposes is that the definition of uε is independent of the frame.

Lemma 3.2. Convex functions are locally uniform limits of smooth convex
functions.

Proof. Let u be convex. Then u is subharmonic relative to all frames Y
such that Yh = AXh, where A ∈ Sm1 is positive definite. By the previous
lemma the smooth functions uε is also subharmonic relative to all frames Y.
Therefore, uε is convex. �

We can now conclude the proof of Theorem 3.1 by quoting verbatim the
proofs of Lemma 4.2 and Proposition 4.1 in [LMS].

Next we present an interesting example that shows that in the subelliptic
case one cannot replace all C2 functions by homogeneous quadratic polyno-
mials in the definition of viscosity solutions. The example takes place in the
Heisenberg group H. We use the same notation as in [LMS].

Consider the function

v(x, y, z) = x2 + y2 − ε|z|
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in a neighborhood of the point (1, 1, 0). Let

P (x, y, z) = 2 + A(x− 1) + B(y − 1) + Γz +
1

2
Q(x− 1, y − 1)

be a homogeneous polynomial of degree 2 that touches v from above at the
point (1, 1, 0). Here Q is a quadratic form in R2. We are assuming that

v(x, y, z) ≤ P (x, y, z)

in a neighborhood of (1, 1, 0). Setting x = 1 and y = 1 we get −ε|z| ≤ Γz for
z near zero. We conclude that |Γ| ≤ ε. Setting z = x−y

2
we get A = 2 − Γ

2
,

B = 2 + Γ
2

and Q ≥ 2I. Therefore P satisfies (D2
hP )∗(1, 1, 0) > 0. So one

could say that v is convex by homogeneous quadratic polynomials. However,
we claim that v is not convex at the point (1, 1, 0). That is we can find a
smooth test function φ(p), in fact a polynomial, such that φ touches v from
above at the point (1, 1, 0) but (D2

hφ)∗(1, 1, 0) is not positive definite. Here
it is:

φ(x, y, z) = 2+2(x−1)+2(y−1)+(x−1)2 +3(x−1)(y−1)+(y−1)2 +6z2.

We have

(D2
hφ)∗(1, 1, 0) =

(
2 3
3 2

)
that is not positive definite. We point out that the condition v(x, y, z) ≤
φ(x, y, z) is equivalent to checking

−ε
∣∣∣z +

y − x

2

∣∣∣ ≤ 3(x− 1)(y − 1) + 6z2

in a neighborhood of (1, 1, 0).

4. Regularity of Convex Functions

In this section we have the analogue of Theorem 3.1 in [LMS] for general
Carnot groups. The point of view adapted in [LMS] is to use the fact that
convex functions are subsolutions of all homogeneous elliptic equations. In
particular we consider the Hörmander-Kohn Laplace equation

−∆hu = −(X2
1u + · · ·X2

mu) = 0,

and the subelliptic ∞-Laplace equation

(4.1) −∆∞,hu = −
m∑

i,j=1

(Xiu)(Xju)(XiXju) = 0.

These equations can certainly be written in the form

F (p, u(p), Dhu(p), (D2
hu)∗(p)) = 0

for a continuous function F satisfying (3.1).
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Subsolutions of (4.1) are Lipschitz continuous. This was established by
Jensen [J] in the Euclidean case and in [LMS] in the subelliptic case. This
immediately gives a Lipschitz bound for convex functions.

The other ingredient used in the proof of Theorem 3.1 in [LMS] was
Bieske’s extension to the Heisenberg group of Jensen’s uniqueness theorem
for ∞-harmonic functions ([J], [B].) Recently Wang [W1] has extended this
theorem to general case of Carnot groups. The proof of Theorem 3.1 in
[LMS] can now be repeated verbatim to get:

Theorem 4.1. Let Ω ⊂ G be an open set and u : Ω → R be a convex
function. Let BR be a ball such that B4R ⊂ Ω. Then u is locally bounded
and we have.

(4.2) ‖u‖L∞(BR) ≤ C −
∫

B4R

|u| dx.

Moreover, u is locally Lipschitz and we have the bound

(4.3) ‖Dhu‖L∞(BR) ≤
C

R
‖u‖L∞(B2R).

Here C is a constant independent of u and R. If, in addition, u is C2, then
the symmetrized horizontal second derivatives are nonnegative

(4.4) (D2
hu)∗ ≥ 0.
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