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Abstract. In the nonconvex case solutions of rate-independent systems may develop jumps as
a function of time. To model such jumps, we adopt the philosophy that rate independence should
be considered as limit of systems with smaller and smaller viscosity. For the finite-dimensional
case we study the vanishing-viscosity limit of doubly nonlinear equations given in terms of a
differentiable energy functional and a dissipation potential which is a viscous regularization of
a given rate-independent dissipation potential.

The resulting definition of ‘BV solutions’ involves, in a nontrivial way, both the rate-
independent and the viscous dissipation potential, which play a crucial role in the description
of the associated jump trajectories.

We shall prove a general convergence result for the time-continuous and for the time-
discretized viscous approximations and establish various properties of the limiting BV solutions.
In particular, we shall provide a careful description of the jumps and compare the new notion of
solutions with the related concepts of energetic and local solutions to rate-independent systems.
AMS Subject Classification: 49Q20, 58E99.

1. Introduction

Rate-independent evolutions occur in several contexts. We refer the reader to [32] and the
forthcoming monograph [39] for a survey of rate-independent modeling and analysis in a wide
variety of applications, which may pertain to very different and far-apart branches of mechanics
and physics. Rate-independent systems present very distinctive common features, because of
their hysteretic character [54, 24]. Driven by external loadings on a time scale much slower than
their internal scale, such systems respond to changes in the external actions invariantly for time-
rescalings. Thus, they in fact show (almost) no intrinsic time-scale. This kind of behavior is
encoded in the simplest, but still significant, example of rate-independent evolution, namely the
doubly nonlinear differential inclusion

∂Ψ0(u�(t)) + DEt(u(t)) � 0 in X∗ for a.a. t ∈ (0, T ). (DN0)

For the sake of simplicity, we will consider here the case when X is a finite dimensional linear
space, E : [0, T ] × X → R an energy functional (DE denoting the differential of E with respect
to the variable u ∈ X), and Ψ0 : X → [0,+∞) is a convex, nondegenerate, dissipation potential,
hereafter supposed positively homogeneous of degree 1. Thus, (DN0) is invariant for time-rescalings,
rendering the system rate independence.

Since the range K∗ of ∂Ψ0 is a proper subset of X∗, when E(t, ·) is not strictly convex one
cannot expect the existence of an absolutely continuous solution of (DN0). Over the past decade,
this fact has motivated the development of suitable notions of weak solutions to (DN0). In the
mainstream of [18, 35, 44], the present paper aims to contribute to this issue. Relying on the
vanishing-viscosity approach, we shall propose the notion of BV solution to (DN0) and thoroughly
analyze it.

To better motivate the use of vanishing viscosity and highlight the features of the concept of
BV solution, in the next paragraphs we shall briefly recall the other main weak solvability notions
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for (DN0). For the sake of simplicity, we shall focus on the particular case

Ψ0(v) = �v�, for some norm � · � on X. (1.1)

Energetic and local solutions. The first attempt at a rigorous weak formulation of (DN0) goes
back to [40] and the subsequent [42, 41], which advanced the notion of global energetic solution to
the rate-independent system (DN0). In the simplified case (1.1), this solution concept consists of
the following relations, holding for all t ∈ [0, T ]:

∀ z ∈ X : Et(u(t)) ≤ Et(z) + �z − u(t)�, (S)

Et(u(t)) + Var(u; [0, t]) = E0(u(0)) +
� t

0

∂tEs(u(s)) ds . (E)

The energy identity (E) balances at every time t ∈ [0, T ] the dissipated energy Var(u; [0, t]) (the
latter symbol denotes the total variation of the solution u ∈ BV([0, T ];X) on the interval [0, t]),
with the stored energy Et(u(t)), the initial energy, and the work of the external forces. On the
other hand, (S) is a stability condition, for it asserts that the change from the current state u(t) to
another state z brings about a gain of potential energy smaller than the dissipated energy. Since
the competitors for u(t) range in the whole space X, (S) is in fact a global stability condition.

The global energetic formulation (S)–(E) only involves the (assumedly smooth) power of the
external forces ∂tE, and is otherwise derivative-free. Thus, it is well suited to jumping solutions.
Furthermore, as shown in [27, 32], it is amenable to analysis in very general ambient spaces, even
with no underlying linear structure. Because of its flexibility, this concept has been exploited
in a variety of applicative contexts, like, for instance, shape memory alloys [42, 37, 5], crack
propagation [15, 14, 17], elastoplasticity [29, 30, 31, 20, 10, 11, 28], damage in brittle materials
[38, 6, 52, 33], delamination [23], ferroelectricity [43], and superconductivity [50].

On the other hand, in the case of nonconvex energies condition (S) turns out to be a strong
requirement, for it may lead the system to change instantaneously in a very drastic way, jumping
into very far-apart energetic configurations (see, for instance, [30, Ex. 6.1], [21, Ex. 6.3], and [35,
Ex. 1]). On the discrete level, global stability is reflected in the global minimization scheme giving
raise to approximate solutions by time-discretization. Indeed, for a fixed time-step τ > 0, inducing
a partition {0 = t0 < t1 < . . . < tN−1 < tN = T} of the interval [0, T ], one constructs discrete
solutions (Un

τ )N
n=1 of (S)–(E) by setting U0

τ := u0 and then solving recursively the variational
incremental scheme

Un
τ ∈ Argmin

U∈X

�
�U−Un−1

τ �+ Etn(U)
�

for n = 1, . . . , N . (IP0)

However, a scheme based on local minimization would be preferable, both in view of numerical
analysis and from a modeling perspective, see the discussions in [30, Sec. 6] and, in the realm of
crack propagation, [16, 45, 26].

As pointed out in [16], local minimization may be enforced by perturbing the variational
scheme (IP0) with a term, modulated by a viscosity parameter ε, which penalizes the squared
distance from the previous step Un−1

τ,ε

Un
τ,ε ∈ Argmin

U∈X

�
�U−Un−1

τ,ε �+ ε
|U−Un−1

τ,ε |2

τ
+ Etn(U)

�
for n = 1, . . . , N , (IPε)

and depends on a second norm | · |, typically Hilbertian, on the space X. In a infinite-dimensional
setting, one may think of X = L2(Ω), with Ω a domain in Rd, d ≥ 1, and � · �, | · | the L1 and L2

norms, respectively. Notice that, on the time-continuous level, (IP0) corresponds to the viscous
doubly nonlinear equation

∂Ψε(u�ε(t)) + DEt(uε(t)) � 0 in X∗ for a.a. t ∈ (0, T ),

with Ψε(v) = �v�+
ε

2
|v|2

(DNε)

(see [9, 8] for the existence of solutions uε ∈ AC([0, T ];X)). Then, the idea would be to consider
the solutions to (DN0) arising in the passage to the limit, in the discrete scheme (IPε), as ε and
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τ tend to 0 simultaneously, keeping τ � ε. One can guess that, at least formally, this procedure
should be equivalent to considering the limit of the solutions to (DNε) as ε ↓ 0.

Vanishing viscosity has by now become an established selection criterion for mechanically fea-
sible weak solvability notions of rate-independent evolutions. We refer the reader to [25] for
rate-independent problems with convex energies and discontinuous inputs, and, in more specific
applied contexts, to [12] for elasto-plasticity with softening, to [19] for general material models with
nonconvex elastic energies, the recent [13] for cam-clay non-associative plasticity, and [53, 21, 22]
for crack propagation. Since the energy functionals involved in such applications are usually non-
smooth and nonconvex, the passage to the limit mostly relies on lower semicontinuity arguments.
Let us illustrate the latter in the prototypical case (DNε). The key observation is that (DNε) is
equivalent (see the discussion in Section 2.4) to the ε-energy identity

Et(uε(t)) +
� t

0

�
�u�ε(s)�ds +

ε

2
|u�ε(s)|2 +

1
2ε

dist∗
�
−DEs(uε(s)), K∗�2

�
ds

= E0(u(0)) +
� t

0

∂tEs(uε(s))ds

(1.2)

for all t ∈ [0, T ], where the term

dist∗
�
−DEt(u(t)), K∗� := min

z∈K∗
|−DEt(u(t))− z|∗, with K∗ =

�
z ∈ X∗ : �z�∗ ≤ 1

�
, (1.3)

measures the distance with respect to the dual norm | · |∗ of −DEt(u(t)) from the set K∗. The term
defined in (1.3) is penalized in (1.2) by the coefficient 1/2ε. Thus, passing to the limit in (1.2) as
ε ↓ 0, one finds

dist∗(−DEt(u(t)), K∗) = 0 for a.a. t ∈ (0, T ) .

Hence,
−DEt(u(t)) ∈ K∗, i.e. � −DEt(u(t))�∗ ≤ 1 for a.a. t ∈ (0, T ) , (1.4)

which is a local version of the global stability (S). Furthermore, (1.2) yields, via lower-semicontinuity,
the energy inequality

Et(u(t)) + Var(u; [0, t]) ≤ E0(u(0)) +
� t

0

∂tEs(u(s)) ds for all t ∈ [0, T ] . (1.5)

Conditions (1.4)–(1.5) give raise to the notion of local solution of the rate-independent sys-
tem (DN0).

While the local stability (1.4) is more physically realistic than (S), its combination with the
energy inequality (1.5) turns out to provide an unsatisfactory description of the solution at jumps
(see the discussion in [35, Sec. 5.2] and Remark 2.8 later on). In order to capture the jump
dynamics, the energetic behavior of the system in a jump regime has to be revealed. From this
perspective, it seems to be crucial to recover from (1.2), as ε ↓ 0, an energy identity, rather than
an energy inequality. Thus, the passage to the limit has to somehow keep track of the limit of the
term � t

0

�
ε

2
|u�ε(s)|2 +

1
2ε

dist∗
�
−DEs(uε(s)), K∗�2

�
ds ,

which in fact encodes the contribution of the viscous dissipation ε
2
|u�ε|2, completely missing in (1.5).

BV solutions. Moving from these considerations, it is natural to introduce the vanishing viscosity
contact potential (which is related to the bipotential discussed in [7], see Section 3) induced by
Ψε, i.e. the quantity

p(v, w) := inf
ε>0

�
Ψε(v) + Ψ∗

ε(w)
�

= inf
ε>0

�
�v�+

ε

2
|v|2 +

1
2ε

dist2∗(w, K∗)
�

= �v�+ |v|dist∗(w, K∗) for v ∈ X, w ∈ X∗ .
(1.6)

Then, the ε-energy identity (1.2) yields the inequality

Et(uε(t)) +
� t

0

p (u�ε(s),−DEs(uε(s))) ds ≤ E0(u(0)) +
� t

0

∂tEs(uε(s))ds , (1.7)
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see Section 3.1. Passing to the limit in (1.7), in Theorem 4.10 we shall prove that, up to a
subsequence, the solutions (uε) of the viscous equation (DNε) converge, as ε ↓ 0, to a curve
u ∈ BV([0, T ]; X) satisfying the local stability (1.4) and the following energy inequality

Et(u(t)) + Varp,E(u; [0, t]) ≤ E0(u(0)) +
� t

0

∂tEs(u(s)) ds . (1.8)

Without going into details (see Definition 3.4 later on), we may point out that (1.8) features a
notion of (pseudo)-total variation (denoted by Varp,E) induced by the vanishing viscosity contact
potential p (1.6) and the energy E. The main novelty is that a BV-curve obeying the local stability
condition (1.4) always satisfies the opposite inequality in (1.8), thus yielding the energy balance

Et(u(t)) + Varp,E(u; [t, t]) = E0(u(0)) +
� t

0

∂tEs(u(s)) ds . (Ep,E)

In fact, Varp,E provides a finer description of the dissipation ∆p,E of u, along a jump between
two values u− and u+ at time t: it involves not only the quantity �u+ − u−� related to the
dissipation potential (1.1), but also the viscous contribution induced by the vanishing viscosity
contact potential p through the formula

∆p,E(t;u−, u+) := inf
�� r1

r0

p(ϑ̇(r),−DEt(ϑ(r))) dr :

ϑ ∈ AC([r0, r1];X), ϑ(r0) = u−, ϑ(r1) = u+

�
.

(1.9)

By a rescaling technique, it is possible to show that, in a jump point, the system may switch to a
viscous behavior, which is in fact reminiscent of the viscous approximation (DNε). In particular,
when the jump point is of viscous type, the infimum in (1.9) is attained and the states u− and
u+ are connected by some transition curve ϑ : [r0, r1] → X, fulfilling the viscous doubly nonlinear
equation

∂Ψ0(ϑ�(r)) + ϑ�(r) + DEt(ϑ(r)) � 0 in X∗ for a.a. r ∈ (r0, r1)
(in the case the norm |·| is Euclidean and we use its differential to identify X with X∗). The combi-
nation of (1.4) and (1.8) yields the notion of BV solution to the rate-independent system (X,E, p).
This concept was first introduced in [35], in the case the ambient space X is a finite-dimensional
manifold X, and both the rate-independent and the viscous approximating dissipations depend
on one single Finsler distance on X. In this paper, while keeping to a Banach framework, we
shall considerably broaden the class of rate-independent and viscous dissipation functionals, cf.
Remark 2.4. Moreover, the notion of BV solution shall be presented here in a more compact form
than in [35], amenable to a finer analysis and, hopefully, to further generalizations.

Let us now briefly comment on our main results. First of all, we are going to show in Theo-
rems 4.3, 4.6, and 4.7 that the concept of BV rate-independent evolution completely encompasses
the solution behavior in both a purely rate-independent, non-jumping regime, and in jump regimes,
where the competition between dry-friction and viscous effects is highlighted. Indeed, from (1.4)
and (1.8) it is possible to deduce suitable energy balances at jumps (cf. conditions (JBV) in
Theorem 4.3).

Then, in Theorem 4.10 we shall prove that, along a subsequence, the viscous approximations
arising from (DNε) converge as ε ↓ 0 to a BV solution. Next, our second main result, Theo-
rem 4.11, states that, up to a subsequence, also the discrete solutions Uτ,ε constructed via the
ε-discretization scheme (IPε) converge to a BV solution u ∈ BV([0, T ];X) of (DN0) as ε ↓ 0 and
τ ↓ 0 simultaneously, provided that the respective convergence rates are such that

lim
ε, τ↓0

ε

τ
= +∞ .

Finally, in Section 5 we shall develop a different approach to BV solutions, via the rescaling
technique advanced in [18] and refined in [35, 44]. The main idea is to suitably reparametrize the
approximate viscous curves (uε) in order to capture, in the vanishing viscosity limit, the viscous
transition paths at jumps points. This leads to performing an asymptotic analysis as ε ↓ 0 of
the graphs of the functions uε, in the extended phase space [0, T ] × X. For every ε > 0 the
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graph of uε can be parametrized by a couple of functions (tε, uε), tε being the (strictly increasing)
rescaling function and uε := uε ◦ tε the rescaled solution. In Theorem 5.6 we assert that, up to a
subsequence, the functions (tε, uε) converge as ε ↓ 0 to a parametrized rate-independent solution.
By the latter terminology we mean a curve (t, u) : [0,S] → [0, T ]×X fulfilling

t : [0,S] → [0, T ] is nondecreasing,

t�(s) + �u�(s)� > 0 for a.a. s ∈ (0,S),
(1.10a)

t�(s) > 0 =⇒ �−DEt(s)(u(s))� ≤ 1,
�u�(s)� > 0 =⇒ �−DEt(s)(u(s))� ≥ 1

�
for a.a. s ∈ (0,S) , (1.10b)

and the energy identity

d
ds

E(t(s), u(s))− ∂tE(t(s), u(s)) t�(s)

= −�u�(s)� − |u�(s)|dist∗(−DEt(s)(u(s)), K∗) for a.a. s ∈ (0,S) ,
(1.10c)

As already pointed out in [18, 35], like the notion of BV solution, relations (1.10) as well comprise
both the purely rate-independent evolution as well as the viscous transient regime at jumps. The
latter regime in fact corresponds to the case −DEt(u) �∈ K∗ : the system does not obey the local
stability constraint (1.4) any longer, and switches to viscous behavior, see also Remark 5.7 later
on.

As a matter of fact, Theorem 5.8 shows that parametrized rate-independent solutions may be
viewed as the “continuous counterpart” to BV evolutions. With a suitable transformation, it
is possible to associate with every parametrized rate-independent solution a BV one, and con-
versely. One advantage of the parametrized notion is that it avoids the technicalities related to
BV functions. Hence, it is for instance more easily amenable to a stability analysis (cf. [35, Rmk.
6]). Furthermore, in [44] a highly refined vanishing viscosity analysis has been developed, with
this reparametrization technique, in the infinite-dimensional (L1, L2)-framework, where (DNε) is
replaced by a general quasilinear evolutionary PDE.
Generalizations and future developments. So far we have focused on dissipation functionals
of the type (1.1) and Ψε(v) = �v� + ε

2
|v|2 as in (DNε) for expository reasons only, in order to

highlight the main variational argument leading to the notion of BV solution. Indeed, the analysis
developed in this paper is targeted to a general

positively 1-homogeneous, convex dissipation Ψ0 : X → [0,+∞),

(cf. (2.1)), and considers a fairly wide class of approximate viscous dissipation functionals Ψε,
defined by conditions (Ψ.1)–(Ψ.3) in Section 2.3. Furthermore, at the price of just technical
complications, our results could be extended to the case of a Finsler-like family of dissipation
functionals Ψ0(u, ·), depending on the state variable u ∈ X, and satisfying uniform bounds and
Mosco-continuity with respect to u, see [35, Sect. 2] and [47, Sect. 6, 8].

The extension to infinite-dimensional ambient spaces and nonsmooth energies is crucial for ap-
plication of the concept of BV solution to the PDE systems modelling rate-independent evolutions
in continuum mechanics. A first step in this direction is to generalize the known existence results
for doubly nonlinear equations, driven by a viscous dissipation, to nonconvex and nonsmooth en-
ergy functionals in infinite dimensions. As shown in [48, 47], in the nonsmooth and nonconvex
case one can replace the energy differential DEt with a suitable notion of subdifferential ∂Et. Ac-
cordingly, instead of continuity of DEt, one asks for closedness of the multivalued subdifferential
∂Et in the sense of graphs. These ideas shall be further advanced in the forthcoming work [36].
Therein, exploiting techniques from nonsmooth analysis, we shall also tackle energies which do not
depend smoothly on time (this is relevant for rate-independent applications, see e.g. [22] and [25]).

On the other hand, the requirement that the ambient space is finite-dimensional could be
replaced by suitable compactness (of the sublevels of the energy) and reflexivity assumptions
on the ambient space X. The latter topological requirement in fact ensures that X has the
so-called Radon-Nikodým property, i.e. that absolutely continuous curves with values in X are
almost everywhere differentiable. The vanishing viscosity analysis in spaces which do not enjoy
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this property requires a subtler approach, involving metric arguments (see e.g. [47, Sect. 7]), or
ad-hoc stronger estimates [44]. See also [34] for some preliminary approaches to BV solutions for
PDE problems.

Plan of the paper. Section 2 is devoted to an extended presentation of energetic and local solu-
tions to rate-independent systems. In particular, after fixing the setup of the paper in Section 2.1,
in Sec. 2.2 we recall the definition of global energetic solution, show its differential characterization
and the related variational time-incremental scheme. We develop the vanishing-viscosity approach
in Secs. 2.3 and 2.4, thus arriving at the notion of local solution (see Section 2.5), which also
admits a differential characterization.

In Section 3 we introduce the concept of vanishing viscosity contact potential and thoroughly
analyze its properties, as well as the induced (pseudo)-total variation. With these ingredients, in
Sec. 4 we present the notion of BV solution. We show that BV rate-independent evolutions admit,
too, a differential characterization, and, in Sec. 4.2, that they provide a careful description of the
energetic behavior of the system. Then, in Section 4.3, we state our main results on BV solutions.

While Section 5 is focused on the alternative notion of parametrized rate-independent solutions,
the last Sec. 6 contains some technical results which lie at the core of our theory.

2. Global energetic versus local solutions, and their viscous regularizations

In this section, we will briefly recall the notion of energetic solutions and show that their viscous
regularizations give raise to local solutions.

2.1. Rate-independent setting: dissipation and energy functionals. We let

(X, � · �X) be a finite-dimensional normed vector space,

endowed with a gauge function Ψ0, namely a

non-degenerate, positively 1-homogeneous, convex dissipation Ψ0 : X → [0,+∞), (2.1)

i.e. Ψ0 satisfies Ψ0(v) > 0 if v �= 0, and

Ψ0(v1 + v2) ≤ Ψ0(v1) + Ψ0(v2), Ψ0(λv) = λΨ0(v) for every λ ≥ 0, v, v1, v2 ∈ X.

In particular, there exists a constant η > 0 such that

η−1�v�X ≤ Ψ0(v) ≤ η�v�X for every v ∈ X.

Since Ψ0 is 1-homogeneous, its subdifferential ∂Ψ0 : X ⇒ X∗ can be characterized by

∂Ψ0(v) :=
�

w ∈ X : �w, z� ≤ Ψ0(z) for every z ∈ X, �w, v� = Ψ0(v)
�
⊂ X∗; (2.2)

∂Ψ0 takes its values in the convex set K∗ ⊂ X∗, given by

K∗ = ∂Ψ0(0) :=
�
w ∈ X∗ : �w, z� ≤ Ψ0(z) ∀ z ∈ X} ⊃ ∂Ψ0(v) for every v ∈ X, (2.3)

which enjoys some useful (and well-known, see e.g. [46]) properties. For the reader’s convenience
we list them here:
K1. K∗ is the proper domain of the Legendre transform Ψ∗

0 of Ψ0, since

Ψ∗
0(w) = IK∗(w) =

�
0 if w ∈ K∗,

+∞ otherwise.
(2.4)

K2. Ψ0 is the support function of K∗, since

Ψ0(v) = sup
w∈K∗

�w, v� for every v ∈ X, (2.5)

and K∗ is the polar set of the unit ball K :=
�
v ∈ X : Ψ0(v) ≤ 1

�
associated with Ψ0.

K3. K∗ is the unit ball of the support function Ψ0∗ of K:

K∗ =
�
w ∈ X∗ : Ψ0∗(w) ≤ 1

�
, with Ψ0∗(w) = sup

v∈K
�w, v� = sup

v �=0

�w, v�
Ψ0(v)

. (2.6)
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K4. In the even case (i.e., when Ψ0(v) = Ψ0(−v) for all v ∈ X), we have that Ψ0 is an equivalent
norm for X, Ψ0∗ is its dual norm, K and K∗ are their respective unit balls.

Further, we consider a smooth energy functional

E ∈ C1([0, T ]×X) ,

which we suppose bounded from below and with energy-bounded time derivative

∃C > 0 ∀ (t, u) ∈ [0, T ]×X : Et(u) ≥ −C , |∂tEt(u)| ≤ C
�
1 + Et(u)+

�
, (2.7)

where (·)+ denotes the positive part. The rate-independent system associated with the energy
functional E and the dissipation potential Ψ0 can be formally described by the rate-independent
doubly nonlinear differential inclusion

∂Ψ0(u�(t)) + DEt(u(t)) � 0 in X∗ for a.a. t ∈ (0, T ). (DN0)

As already mentioned in the Introduction, for nonconvex energies solutions to (DN0) may
exhibit discontinuities in time. The first weak solvability notion for (DN0) is the concept of (global)
energetic solution to the rate-independent system (DN0) (see [42, 40, 41] and the survey [32]),
which we recall in the next section.

2.2. Energetic solutions and variational incremental scheme.

Definition 2.1 (Energetic solution). A curve u ∈ BV([0, T ]; X) is an energetic solution of the rate
independent system (X,E,Ψ0) if for all t ∈ [0, T ] the global stability (S) and the energy balance
(E) holds:

∀ z ∈ X : Et(u(t)) ≤ Et(z) + Ψ0(z − u(t)), (S)

Et(u(t)) + VarΨ0(u; [0, t]) = E0(u(0)) +
� t

0

∂tEs(u(s)) ds. (E)

BV functions. Hereafter, we shall consider functions of bounded variation pointwise defined in
every point t ∈ [0, T ], such that the pointwise total variation with respect to Ψ0 (any equivalent
norm of X can be chosen) VarΨ0(u; [0, T ]) is finite, where

VarΨ0(u; [a, b]) := sup
� M�

m=1

Ψ0

�
u(tm)− u(tm−1)

�
: a = t0 < t1 < · · · < tM−1 < tM = b

�
.

Notice that a function u in BV([0, T ];X) admits left and right limits at every t ∈ [0, T ] :

u(t−) := lim
s↑t

u(s), u(t+) := lim
s↓t

u(s), with the convention u(0−) := u(0), u(T+) := u(T ), (2.8)

and its pointwise jump set Ju is the at most countable set defined by

Ju :=
�
t ∈ [0, T ] : u(t−) �= u(t) or u(t) �= u(t+)

�
⊃ ess-Ju :=

�
t ∈ [0, T ] : u(t−) �= u(t+)

�
. (2.9)

We denote by u� the distributional derivative of u, and recall that u� is a Radon vector measure
with finite total variation |u�|. It is well known [3] that u� can be decomposed into the sum of the
three mutually singular measures

u� = u�L + u�C + u�J, u�L = u̇ L 1, u�co := u�L + u�C . (2.10)

Here, u�L is the absolutely continuous part with respect to the Lebesgue measure L 1, whose
Lebesgue density u̇ is the usual pointwise (and L 1-a.e. defined) derivative, u�

J
is a discrete measure

concentrated on ess-Ju ⊂ Ju, and u�
C

is the so-called Cantor part, still satisfying u�
C
({t}) = 0 for

every t ∈ [0, T ]. Therefore u�co = u�L + u�
C

is the diffuse part of the measure, which does not
charge Ju. In the following, it will be useful to use a nonnegative and diffuse reference measure µ
on (0, T ) such that L 1 and u�

C
are absolutely continuous w.r.t. µ: just to fix our ideas, we set

µ := L 1 + |u�C|. (2.11)

With a slight abuse of notation, for every (a, b) ⊂ (0, T ) we denote by
� b

a dΨ0(u�co) the integral
� b

a
dΨ0(u�co) :=

� b

a
Ψ0

�
du�co
dµ

�
dµ =

� b

a
Ψ0(u̇) dL 1 +

� b

a
Ψ0

�
du�

C

d|u�
C
|

�
d|u�C|. (2.12)
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Since Ψ0 is 1-homogeneous, the above integral is independent of µ, provided u�co is absolutely
continuous w.r.t. µ.
Towards a differential characterization of energetic solutions. Let us first of all point out
that (S) is stronger than the local stability condition

−DEt(u(t)) ∈ K∗ for every t ∈ [0, T ] \ Ju, (Sloc)

which can be formally deduced from (DN0) and (2.3). Indeed, the global stability (S) yields for
every z = u(t) + hv ∈ X and h > 0

�−DEt(u(t)), hv�+ o(|h|) ≤ Et(u(t))− Et(u(t) + hv) ≤ hΨ0(v)

and therefore, dividing by h and passing to the limit as h ↓ 0, one gets

�−DEt(u(t)), v� ≤ Ψ0(v) for every z ∈ X,

so that (Sloc) holds. We obtain more insight into (E) by representing the Ψ0 variation VarΨ0(u; [a, b])
in terms of the distributional derivative u� of u. In fact, recalling (2.11) and (2.12), we have

VarΨ0(u; [a, b]) :=
� b

a
dΨ0(u�co) + JmpΨ0

(u; [a, b]),

where the jump contribution JmpΨ0
(u; [a, b]) can be described, in terms of the quantities

∆Ψ0(v0, v1) := Ψ0(v1 − v0), ∆Ψ0(v−, v, v+) := Ψ0(v − v−) + Ψ0(v+ − v), (2.13)

by

JmpΨ0
(u; [a, b]) := ∆Ψ0(u(a), u(a+)) + ∆Ψ0(u(b−), u(b)) +

�

t∈Ju∩(a,b)

∆Ψ0(u(t−), u(t), u(t+)). (2.14)

Also notice that, as usual in rate-independent evolutionary problems, u is pointwise everywhere
defined and the jump term JmpΨ0

(u; [·, ·]) takes into account the value of u at every time t ∈ Ju.
Therefore, if u is not continuous at t, this part may yield a strictly bigger contribution than
the total mass of the distributional jump measure u�

J
(which gives rise to the so-called essential

variation).
The following result provides an equivalent characterization of energetic solutions: besides the

global stability condition (S), it involves a BV formulation of the differential inclusion (DN0) (cf.
the subdifferential formulation of [41]) and a jump condition at any jump point of u.

Proposition 2.2. A curve u ∈ BV([0, T ];X) satisfying the global stability condition (S) is an
energetic solution of the rate-independent system (X,E,Ψ0) if and only if it satisfies the differential
inclusion

∂Ψ0

�du�co
dµ

(t)
�

+ DEt(u(t)) � 0 for µ-a.e. t ∈ [0, T ], µ := L 1 + |u�C|, (DN0,BV)

and the jump conditions
Et(u(t))− Et(u(t−)) = −∆Ψ0(u(t−), u(t)), Et(u(t+))− Et(u(t)) = −∆Ψ0(u(t), u(t+)),

Et(u(t+))− Et(u(t−)) = −∆Ψ0(u(t−), u(t+)).
(Jener)

for every t ∈ Ju (recall convention (2.8) in the case t = 0, T ).

We shall simply sketch the proof, referring to the arguments for the forthcoming Proposition 2.7
for all details.

Proof. By the additivity property of the total variation VarΨ0(u; [·, ·]), (E) yields for every 0 ≤
t0 < t1 ≤ T

VarΨ0(u; [t0, t1]) + Et1(u(t1)) = Et0(u(t0)) +
� t1

t0

∂tEt(u(t)) dt . (E’)

Arguing as in the proof of Proposition 2.7 later on, one can see that the global stability (S) and
(E’) yield the differential inclusion (DN0,BV) and conditions (Jener).

Conversely, repeating the arguments of Proposition 2.7 one can verify that (DN0,BV) and (Jener)
imply (E). �
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Incremental minimization scheme. Existence of energetic solutions can be proved by solving
a minimization scheme, which is also interesting as construction of an effective approximation of
the solutions.

For a given time-step τ > 0 we consider a uniform partition (for simplicity) 0 = t0 < t1 < · · · <
tN−1 < T ≤ tN , tn := nτ , of the time interval [0, T ], and an initial value U0

τ ≈ u0. In order to
find good approximations of Un

τ ≈ u(tn) we solve the incremental minimization scheme

find U1

τ , · · · ,UN
τ such that Un

τ ∈ Argmin
U∈X

�
Ψ0(U−Un−1

τ ) + Etn(U)
�

. (IP0)

Setting
Uτ (t) := Un

τ if t ∈ (tn−1, tn], (2.15)
it is possible to find a suitable vanishing sequence of step sizes τk ↓ 0 (see, e.g., [41, 32] for all
calculations), such that

∃ lim
k→+∞

Uτk(t) =: u(t) for every t ∈ [0, T ],

and u is an energetic solution of (DN0).

2.3. Viscous approximations of rate-independent systems. In the present paper we want to
study a different approach to approximate and solve (DN0): the main idea is to replace the linearly
growing dissipation potential Ψ0 with a suitable convex and superlinear “viscous” regularization
Ψε : X → [0,+∞) of Ψ0, depending on a “small” parameter ε > 0 and “converging” to Ψ0 in a
suitable sense as ε ↓ 0. Solving the doubly nonlinear differential inclusion (we use the notation u̇
for the time derivative when u is absolutely continuous)

∂Ψε(u̇ε(t)) + DEt(uε(t)) � 0 in X∗ for a.a. t ∈ (0, T ), (DNε)

one can consider the sequence (uε) as a good approximation of the solution u of (DN0) as ε ↓ 0.
There is also a natural discrete counterpart to (DNε), which regularizes the incremental mini-

mization problem (IP0). We simply substitute Ψ0 by Ψε in (IP0), recalling that now the time-step
τ should explicitly appear, since Ψε is not 1-homogeneous any longer. The viscous incremental
problem is therefore

find U1

τ,ε, · · · ,UN
τ,ε such that Un

τ,ε ∈ Argmin
U∈X

�
τΨε

�U−Un−1
τ,ε

τ

�
+ Etn(U)

�
. (IPε)

Setting as in (2.15)
Uτ,ε(t) := Un

τ,ε if t ∈ (tn−1, tn],
one can study the limit of the discrete solutions when τ ↓ 0 and ε ↓ 0, under some restriction on
the behavior of the quotient ε/τ (see Theorem 4.11 later on).
The choice of the viscosity approximation Ψε. Here we consider the particular case when
the potential Ψε can be obtained starting from a given

convex function Ψ : X → [0,+∞) such that Ψ(0) = 0, lim
�v�X↑+∞

Ψ(v)
�v�X

= +∞, (Ψ.1)

by the canonical rescaling

Ψε(v) := ε−1Ψ(εv) for every v ∈ X, ε > 0, (Ψ.2)

and Ψε is linked to Ψ0 by the relation

Ψ0(v) = lim
ε↓0

Ψε(v) = lim
ε↓0

ε−1Ψ(εv) for every v ∈ X. (Ψ.3)

Remark 2.3. Notice that, by convexity of Ψ and the fact that Ψ(0) = 0, the map ε �→ ε−1Ψ(εv)
is nondecreasing for all v ∈ X. Hence,

Ψ0(v) ≤ Ψε(v) for all v ∈ X, for all ε > 0. (2.16)

Furthermore, by the coercivity condition (Ψ.1),

∂Ψε(v) := ∂Ψ(εv) is a surjective map.
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Here are some examples, showing that (Ψ.2) still provides a great flexibility and covers several
interesting cases.

Example 2.4.
Ψ0-viscosity: The simplest example, still absolutely non trivial [35], is to consider

Ψ(v) := Ψ0(v) +
1
2
�
Ψ0(v)

�2
, Ψε(v) := Ψ0(v) +

ε

2
�
Ψ0(v)

�2
,

∂Ψε(v) =
�
1 + εΨ0(v)

�
∂Ψ0(v).

(2.17)

A similar regularization can be obtained by choosing a real convex and superlinear function
FV : [0,+∞) → [0,+∞), with FV (0) = F �

V (0) = 0, and setting

Ψ(v) := Ψ0(v) + FV (Ψ0(v)) = F (Ψ0(v)), with F (r) := r + FV (r). (2.18)

Quadratic or p-viscosity induced by a norm � · �: The most interesting case involves an ar-
bitrary norm � · � on X and considers for p > 1

Ψ(v) = Ψ0(v) +
1
p
�v�p, Ψε(v) = Ψ0(v) +

εp−1

p
�v�p, ∂Ψε(v) = ∂Ψ0(v) + εp−1Jp(v), (2.19)

where Jp is the p-duality map associated with � · �. In particular, if � · � is a Hilbertian norm
and p = 2, then J2 is the Riesz isomorphism and we can choose J2(v) = v by identifying X
with X∗. Hence, (DNε) reads

∂Ψε(u̇ε(t)) + εu̇ε(t) + DEt(uε(t)) � 0 in X∗ for a.a. t ∈ (0, T ),

and the incremental problem (IPε) looks for Un
τ,ε which recursively minimizes

U �→ Ψ0(U − Un−1

τ,ε ) +
ε

2τ
�U − Un−1

ε,τ �2 + Etn(U).

This is the typical situation which motivates our investigation.
Additive viscosity: More generally, we can choose a convex “viscous” potential ΨV : X →

[0,+∞) satisfying

lim
ε↓0

ε−1ΨV (εv) = 0, lim
λ↑+∞

λ−1ΨV (λv) = +∞ for all v ∈ X, (2.20)

and set

Ψ(v) := Ψ0(v) + ΨV (v), Ψε(v) := Ψ0(v) + ε−1ΨV (εv), ∂Ψε(v) = ∂Ψ0 + ∂ΨV (εv). (2.21)

2.4. Viscous energy identity. Since Ψ has a superlinear growth, the results of [9, 8] ensure that
for every ε > 0 and initial datum u0 ∈ X there exists at least one solution uε ∈ AC([0, T ]; X) to
equation (DNε), fulfilling the Cauchy condition uε(0) = u0.

In order to capture its asymptotic behavior as ε ↓ 0, we split equation (DNε) in a simple
system of two conditions, involving an auxiliary variable wε : [0, T ] → X∗ and a scalar function
pε : [0, T ] → R

∂Ψε(u̇ε(t)) � wε for a.a. t ∈ (0, T ) , (2.22a)
DEt(uε(t)) = −wε(t), ∂tEt(uε(t)) = −pε(t) for all t ∈ [0, T ]. (2.22b)

Denoting by Ψ∗,Ψ∗
ε the conjugate functions of Ψ and Ψε, we have

0 = Ψ∗(0) ≤ Ψ∗(ξ) < +∞, Ψ∗
ε(ξ) = ε−1Ψ∗(ξ) for every ξ ∈ X∗. (2.23)

Due to (2.16), there holds

Ψ∗
ε(ξ) ≤ Ψ∗

0(ξ) for all v ∈ X, ε > 0. (2.24)

The classical characterization of the subdifferential of Ψε yields that the first condition (2.22a) is
equivalent to

Ψε(u̇ε(t)) + Ψ∗
ε(wε(t)) = �wε(t), u̇ε(t)� for a.a. t ∈ (0, T ) . (2.25)
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On the other hand, the chain rule for the C1 functional E shows that along the absolutely contin-
uous curve uε

d
dt

Et(uε(t)) = �DEt(uε(t)), u̇ε(t)�+∂tEt(uε(t)) = −�wε(t), u̇ε(t)�−pε(t) for a.a. t ∈ (0, T ). (2.26)

Thus, if wε(t) = −DEt(uε(t)), equation (2.22a) is equivalent to the energy identity
� t1

t0

�
Ψε (u̇ε(r)) + Ψ∗

ε (wε(r)) + pε(r)
�

dr + Et1(uε(t1)) = Et0(uε(t0)), (2.27)

for every 0 ≤ t0 ≤ t1 ≤ T.

Remark 2.5 (The role of Ψ∗
ε). In the general, additive-viscosity case (see (2.21)), when Ψ(v) =

Ψ0(v) + ΨV (v) the inf-sup convolution formula yields

Ψ∗
ε(ξ) = inf

ξ1+ξ2=ξ

ξ1,ξ2∈X∗

�
IK∗(ξ1) +

1
ε
Ψ∗

V (ξ2)
�

= ε−1 min
z∈K∗

Ψ∗
V (ξ − z).

In particular, when ΨV (ξ) := 1

2
|v|2 for some norm | · | of X, one finds

Ψ∗
ε(ξ) =

1
2ε

min
z∈K∗

|ξ − z|2∗,

where | · |∗ is the dual norm of | · |. Thus, for all ξ ∈ X∗ the functional Ψ∗
ε(ξ) is the squared distance

of ξ from K∗, with respect to | · |∗. This shows that, in the viscous regularized equation (DNε),
the (local) stability condition w(t) = −DEt(u(t)) ∈ K∗ has been replaced by the contribution of
the penalizing term

1
2ε

� T

0

min
z∈K∗

|−DEt(uε(t))− z|2∗ dt

in the energy identity (2.27).

2.5. Pointwise limit of viscous approximations and local solutions. Using (2.7), it is not
difficult to show that the viscous solutions uε of (DNε) satisfy the a priori bound

� T

0

�
Ψε(u̇ε(t)) + Ψ∗

ε(wε(t))
�

dt ≤ C, with wε(t) = −DEt(uε(t)) for all t ∈ [0, T ]. (2.28)

Therefore, Helly’s compactness theorem shows that, up to the extraction of a suitable subsequence,
the sequence (uε) pointwise converges to a BV curve u. From the convergence wε(t) → w(t) =
−DEt(u(t)) as ε ↓ 0 and the fact that for all t ∈ [0, T ]

lim inf
ε↓0

ε−1Ψ∗(wε(t))
(2.23)

≥ Ψ∗
0(w(t)) = I∗K(w(t)) =

�
0 if w(t) ∈ K∗,

+∞ otherwise,
(2.29)

we infer that the limit curve u satisfies the (local) stability condition (Sloc). On the other hand,
passing to the limit in (2.27) one gets the energy inequality

Et1(u(t1)) + VarΨ0(u; [t0, t1]) ≤ Et0(u(t0)) +
� t1

t0

∂tEt(u(t)) dt for 0 ≤ t0 < t1 ≤ T. (E�
ineq

)

The above discussion motivates the concept of local solution (see also [35, Sec. 5.2] and the refer-
ences therein).

Definition 2.6 (Local solutions). A curve u ∈ BV([0, T ];X) is called a local solution of the rate
independent system (X,E,Ψ0) if it satisfies the local stability condition

−DEt(u(t)) ∈ K∗ for every t ∈ [0, T ] \ Ju, (Sloc)

and the energy dissipation inequality (E�
ineq

).

Local solutions admit the following differential characterization.
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Proposition 2.7 (Differential characterization of local solutions). A curve u ∈ BV([0, T ];X) is a
local solution of the rate independent system (X,E,Ψ0) if and only if it satisfies the BV differential
inclusion

∂Ψ0

�du�co
dµ

(t)
�

+ DEt(u(t)) � 0 for µ-a.e. t ∈ [0, T ], µ := L 1 + |u�C|, (DN0,BV)

and the jump inequalities

Et(u(t))− Et(u(t−)) ≤ −∆Ψ0(u(t−), u(t)), Et(u(t+))− Et(u(t)) ≤ −∆Ψ0(u(t), u(t+)),
Et(u(t+))− Et(u(t−)) ≤ −∆Ψ0(u(t−), u(t+)),

(Jlocal)

at each jump time t ∈ Ju.

Proof. Notice that at every point t ∈ (0, T ) where du�co(t)/dµ = 0, the differential inclusion
(DN0,BV) reduces to the local stability condition (Sloc). In the general case, (DN0,BV) follows by
differentiation of (E�

ineq
). Indeed, the latter procedure provides the following inequality between

the distributional derivative d

dtEt(u(t)) of the map t �→ Et(u(t)) and the Ψ0-total variation measure
Ψ0(u�co) := Ψ0

�
du�co/dµ

�
µ for µ := u�

C
+ L 1

d
dt

Et(u(t)) + Ψ0(u�co)− ∂tEt(u(t))L 1 ≤ 0 . (2.30)

Applying the chain rule formula for the composition of the C1 functional E and the BV curve u
(see [2] and [3, Thm. 3.96]) and taking into account the fact that u�co and u�

J
are mutually singular,

we obtain from (2.30) that
�
−DEt(u(t)),

du�co
dµ

�
µ ≥ Ψ0(u�co) = Ψ0

�du�co
dµ

�
µ . (2.31)

Combining (2.31) with the local stability condition (Sloc), in view of the characterization (2.2) of
∂Ψ0 and of (2.3) we finally conclude (DN0,BV). Localizing (E�

ineq
) around a jump point t we get

the inequalities (Jlocal).
Conversely, let us suppose that a BV curve u satisfies (DN0,BV) and (Jlocal). The local stability

condition is an immediate consequence of (DN0,BV), which yields −DEt(u(t)) ∈ K∗ for L 1-
a.e. t ∈ [0, T ] and therefore, by continuity, at every point of [0, T ] \ Ju.

In order to get (E�
ineq

), we again apply the chain rule for the composition E and u, obtaining

Et1(u(t1)) +
� t1

t0

�
−DEt(u(t)),

du�co
dµ

�
dµ(t)− Jmp(E; [t0, t1])

= Et0(u(t0)) +
� t1

t0

∂tEt(u(t)) dt,

(2.32)

where

Jmp(E; [t0, t1]) = E+(t0) + E−(t1) +
�

t∈Ju∩(t0,t1)

�
E−(t) + E+(t)

�
,

and

E−(t) := Et(u(t))− Et(u(t−)), E+(t) := Et(u(t+))− Et(u(t)).

By (DN0,BV) we have
� t1

t0

�
−DEt(u(t)),

du�co
dµ

�
dµ(t) =

� t1

t0

Ψ0

�du�co
dµ

(t)
�

dµ(t) =
� t1

t0

dΨ0(u�co) , (2.33)

whereas (Jlocal) yields for every t ∈ Ju

E−(t) ≤ −∆Ψ0(u(t−), u(t)), E+(t) ≤ −∆Ψ0(u(t), u(t+)), (2.34)

so that −Jmp(E; [t0, t1]) ≥ JmpΨ0
(u; [t0, t1]) and therefore (E�

ineq
) follows from (2.32). �
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Remark 2.8. Unlike the case of energetic solutions (cf. Proposition 2.2), a precise description of
the behavior of local solutions at jumps in missing here. In fact, the jump inequalities (Jlocal) are
not sufficient to get an energy balance and do not completely capture the jump dynamics, see the
discussion of [35, Sec. 5.2].

In order to get more precise insight into the jump properties and to understand the correct
energy balance along them, we have to introduce a finer description of the dissipation. It is
related to an extra contribution to the jump part of VarΨ0(u; [·, ·]), which can be better described
by using the vanishing viscosity contact potential induced by the coupling Ψ,Ψ∗. We describe this
notion in the next section.

3. vanishing viscosity contact potentials and Finsler dissipation costs

3.1. Heuristics for the concept of vanishing viscosity contact potential. Suppose for the
moment being that, in a given time interval [r0, r1], the energy Et(·) = E(·) does not change w.r.t.
time. If ϑ ∈ AC([r0, r1];X) is a solution of (DNε) connecting u0 = ϑ(r0) to u1 = ϑ(r1), then the
energy release between the initial and the final state is, by the energy identity (2.27),

E(u0)− E(u1) =
� r1

r0

�
Ψε(v) + Ψ∗

ε(w)
�

dt,

with v(t) = ϑ̇(t) and w(t) = −DE(ϑ(t)) for a.a. t ∈ (0, T ).
(3.1)

If one looks for a lower bound of the right-hand side in the above energy identity which is inde-
pendent of ε > 0, it is natural to recur to the functional p : X ×X∗ → [0,+∞) defined by

p(v, w) := inf
ε>0

(Ψε(v) + Ψ∗
ε(w)) = inf

ε>0

�
ε−1Ψ(εv) + ε−1Ψ∗(w)

�
for v ∈ X, w ∈ X∗.

We obtain

E(u0)− E(u1) ≥
� r1

r0

p(v, w) dt with v(t) = ϑ̇(t) and w(t) = −DE(ϑ(t)). (3.2)

Since p(·, ·) is positively 1-homogeneous with respect to its first variable, the right-hand side
expression in (3.2) is in fact independent of (monotone) time rescalings. On the other hand, the
vanishing viscosity contact potential p(·, ·) has the remarkable properties

p(v, w) ≥ �w, v�, p(v, w) ≥ Ψ0(v) for every v ∈ X, w ∈ X∗. (3.3)

Therefore, if ϑ̃ ∈ AC([r0, r1]; X) is another arbitrary curve connecting u0 to u1, the chain rule (2.26)
for E yields

E(u0)− E(u1) =
� r1

r0

�w̃(t), ṽ(t)�dt ≤
� r1

r0

(Ψε(v(t)) + Ψ∗
ε(w̃(t))) dt

(where ṽ denotes the time derivative of ϑ̃ and w̃ = −DE(ϑ̃)), whence

E(u0)− E(u1) ≤
� r1

r0

p(ṽ(t), w̃(t)) dt . (3.4)

It follows that, in a time regime in which the energy functional E does not change with respect to
time, for every ε > 0 any viscous solution of (DNε) (and, therefore, any suitable limit of viscous
solutions) should attain the minimum dissipation, measured in terms of the vanishing viscosity
contact potential p. Moreover, this dissipation always provides an upper bound for the energy
release, reached exactly along viscous curves and their limits.

Remark 3.1. In some of the cases discussed in Example 2.4, the vanishing viscosity contact po-
tential p admits a more explicit representation.
(1) We first consider the Ψ0-viscosity case (2.18), where Ψ(v) := F (Ψ0(v)), F : [0,+∞) →
[0,+∞) being a real convex superlinear function with F (0) = 0, F �(0) = 1. We introduce the
1-homogeneous support function Ψ0∗ of the set

K :=
�
v ∈ X : Ψ0(v) ≤ 1

�
, Ψ0∗(w) := sup

v∈K
�w, v�.
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It is not difficult to show that Ψ∗(w) = F ∗(Ψ0∗(w)) and that for all (v, w) ∈ X ×X∗

p(v, w) = Ψ0(v) max(1,Ψ0∗(w)) =

�
Ψ0(v) if w ∈ K∗,

Ψ0(v) Ψ0∗(w) if w �∈ K∗.
(3.5)

(2) In the additive viscosity case of (2.21) one has for all (v, w) ∈ X ×X∗

p(v, w) = Ψ0(v) + pV (v, w), where pV (v, w) = inf
ε>0

�
ε−1ΨV (εv) + ε−1 inf

z∈K∗
Ψ∗

V (w − z)
�

. (3.6)

In particular, when ΨV (v) = FV (�v�) for some norm � · � of X and a real convex and superlinear
function FV : [0,+∞) → [0,+∞) with FV (0) = F �

V (0) = 0, we have for all (v, w) ∈ X ×X∗

p(v, w) = Ψ0(v) + pV (v, w), with pV (v, w) = �v� min
z∈K∗

�w − z�∗. (3.7)

Notice that in (3.5) and (3.7) the form of the vanishing viscosity contact potential p does not
depend on the choice of F and FV , respectively, but only on the chosen viscosity norm.

By the 1-homogeneity of p(·, w) and these variational properties, it is then natural to introduce
the following Finsler dissipation.

Definition 3.2 (Finsler dissipation). For a fixed t ∈ [0, T ], the Finsler cost induced by p and (the
differential of) E at the time t is given by

∆p,E(t;u0, u1) := inf
�� r1

r0

p(ϑ̇(r),−DEt(ϑ(r))) dr :

ϑ ∈ AC([r0, r1];X), ϑ(r0) = u0, ϑ(r1) = u1

� (3.8)

for every u0, u1 ∈ X. We also consider the induced “triple” cost

∆p,E(t;u−, u, u+) := ∆p,E(t;u−, u) + ∆p,E(t;u, u+).

Remark 3.3. Since p(v, w) ≥ Ψ0(v) by (3.3), a simple time rescaling argument shows that the
infimum in (3.8) is always attained by a Lipschitz curve ϑ ∈ AC([r0, r1];X) with constant p-
speed, in particular such that

p(ϑ̇(r),−DEt(ϑ(r)) ≡ 1 for a.a. r ∈ (r0, r1) .

By the heuristical discussion developed throughout (3.1)–(3.4), the cost ∆p,E is the natural
candidate to substituting the potential Ψ0 and the related cost ∆Ψ0 of (2.13) in the jump con-
tributions (2.14) and in the jump conditions (Jener). Notice that the second relation of (3.3)
implies

∆p,E(t;u0, u1) ≥ ∆Ψ0(u0, u1) for every u0, u1 ∈ X. (3.9)
The notion of jump variation arising from such replacements is precisely stated as follows.

Definition 3.4 (The total variation induced by ∆p,E). Let u ∈ BV([0, T ]; X) a given curve, let
u�co be the diffuse part of its distributional derivative u�, and let Ju be its pointwise jump set (2.9).
For every subinterval [a, b] ⊂ [0, T ] the Jump variation of u induced by (p,E) on [a, b] is

Jmpp,E(u; [a, b]) :=∆p,E(a;u(a), u(a+)) + ∆p,E(b;u(b−), u(b))+

+
�

t∈Ju∩(a,b)

∆p,E(t;u(t−), u(t), u(t+)), (3.10)

and the (pseudo-)total variation induced by (p,E) is

Varp,E(u; [a, b]) :=
� b

a
dΨ0(u�co) + Jmpp,E(u; [a, b]). (3.11)

Remark 3.5 (The (pseudo-)total variation Varp,E). Let us mention that Varp,E enjoys some of
the properties of the usual total variation functionals, but it is not lower semicontinuous w.r.t.
pointwise convergence. In fact, it is not difficult to see that its lower semicontinuous envelope is
simply VarΨ0 . Furthermore, Varp,E is not induced by any distance on X. Indeed, we have used
slanted fonts in the notation Var to stress this fact. In order to recover a more standard total
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variation in a metric setting, one has to work in the extended space X := [0, T ] × X and add
the local stability constraint −DEt ∈ K∗ on the “continuous” part of the trajectories. We shall
discuss this point of view in Section 6.

In view of inequality (3.9) between the Finsler dissipation ∆p,E and ∆Ψ0 , the notion of total
variation associated with ∆p,E provides an upper bound for VarΨ0 , namely

∀u ∈ BV([0, T ];X), [a, b] ⊂ [0, T ] : Varp,E(u; [a, b]) ≥ VarΨ0(u; [a, b]). (3.12)

3.2. Vanishing viscosity contact potentials. While postponing the definition of BV solutions
related to Varp,E to the next section, let us add a few remarks about the vanishing viscosity contact
potential p

p(v, w) := inf
ε>0

(Ψε(v) + Ψ∗
ε(w)) = inf

ε>0

�
ε−1Ψ(εv) + ε−1Ψ∗(w)

�
for v ∈ X, w ∈ X∗. (3.13)

which partly matches the definition introduced by [7]. We first list a set of intrinsic properties of
p, which we shall prove at the end of this section.

Theorem 3.6 (Intrinsic properties of p). The continuous functional p : X×X∗ → [0,+∞) defined
by (3.13) satisfies the following properties:
(I1) For every v ∈ X,w ∈ X∗ the maps p(v, ·) and p(·, w) have convex sublevels.
(I2) p(v, w) ≥ �w, v� for every v ∈ X,w ∈ X∗.
(I3) For every w ∈ X∗ the map v �→ p(v, w) is 1-homogeneous and thus convex in X, with

p(v, w) > 0 if v �= 0.
(I4) For every v ∈ X,w ∈ X∗ the map λ �→ p(v, λw) is nondecreasing in [0,+∞).
(I5) If for some v0 ∈ X and w̄, w ∈ X∗ we have p(v0, w̄) < p(v0, w), then the inequality p(v, w̄) ≤

p(v, w) holds for every v ∈ X, and there exists v1 ∈ X such that p(v1, w̄) < �w, v1�.

Remark 3.7 (A dual family of convex sets). Property (I5) has a dual geometric counterpart: let
us first observe that for every w ∈ X∗ the map v �→ p(v, w) is a gauge function and therefore it is
the support function of the convex set

K∗
w :=

�
z ∈ X∗ : �z, v� ≤ p(v, w) for every v ∈ X

�
, i.e. p(v, w) = sup

�
�z, v� : z ∈ K∗

w

�
.

Assertion (I5) then says that for every couple w, w̄ ∈ X

we always have w̄ ∈ K∗
w or w ∈ K∗

w̄ and, moreover, w̄ ∈ K∗
w ⇔ p(·, w̄) ≤ p(·, w). (3.14)

Suppose in fact that w �∈ K∗
w̄: this means that an element v0 ∈ X exists such that �w, v0� >

p(v0, w̄); by (I2) we get p(v0, w) > p(v0, w̄), and therefore by (I5) p(v, w) ≥ p(v, w̄) ≥ �w̄, v� for
every v ∈ X, so that w̄ ∈ K∗

w. The second statement of (3.14) is an immediate consequence of the
second part of (I5).

Property (I2) suggests that the set where equality holds in plays a crucial role:

Definition 3.8 (Contact set). The contact set Σp ⊂ X ×X∗ is defined as

Σp :=
�

(v, w) ∈ X ×X∗ : p(v, w) = �w, v�
�

. (3.15)

Here are some other useful consequences of (I1–I5)

Lemma 3.9. If p : X ×X∗ → [0,+∞) satisfies (I1–I5), then
(I6) for every v ∈ X,w ∈ X∗ we have

p(v, 0) + IK∗
0
(w) ≥ p(v, w) ≥ p(v, 0). (3.16)

(I7) The contact set can be characterized by

(v, w) ∈ Σp ⇔ w ∈ ∂p(·, w)(v) ⇔ v ∈ ∂IK∗
w
(w). (3.17)

More generally, if w̄ ∈ ∂p(·, w)(v) then (v, w̄) ∈ Σp, w̄ ∈ K∗
w, and p(v, w) = p(v, w̄). In

particular, if w̄ ∈ ∂K∗
w then w ∈ K∗

w̄.
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Proof. The chain of inequalities in (3.16) is an immediate consequence of (I4) and of (3.14). (3.17)
is a direct consequence of the fact that v �→ p(v, w) is a gauge function and IK∗

w
is its Legendre

transform.
In order to check the last statement, given v ∈ X,w ∈ X∗ let us take w̄ ∈ ∂p(·, w)(v) so that

w̄ ∈ K∗
w and p(v, w) = �w̄, v�. Combining (I2) with (3.14) we get p(v, w) = p(v, w̄), so that

(v, w̄) ∈ Σp. �
Remark 3.10. Properties (I1,I2,I5) suggest a strong analogy between p and the notion of bipotential
introduced by [7]: according to [7], a bipotential is a functional b : X ×X∗ → (−∞,+∞] which
is convex and lower semicontinuous in each argument, satisfies (I2), and whose contact set fulfils
a condition similar to (3.17)

(v, w) ∈ Σb ⇔ w ∈ ∂b(·, w)(v) ⇔ v ∈ ∂b(v, ·)(w).

In our situation, (3.17) is a direct consequence of the homogeneity of p, but the convexity condition
with respect to w looks too restrictive, as shown by this simple example. Consider the case
X = X∗ = R2, with Ψ(v) := �v�1 + ΨV (v), �v�1 := |v1| + |v2|, and

ΨV (v) :=
1
2
v2

1 +
1
4
v4

2 , v = (v1, v2) ∈ R2; Ψ∗
V (w) =

1
2
w2

1 +
3
4
w4/3

2
w = (w1, w2) ∈ R2.

By (3.6) we have p(v, w) = �v�1+pV (v, w) with pV (v, w) = infε>0
1

ε

�
ΨV (εv)+Ψ∗(w)

�
and find

Ψ∗(w) =
1
2
(|w1|− 1)2+ +

3
4
(|w2|− 1)4/3

+ .

Considering the special case v = (v1, 0), w = (0, w2), we obtain

pV ((v1, 0), (0, w2)) =
�

3/2 |v1|
�
(|w2|− 1)+

�2/3

.

The map w2 �→ p((v1, 0), (0, w2)) is therefore not convex.

Let us now consider some properties of p and its contact set Σp involving explicitly the func-
tional Ψ. Since the vanishing viscosity contact potential p is defined through the minimum proce-
dure (3.13), the contact set is strictly related to the set of optimal ε > 0 attaining the minimum
in (3.13).

Definition 3.11 (Lagrange multipliers). For every (v, w) ∈ X×X∗ we introduce the multivalued
function Λ (with possibly empty values)

Λ(v, w) :=
�

ε ≥ 0 : p(v, w) = Ψε(v) + Ψ∗
ε(w)

�
⊂ [0,+∞). (3.18)

Notice that for every (v, w) ∈ X × X∗ the function ε �→ ε−1Ψ(εv) + ε−1Ψ∗(w) is convex on
(0,+∞). Since Ψ has superlinear growth at infinity, it goes to +∞ as ε ↑ +∞ if v �= 0, so that

the set Λ(v, w) is always a bounded closed interval if v �= 0. (3.19)

Theorem 3.12 (Properties of p,Ψ and Σp).
(P1) The vanishing viscosity contact potential p satisfies p(v, 0) = Ψ0(v), K∗

0 = K∗, and in
particular

p(v, w) ≥ �w, v�, Ψ0(v) + IK∗(w) ≥ p(v, w) ≥ Ψ0(v) ≥ 0 for every v ∈ X, w ∈ X∗, (3.20)
p(v, w) = Ψ0(v) ⇔ w ∈ K∗. (3.21)

(P2) For every w ∈ X∗, the convex sets K∗
w are the sublevels of Ψ∗

K∗
w =

�
z ∈ X∗ : Ψ∗(z) ≤ Ψ∗(w)

�
, (3.22)

and p admits the dual representation

p(v, w) = sup
�
�z, v� : z ∈ X∗, Ψ∗(z) ≤ Ψ∗(w)

�
. (3.23)

In particular, Ψ∗(w1) ≤ Ψ∗(w2) for some w1, w2 ∈ X∗ if and only if p(v, w1) ≤ p(v, w2) for
every v ∈ X.
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(P3) The multivalued function Λ defined in (3.18) is upper semicontinuous, i.e.

if (vn, wn) → (v, w) ∈ X ×X∗ and εn ∈ Λ(vn, wn) → ε, then ε ∈ Λ(v, w). (3.24)

(P4) The contact set Σp (3.15) can be characterized by

w ∈ ∂Ψ0(v) ⊂ K∗ or, if w �∈ K∗, ∃ ε > 0 : w ∈ ∂Ψ(εv), (3.25)

and the last inclusion holds exactly for ε ∈ Λ(v, w). Equivalently,

(v, w) ∈ Σp ⇔ w ∈ ∂Ψε(v) for every ε ∈ Λ(v, w).

In particular, in the case of additive viscosity, with Ψ(v) = Ψ0(v)+ΨV (v) and ΨV satisfying
(2.20), we simply have

(v, w) ∈ Σp ⇐⇒ ∃λ ≥ 0 : w ∈ ∂Ψ0(v) + ∂ΨV (λv). (3.26)

Proofs of Theorems 3.12 and 3.6.
Ad (P1). Inequalities (3.20) are immediate consequences of the definition of p. The equal-
ity Ψ0(v) = p(v, w) is equivalent to the existence of a sequence εk > 0 such that (recall that
ε−1Ψε(εv) ≥ Ψ0(v))

lim
k→∞

ε−1

k Ψ(εkv) = Ψ0(v), lim
k→∞

ε−1

k Ψ∗(w) = 0.

Since the first inequality prevents εk from diverging to +∞ (being Ψ superlinear), from the second
limit we get Ψ∗(w) = 0, i.e.

�w, z� ≤ Ψ(z) ∀ z ∈ X.

Replacing z with εz, multiplying the previous inequality by ε−1, and passing to the limit as ε ↓ 0,
in view of (Ψ.3) we conclude

�w, z� ≤ Ψ0(z) ∀ z ∈ X, so that w ∈ K∗.

The converse implication in (3.21) is immediate.
Ad (P2). Since the sublevels of Ψ∗ are closed and convex, a duality argument shows that (3.22)
is equivalent to (3.23). In order to prove the latter formula, let us observe that, if Ψ∗(z) ≤ Ψ∗(w),
then �z, v� ≤ p(v, w), because the Fenchel inequality yields

�z, v� = ε−1�z, εv� ≤ ε−1Ψ(εv) + ε−1Ψ(z) = Ψε(v) + Ψ∗
ε(z) ≤ Ψε(v) + Ψ∗

ε(w) for every ε > 0.

We show that there exists z ∈ X∗ such that Ψ∗(z) ≤ Ψ∗(w) and p(v, w) = �z, v�. Due to (3.21), if
w ∈ K∗, then p(v, w) = Ψ0(v) and the thesis follows from (2.5) Hence, let us suppose that w �∈ K∗

and v �= 0; then we can choose ε0 ∈ Λ(v, w), ε0 > 0, such that

p(v, w) = ε−1

0
Ψ(ε0v) + ε−1

0
Ψ∗(w) ≤ ε−1Ψ(εv) + ε−1Ψ∗(w) for every ε > 0. (3.27)

Choosing zε ∈ ∂Ψ(εv) we have

Ψ(εv)−Ψ(ε0v) ≤ �zε, (ε− ε0)v� for every ε > 0

so that, in view of inequality (3.27),
�
ε−1 − ε−1

0

��
Ψ(ε0v) + Ψ∗(w)

�
+ ε−1�zε, (ε− ε0)v� ≥ 0 for every ε > 0.

Dividing by ε − ε0 and passing to the limit first as ε ↓ ε0 and then as ε ↑ ε0, we thus find
z± ∈ ∂Ψ(ε0v) (accumulation points of the sequences (zε : ε > ε0) and (zε : ε < ε0), respectively),
such that

�z−, v� ≤ p(v, w) = ε−1

0

�
Ψ(ε0v) + Ψ∗(w)

�
≤ �z+, v�. (3.28)

On the other hand, the Fenchel identity of convex analysis yields

ε−1

0
Ψ∗(z) = �z, v� − ε−1

0
Ψ(ε0v) for every z ∈ ∂Ψ(ε0v) (3.29)

so that the map z �→ Ψ∗(z) is affine on ∂Ψ(ε0v) and a comparison between (3.28) and (3.29) yields

Ψ∗(z−) ≤ Ψ∗(w) ≤ Ψ∗(z+).

Using formula (3.29) we can thus find θ ∈ [0, 1] and zθ := (1− θ)z− + θz+ ∈ ∂Ψ(ε0v) such that

Ψ∗(zθ) = Ψ∗(w), �zθ, v� = p(v, w) = ε−1

0

�
Ψ(ε0v) + Ψ∗(w)

�
.
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The last statement of (P2) follows easily. One implication is immediate. On the other hand, if
Ψ∗(w1) > Ψ∗(w2), then by the Hahn-Banach separation theorem we can find v̄ ∈ X and δ > 0
such that

�w1, v̄� ≥ δ + �z, v̄� for every z ∈ X∗ such that Ψ∗(z) ≤ Ψ∗(w2),

and, therefore, by (3.23) we conclude p(v̄, w1) ≥ �w1, v̄� ≥ δ + p(v̄, w2).
Ad (I1,2,3,4,5) These properties directly follow from (P2).
Ad (P3) and continuity of p. Notice that p is upper semicontinuous, being defined as the
infimum of a family of continuous functions. Take now converging sequences (vn), (wn), (εn) as
in (3.24): we have that

lim inf
n→∞

�
ε−1

n Ψ(εnvn) + ε−1

n Ψ∗(wn)
�
≥ Ψε(v) + Ψ∗

ε(w) =

�
ε−1Ψ(εv) + ε−1Ψ∗(w) if ε > 0,

Ψ0(v) + I∗K(w) if ε = 0.

Since
p(v, w) ≥ lim inf

n→∞
p(vn, wn) ≥ lim inf

n→∞

�
ε−1

n Ψ(εnvn) + ε−1

n Ψ∗(wn)
�

≥ Ψε(v) + Ψ∗
ε(w) ≥ p(v, w),

(3.30)

we obtain ε ∈ Λ(v, w).
Inequality (3.30) shows that p is also lower semicontinuous, since, if v �= 0, any sequence εn ∈
Λ(vn, wn) admits a converging subsequence, in view of (3.19).
Ad (P4). Concerning the characterization (3.25) of Σp, it is easy to check that, if (v, w) satisfies
(3.25), then by the Fenchel identity and formula (2.2) we have, when w ∈ K∗,

p(v, w) ≥ �w, v� = Ψ0(v) = p(v, w),

and, when w �∈ K∗,

p(v, w) ≥ �w, v� = ε−1�w, εv� = ε−1Ψ(εv) + ε−1Ψ∗(w) ≥ p(v, w)

so that (v, w) ∈ Σp and ε ∈ Λ(v, w). Conversely, if p(v, w) = �w, v� and w ∈ K∗, then by (3.20)
Ψ0(v) = �w, v� and therefore w ∈ ∂Ψ0(v). If w �∈ K∗, then, choosing ε ∈ Λ(v, w), we have

Ψ(εv) + Ψ∗(w) = εp(v, w) = �w, εv�, so that w ∈ ∂Ψ(εv).

In the particular case of (2.21), (3.26) follows now from (3.25) by the sum rule of the subdifferentials
and the 0-homogeneity of ∂Ψ0. �

4. BV solutions and energy-driven dissipation

4.1. BV solutions. We can now give our precise definition of BV solution of the rate-independent
system (X,E, p), driven by the vanishing viscosity contact potential p (3.13) and the energy E.
From a formal point of view, the definition simply replaces the global stability condition (S) by
the local one (Sloc), and the Ψ0-total variation in the energy balance (E) by the “Finsler” total
variation (3.11), induced by p and E.

Definition 4.1 (BV solutions, variational characterization). A curve u ∈ BV([0, T ]; X) is a BV
solution of the rate independent system (X,E, p) the local stability (Sloc) and the (p,E)-energy
balance hold:

−DEt(u(t)) ∈ K∗ for a.a. t ∈ [0, T ] \ Ju (Sloc)

Varp,E(u; [0, t]) + Et(u(t)) = E0(u(0)) +
� t

0

∂tEs(u(s)) ds for all t ∈ [0, T ]. (Ep,E)

We shall see in the next Section 4.3 that any pointwise limit, as ε ↓ 0, of the solutions (uε) of the
viscous equation (DNε) or, as τ, ε ↓ 0, of the discrete solutions (Uτ,ε) of the viscous incremental
problems (IPε), is a BV solutions induced by the vanishing viscosity contact potential p. Let us
first get more insight into Definition 4.1.
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Properties of BV solutions. As in the case of energetic solutions, it is not difficult to see that
the energy balance (Ep,E) holds on any subinterval [t0, t1] ⊂ [0, T ]; moreover, if the local stability
condition (Sloc) holds, to check (Ep,E) it is sufficient to prove the corresponding inequality.

Proposition 4.2. If u ∈ BV([0, T ];X) satisfies (Ep,E), then for every subinterval [t0, t1] there
holds

Varp,E(u; [t0, t1]) + Et1(u(t1)) = Et0(u(t0)) +
� t1

t0

∂tEs(u(s)) ds. (E�p,E)

Moreover, if u satisfies (Sloc), then (Ep,E) is equivalent to the energy inequality

Varp,E(u; [0, T ]) + ET (u(T )) ≤ E0(u(0)) +
� T

0

∂tEs(u(s)) ds. (Ep,E;ineq)

Proof. (E�p,E) easily follows from the additivity property

∀ 0 ≤ t0 < t1 < t2 ≤ T : Varp,E(u; [t0, t1]) + Varp,E(u; [t1, t2]) = Varp,E(u; [t0, t2]). (4.1)

In order to prove the second inequality we argue as in [35, Prop. 4], taking (Sloc) into account. �

Notice that, by (3.12), any BV solution is also a local solution according to Definition 2.6, i.e. it
satisfies the local stability condition and energy inequality (E�

ineq
). In fact, one has a more accurate

description of the jump conditions, as the following Theorem shows (cf. with Propositions 2.2
and 2.7).

Theorem 4.3 (Differential characterization of BV solutions). A curve u ∈ BV([0, T ]; X) is a BV
solution of the rate-independent system (X,E, p) if and only if it satisfies the doubly nonlinear
differential inclusion in the BV sense

∂Ψ0

�du�co
dµ

(t)
�

+ DEt(u(t)) � 0 for µ-a.e. t ∈ [0, T ], µ := L 1 + |u�C|, (DN0,BV)

and the following jump conditions at each point t ∈ Ju of the jump set (2.9)

Et(u(t))− Et(u(t−)) = −∆p,E(t;u(t−), u(t)),
Et(u(t+))− Et(u(t)) = −∆p,E(t;u(t), u(t+)),

Et(u(t+))− Et(u(t−)) = −∆p,E(t;u(t−), u(t+)).
(JBV)

Proof. We have already seen (see Lemma 2.7) that local solutions satisfy (DN0,BV). The jump
conditions (JBV) can be obtained by localizing (E�p,E) around any jump time t ∈ Ju.

Conversely, to prove (Ep,E;ineq) (as seen in the proof of Lemma 2.7, (Sloc) ensues from (DN0,BV)),
we argue as in the second part of the proof of Lemma 2.7, still applying (2.32) and (2.33), but
replacing inequalities (2.34) with the following identities,

E−(t) = −∆p,E(t;u(t−), u(t)), E+(t) = −∆p,E(t;u(t), u(t+)) for all t ∈ Ju,

which are due to (JBV). Hence, −Jmp(E; [0, T ]) = Jmpp,E(u; [0, T ]). Then, (Ep,E;ineq) follows from
(2.32). �

The next section is devoted to a refined description of the behavior of a BV solution along the
jumps.

4.2. Jumps and optimal transitions. Let us first introduce the notion of optimal transition.

Definition 4.4. Let t ∈ [0, T ], u−, u+ ∈ X with −DEt(u−), −DEt(u+) ∈ K∗, and −∞ ≤ r0 <
r1 ≤ +∞. An absolutely continuous curve ϑ : [r0, r1] → X connecting u− = ϑ(r0) and u+ = ϑ(r1)
is an optimal (p,Et)-transition between u− and u+ if

ϑ̇(r) �= 0 for a.a. r ∈ (r0, r1); Ψ0∗(−DEt(ϑ(r))) ≥ 1 ∀ r ∈ [r0, r1], (O.1)

Et(u−)− Et(u+) = ∆p,E(t;u−, u+) =
� r1

r0

p(ϑ̇(r),−DEt(ϑ(r))) dr. (O.2)
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We also say that an optimal transition ϑ is of

sliding type if −DEt(ϑ(r)) ∈ K∗ for every r ∈ [r0, r1], (Osliding)
viscous type if −DEt(ϑ(r)) �∈ K∗ for every r ∈ (r0, r1), (Oviscous)

energetic type if Et(u+)− Et(u−) = −Ψ0(u+ − u−). (Oener)

We denote by Θ(t;u−, u+) the (possibly empty) collection of such optimal transitions, with nor-
malized domain [0, 1] and constant Finsler velocity

p(ϑ̇(r),−DEt(ϑ(r))) ≡ Et(u−)− Et(u+) for a.a. r ∈ (0, 1) . (4.2)

Remark 4.5. Notice that the notion of optimal transition is invariant by absolutely continuous
(monotone) time rescalings with absolutely continuous inverse; moreover, any optimal transition ϑ
has finite length, it admits a reparametrization with constant Finsler velocity p(ϑ̇(·),−DEt(ϑ(·))),
and is a minimizer of (3.8), so that it is not restrictive to assume ϑ ∈ Θ(t, u−, u+).

Theorem 4.6. A local solution u ∈ BV([0, T ];X) is a BV solution according to Definition 4.1
if and only if at every jump time t ∈ Ju the initial and final values u(t−) and u(t+) can be
connected by an optimal transition curve ϑt ∈ Θ(t;u(t−), u(t+)), and there exists r ∈ [0, 1] such
that u(t) = ϑt(r). Any optimal transition curve ϑ satisfies the contact condition

(ϑ̇(r),−DEt(ϑ(r))) ∈ Σp for a.a. r ∈ (0, 1). (4.3)

Proof. Taking into account Theorem 4.3, the proof of the first part of the statement is immediate.
To prove (4.3), let t be a jump point of u and let us first suppose that u(t−) = u(t) �= u(t+).
By Remark 3.3, we can find a Lipschitz curve ϑ01 ∈ AC([r0, r1];X) with normalized speed
p(ϑ̇,−DEt(ϑ)) ≡ 1, connecting u(t−) to u(t+), so that the jump condition (JBV) yields

� r1

r0

�−DEt(ϑ(r)), ϑ̇(r)�dr = Et(u(t−))− Et(u(t+)) =
� r1

r0

p(ϑ̇(r),−DEt(ϑ(r))) dr.

This shows that ϑ is an optimal transition curve and satisfies
� r1

r0

�
p(ϑ̇,−DEt(ϑ(r))) dr − �−DEt(ϑ(r)), ϑ̇(r)�

�
dr = 0.

Since the integrand is always nonnegative, it follows that (4.3) holds.
In the general case, when u is not left or right continuous at t, we join two (suitably rescaled)

optimal transition curves ϑ01 ∈ Θ(t;u(t−), u(t)) and ϑ12 ∈ Θ(t;u(t), u(t+)). �

The next result provides a careful description of (p,Et)-optimal transitions.

Theorem 4.7. Let t ∈ [0, T ], u−, u+ ∈ X, and ϑ : [0, 1] → X be an optimal transition curve in
Θ(t;u−, u+). Then,
(1) ϑ is a constant-speed minimal geodesic for the (possibly asymmetric) Finsler cost ∆p,E(t;u−, u+),

and for every 0 ≤ ρ0 < ρ1 ≤ 1 it satisfies

Et(ϑ(ρ0))− Et(ϑ(ρ1)) = ∆p,E(t;ϑ(ρ0), ϑ(ρ1))

= (ρ1 − ρ0)∆p,E(t;u−, u+) = (ρ1 − ρ0)
�
Et(u−)− Et(u+)

�
;

(4.4)

In particular, the map ρ �→ Et(ϑ(ρ)) is affine.
(2) An optimal transition ϑ is of sliding type (Osliding) if and only if it satisfies

∂Ψ0(ϑ̇(r)) + DEt(ϑ(r)) � 0 for a.a. r ∈ (0, 1), (4.5)

Ψ0∗(−DEt(ϑ(r))) = 1 for every r ∈ [0, 1]. (4.6)
(3) An optimal transition ϑ is of viscous type (Oviscous) if and only if there holds for every selection

(0, 1) � r �→ ε(r) in Λ(ϑ̇(r),−DEt(ϑ(r))

∂Ψ(ε(r)ϑ̇(r)) + DEt(ϑ(r)) � 0 for a.a. r ∈ (0, 1). (4.7)
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Equivalently, there exists an absolutely continuous, surjective time rescaling r : (ρ0, ρ1) →
(0, 1), with −∞ ≤ ρ0 < ρ1 ≤ ∞ and ṙ(s) > 0 for L 1 a.e. s ∈ (ρ0, ρ1), such that the rescaled
transition θ(s) := ϑ(r(s)) satisfies the viscous differential inclusion

∂Ψ(θ̇(s)) + DEt(θ(s)) � 0 for a.a. s ∈ (ρ0, ρ1) , with lim
s↓ρ0

θ(s) = u−, lim
s↑ρ1

θ(s) = u+ . (4.8)

(4) Any optimal transition ϑ can be decomposed in a canonical way into an (at most) countable
collection of optimal sliding and viscous transitions. In other words, there exists (uniquely
determined) disjoint open intervals (Sj)j∈σ and (Vk)k∈υ of (0, 1), with σ, υ ⊂ N, such that
(0, 1) ⊂

�
∪j∈σ Sj) ∪

�
∪k∈υ Vk

�
and

ϑ|Sj
is of sliding type, ϑ|Vk

is of viscous type.

(5) An optimal transition ϑ is of energetic type (Oener) if and only if ϑ is of sliding type and it
is a Ψ0-minimal geodesic, i.e.

Ψ0(ϑ(r1)− ϑ(r0)) = (r1 − r0)Ψ0(u1 − u0) for every 0 ≤ r0 < r1 ≤ 1. (4.9)

If Ψ0 has strictly convex sublevels, then ϑ is linear and r �→ (ϑ(r),Et(ϑ(r))) is a linear segment
contained in the graph of Et.
If Ψ0 is Gâteaux-differentiable at X \ {0} then

−DEt(ϑ(r)) = DΨ0(u+ − u−) for every r ∈ [0, 1].

In particular, the map r �→ −DEt(ϑ(r)) is constant.

Remark 4.8. It follows from the characterization in (2) of Theorem 4.7 (cf. with (4.5)–(4.6)) that
sliding optimal transitions are independent of the form of the vanishing viscosity contact potential
p, and thus on the particular viscosity potential Ψ.

Instead, as one may expect, Ψ occurs in the doubly nonlinear equation (4.7) (equivalently,
in (4.8)), which in fact describes the viscous transient regime. Hence, different choices of the
viscous dissipation Ψ shall give raise to a different behavior in the viscous jumping regime, see
also the example in [51, Sec. 2.2]. The latter paper sets forth a different characterization of
rate-independent evolution, still oriented towards local stability, but derived from a global-in-time
variational principle and not a vanishing viscosity approach.

Proof. Ad (1). The geodesic property follows from the minimality of ϑ (cf. with (O.2) in
Definition 4.4). Then, there holds

d
dr

Et(ϑ(r)) = −p(ϑ̇(r),−DEt(ϑ(r))) ≡ Et(u+)− Et(u−) for a.a. r ∈ (0, 1), (4.10)

where the first identity ensues from the chain rule (2.26) for E and the contact condition (4.3),
and the second one from (4.2). Clearly, (4.10) implies (4.4).
Ad (2). If ϑ is of sliding type, then the contact condition (4.3), with (3.25), yields (4.5); (4.6)
follows since ϑ̇ �= 0 a.e. in (0, 1).
Ad (3). Equation (4.7) still follows from (3.25). Choosing r0 ∈ (0, 1) and a Borel selection
ε(r) ∈ Λ(ϑ̇(r),−DEt(ϑ(r))) (which is therefore locally bounded away from 0), we set

s(r) :=
� r

r0

ε−1(ρ) dρ, r := s−1, (4.11)

so that r is defined in a suitable interval of R and satisfies

ṙ(s) = ε(r(s)), θ̇(s) = ε(r(s))ϑ(r(s)).

Ad (4). We simply introduce the disjoint open sets

V :=
�

r ∈ (0, 1) : −DEt(ϑ(r)) �∈ K∗
�

, S := (0, 1) \ V

and we consider their canonical decomposition in connected components.
Ad (5). If ϑ is energetic, then by (Oener) and (4.4) there holds ∆p,E(t;u−, u+) = Ψ0(u+ − u−).
Thus, taking into account (4.2) and (3.3) as well, we find p(ϑ̇,−DEt(ϑ(r))) = Ψ0(ϑ̇(r)) for a.a.
r ∈ (0, 1). Since its Ψ0-velocity is constant and the total length is Ψ0(u+−u−), we deduce that ϑ
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is a constant speed minimal geodesic for Ψ0. Conversely, the constraint −DEt(ϑ(r)) ∈ K∗ satisfied
by sliding transitions yields, in view of (3.21), that p(ϑ̇,−DEt(ϑ(r))) = Ψ0(ϑ̇(r)) for a.a. r ∈ (0, 1).
Therefore,

∆p,E(t;u−, u+) =
� 1

0

Ψ0(ϑ̇(r)) dr = Ψ0(u+ − u−)

by the geodesic property (4.9).
It is well known that, if Ψ0 has strictly convex sublevels, the related geodesics are linear seg-

ments. In order to prove the last statement, let us observe that for every ξ ∈ ∂Ψ0(u+−u−) ⊂ K∗

there holds � 1

0

�ξ, ϑ̇(r)�dr = �ξ, u+ − u−� = Ψ0(u+ − u−) =
� 1

0

Ψ0(ϑ̇(r)) dr ,

where the second equality follows from the characterization (2.2) of ∂Ψ0(u+ − u−). Hence,
� 1

0

�
Ψ0(ϑ̇(r))− �ξ, ϑ̇(r)�

�
dr = 0.

Since the above integrand is nonnegative (being ξ ∈ K∗), again by (2.2) we deduce that ξ ∈
∂Ψ0(ϑ̇(r)) for a.a. r ∈ (0, 1). On the other hand, if Ψ0 is Gâteaux-differentiable outside 0, its
subdifferential contains just one point. Ultimately, (4.5) (recall that ϑ is of sliding type) shows
that −DEt(ϑ(r)) = ξ for every r ∈ [0, 1]. �

The next result clarifies the relationships between energetic and BV solutions.

Corollary 4.9 (Energy balance and comparison with energetic solutions).
(1) A BV solution u of the rate-independent system (X,E, p) satisfies the energy balance (E) if

and only if every optimal transition associated with its jump set is of energetic type (Oener).
(2) A BV solution u is an energetic solution if and only if it satisfies the global stability condition

(S). In that case, all of its optimal transition curves are of energetic type.
(3) Conversely, an energetic solution u is a BV solution if and only if, for every t ∈ Ju, any jump

couple (u(t−), u(t+)) can be connected by a sliding optimal transition.

Proof. Ad (1). Let u be a BV solution such that every optimal transition is of energetic
type (Oener). Now, taking into account (JBV), one sees that (Oener) is equivalent to the jump
conditions (Jener). Then, equation (DN0,BV) (which holds by Theorem 4.3) and (Jener) yield the
energy balance (E) (cf. the proofs of Propositions 2.2 and 2.7). The converse implication ensues
by analogous arguments.
Ad (2). The necessity is obvious; for the sufficiency we observe that, for every jump point t ∈ Ju,
the global stability condition (S) (written first for u(t−) with test functions v = u(t) and v = u(t+),
and then for u(t) with v = u(t+)), yields

Ψ0(u(t)− u(t−)) ≥ Et(u(t−))− Et(u(t)) = ∆p,E(t;u(t−), u(t)) ≥ Ψ0(u(t)− u(t−)),
Ψ0(u(t+)− u(t−)) ≥ Et(u(t−))− Et(u(t+)) = ∆p,E(t;u(t−), u(t+)) ≥ Ψ0(u(t+)− u(t−)),

Ψ0(u(t+)− u(t)) ≥ Et(u(t))− Et(u(t+)) = ∆p,E(t;u(t), u(t+)) ≥ Ψ0(u(t+)− u(t)),

where the intermediate equalities are due to (O.2) and the subsequent inequalities to (3.9). The
resulting identities ultimately show that the transition is energetic, by the very definition (Oener).
Ad (3). The condition is clearly sufficient. It is also necessary by the previous point, since
energetic transitions are in particular of sliding type. �

4.3. Viscous limit. We conclude this section by our main asymptotic results:

Theorem 4.10 (Convergence of viscous approximations to BV solutions). Consider a sequence
(uε) ⊂ AC([0, T ];X) of solutions of the viscous equation (DNε), with uε(0) → u0 as ε ↓ 0.

Then, every vanishing sequence εk ↓ 0 admits a further subsequence (still denoted by (εk)), and
a limit function u ∈ BV([0, T ];X) such that

uεk(t) → u(t) for every t ∈ [0, T ] as k ↑ +∞, (4.12)
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and u is a BV solution of (DN0), induced by the vanishing viscosity contact potential p according
to Definition 4.1.

Proof. It follows from the discussion developed in Section 2.5 that for every sequence εk ↓ 0 there
exists a not relabeled subsequence (uεk) such that (4.12) holds, and u complies with the local
stability condition (Sloc). In view of Proposition 4.2, it is then sufficient to check that (Ep,E;ineq)
holds. The latter energy inequality is a direct consequence of the ε-energy identity (2.27) and the
lower semicontinuity property stated in Lemma 6.15 later on. �

Our next result concerns the convergence of the discrete solutions to the viscous time-incremental
problem (IPε), as both the viscosity parameter ε and the time-step τ tend to 0.

Theorem 4.11 (Convergence of discrete solutions of the viscous incremental problems). Let
Uτ,ε : [0, T ] → X be the left-continuous piecewise constant interpolants of the discrete solutions of
the viscous incremental problem (IPε), with U0

τ,ε → u0 as ε, τ ↓ 0.
Then, all vanishing sequences τk, εk ↓ 0 satisfying

lim
k↓0

εk

τk
= +∞ (4.13)

admit further subsequences (still denoted by (τk) and (εk)) and a limit function u ∈ BV([0, T ];X)
such that

Uτk,εk(t) → u(t) for every t ∈ [0, T ] as k ↑ +∞,

and u is a BV solution of (DN0) induced by the vanishing viscosity contact potential p according
to Definition 4.1.

The reader may compare this result to [16, 21, 22, 49], where the same double passage to the limit
was performed for specific applied problems and conditions analogous to (4.13) were imposed.

Proof. The standard energy estimate associated with the variational problem (IPε) yields

τ

ε
Ψ

� ε

τ
(Un

τ,ε − Un−1

τ,ε )
�

+ Etn(Un
τ,ε) ≤ Etn(Un−1

τ,ε ) = Etn−1(U
n−1

τ,ε ) +
� tn

tn−1

∂tEt(Un−1

τ,ε ) dt . (4.14)

Thanks to (2.7), we easily get from (4.14) the following uniform bounds for every 1 ≤ n ≤ N (here
C is a constant independent of n, τ, ε)

Etn(Un
τ,ε) ≤ C,

N�

n=1

τ

ε
Ψ

� ε

τ
(Un

τ,ε − Un−1

τ,ε )
�
≤ C,

N�

n=1

Ψ0(Un
τ,ε − Un−1

τ,ε ) ≤ C ,

the latter estimate thanks to (Ψ.2).
Denoting by Uτ,ε (resp. Uτ,ε) the right-continuous piecewise constant interpolants (resp. piece-

wise linear interpolant) of the discrete values (Un
τ,ε) which take the value Un

τ,ε at t = tn, we
have

Et(Uτ,ε(t)) ≤ C, VarΨ0(Uτ,ε; [0, T ]) ≤ C (4.15a)

�Uτ,ε −Uτ,ε�L∞(0,T ;X), �Uτ,ε −Uτ,ε�L∞(0,T ;X),≤ sup
n
�Un

τ,ε − Un−1

τ,ε �X ≤ Cω(τ/Cε), (4.15b)

where
ω(r) := sup

x∈X

�
�x�X : rΨ(r−1x) ≤ 1

�

satisfies limr↓0 ω(r) = 0 thanks to (Ψ.1). By Helly’s theorem, these bounds show that (up to
the extraction of suitable subsequences (τk) and (εk) satisfying (4.13)), the sequences (Uτk,εk),
(Uτk,εk) and (Uτk,εk

) pointwise converge to the same limit u.
By differentiating the variational characterization of Un

τ,ε given by (IPε) we obtain

∂Ψε

�Un
τ,ε − Un−1

τ,ε

τ

�
+ Wn

τ,ε � 0, Wn
τ,ε := −DEtn(Un

τ,ε),
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which yields in each interval (tn−1, tn] (here, Wτ,ε denotes the left-continuous piecewise constant
interpolant of the values (Wn

τ,ε)N
n=1)

τΨε

�
U̇τ,ε

�
+ τΨ∗

ε(Wτ,ε) = −�DEtn(Uτ,ε(tn)),Uτ,ε(tn)−Uτ,ε(tn−1)�

= Etn−1(Uτ,ε(tn−1))− Etn(Uτ,ε(tn)) +
� tn

tn−1

∂tEt(Uτ,ε(t)) dt−R(tn; Uτ,ε(tn−1),Uτ,ε(tn))

where
R(t;x, y) := Et(y)− Et(x)− �DEt(y), y − x�.

Since E is of class C1, for every convex and bounded set B ⊂ X there exists a concave modulus of
continuity σB : [0,+∞) → [0,+∞) such that limr↓0 σB(r) = σB(0) = 0 and

R(t;x, y) ≤ σB(�y − x�X)�y − x�X for every t ∈ [0, T ], x, y ∈ B.

We thus obtain
� T

0

�
Ψε(U̇τ,ε(t)) + Ψ∗

ε(Wτ,ε(t))
�

dt + EtN (Uτ,ε(tN )) ≤ E0(u0) +
� tN

0

∂tEt(Uτ,ε(t)) dt

+ sup
1≤n≤N

σB(�Un
τ,ε − Un−1

τ,ε �)
N�

n=1

�Un
τ,ε − Un−1

τ,ε �, Wτ,ε(t)) = −DEt̄τ (t)(Uτ,ε(t)).
(4.16)

We pass to the limit along suitable subsequences (τk) and (εk) such that Uτk,εk , Uτk,εk → u
pointwise; since Uτ,ε and Uτ,ε are uniformly bounded, (4.15b) and (4.13) yield the convergence to
0 of the third term on the right-hand side of (4.16), which thus tends to E0(u0)+

� T
0

∂tEt(u(t)) dt.
Since Wτk,εk(t) → w(t) = −DEt(u(t)), applying the lower semicontinuity result of Lemma 6.15
we obtain that u satisfies (Ep,E;ineq) and the local stability condition. In view of Proposition 4.2,
this concludes the proof. �

5. Parametrized solutions

In this section, we restart from the discussions in Sections 2.4 and 2.5, and adopt a different
point of view, which relies on the rate-independent structure of the limit problem. The main idea,
which was introduced by [18], is to rescale time in order to gain a uniform Lipschitz bound on the
(rescaled) viscous approximations. Keeping track of the asymptotic behavior of time rescalings,
one can retrieve the BV limit we analyzed in Section 4. In particular, we shall recover that the
limiting jump pathes reflect the viscous approximation.

5.1. Vanishing viscosity analysis: a rescaling argument. Let us recall that for every ε > 0
uε are the solutions of the viscous differential inclusion

∂Ψε(u̇ε(t)) + DEt(uε(t)) � 0 in X∗ for a.a. t ∈ (0, T ), (DNε)

which we split into the system
∂Ψε(u̇ε(t)) � wε,

DEt(uε(t)) = −wε, ∂tEt(uε(t)) = −pε.

We follow the ideas of [18, 35] to capture the aforementioned limiting viscous jump pathes,.
However, owing to the dissipation bound (2.28), we use a different time rescaling sε : [0, T ] → [0,Sε]

sε(t) := t +
� t

0

�
Ψε(u̇ε(r)) + Ψ∗

ε(wε(r))
�

dr and Sε := sε(T ). (5.1)

Thus, sε may be interpreted as some sort of “energy arclength” of the curve uε. Notice that,
thanks to (2.28), the sequence (Sε) is uniformly bounded with respect to the parameter ε. Let us
consider the rescaled functions (tε, uε) : [0,Sε] → [0, T ]×X and (pε,wε) : [0,Sε] → R×X∗ defined
by

tε(s) := s−1

ε (s) , uε(s) := uε(tε(s)),
pε(s) := pε(tε(s)) = −∂tEtε(s)(uε(s)) , wε(s) := wε(tε(s)) = −DEtε(s)(uε(s)).

(5.2)
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We now study the limiting behavior as ε ↓ 0 of the reparametrized trajectories
��

tε(s), uε(s)
�

: s ∈ [0,Sε]
�
⊂ X = [0, T ]×X,

��
ṫε(s), u̇ε(s); pε(s),wε(s)

�
: s ∈ [0,Sε]

�
⊂ B,

where we use the notation
B := [0,+∞)×X × R×X∗. (5.3)

In order to rewrite the “rescaled energy identity” fulfilled by the triple (tε, uε,wε), we define the
viscous space-time vanishing viscosity contact potential Pε : (0,+∞) × X × R × X∗ → [0,+∞)
by setting

Pε(α, v; p,w) := αΨε(v/α) + αΨ∗
ε(w) + αp =

α

ε
Ψ(

ε

α
v) +

α

ε
Ψ∗(w) + αp (5.4)

Hence, (2.27) becomes for all 0 ≤ s1 ≤ s2 ≤ Sε
� s2

s1

Pε

�
ṫε(s), u̇ε(s); pε(s),wε(s)

�
ds + Etε(s2)(uε(s2)) = Etε(s1)(uε(s1)), (5.5)

and (5.1) yields
Pε

�
ṫε(s), u̇ε(s); 1,wε(s)

�
= 1 for a.a. s ∈ (0,Sε) .

A priori estimates and passage to the limit. Due to estimate (2.28), there exists S > 0 such
that, along a (not relabeled) subsequence, we have sε(T ) → S as ε ↓ 0. Exploiting again (2.28),
the Arzelà-Ascoli compactness theorem, and the fact that X is finite-dimensional (see also the
proof of [35, Thm. 3.3]), we find two curves t ∈ W 1,∞(0,S) and u ∈ W 1,∞([0,S];X) such that,
along the same subsequence,

tε → t in C0([0,S]), ṫε�
∗ ṫ in L∞(0,S), (5.6a)

uε → u in C0([0,S];X), u̇ε�
∗ u̇ in L∞(0,S;X), (5.6b)

pε → p in C0([0,S]), wε → w in C0([0,S]; X∗), (5.6c)

with
Etε(uε) → Et(u), p(s) = −∂tEt(s)(u(s)), w(s) = −DEt(s)(u(s)) (5.6d)

for all s ∈ [0,S]. Then, to pass to the limit in (5.5) we exploit a lower semicontinuity result
(see Proposition 6.2), based on the fact that the sequence of functionals (Pε) Γ-converges to the
augmented vanishing viscosity contact potential P : [0,+∞)×X×R×X∗ → [0,+∞] (see Lemma
6.1) defined by

P(α, v; p, w) :=

�
Ψ0(v) + IK∗(w) + α p if α > 0,

p(v, w) if α = 0.
(5.7)

By (5.6) and Proposition 6.2, we take the lim inf as ε ↓ 0 of (5.5) and conclude that the pair (t, u)
fulfils, for all 0 ≤ s1 ≤ s2 ≤ S, the estimate

� s2

s1

P
�
ṫ(s), u̇(s); p(s),w(s)

�
ds + Et(s2)(u(s2)) ≤ Et(s1)(u(s1)) . (5.8)

5.2. Vanishing viscosity contact potentials and rate-independent evolution. The aug-
mented space-time contact potential P is closely related to p introduced by (3.13). The following
result fixes some properties of P. Its proof, which we choose to omit, can be easily developed
starting from Theorems 3.6 and 3.12 for the vanishing viscosity contact potential p.

Lemma 5.1 (General properties of P).
(1) P is lower semicontinuous, 1-homogeneous and convex in the pair (α, v); for every (α, v) ∈

[0,+∞)×X the function P(α, v; ·, ·) has convex sublevels.
(2) For all (α, v, p, w) ∈ B (cf. (5.3)) it satisfies

P(α, v; p, w) ≥ �w, v�+ αp, P(0, v; p, w) ≥ p(v, w) ≥ Ψ0(v), (5.9)
P(0, v; p, w) = Ψ0(v) ⇔ w ∈ K∗. (5.10)
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(3) The contact set of P

ΣP :=
�

(α, v; p, w) ∈ B : P(α, v; p, w) = �w, v�+ αp
�

(5.11)

does not impose any constraint on p. It can be characterized by

(α, v; p, w) ∈ ΣP ⇔ w ∈ ∂ P(α, · ; p, w)(v). (5.12)

We also have

for α > 0, (α, v; p, w) ∈ ΣP if and only if w ∈ ∂Ψ0(v), (5.13)
for α = 0, (α, v; p, w) ∈ ΣP if and only if (v, w) ∈ Σp. (5.14)

Equivalently, (α, v; p, w) ∈ ΣP if and only if

w ∈ ∂Ψ0(v) ⊂ K∗ or
�
w �∈ K∗, α = 0, ∃ ε ∈ Λ(v, w) : w ∈ ∂Ψ(εv)

�
, (5.15)

where Λ(v, w) is defined in (3.18). In particular, in the additive viscosity case (2.21), we
simply have

(α, v; p, w) ∈ ΣP ⇐⇒ ∃λ ≥ 0 : w ∈ ∂Ψ0(v) + ∂ΨV (λv) and αλ = 0. (5.16)

Conclusion of the vanishing viscosity analysis. We are now going to show that (5.8) is
in fact an equality. This can be easily checked relying on the chain rule (2.26), which yields
for a.a. s ∈ (0,S)

d
ds

Et(s)(u(s)) = −∂tEt(s)(u(s)) ṫ(s)− �−DEt(s)(u(s)), u̇(s)�
(5.2)

= −p(s)ṫ(s)− �w(s), u̇(s)� ≥ −P(ṫ(s), u̇(s), p(s),w(s)) .

(5.17)

Collecting (5.17) and (5.8), we conclude that the latter holds with an equality sign and, with an
elementary argument, that such equality also holds in the differential form, namely for a.a. s ∈
(0,S)

p(s) = −∂tEt(s)(u(s)), w(s) = −DEt(s)(u(s))
d
ds

Et(s)(u(s)) = −p(s)ṫ(s)− �w(s), u̇(s)� = −P(ṫ(s), u̇(s), p(s),w(s))
(5.18)

which yields
�
ṫ(s), u̇(s);−∂tEt(s)(u(s)),−DEt(s)(u(s))

�
∈ ΣP for a.a. s ∈ (0,S). (5.19)

Finally, we take the lim sup as ε ↓ 0 of (5.5), using (5.6) and (5.18), whence

lim sup
ε↓0

� S

0

Pε(ṫε(s), u̇ε(s), pε(s),wε(s)) ds ≤
� S

0

P(ṫ(s), u̇(s), p(s),w(s)) ds.

In particular, we find that for a.a. s ∈ (0,S)

P
�
ṫ(s), u̇(s); 1,w(s)

�
= 1. (5.20)

5.3. Parametrized solutions of rate-independent systems. Motivated by the discussion of
the previous section, we now give the notion of parametrized rate-independent evolution, driven
by a general vanishing viscosity contact potential P, satisfying conditions (1), (2) of Lemma 5.1.

Definition 5.2 (Parametrized solutions of rate-independent systems). Let P : B → (−∞,+∞]
be the vanishing viscosity contact potential (5.7). We say that a Lipschitz continuous curve
(t, u) : [a, b] → [0, T ] × X is a parametrized rate-independent solution for the system (X,E,P) if
t is nondecreasing and, setting p(s) = −∂tEt(s)(u(s)), w(s) = −DEt(s)(u(s)) for all s ∈ [a, b], we
have � s2

s1

P(ṫ(s), u̇(s); p(s),w(s)) ds + Et(s2)(u(s2)) ≤ Et(s1)(u(s1)) ∀ a ≤ s1 ≤ s2 ≤ b. (5.21)

Furthermore,
(1) if ṫ(s) + Ψ0(u̇(s)) > 0 for a.a. s ∈ (a, b) we say that (t, u) is nondegenerate;
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(2) if t(a) = 0, t(b) = T we say that (t, u) is surjective;
(3) if (t, u) satisfies (5.20), we say that it is normalized.

Definition 5.2 generalizes to the present setting the notion which we first introduced in [35].

Remark 5.3. The nice feature of the previous definition is its invariance with respect to (nonde-
creasing, Lipschitz) time rescalings. Namely, if (t, u) : [a, b] → [0, T ]×X is a parametrized solution
and s : [α,β] → [a, b] is a Lipschitz nondecreasing map, then (t ◦ s, u ◦ s) is a parametrized solution
in [α,β].

The next result provides equivalent characterizations of parametrized solutions.

Proposition 5.4. A Lipschitz continuous curve (t, u) : [a, b] → [0, T ]×X, with t nondecreasing,
is a parametrized solution of (X,E,P) if and only if one of the following (equivalent) conditions
(involving as usual p = −∂tEt(u),w = −DEt(u)) is satisfied:
(1) The energy inequality (5.21) holds just for s1 = a and s2 = b, i.e.

� b

a
P(ṫ(s), u̇(s); p(s),w(s)) ds + Et(b)(u(b)) ≤ Et(a)(u(a)). (5.22)

(2) The energy inequality (5.21) holds in the differential form
d
ds

Et(s)(u(s)) + P(ṫ(s), u̇(s); p(s),w(s)) ≤ 0 for a.a. s ∈ (a, b). (5.23)

(3) The energy identity holds, in the differential form
d
ds

Et(s)(u(s)) + P(ṫ(s), u̇(s); p(s),w(s)) = 0 for a.a. s ∈ (a, b), (5.24)

or in the integrated form
� s2

s1

P(ṫ(s), u̇(s); p(s),w(s)) ds + Et(s2)(u(s2)) = Et(s1)(u(s1)) for a ≤ s1 ≤ s2 ≤ b. (5.25)

(4) There holds
�
ṫ(s), u̇(s);−∂tEt(s)(u(s)),−DEt(s)(u(s))

�
∈ ΣP for a.a. s ∈ (a, b) .

(5) The pair (t, u) satisfy the differential inclusion

∂ P
�
ṫ(s), · ;−∂tEt(s)(u(s)),−DEt(s)(u(s))

�
(u̇(s)) + DEt(s)(u(s)) � 0 a.e. in (a, b) . (5.26)

In particular, for a.a. s ∈ (a, b) we have the implications

ṫ(s) > 0 ⇒ −DEt(s)(u(s)) ∈ K∗,
−DEt(s)(u(s)) ∈ K∗ ⇒ −DEt(s)(u(s)) ∈ ∂Ψ0(u̇(s)), (5.27)

and for every Borel map λ defined in the open set J by

J :=
�
s ∈ (a, b) : −DEt(s)(u(s)) �∈ K∗�,

with λ(s) ∈ Λ(u̇(s),−DEt(s)(u(s))) for a.a. s ∈ J,
(5.28)

we have
−DEt(s)(u(s)) ∈ ∂Ψ(λ(s)u̇(s)), ṫ(s) = 0 for a.a. s ∈ J. (5.29)

The proof follows from the chain rule (2.26) (arguing as for (5.17), (5.18), (5.19)), and from
the characterization of the contact set ΣP of Lemma 5.1 (see also [35, Prop. 2]).

Corollary 5.5 (Differential characterization in the additive viscosity case). Let P : B → (−∞,+∞]
be a vanishing viscosity contact potential satisfying conditions (1), (2) of Lemma 5.1, and suppose
also that the contact set of P satisfies the characterization (5.16) of Lemma 5.1 in the additive
viscosity case (2.21) Ψ = Ψ0 + ΨV .

Then, a Lipschitz continuous curve (t, u) : [a, b] → [0, T ] × X is a parametrized solution of
(X,E,P) if and only if there exists a Borel function λ : (a, b) → [0,+∞) such that for a.a. s ∈ (a, b)

∂Ψ0(u̇(s)) + ∂ΨV (λ(s)u̇(s)) + DEt(s)(u(s)) � 0, λ(s)ṫ(s) = 0 for a.a. s ∈ (a, b). (5.30)
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The vanishing viscosity analysis developed in Sections 5.1 and 5.2 provides the following con-
vergence result.

Theorem 5.6 (Convergence to parametrized solutions). Let (un) be viscous solutions of (DNε)
corresponding to a vanishing sequence (εn), let tn : [0,S] → [0, T ] be uniformly Lipschitz and
surjective time rescalings and let un : [0,S] → X be defined as un(s) := un(tn(s)) for all s ∈ [0,S].
Suppose that

∃α > 0 ∀n ∈ N : mn(s) := Pεn(ṫn(s), u̇n(s); 1,−DEtn(s)(un(s))) ∈ [α,α−1]

for a.a. s ∈ (0,S). If the functions (tn, un,mn) pointwise converge to (t, u,m) as n →∞, then (t, u)
is a (nondegenerate, surjective) parametrized rate-independent solution according to Definition 5.2,
and

P(ṫ(s), u̇(s); 1,−DEt(s)(u(s))) = m(s) for a.a. s ∈ (0,S).

The following remark, to be compared with Remark 4.8, highlights the different mechanical
regimes encompassed in the notion of parametrized rate-independent solution.

Remark 5.7 (Mechanical interpretation). The evolution described by (5.26) in Proposition 5.4
bears the following mechanical interpretation (cf. with [18] and [35]):

• the regime (ṫ > 0, u̇ = 0) corresponds to sticking,
• the regime (ṫ > 0, u̇ �= 0) corresponds to rate-independent sliding. In both these two

regimes −DEt(u) ∈ K∗.
• when −DEt(u) cannot obey the constraint K∗, then the system switches to a viscous

regime. The time is frozen (i.e., ṫ = 0), and the solution follows a viscous path. In the
additive viscosity case (2.21) it is governed by the rescaled viscous equation (5.30) with
λ > 0. These viscous motions can be seen as a jump in the (slow) external time scale.

We conclude this section with the main equivalence result between parametrized and BV so-
lutions of rate-independent systems (compare with the analogous [35, Prop. 6]). We postpone its
proof at the end of the next section.

Theorem 5.8 (Equivalence between BV and parametrized solutions). Let (t, u) : [0,S] → [0, T ]×
X be a (nondegenerate, surjective) parametrized solution of the rate independent system (X,E,P).
For every t ∈ [0, T ] set

s(t) :=
�
s ∈ [0,S] : t(s) = t

�
(5.31)

Then, any curve u : [0, T ] → X such that

u(t) ∈
�
u(s) : s ∈ s(t)

�
(5.32)

is a BV solution of the rate-independent system (X,E, p).
Conversely, if u : [0, T ] → X is a BV solution, then there exists a parametrized solution (t, u) such
that (5.32) holds for a time-rescaling function s defined as in (5.31).

6. Auxiliary results

After proving some lower semicontinuity results for vanishing viscosity contact potentials, in
Section 6.2 we develop some auxiliary results concerning the total variation induced by time-
dependent (and possibly asymmetric) Finsler norms.

6.1. Lower semicontinuity for vanishing viscosity contact potentials. Let us start with a
lemma which shows that Pε, which is defined in (5.4), Γ-converges to P as ε ↓ 0 (compare with
[35, Lemma 3.1]), where P is defined in (5.7).

Lemma 6.1 (Γ-convergence of Pε).
Γ-liminf estimate: For every choice of sequences εn ↓ 0 and (αn, vn, pn, wn) → (α, v, p, w)

in B, we have
lim inf
n→∞

Pεn(αn, vn; pn, wn) ≥ P(α, v; p, w). (6.1)
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Γ-limsup estimate: For every (α, v; p, w) ∈ B there exists (αε, vε, pε, wε)ε>0 such that

lim sup
ε↓0

Pε(αε, vε; pε, wε) ≤ P(α, v; p, w). (6.2)

Proof. The Γ-liminf estimate is easy: if α > 0 then, also recalling (2.29), one verifies that

lim inf
n→∞

Pεn(αn, vn; pn, wn) ≥ lim inf
n→∞

�
Ψ0(vn) + αnε−1

n Ψ∗
0(wn) + αnpn

�

≥ P0(α, v; p, w),
(6.3)

where we have used the notation

P0(α, v; p, w) := Ψ0(v) + I∗K(w) + αp. (6.4)

The first inequality in (6.3) is also due to (2.16). If α = 0, we use the obvious lower bound

Pεn(αn, vn; pn, wn) ≥ p(vn, wn) + αnpn

and the continuity of p (cf. Theorem 3.12).
To show the limsup estimate (6.2) for w ∈ K∗, we simply choose αε := α + ε, vε := v, pε :=

p, wε := w, observing that in this case

Pε(αε, vε; pε, wε) ≤ ε(α + ε)Ψ(v/(ε(α + ε)) + (α + ε)p ε↓0→ Ψ0(v) + αp = P(α, v; p, w) ,

the first passage due to (2.24). If w �∈ K∗, we choose a coefficient λ ∈ Λ(v, w) as in (3.18), and we
set αε := λε, vε := v, pε := p, wε := w, obtaining

Pε(αε, vε; pε, wε) = p(v, w) + λεp
ε↓0→ p(v, w) = P(α, v; p, w). �

An important consequence of the previous Lemma is provided by the following lower-semicontinuity
result for the integral functional associated with Pε.

Proposition 6.2 (Lower-semicontinuity of the ε-energy). Let us fix an interval (s0, s1). For every
choice of a vanishing sequence εn > 0 and of functions αn ∈ L∞(s0, s1), pn ∈ L1(s0, s1), vn ∈
L1(0, T ;X), wn ∈ L1(0, T ;X∗) such that

αn�∗ α in L∞(s0, s1), pn → p in L1(0, T ),

vn � v in L1(0, T ;X), wn → w in L1(s0, s1),

we have the liminf estimates

lim inf
n→∞

� s1

s0

Pεn(αn(s), vn(s); pn(s), wn(s)) ds ≥
� s1

s0

P(α(s), v(s); p(s), w(s)) ds, (6.5)

lim inf
n→∞

� s1

s0

P0(αn(s), vn(s); pn(s), wn(s)) ds ≥
� s1

s0

P(α(s), v(s); p(s), w(s)) ds, (6.6)

where P0 is defined in (6.4).

Proof. It is sufficient to prove this result in the case pn ≡ p = 0. Then we notice that, by Lemma
6.1, the integrand

P̃(ε, α, v, w) := Pε(α, v; 0, w) for (ε, α, v, w) ∈ [0,+∞)× [0,+∞)×X ×X∗

is lower semicontinuous and convex in the pair (α, v). Then, inequality (6.5) follows from Ioffe’s
Theorem (see e.g. [3, Thm. 5.8]). A similar argument yields (6.6). �

6.2. Asymmetric dissipations, pseudo-total variation, and extended space-time curves.
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Notation. Hereafter, X shall stand for the extended space-time domain [0, T ]×X, with elements
x = (t, u) denoted by bold letters. We shall denote by V the tangent cone [0,+∞)×X to X and
by v = (α, v) the elements in V .

We shall consider lower semicontinuous dissipation functionals R : X ×V → [0,+∞) satisfying
the following properties:

∀x ∈ X : R (x; ·) is convex and positively 1-homogeneous; (6.7a)
∃C > 0 ∀x ∈ X , v = (α, v) ∈ V : R (x;v) ≥ C�v�X (6.7b)

R is lower semicontinuous on X × V . (6.7c)

In order to keep track of the time-component of v we also set, for all β ≥ 0,

Rβ (x;v) = αβ + R (x;v) for allx ∈ X , v = (α, v) ∈ V .

Notice that, for any dissipation R complying with properties (6.7), the corresponding functional
Rβ satisfies the subadditivity property for all x ∈ X and v1, v2 ∈ V

Rβ (x;v1 + v2) ≤ Rβ (x;v1) + Rβ (x;v2) .

Example 6.3 (Dissipations induced by Ψ0 and P).

(1) Our first trivial example of a dissipation fulfilling properties (6.7) is given by

P(x,v) := Ψ0(v) for x ∈ X , v = (α, v) ∈ V . (6.8)

(2) Our main example will be provided by the dissipation induced by the vanishing viscosity
contact potential P, namely

B(x;v) := P(α, v, 0,−DEt(u)) for x = (t, u) ∈ X , v = (α, v) ∈ V . (6.9)

It is not difficult to check that B satisfies all of assumptions (6.7). Hence, for all β ≥ 0 we
set

Bβ (x;v) := P(α, v;β,−DEt(u)) for x = (t, u) ∈ X , v = (α, v) ∈ V . (6.10)

Definition 6.4 (Pseudo-Finsler distance induced by R). Given a dissipation function R : X ×
V → [0,+∞) complying with (6.7), for every xi = (ti, ui) ∈ X , i = 0, 1, with 0 ≤ t0 ≤ t1 ≤ T ,
we set

∆Rβ (x0,x1) := inf
�� r1

r0

Rβ (x(r); ẋ(r)) dr :

x = (t, u) ∈ Lip(r0, r1;X ), x(ri) = xi, i = 0, 1, ṫ ≥ 0
�

.

(6.11)

If t0 > t1 we set ∆Rβ (x0,x1) := +∞. We also define

∆R0(t;u0, u1, u2) := ∆R0((t, u0), (t, u1)) + ∆R0((t, u1), (t, u2)).

(notice that this quantity is independent of β).

Remark 6.5. The link with the Finsler cost ∆p,E (3.8) induced by (p,E) is clear. For R = B given
by (6.9), using P(0, v; 0, w) = p(v, w) we have, for t0 = t1 = t,

∆B0((t, u0), (t, u1)) = ∆p,E(t;u0, u1) for every u0, u1 ∈ X. (6.12)

When R = P is given by (6.8), we simply have

∆Pβ ((t0, u0), (t1, u1)) = β(t1 − t0) + Ψ0(u1 − u0) for u0, u1 ∈ X, 0 ≤ t0 < t1 ≤ T.
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General properties of ∆Rβ (·, ·). It is not difficult to check that the infimum in (6.11) is attained
and, by the usual rescaling argument (cf. Remark 4.5), one can always choose an optimal Lipschitz
curve x = (t, u) defined in [0, 1] such that

R1 (x; ẋ) is essentially constant and equal to ∆R1(x0,x1) = (t1 − t0) + ∆R0(x0,x1). (6.13)

Properties (6.7b)–(6.7c) yield, for every u0, u1 ∈ X and 0 ≤ t0 ≤ t1 ≤ T, the estimate

β(t1 − t0) + C�u1 − u0�X ≤ ∆Rβ ((t0, u0), (t1, u1)). (6.14)

Notice that ∆Rβ (·, ·) is not symmetric but still satisfies the triangle inequality: for xi = (ti, ui) ∈
X with t0 ≤ t1 ≤ t2, there holds

∆Rβ (x0,x2) ≤ ∆Rβ (x0,x1) + ∆Rβ (x1,x2).

Another useful property, direct consequence of (6.7c), is the lower semicontinuity with respect to
convergence in X : if xi,n = (ti,n, ui,n) → xi = (ti, ui) in X as n ↑ +∞, i = 0, 1, then

lim inf
n↑+∞

∆Rβ (x0,n,x1,n) ≥ ∆Rβ (x0,x1). (6.15)

Indeed, assuming that the lim inf in (6.15) is finite and that, up to the extraction of a suitable
subsequence, that it is a limit, it is sufficient to choose an optimal sequence xn = (tn, un) of
Lipschitz curves as in (6.13), which therefore satisfies a uniform Lipschitz bound and, up to the
extraction of a further subsequence, converges to some Lipschitz curve x = (t, u). Then, (6.15)
can be proved in the same way as (6.6).

In the case of the cost induced by B induced by the vanishing viscosity contact potential P, we
have a refined lower-semicontinuity result:

Lemma 6.6. Let un, wn : [t0, t1] → X be Borel maps and (εn) be a vanishing sequence. Suppose
that un is absolutely continuous for every n ∈ N and that the following convergences hold as n →∞

un(t) → u(t) and wn(t) → w(t) for all t ∈ [t0, t1]; sup
t∈[t0,t1]

�wn(t) + DEt(un(t))�X∗ → 0.

Then,

lim inf
n↑+∞

� t1

t0

�
Ψεn(u̇n(t)) + Ψ∗

εn
(wn(t))

�
dt ≥ ∆B0((t0, u(t0)), (t1, u(t1))). (6.16)

Proof. Up to extracting a further subsequence, it is not restrictive to assume that the lim inf in
(6.16) is in fact a limit. We set as in (5.1), (5.2)

sn(t) := t− t0 +
� t

t0

�
Ψεn(u̇n(r)) + Ψ∗

εn
(wn(r))

�
dr, Sn := sn(t1),

tn(s) := s−1

n (s), un(s) := un(tn(s)), wn(s) := wn(tn(s)) for all s ∈ [0,Sn]

so that � t1

t0

�
Ψεn(u̇n(t)) + Ψ∗

εn
(wn(t))

�
dt =

� Sn

0

Pεn(ṫn(s), u̇n(s); 0,wn(s)) ds. (6.17)

Since the sequences (tn) and (un) are uniformly Lipschitz, applying the Ascoli-Arzelà Theorem we
can extract a (not relabeled) subsequence such that Sn → S, and find functions t : [0,S] → [t0, t1],
u : [0,S] → X, and w : [0,S] → X∗, such that

tn → t, un → u, wn → w = −DEt(u) uniformly in [0,S].

By construction, we have t(0) = t0, u(0) = u(t0), t(S) = t1, and u(S) = u(t1). Applying Proposi-
tion 6.2, we have

lim inf
n↑+∞

� Sn

0

Pεn(ṫn(s), u̇n(s); 0,wn(s)) ds ≥
� S

0

P0(ṫ(s), u̇(s); 0,w(s)) ds

≥ ∆B0((t(0), u(0)), (t(S), u(S))).
(6.18)

Combining (6.17) and (6.18), we conclude (6.16). �
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The total variation associated with ∆Rβ . In the same way as in Definition 3.4 we introduced
the total variation Varp,E associated with the Finsler cost ∆p,E, it is now natural to define the
total variation associated with ∆Rβ .

Definition 6.7 (Total variation for the pseudo-Finsler distance ∆Rβ ). For every curve x = (t, u) :
[0,S] → X such that t is nondecreasing and every interval [a, b] ⊂ [0,S] we set

VarRβ (x; [a, b]) := sup
� M�

m=1

∆Rβ (x(sm), x(sm−1)) :

a = s0 < s1 < · · · < sM−1 < sM = b
�

.

(6.19)

For a non-parametrized curve u : [0, T ] → X and [a, b] ⊂ [0, T ], we simply set

VarRβ (u; [a, b]) := VarRβ (u; [a, b]), with u(t) := (t, u(t)) ∈ X , t ∈ [0, T ].

In view of (6.7b), it is immediate to check that a curve u with VarR0(u; [0, T ]) < +∞ belongs
to BV([0, T ]; X).

In contrast to the (pseudo)-total variation defined in (3.11), the above notion of total variation
is lower semicontinuous with respect to pointwise convergence (compare with Remark 3.5).

Proposition 6.8 (Lower semicontinuity of VarRβ (·; [a, b])). If xn = (tn, un) : [0,S] → X is a
sequence of curves pointwise converging to x = (t, u) as n ↑ ∞, we have

lim inf
n↑∞

VarRβ (xn; [a, b]) ≥ VarRβ (x; [a, b]). (6.20)

Proof. The argument is standard: for an arbitrary subdivision a = s0 < s1 < · · · < sM−1 < sM =
b, (6.15) yields

M�

m=1

∆Rβ (x(sm), x(sm−1)) ≤ lim inf
n↑+∞

M�

m=1

∆Rβ (xn(sm), xn(sm−1)) ≤ lim inf
n↑∞

VarRβ (xn; [a, b]).

Taking the supremum with respect to all subdivisions of [a, b] we obtain (6.20). �
Lipschitz curves. The next result shows that, for Lipschitz curves, the total variation can be

calculated by integrating the corresponding dissipation potential.

Proposition 6.9 (The total variation for Lipschitz curves). Given β, L > 0, a bounded curve
x := (t, u) : [0,S] → X satisfies the ∆Rβ–Lipschitz condition with Lipschitz constant L

∆Rβ (x(s1), x(s2)) ≤ L(s2 − s1) for every 0 ≤ s1 ≤ s2 ≤ S, (6.21)

if and only if it is Lipschitz continuous (with respect to the usual distance in X ), t is nondecreasing,
and

Rβ (x(s); ẋ(s)) ≤ L for a.a. s ∈ (0,S). (6.22)
In this case, for every γ ≥ 0

VarRγ (x; [a, b]) = γ(t(b)− t(a)) +
� b

a
R0 (x(s); ẋ(s)) ds. (6.23)

Proof. The sufficiency of condition (6.22) is clear. Let us now consider a curve x satisfying (6.21):
by the coercivity (6.14), x is a Lipschitz curve in the usual sense and [47, Prop. 2.2] yields

∆Rβ (x(s0), x(s1)) ≤
� s1

s0

m(s) ds, where m(s) := lim
h↓0

∆Rβ (x(s), x(s + h))
h

is the so-called metric derivative of x (see [1, 4]). The minimality of m ensures that

m(s) ≤ Rβ (x(s); ẋ(s)) for a.a. s ∈ [0,S]. (6.24)

On the other hand, since Rβ is lower semicontinuous and 1-homogeneous in v, for every 0 < σ < 1
and s ∈ [0,S] we find a constant δ > 0 such that

Rβ (x(r);v) ≥ σRβ (x(s);v) for every v ∈ V if |r − s| ≤ δ,
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so that a comparison with the linear segment joining x(s) with x(s + h) yields

∆Rβ (x(s), x(s + h)) ≤ σ−1Rβ (x(s); x(s + h)− x(s))

Dividing by h and passing to the limit first as h ↓ 0 and eventually as σ ↑ 1, we obtain the opposite
inequality of (6.24). Combining (6.24) (which holds as an equality) with (6.21), we infer (6.22),
and (6.23) ensues. �

Proposition 6.10 (Reparametrization). Let u : [0, T ] → X be a curve with finite total variation
V := VarR0(u; [0, T ]) < +∞, and let us set

s(t) := t + VarR0(u; [0, t]) = VarR1(u; [0, t]) for every t ∈ [0, T ]. (6.25)

Then, there exists a Lipschitz parametrization x = (t, u) : [0,S] → X , with S = V + T , such that

R1 (x(s); ẋ(s)) = 1 for a.a. s ∈ (0,S), (6.26)

t(s(t)) = t, u(s(t)) = u(t) for every t ∈ [0, T ]. (6.27)
In particular,

b− a + VarR0(u; [a, b]) = s(b)− s(a) =
� s(b)

s(a)

R1 (x(s); ẋ(s)) ds. (6.28)

Proof. The proof is classical, at least when the dissipation R is continuous and even in its second
argument: we briefly sketch the main ideas and refer to [35, Lemma 4.1].

Notice that the jump set Js of the curve s given by (6.25) coincides with the jump set Ju of u,
and s is injective in Cu := (0, T ) \ Ju. We denote by t its inverse, defined on Cu := s(Cu) and
extended to Cu by its (Lipschitz) continuity; we also set u(s) := u(t) if s = s(t) ∈ Cu. Suppose
now that (s−, s+) is a connected component of [0,S] \ Cu, corresponding to some time t̄ ∈ [0, T ]
with s± = s(t̄±) and s̄ = s(t̄) ∈ [s−, s+]. We have

u(s−) = lim
s↑s−

u(s) = u(t̄−), u(s+) = lim
s↓s+

u(s) = u(t̄+),

s̄− s− = ∆R0((t̄, u(t̄−)), (t̄, u(t̄))), s+ − s̄ = ∆R0((t̄, u(t̄)), (t̄, u(t̄+))).

By Definition 6.4, we can join (t̄, u(s−)) to (t̄, u(s+)) by a ∆R0-Lipschitz curve (still denoted by
(t, u)) defined in [s−, s+] with constant first component t(s) = t̄, and satisfying (6.13) as well as
u(̄s) = u(t̄).

It is then easy to check that the final curve x = (t, u) obtained by “filling” in this way all the (at
most countable) holes in [0,S] \ Cu satisfies (6.27) and the Lipschitz condition (6.21) with L ≤ 1.
Applying (6.22) and (6.23) we get

� s(b)

s(a)

R1 (x(s); ẋ(s)) ds ≤ s(b)− s(a) = VarR1(u; [a, b]) ≤ VarR1(x; [s(a), s(b)])

=
� s(b)

s(a)

R1 (x(s); ẋ(s)) ds

where the first inequality follows from the 1-Lipschitz condition, the subsequent identity from the
definition of s, and the last one from (6.28). �

The reparametrization of Proposition 6.10 is also useful to express the distributional derivative
of u. If VarR0(u; [0, T ]) < +∞, we can introduce the distributional derivative µR1,u := s� of s,
which is a finite positive measure satisfying

µR1,u([a, b]) = s(b)− s(a),
� T

0

ζ(t) dµR1,u(t) = −
� T

0

ζ̇(t)s(t) dt for every ζ ∈ C0

0(0, T ).

Notice that a singleton {t} has strictly positive measure if and only if t ∈ Ju; more precisely

µR1,u({t}) = ∆R0(t;u(t−), u(t), u(t+)) if t ∈ Ju;
µR1,u({t}) = 0 if t ∈ Cu = (0, T ) \ Ju ,
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with obvious modification for t = 0, T . As a general fact we have the representation formula (recall
that t is the inverse of s)

t#
�
L 1|(0,S)

�
= µR1,u, i.e.

� T

0

ζ(t) dµR1,u(t) =
� S

0

ζ(t(s)) ds, (6.29)

for every bounded Borel function ζ : [0, T ] → R. Since t is injective in Cu := t−1(Cu) ⊂ (0,S), a
Borel subset A of Cu is L 1-negligible if and only if t(A) has µR1,u-measure 0. Therefore, as the
derivatives ṫ, u̇ are Borel functions defined up to a L 1-negligible subset of (0,S), the compositions
ṫ ◦ s, u̇ ◦ s are well defined in Cu. The next lemma shows that they play an important role.

Proposition 6.11. The Lebesgue measure L 1|(0,T )
and the vector measure u�co = u�L + u�

C
are

absolutely continuous w.r.t. µR1,u, and we have

dL 1

dµR1,u
= ṫ ◦ s and

du�co
dµR1,u

= u̇ ◦ s µR1,u-a.e. in Cu. (6.30)

Proof. The absolute continuity of both measures is easy, since L 1 ≤ µR1,u by (6.29) and the total
variation �u��X is absolutely continuous w.r.t. µR1,u thanks to (6.14). The first identity of (6.30)
can be proved as in [35, Lemma 4.1]. Concerning the second one, let us set for every smooth
function ζ ∈ C∞0 (0, T )

Ju(ζ) :=
�

t∈Ju

ζ(t)
�
u(t+)− u(t−)

�
,

and let us observe that we have

−
�

Cu

(ζ ◦ t)�(s) u(s) ds =
�

Cu

ζ(t(s)) u̇(s) ds + Ju(ζ). (6.31)

Indeed, denoting by At = (at, bt) = t−1(t), t ∈ Ju, the connected components of [0,S] \ Cu, and
recalling that u(at) = u(t−), u(bt) = u(t+), we have

−
�

Cu

(ζ ◦ t)�(s) u(s) ds = −
� S

0

(ζ ◦ t)�(s) u(s) ds +
�

t∈Ju

� bt

at

(ζ ◦ t)�(s) u(s) ds

=
� S

0

ζ(t(s)) u̇(s) ds−
�

t∈Ju

� bt

at

(ζ ◦ t)(s) u̇(s) ds + Ju(ζ) =
�

Cu

ζ(t(s)) u̇(s) ds + Ju(ζ).

Therefore, there holds
� T

0

ζ(t) du�(t) = −
� T

0

ζ̇(t) u(t) dt = −
� S

0

ζ̇(ṫ(s)) u(t(s)) ṫ(s) ds = −
�

Cu

ζ̇(t(s)) u(t(s)) ṫ(s) ds

= −
�

Cu

(ζ ◦ t)�(s) u(s) ds =
�

Cu

ζ(t(s)) u̇(s) ds + Ju(ζ)

=
�

Cu

ζ(t) u̇(s(t)) dµR1,u(t) + Ju(ζ).

where the fifth identity ensues from (6.31) and the last one from (6.29). Since
� T

0

ζ(t) du�co(t) =
� T

0

ζ(t) du�(t)− Ju(ζ)

we conclude the second of (6.30). �

Corollary 6.12 (Integral expression for VarR). Let u : [0, T ] → X fulfil VarR0(u; [0, T ]) < +∞,
let µ be a positive finite measure such that L 1 � µ and u�co � µ, and let us set

JmpR0
(u; [a, b]) := ∆R0(a;u(a), u(a+)) + ∆R0(b;u(b−), u(b))

+
�

t∈Ju∩(a,b)

∆R0(t;u(t−), u(t), u(t+)). (6.32)
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Then,

VarR0(u; [a, b]) =
� b

a
R0

��
t, u(t)

�
;
�dL 1

dµ
(t),

du�co
dµ

(t)
��

dµ(t) + JmpR0
(u; [a, b]). (6.33)

Proof. Since the expression on the right-hand side is independent of the measure µ, it is not
restrictive to choose µ = µR1,u; by (6.28) we have

b− a + VarR0(u; [a, b]) =
�

(s(a),s(b))∩Cu

R1 (x(s); ẋ(s)) ds + L 1((s(a), s(b)) \ Cu)

=
�

(a,b)∩Cu

R1 (x(s(t)); ẋ(s(t))) dµ + µ([a, b] ∩ Ju)

=
�

(a,b)∩Cu

R1

��
t, u(t)

�
; (ṫ(s(t)), u̇(s(t)))

�
+ JmpR0

(u; [a, b]),

and we conclude by (6.30). �
6.3. Total variation for BV solutions. We focus now on the particular case (6.10) of Example
6.3, when the dissipation R is associated with the vanishing viscosity contact potential P.

Theorem 6.13 (Comparison between VarB0(u; [·, ·]) and Varp,E(u; [·, ·])). For every curve u ∈
BV([0, T ];X) and every interval [a, b] ⊂ [0, T ] we have

Varp,E(u; [a, b]) ≤ VarB0(u; [a, b]), (6.34)

and equality holds in (6.34) if and only if u satisfies the local stability condition (Sloc) on (a, b).
Furthermore, if VarB0(u; [a, b]) < +∞, then u satisfies (Sloc) on (a, b).

Proof. Let us first notice that the jump contributions to the total variations Varp,E and VarB0 are
the same by (6.12). Inequality (6.34) then follows by applying (6.33) and observing that for µ-a.a.
t ∈ [0, T ]

B0

��
t, u(t)

�
,
�dL 1

dµ
(t),

du�co
dµ

(t)
��

= P
�dL 1

dµ
(t),

du�co
dµ

(t); 0, w(t)
�
≥ Ψ0

�du�co
dµ

(t)
�

(6.35)

(where we have used the notation w(t) = −DEt(u(t))), the latter inequality ensuing from (5.9).
On the other hand, in view of (5.10), (6.35) is an identity if and only if w(t) ∈ K∗ for µ-a.a
t ∈ (0, T ), i.e. if the local stability property (Sloc) holds.

Finally, since L 1 � µ, dL 1

dµ (t) > 0 for L 1-a.a t ∈ (0, T ). Therefore, on account of (5.7) we
conclude the last part of the statement. �
Corollary 6.14. A curve u : [0, T ] → X is a BV solution if and only if it satisfies one of the
following (equivalent) two conditions:

VarB0(u; [t0, t1]) + Et1(u(t1)) = Et0(u(t0)) +
� t1

t0

∂tEt(u(t)) dt for every 0 ≤ t0 ≤ t1 ≤ T, (6.36)

VarB0(u; [0, T ]) + ET (u(T )) ≤ E0(u(0)) +
� t

0

∂tEs(u(s)) ds. (6.37)

Lemma 6.15. Suppose that uε ∈ AC([0, T ];X), ε > 0, is a family pointwise converging to u as
ε ↓ 0, and wε : [0, T ] → X∗ satisfies �wε(t) + DEt(uε(t))�X∗ → 0 uniformly in [0, T ]. Then,

lim inf
ε↓0

� T

0

�
Ψε(u̇ε) + Ψ∗

ε(wε(t))
�

dt ≥ VarB0(u; [0, T ]) ≥ Varp,E(u; [0, T ]). (6.38)

Proof. Choosing a finite partition 0 = t0 < t1 < t2 < · · · < tN = T of the time interval [0, T ],
Lemma 6.6 yields

lim inf
ε↓0

� T

0

�
Ψε(u̇ε) + Ψ∗

ε(wε(t))
�

dt ≥
N�

j=1

∆B0((tj−1, u(tj−1)), (tj , u(tj))).

Taking the supremum of the right-hand side with respect to all partitions of [0, T ], we end up with
(6.38). �
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We conclude this section with the proof of Theorem 5.8.

Proof. Let (t, u) be a parametrized solution as in the statement of the theorem. It is easy to check
directly from definitions (6.11) and (6.19) that

VarB0(u; [0, T ]) ≤
� S

0

P(ṫ(s), u̇(s); 0,−DEt(s)(u(s))) ds

≤ E0(u(0))− Et(S)(u(S)) +
� S

0

∂tEt(s)(u(s))ṫ(s) ds

= E0(u(0))− ET (u(T )) +
� T

0

∂tEt(u(t)) dt ,

where the second inequality ensues from (5.22). Thus, (6.37) holds, so that u is a BV solution by
Corollary 6.14. The converse implication follows from Proposition 6.10. �
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