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Abstract

We consider the Cauchy problem for the Perona-Malik equation

ut = div

( ∇u
1 + |∇u|2

)

in a bounded open set Ω ⊆ R
n, with Neumann boundary conditions.

If n = 1, we prove some a priori estimates on u and ux. Then we consider the
semi-discrete scheme obtained by replacing the space derivatives by finite differences.
Extending the previous estimates to the discrete setting we prove a compactness result
for this scheme and we characterize the possible limits in some cases.

Finally, for n > 1 we give examples to show that the corresponding estimates on ∇u
are in general false.

Mathematics Subject Classification 2000 (MSC2000): 35B45, 35B50, 35K55.

Key words: Perona-Malik equation, forward-backward parabolic equation, anisotropic
diffusion, semi-discrete scheme, a priori estimates, gradient estimate.



1 Introduction

In this paper we consider the initial boundary value problem

ut = (ϕ′(ux))x = ϕ′′(ux)uxx in (−1, 1) × [0, T ), (1.1)

ux(−1, t) = ux(1, t) = 0 ∀t ∈ [0, T ), (1.2)

u(x, 0) = u0(x) ∀x ∈ (−1, 1), (1.3)

which is the formal gradient flow of the integral functional

PMϕ(u) =

∫ 1

−1

ϕ(ux) dx. (1.4)

Since we are interested in smooth solutions, we require that (1.1) and (1.2) are
satisfied also for t = 0. In particular, equation (1.2) for t = 0 gives a compatibility
condition on u0.

We assume that ϕ ∈ C2(R) and for simplicity ϕ′(0) = 0, but we do not assume that
ϕ is convex: therefore equation (1.1) is a forward-parabolic PDE where ϕ′′(ux) > 0, and
a backward-parabolic PDE where ϕ′′(ux) < 0. The interesting case is of course when
the initial condition u0 is such that ϕ′′(u0x) changes its sign in [−1, 1]: in this case we
say that u0 is transcritical.

We also consider the n-dimensional generalization of (1.4), i.e. the functional

PMϕ(u) =

∫

Ω

ϕ(|∇u|) dx, (1.5)

whose gradient flow is the initial boundary value problem

ut = div

(

ϕ′(|∇u|) ∇u
|∇u|

)

in Ω × [0, T ), (1.6)

∂u

∂n
= 0 in ∂Ω × [0, T ), (1.7)

u(x, 0) = u0(x) ∀x ∈ Ω, (1.8)

where Ω ⊆ R
n is an open set with piecewise C1 boundary, and n is the exterior normal

to ∂Ω. Note that (1.6) is well defined since ϕ′(0) = 0.
The typical example is the so called Perona-Malik equation, corresponding to ϕ(σ) =

2−1 log(1+σ2), introduced in [15] in the context of image processing (see also [11]), hence
in the case where n = 2, Ω is a rectangle, and u0 represents the gray level of an image.
A different choice is ϕ(σ) = (σ2 − 1)2, considered for example in [1] in the context of
nonlinear elasticity and phase transitions.

From the analytical point of view, the forward-backward character of these PDEs
induces a general skepticism (see [2]), partially supported by some negative results ([10],
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[12], [9]). In particular, it is known that problem (1.1), (1.2), (1.3) has no global solution
(T = +∞) if u0 is transcritical (see [12] and [9]). Existence of local solutions, even for
special classes of transcritical initial data, is still an open problem.

On the other hand, numerical experiments exhibit much better stability properties
than expected (see [13], [6], [7], [3], [4]).

The existence of good reasons for being pessimistic and good reasons for being op-
timistic is usually referred as “the Perona-Malik paradox”.

In this paper we partially support both positions. Concerning the one dimensional
problem (1.1), (1.2), (1.3), in Theorem 2.2 we prove some a priori estimates on u and
ux. In particular, we prove that the L1 norm of ux in the space variable (i.e. the total
variation of u) is a non-increasing function of time, while the L∞ norm of ux in the
space variable is a non-decreasing function of time if u0 is transcritical.

Then we consider the semi-discrete scheme for (1.1), (1.2), (1.3), obtained by re-
placing space derivatives with finite differences. In Theorem 2.5 we show that some
of the estimates proved in the continuous case, and in particular the estimate of the
total variation, can be extended to the discrete setting. Such estimates are enough to
prove (Theorem 2.7) that the solutions of the discrete problems converge to a limit (up
to subsequences), as the discretization step goes to 0. This suggests to consider these
limits as solutions of (1.1), (1.2), (1.3) in some weak sense, as we do in Definition 2.8.
Then we show that the properties of these limits are consistent with what observed
in numerical experiments (Theorem 2.9). We also prove that they are classical solu-
tions of equation (1.1) in the forward region of the initial condition (Theorem 2.10).
We don’t think that the same is true in the backward region, due to the “fibrillation”
phenomenon conjectured in [5] as a consequence of the “staircasing” effect observed in
numerical experiments. This remains a challenging problem.

Finally, we consider the n-dimensional problem (1.6), (1.7), (1.8). The estimates
on u can be generalized almost word by word (Theorem 2.14), but for gradients the
situation is different. In Theorem 2.15 we prove that the total variation of the solution
is a non-increasing function of time in the case of radial solutions, but then we show with
Theorem 2.17 that this cannot be true in general, also for the Perona-Malik equation
in a rectangle. A consequence is that the argument used in dimension one to prove the
compactness for the semi-discrete scheme cannot be passed to dimension n > 1. We
also show with Theorem 2.18 that it is no more true that the L∞ norm of the gradient
is non-decreasing if u0 is transcritical. This prevents us from extending in dimension
n > 1 the proofs of non-existence of global solutions for transcritical data given in [9]
or [12].

This paper is organized as follows: in section 2 we state our results the counter-
examples, in section 3 we give proofs, in section 4 we present the counter-examples.
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2 Statements

Before we state our estimates, we collect some assumptions on ϕ, which will be used in
several statements.

(ϕ0) ϕ is an even non-negative function of class C2 such that ϕ′(0) = 0.

(ϕ1) σ · ϕ′(σ) ≥ 0 for every σ ∈ R.

(ϕ2) ϕ is convex in a neighborhood of 0, i.e. there exists σ0 > 0 such that ϕ′′(σ) ≥ 0 if
|σ| ≤ σ0.

(ϕ3) ϕ is convex-concave, i.e. there exists σ0 > 0 such that ϕ′′(σ) ≥ 0 if |σ| ≤ σ0, and
ϕ′′(σ) ≤ 0 if |σ| ≥ σ0.

We remark that all these assumptions are satisfied in the Perona-Malik case.
Unless otherwise stated, we always consider C2 solutions (this means that ut and the

second order derivatives in the space variables are assumed to be continuous functions),
even if most statements do not involve second derivatives, and so we expect them to be
true also for C1 solutions.

2.1 A priori estimates in dimension one

Let us consider problem (1.1), (1.2), (1.3). The following equalities are our main tools
to derive estimates on u and ux.

Proposition 2.1 Let us assume that ϕ satisfies (ϕ0), let u : [−1, 1] × [0, T ) → R be a
C2 solution of (1.1), (1.2), (1.3), and let ψ ∈ C2(R). Then

(1) for every t ∈ [0, T ) we have that

d

dt

∫ 1

−1

ψ(u(x, t)) dx = −
∫ 1

−1

ψ′′(u(x, t)) · ux(x, t) · ϕ′(ux(x, t)) dx; (2.1)

(2) if ψ′(0) · ϕ′′(0) = 0, then for every t ∈ [0, T ) we have that

d

dt

∫ 1

−1

ψ(ux(x, t)) dx = −
∫ 1

−1

ψ′′(ux(x, t)) · ϕ′′(ux(x, t)) · [uxx(x, t)]
2 dx. (2.2)

Using Proposition 2.1 with suitable choices of ψ, we obtain the following estimates.

Theorem 2.2 Let us assume that ϕ satisfies (ϕ0), and let u : [−1, 1]× [0, T ) → R be a
C2 solution of (1.1), (1.2), (1.3).

Then we have the following estimates on u and ux.
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(1) Classical gradient flow estimates. For every 0 ≤ t1 ≤ t2 < T we have that

PMϕ(u(x, t1))−PMϕ(u(x, t2)) =

∫ t2

t1

∫ 1

−1

[ϕ′′(ux)uxx]
2
dx dt =

∫ t2

t1

∫ 1

−1

[ut]
2 dx dt,

(2.3)
and in particular the function t→ PMϕ(u(x, t)) is non-increasing. Moreover

‖u(x, t1) − u(x, t2)‖L2((−1,1)) ≤ {PMϕ(u0)}1/2 · |t1 − t2|1/2. (2.4)

(2) Lp estimates on u. If ϕ satisfies also (ϕ1) then for every p ∈ [1,∞] and every
t ∈ [0, T ) we have that

‖u(x, t)‖Lp((−1,1)) ≤ ‖u0(x)‖Lp((−1,1)). (2.5)

(3) Maximum principle for u. If ϕ satisfies also (ϕ1) then for every (x, t) ∈ [−1, 1] ×
[0, T ) we have that

min{u0(x) : x ∈ [−1, 1]} ≤ u(x, t) ≤ max{u0(x) : x ∈ [−1, 1]}. (2.6)

(4) Total variation estimate on u. If ϕ satisfies also (ϕ2) then for every t ∈ [0, T ) we
have that

‖ux(x, t)‖L1((−1,1)) ≤ ‖u0x(x)‖L1((−1,1)). (2.7)

From now on, let us set

m(t) := min{ux(x, t) : x ∈ [−1, 1]}, M(t) := max{ux(x, t) : x ∈ [−1, 1]}.

(5) Barriers for ux. Let σ1 < σ2 be such that ϕ′′(σ) ≥ 0 in the interval [σ1, σ2]. Then
we have the following implications

M(0) ≤ σ2 =⇒ M(t) ≤ σ2 ∀t ∈ [0, T ); (2.8)

m(0) ≥ σ1 =⇒ m(t) ≥ σ1 ∀t ∈ [0, T ). (2.9)

Similarly, if ϕ′′(σ) ≤ 0 in the interval [σ1, σ2], then we have the following implica-
tions

M(0) ≥ σ2 =⇒ M(t) ≥ σ2 ∀t ∈ [0, T ); (2.10)

m(0) ≤ σ1 =⇒ m(t) ≤ σ1 ∀t ∈ [0, T ). (2.11)

(6) Subcritical maximum principle for ux. If ϕ′′(M(0)) > 0, then M(t) is a non-
increasing function, and ϕ′′(M(t)) ≥ 0 for every t ∈ [0, T ).
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(7) Supercritical (reverse) maximum principle for ux. If ϕ′′(M(0)) < 0, then M(t) is
a non-decreasing function, and ϕ′′(M(t)) ≤ 0 for every t ∈ [0, T ).

(8) Critical maximum principle for ux. If ϕ′′(M(0)) = 0, then there are three cases.

(8.1) If there exists δ > 0 such that ϕ′′(σ) ≥ 0 for every σ ∈ [M(0)−δ,M(0)], then
M(t) is a non-increasing function, and ϕ′′(M(t)) ≥ 0 for every t ∈ [0, T ).

(8.2) If the assumption of (8.1) is not satisfied, and there exists δ > 0 such that
the set {σ ∈ [M(0),M(0) + δ] : ϕ′′(σ) ≥ 0} has empty interior, then M(t) is
a non-decreasing function, and ϕ′′(M(t)) ≤ 0 for every t ∈ [0, T ).

(8.3) In any other case M(t) = M(0) for every t ∈ [0, T ).

Remark 2.3 A few comments and consequences of the conclusions of Theorem 2.2.

(a) Estimates (1) are the standard decay of the energy and 1/2-Hölder continuity in
time of the gradient flow of a non-negative functional.

(b) Estimates such as (2) have been proved independently by many authors, at least
for the Perona-Malik equation (see [12] and [6]).

(c) Estimate (3) is a refinement of the case p = ∞ in estimate (2).

(d) Estimate (4) proves that (ϕ2) is enough to give an a priori bound on the total
variation of u, also in the transcritical case. Here p = 1 is crucial: indeed it is not
difficult to see that there are no Lp estimates (p > 1) on ux in the transcritical
case.

(e) From estimate (4) one can easily deduce that the total variation of u(x, t) in the
space variable in a non-increasing function of time. Analogous statements can be
obtained from estimates (2) and (3).

(f) Conclusions (6), (7), and (8) are stated for the maximum M(t). Symmetric state-
ments are true for the minimum m(t).

(g) Let us assume that ϕ satisfies (ϕ0) and (ϕ3), as in the Perona-Malik case. Then
(6), (7), and (8) can be read as follows: if 0 ≤ M(0) ≤ σ0, then M(t) is non-
increasing; if M(0) > σ0, then M(t) is non-decreasing. A symmetric statement
holds true for the minimum. In particular, if u0 is transcritical, then the solution
remains transcritical for all times: this is one of the key tools to prove non-existence
of global classical solutions for transcritical initial data (see [12] and [9]).

(h) Let us assume that ϕ satisfies (ϕ0) and (ϕ2), as in the Perona-Malik case. If u0(x)
is non-increasing (resp. non-decreasing) in x, then the same is true for u(x, t) for
any fixed t ∈ [0, T ). So the evolution preserves monotonicity.
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(i) Let us assume that ϕ satisfies (ϕ0), and that there exists σ3 ∈ R such that ϕ′′(σ) ≥
0 if |σ| ≥ σ3, as in the case where ϕ(σ) = (σ2 − 1)2. Then for every (x, t) ∈
[−1, 1] × [0, T ) we have that

min{m(0),−σ3} ≤ ux(x, t) ≤ max{σ3,M(0)}.

We sketch a proof of the last three conclusions in Remark 3.1.

2.2 The semi-discrete scheme in dimension one

A natural approach to (1.1), (1.2), (1.3) is to approximate it by discretizing in the space
variable. To this end, given an integer n > 0, we divide [−1, 1] in 2n intervals of length
h = 1/n, and we consider the space PCn of all functions which are constant in each
subinterval. Given f : [−1, 1] → R, we approximate the derivative of f with the function

D1/nf(x) =







f(x+ h) − f(x)

h
if x ∈ [−1, 1 − h],

0 if x ∈ (1 − h, 1].

Then we approximate the functional (1.4) with the functional PMϕ,n : PCn → R

defined by

PMϕ,n(u) =

∫ 1−h

−1

ϕ
(

D1/nu(x)
)

dx ∀u ∈ PCn.

Finally, we approximate (1.1), (1.2), (1.3) with the gradient flow of PMϕ,n in the
space PCn, which turns out to be a well posed ODE.

Proposition 2.4 For every n ∈ N we have that

(1) PCn, endowed with the L2 norm, is an Euclidean space of dimension 2n;

(2) the functional PMϕ,n : PCn → R is differentiable;

(3) if ϕ′′ is bounded, then ∇PMϕ,n : PCn → PCn is a Lipschitz continuous function;

(4) if ϕ′′ is bounded, then for every u0n ∈ PCn the Cauchy problem

u′n(t) = −∇PMϕ,n(un(t)) (2.12)

un(0) = u0n (2.13)

has a unique global solution un ∈ C1([0,+∞);PCn).

Some estimates can be extended from the continuous to the discrete setting. In the
following statement, with a little abuse of notation, we consider un both as a function
un : [0,+∞) → PCn, and as a function un : [−1, 1] × [0,+∞) → R.
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Theorem 2.5 Let us assume that ϕ satisfies (ϕ0), and let un be the solution of the
Cauchy problem (2.12), (2.13).

(1) Classical gradient flow estimates. For every 0 ≤ t1 ≤ t2 < T we have that

PMϕ,n(un(t1)) − PMϕ,n(un(t2)) =

∫ t2

t1

‖u′n(t)‖2
L2((−1,1)) dt, (2.14)

and in particular the function t→ PMϕ,n(un(t)) is non-increasing. Moreover

‖un(x, t1) − un(x, t2)‖L2((−1,1)) ≤ {PMϕ,n(u0n)}1/2 · |t1 − t2|1/2. (2.15)

(2) Lp estimates on un. If ϕ satisfies also (ϕ1), then for every p ∈ [1,∞], and every
t ≥ 0, we have that

‖un(x, t)‖Lp((−1,1)) ≤ ‖u0n(x)‖Lp((−1,1)). (2.16)

(3) Maximum principle for un. If ϕ satisfies also (ϕ1), then for every (x, t) ∈ [−1, 1]×
[0,+∞) we have that

min{u0n(x) : x ∈ [−1, 1]} ≤ un(x, t) ≤ max{u0n(x) : x ∈ [−1, 1]}. (2.17)

(4) Total variation estimate for un. If ϕ satisfies also (ϕ1), then for every t ≥ 0 we
have that

‖D1/nun(x, t)‖L1((−1,1)) ≤ ‖D1/nu0n(x)‖L1((−1,1)). (2.18)

(5) Monotonicity of sub(and super)critical regions. If σ0 is a global maximum point
for ϕ′ (this is true for example under assumption (ϕ3)) and we set

I−n (t) :=
{

x ∈ [−1, 1] : |D1/nun(x, t)| ≤ σ0

}

,

then I−n (t1) ⊆ I−n (t2) whenever 0 ≤ t1 ≤ t2. The same is true if the inequality in
the definition of I−n (t) is strict.

Remark 2.6 The last three statements in Theorem 2.2, and in particular the super-
critical reverse maximum principle for ux, do not have a straight forward discrete coun-
terpart. Indeed, should it be true, the same argument of the continuous case (see [12, 9])
would give the non existence of global solutions for the Cauchy problem (2.12), (2.13),
which is of course an absurd.

The estimates of Theorem 2.5 are what is needed to prove a compactness result for
the semi-discrete scheme (see also [8], [6], [4] where similar strategies are applied).
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Theorem 2.7 Let us assume that ϕ satisfies (ϕ0), (ϕ1), and that ϕ′′ is bounded. Let
{u0n} be a family of functions such that u0n ∈ PCn for every n ∈ N, and

sup
n∈N

{

PMϕ,n(u0n) + ‖u0n‖L∞((−1,1)) + ‖D1/nu0n‖L1((−1,1))

}

< +∞. (2.19)

Then the sequence {un} of the corresponding solutions of (2.12), (2.13) is relatively
compact in C0([0,+∞);L2((−1, 1))).

This compactness result motivates the following weak notion of gradient flow for the
functional (1.4).

Definition 2.8 Let us assume that ϕ satisfies (ϕ0), (ϕ1), and that ϕ′ and ϕ′′ are
bounded. Let u0 ∈ BV ((−1, 1)) with total variation TV (u0). We say that a func-
tion u ∈ C0([0,+∞);L2((−1, 1))) belongs to GFϕ(u0) if there exists a sequence {nk} of
positive integers and a sequence {u0k} such that u0k ∈ PCnk

for every k ∈ N,

‖u0k − u0‖2 + |‖u0k‖∞ − ‖u0‖∞| +
∣

∣‖D1/nku0k‖1 − TV (u0)
∣

∣→ 0, (2.20)

and finally uk → u in C0([0,+∞);L2((−1, 1))), where uk is the solution of (2.12) with
n = nk and initial condition u0k.

Now we show that the elements of GFϕ(u0) have most of the properties observed in
numerical simulations.

Theorem 2.9 Let ϕ be as in Definition 2.8, and let u0 ∈ BV ((−1, 1)).
Then GFϕ(u0) 6= ∅, and every u ∈ GFϕ(u0) has the following properties.

(1) Initial condition. u(0) = u0.

(2) Time regularity. u ∈ H1
loc((0,+∞);L2((−1, 1))), u′ ∈ L2((0,+∞);L2((−1, 1))),

and in particular u ∈ C1/2([0,+∞);L2((−1, 1))).

(3) Space regularity. For every t ≥ 0 we have that u(t) ∈ BV ((−1, 1)) and

‖u(t)‖L∞((−1,1)) ≤ ‖u0‖L∞((−1,1)), (2.21)

TV (u(t)) ≤ TV (u0). (2.22)

(4) Weak equation solved. There exists g ∈ L∞((−1, 1) × (0,+∞)) such that

• for almost every t ≥ 0 we have that the function x → g(x, t) belongs to
H1((−1, 1)) and satisfies the boundary conditions g(−1, t) = g(1, t) = 0;

• u is a solution of ut = gx.
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(5) Weak convergences. If nk and uk are as in Definition 2.8 then

u′k ⇀ u′ weakly in L2((0,+∞), L2((−1, 1))); (2.23)

ϕ′
(

D1/nkuk

)

⇀ g weakly * in L∞((−1, 1) × (0,+∞)); (2.24)

D1/nkuk(t) ⇀ Du(t) as Radon measures for every t ≥ 0, (2.25)

where Du(t) denotes the distributional derivative of u(t) in the space variable.

(6) Stability. If {u0h} ⊆ BV ((−1, 1)) is a sequence such that

‖u0h − u0‖2 + |‖u0h‖∞ − ‖u0‖∞| + |TV (u0h) − TV (u0)| → 0, (2.26)

and uh ∈ GFϕ(u0h) for every h ∈ N, then the sequence {uh} is relatively compact
in C0([0,+∞);L2((−1, 1))) and all its limit points belong to GFϕ(u0).

At this point a natural question is whether the function g(x, t) found in statement (4)
above is equal to ϕ′(Du), up to a natural extension of ϕ′ to Radon measures.

The staircasing effect observed in numerical experiments suggests that the answer is
no. In the convex-concave case we can however give a positive answer in the subcritical
region of the initial condition (note that we make no assumption on u0k outside Ω).

Theorem 2.10 Let us assume that ϕ satisfies the assumptions of Definition 2.8, that
σ0 is a global maximum point for ϕ′, and that ϕ′(σ) is strictly increasing in [−σ0, σ0].
Let u0 ∈ BV ((−1, 1)), let u ∈ GFϕ(u0), and let nk, u0k, and uk be as in Definition 2.8.

Let us assume that there exists an open set Ω ⊆ (−1, 1) such that |D1/nku0k(x)| ≤ σ0

for every k ∈ N and every x ∈ Ω.
Then u has the following properties in Ω.

(1) More space regularity. For every t ≥ 0 the function x → u(x, t) belongs to C1(Ω)
and |ux(x, t)| ≤ σ0 in Ω.

(2) Strong convergences. For every t ≥ 0 we have that

D1/nkuk(x, t) → ux(x, t) uniformly on compact subsets of Ω, (2.27)

ϕ′
(

D1/nkuk(x, t)
)

→ ϕ′(ux(x, t)) uniformly on compact subsets of Ω. (2.28)

(3) Classical solution. u is a classical solution of (1.1) in the open set Ω × (0,+∞).

Corollary 2.11 Let ϕ be as in Theorem 2.10, and let u0 be a Lipschitz continuous
function with Lipschitz constant less or equal than σ0.

Then the unique classical solution of (1.1), (1.2), (1.3) is the unique element of
GFϕ(u0) which can be obtained by a subcritical approximating sequence, i.e. by choosing
nk and u0k in such a way that |D1/nku0k(x)| ≤ σ0 for every k ∈ N and every x ∈ (−1, 1).
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Remark 2.12 The result of Corollary 2.11 can be extended to piecewise subcritical
data, i.e. functions u0 ∈ BV ((−1, 1)) with a finite number m of jumps located at points
−1 < x1 < . . . < xm < 1, and which are Lipschitz continuous in each connected
component of (−1, 1) \ {x1, . . . , xm} with Lipschitz constant less or equal than σ0. In
this case indeed we can take nk and u0k in such a way that |D1/nku0k| > σ0 only in the
m intervals containing a jump point of u0. This allows to apply Theorem 2.9 in every
open set of the form

Ωε := (−1, 1) \
m
⋃

i=1

[xi − ε, xi + ε].

Letting ε → 0+ we get that u satisfies (1.1) for every t > 0 and every x ∈ (−1, 1) \
{x1, . . . , xm}.

The behavior of u at jump points depends on the behavior of ϕ′(σ) at infinity. We
don’t work out the details in this paper, referring the interested reader to section 5 of [8]
where the analogous problem is studied for the Mumford-Shah functional. What hap-
pens in the Perona-Malik case is that u satisfies the homogeneous Neumann boundary
condition on both sides of discontinuity points. If during the evolution the jump height
at xi vanishes in a finite time Ti, then for generic u0 there is no jump at xi for every
t ≥ Ti, and this uniquely characterizes u. Nevertheless for special choices of u0 there is
a continuum of possible limits, also if u0k has been chosen according to the limitations
described at the beginning of this remark.

There is one more case in which we can easily characterize GFϕ(u0).

Theorem 2.13 Let us assume that ϕ satisfies the assumptions of Definition 2.8, and
that

lim
σ→+∞

ϕ(σ)

σ
= 0. (2.29)

Let u0 ∈ BV ((−1, 1)) be a function whose distributional derivative has the absolutely
continuous part equal to zero.

Then the unique element of GFϕ(u0) is the stationary solution u(t) ≡ u0.

This result, even if in accordance with numerical experiments, has an unpleasant
effect when combined with the stability property stated in (6) of Theorem 2.9. Indeed,
since piecewise constant initial data are dense in BV ((−1, 1)) in the sense of (2.26), it is
simple to conclude that the stationary solution u(t) ≡ u0 belongs to GFϕ(u0) for every
u0 ∈ BV ((−1, 1))!

Of course one can eliminate unwanted stationary solutions and even get uniqueness
by restricting the choice of the approximating sequence u0k, as we did in Theorem 2.10,
Corollary 2.11, and Remark 2.12. However, the same argument shows that any notion
of solution for which Theorem 2.13 and the stability property hold true has this intrinsic
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non-uniqueness. In conclusion, if one doesn’t want too much stationary solutions, either
one looses the good stationary solutions of Theorem 2.13, or one looses the stability
property!

2.3 A priori estimates in higher dimension

Now we consider the extent to which the estimates obtained in the one dimensional case
can be extended to higher dimension. Unfortunately, negative answers are more than
positive ones.

The positive answers concern the classical gradient flow estimates (of course), and
the estimates on u.

Theorem 2.14 Let us assume that ϕ satisfies (ϕ0), and let u : Ω× [0, T ) → R be a C2

solution of (1.6), (1.7), (1.8).

(1) Classical gradient flow estimates. For every 0 ≤ t1 ≤ t2 < T we have that

PMϕ(u(x, t1)) − PMϕ(u(x, t2)) =

∫ t2

t1

∫

Ω

[ut(x, t)]
2 dx dt,

and in particular the function t→ PMϕ(u(x, t)) is non-increasing. Moreover

‖u(x, t1) − u(x, t2)‖L2(Ω) ≤ {PMϕ(u0)}1/2 · |t1 − t2|1/2.

(2) Lp estimates on u. If ϕ satisfies also (ϕ1) then for every p ∈ [1,∞] and every
t ∈ [0, T ) we have that

‖u(x, t)‖Lp(Ω) ≤ ‖u0(x)‖Lp(Ω).

(3) Maximum principle for u. If ϕ satisfies also (ϕ1) then for every (x, t) ∈ Ω× [0, T )
we have that

min
{

u0(x) : x ∈ Ω
}

≤ u(x, t) ≤ max
{

u0(x) : x ∈ Ω
}

.

When passing to gradients, the positive answer is that the estimate of the total
variation of u is still true for radial solutions.

Theorem 2.15 Let Ω be an open disc in R
n. Let us assume that ϕ satisfies (ϕ0), (ϕ1),

(ϕ2), and let u : Ω × [0, T ) → R be a radial C2 solution of (1.6), (1.7), (1.8).
Then for every t ∈ [0, T ) we have that

‖∇u(x, t)‖L1(Ω) ≤ ‖∇u0(x)‖L1(Ω).
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If u is not radial, things are more complex. A first reason is that the geometry of Ω
plays a role. Consider indeed the simplest example, i.e. a solution u of the heat equation
in a bounded regular open set Ω ⊆ R

2, with Neumann boundary conditions. By the
classical gradient flow estimates, the L2 norm of ∇u is a non-increasing function of time.
The Lp norm (p 6= 2) of ∇u is known to be non-increasing provided that Ω is convex :
the main tool is the so called Bernstein method, described at the end of Chapter IV of
[14].

The convexity of Ω is in any case essential, as shown by the following result.

Theorem 2.16 There exist a bounded (non-convex) open set Ω ⊆ R
2, and a function

u0 ∈ C∞(Ω), such that, if u is the solution of the heat equation in Ω, with Neumann
boundary conditions on ∂Ω, and initial condition u0, and F (t) := ‖∇u(x, t)‖L1(Ω), then
F ′(0) > 0.

For the Perona-Malik equation, the answer is negative also if Ω is a rectangle.

Theorem 2.17 There exist a rectangular open set Ω = (0, A)×(0, B), and u0 ∈ C∞(Ω),
such that, if u ∈ C1([0, T );H1(Ω))∩C0([0, T );H3(Ω)) is a solution of the Perona-Malik
equation in Ω, with Neumann boundary conditions on ∂Ω, and initial condition u0, and
F (t) := ‖∇u(x, t)‖L1(Ω), then F ′(0) > 0.

Finally, we draw our attention on the supercritical reverse maximum principle for
the gradient. Once again the answer is negative, also in the radial case.

Theorem 2.18 Let Ω be the unit disc with center in the origin of R
2. There exists a

radial function u0 ∈ C∞(Ω) with

max
{

|∇u0(x)| : x ∈ Ω
}

> 1, (2.30)

such that, if u is a radial C2 solution of the Perona-Malik equation in Ω, with Neumann
boundary conditions on ∂Ω, and initial condition u0, then, for some δ > 0,

max
{

|∇u(x, t)| : x ∈ Ω
}

< max
{

|∇u0(x)| : x ∈ Ω
}

∀t ∈ (0, δ). (2.31)

We remind that the corresponding estimate in dimension one was a key tool in the
proof of non-existence of global C1 solutions with transcritical initial data.

It is of course interesting to consider semi-discrete schemes for (1.6), (1.7), (1.8). In
this case it should be easy to prove a discrete version of Theorem 2.14, but Theorem 2.17
shows that the total variation of the solution cannot be estimated by the total variation
of the initial condition. For this reason we are skeptical about a simple extension of
Theorem 2.7 and its consequences to higher dimension.
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3 Proofs

Proof of Proposition 2.1 Computing the time derivative, and integrating by parts,
we have that

d

dt

∫ 1

−1

ψ(u) dx =

∫ 1

−1

ψ′(u)ut dx

=

∫ 1

−1

ψ′(u) (ϕ′(ux))x dx

= −
∫ 1

−1

(ψ′(u))x ϕ
′(ux) dx+ [ψ′(u)ϕ′(ux)]

x=1
x=−1

= −
∫ 1

−1

ψ′′(u) ux ϕ
′(ux) dx,

where the boundary terms are zero due to the boundary condition (1.2) and our as-
sumption that ϕ′(0) = 0. This establishes equality (2.1).

Similarly

d

dt

∫ 1

−1

ψ(ux) dx =

∫ 1

−1

ψ′(ux)utx dx

=

∫ 1

−1

ψ′(ux) (ϕ′(ux))xx dx

= −
∫ 1

−1

(ψ′(ux))x (ϕ′(ux))x dx+ [ψ′(ux)ϕ
′′(ux)uxx]

x=1
x=−1

= −
∫ 1

−1

ψ′′(ux)ϕ
′′(ux)[uxx]

2 dx,

where the boundary terms are zero due to the boundary condition (1.2) and our as-
sumption that ψ′(0) · ϕ′′(0) = 0. This establishes equality (2.2).

To be precise, the argument used in the proof of (2.2) requires that u is of class
C3, because of the term (ϕ′(ux))xx which is involved. If u is only a C2 solution, then a
standard approximation procedure is necessary. To begin with, one takes a family {uε}
of C3 approximations of u. It turns out that uε solves an approximate equation such as

uεt = ϕ′′(uεx)uεxx + ρε,

where ρε(x, t) tends to zero uniformly on compact sets. Arguing as before, one proves
that uε satisfies an equality similar to (2.2), with some extra terms depending on ρε,
which disappear as ε→ 0+. We spare the reader from the details. 2

13



Proof of Theorem 2.2

Gradient flow estimates Applying (2.2) with ψ = ϕ, we immediately get (2.3).
Since ϕ is non-negative, using (2.3) and Hölder’s inequality we obtain that

‖u(x, t1) − u(x, t2)‖L2((−1,1)) ≤
∫ t2

t1

‖ut(x, τ)‖L2((−1,1)) dτ

≤ |t1 − t2|1/2

{
∫ t2

t1

‖ut(x, τ)‖2
L2((−1,1))dτ

}1/2

= |t1 − t2|1/2 {PMϕ(u(x, t1)) − PMϕ(u(x, t2))}1/2

≤ |t1 − t2|1/2 {PMϕ(u0)}1/2 ,

which proves (2.4).

Lp estimates on u If p ∈ [2,∞) the function ψ(σ) = |σ|p is C2 and convex. By
(ϕ1) this implies that ψ′′(σ) · σ · ϕ′(σ) ≥ 0 for every σ ∈ R. From (2.1) we deduce that

t→
∫ 1

−1

|u(x, t)|p dx

is a non-increasing function of time, which proves (2.5).
If p ∈ [1, 2), then the function ψ(σ) = |σ|p is convex but not of class C2. So we

approximate it with ψε(σ) = (σ2 + ε2)p/2: applying (2.1) to ψε, and letting ε → 0+, we
prove (2.5) also in this case.

Finally, the case p = ∞ can be proved by letting p→ +∞, or simply deduced from
the maximum principle below.

Maximum principle for u Let K := max{u0(x) : x ∈ [−1, 1]}, and let

ψ(σ) :=

{

0 if σ ≤ K,

(σ −K)4 if σ ≥ K.

It is easy to see that ψ is a convex function of class C2. Arguing as above, we have
that

F (t) :=

∫ 1

−1

ψ(u(x, t)) dx

is a non-negative and non-increasing function. Since F (0) = 0, then necessarily F (t) = 0
for every t ∈ [0, T ), which proves the inequality for the maximum in (2.6).

The proof for the minimum is completely analogous.
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Total variation estimate for u Let σ0 be as in (ϕ2). It is not difficult to find a
family {ψε(σ)}ε>0 of functions such that

(4a) for every ε > 0, ψε is a convex function of class C2 such that ψ′

ε(0) = 0, and
ψ′′

ε (σ) = 0 if |σ| ≥ σ0;

(4b) ψε(σ) → |σ| uniformly on R as ε→ 0+.

By (4a) and (ϕ2) we have that ψ′′

ε (σ)ϕ′′(σ) ≥ 0 for every σ ∈ R, hence by (2.2)

∫ 1

−1

ψε(ux(x, t)) dx ≤
∫ 1

−1

ψε(u0x(x)) dx, (3.1)

so that the conclusion follows from (4b) by letting ε→ 0+.

Pointwise barriers for the derivative Let us prove (2.8). First of all, we remark
thatM(0) ≥ 0 (by the Neumann boundary condition), hence σ2 ≥ 0. Now we distinguish
two cases.

Case σ2 > 0. Consider the function ψ(σ) = max{σ−σ2, 0}, and a family {ψε(σ)}ε>0

such that

(5a) for every ε > 0, ψε is a convex function of class C2 with ψ′′

ε (σ) = 0 if σ 6∈ [σ1, σ2];

(5b) ψε → ψ uniformly on R as ε → 0+;

(5c) ψ′

ε(0) = 0 for every ε > 0 (here we need that σ2 > 0).

Once again ψ′′

ε (σ)ϕ′′(σ) ≥ 0 for every σ ∈ R, hence by (2.2) we get (3.1) also for this
family {ψε}. Passing to the limit as ε→ 0+, we obtain that

0 ≤
∫ 1

−1

ψ(ux(x, t)) dx ≤
∫ 1

−1

ψ(u0x(x)) dx = 0,

where the last equality follows from the assumption that M(0) ≤ σ2. This proves that
ux(x, t) ≤ σ2 for every (x, t) ∈ [−1, 1] × [0, T ).

Case σ2 = 0. Since ϕ′′(σ2) ≥ 0, it may happen that ϕ′′(0) = 0 or ϕ′′(0) > 0.

• Assume that ϕ′′(0) = 0. We can find a family {ψε(σ)}ε>0 satisfying (5a) and (5b),
but not (5c). In any case, ϕ′′(0) = 0 is enough to apply (2.2), and so we can
conclude exactly as in the case σ2 > 0.

• If ϕ′′(0) > 0, then ϕ′′(σ) > 0 in the interval [σ1, η] for every η > 0 small enough.
Arguing as in the case σ2 > 0, we obtain that M(t) ≤ η for every t ∈ [0, T ), and
then we conclude by letting η → 0+.
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This completes the proof of (2.8).
The proof of (2.9) is completely analogous.
Now let us prove (2.10). If σ2 ≤ 0, the conclusion is trivial by the Neumann boundary

condition. If σ2 > 0, let ε > 0 be such that σ2 − ε ≥ max{0, σ1}. Let ψε(σ) be a convex
function of class C2 such that ψε(σ) = 0 for every σ ≤ σ2 − ε, ψε(σ) > 0 for every
σ > σ2 − ε, and ψ′′

ε (σ) = 0 for every σ ≥ σ2.
In this case ψ′

ε(0) = 0 and ψ′′

ε (σ)ϕ′′(σ) ≤ 0 for every σ ∈ R, hence by (2.2)

∫ 1

−1

ψε(ux(x, t)) dx ≥
∫ 1

−1

ψε(u0x(x)) dx > 0,

where the last equality follows from our assumption that M(0) ≥ σ2. This proves that
M(t) ≥ σ2 − ε for every t ∈ [0, T ). We conclude by letting ε→ 0+.

The proof of (2.11) is completely analogous.

Maximum principles for the derivative Let us consider the two sets

B− := {σ ≤M(0) : ϕ′′(σ) < 0},

B+ := {σ ≥ M(0) : ∃δ > 0 such that ϕ′′(ξ) ≥ 0 ∀ξ ∈ [σ − δ, σ]},
and let us set

ξ1 := supB− ∈ [−∞,M(0)], ξ2 := inf B+ ∈ [M(0),+∞],

where supB− = −∞ if B− = ∅ (resp. inf B+ = +∞ if B+ = ∅).
From (2.8) we have that any element of B+ is an upper barrier for M(t), while from

(2.10) it is easy to deduce that any element of B− is a lower barrier for M(t). It follows
that

ξ1 ≤M(t) ≤ ξ2 ∀t ∈ [0, T ). (3.2)

Moreover, either ξ1 = M(0) or ξ2 = M(0). Assume indeed that ξ1 < M(0); then nec-
essarily ϕ′′(σ) ≥ 0 in [ξ1,M(0)], and therefore ξ2 = M(0). We can therefore distinguish
three cases.

• If ξ1 < M(0) (this happens under the assumptions of statements (6) and (8.1)),
then ξ2 = M(0). From (3.2) we deduce that M(t) belongs the interval [ξ1,M(0)],
and we already know that ϕ′′(σ) ≥ 0 in this interval. If t1 ∈ [0, T ), andM(t1) > ξ1,
then we can use u(x, t1) as a new initial condition: applying (2.8) with [σ1, σ2] =
[ξ1,M(t1)], we deduce that M(t) ≤ M(t1) for every t ∈ [t1, T ). By the continuity
of M(t), this is enough to conclude that M(t) is a non-increasing function.
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• If ξ2 > M(0) (this happens under the assumptions of statements (7) and (8.2)),
then ξ1 = M(0). From (3.2) we deduce that M(t) belongs the interval [M(0), ξ2],
and it is easy to see that ϕ′′(σ) ≤ 0 in this interval. If t1 ∈ [0, T ), and M(t1) >
M(0), then we can use u(x, t1) as a new initial condition: applying (2.10) with
[σ1, σ2] = [M(0),M(t1)], we deduce that M(t) ≥ M(t1) for every t ∈ [t1, T ), and
this is enough to conclude that M(t) is a non-decreasing function.

• In the remaining case we have that ξ1 = ξ2 = M(0), and therefore M(t) is constant
by (3.2). 2

Remark 3.1 Let us prove statement (g) of Remark 2.3. To this end, it is enough to
apply statement (6) of Theorem 2.2 if 0 ≤M(0) < σ0, statement (7) if M(0) > σ0, and
statement (8.1) if M(0) = σ0.

Let us prove now statement (h). Let us assume, without loss of generality, that u0x

is a non-increasing function of x, hence M(0) = 0 (remember the Neumann boundary
condition). By the subcritical maximum principle for ux, it follows that ux(x, t) ≤ 0 for
every (x, t) ∈ [−1, 1]× [0, T ), which proves that u(x, t) is a non-increasing function of x.

In order to prove statement (i), we just observe that in this case all real numbers
σ > max{σ3,M(0)} are upper barriers for M(t), and analogously for the minimum.

Proof of Proposition 2.4 Let n > 0 be a fixed positive integer, and let h = 1/n
be the discretization step. An element u ∈ PCn can be identified with the 2n-tuple
(a1, . . . , a2n) ∈ R

2n, where u(x) = ai in the interval (−1 + (i− 1)h,−1 + ih).
The Euclidean norm on R

2n corresponds to the L2 norm on PCn multiplied by
√
n.

With this notation we have that

PMϕ,n(u) = h
2n−1
∑

i=1

ϕ

(

ai+1 − ai

h

)

,

and the gradient flow of PMϕ,n with respect to the L2 norm of PCn reduces to the
following system of 2n ODEs (the dot denotes time derivatives)

ȧi(t) =
1

h

{

ϕ′

(

ai+1(t) − ai(t)

h

)

− ϕ′

(

ai(t) − ai−1(t)

h

)}

i = 1, . . . , 2n, (3.3)

where by definition a0(t) = a1(t) and a2n+1(t) = a2n(t) for every t ≥ 0.
If ϕ′′ is bounded, then the right hand side of (3.3) is Lipschitz continuous, hence this

system has a unique global solution for every initial condition by the Cauchy-Lipschitz-
Picard Theorem for ODEs. 2
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Proof of Theorem 2.5

Gradient flow estimates Classical gradient flow techniques.

Lp estimates and maximum principle We follow the same strategy used in the
continuous setting. To this end, we need a discrete version of (2.1). Given ψ ∈ C1(R),
using (3.3) and simple algebraic manipulations on the sums, we have that

d

dt

(

h

2n
∑

i=1

ψ(ai)

)

= h

2n
∑

i=1

ψ′(ai)ȧi = −
2n
∑

i=1

{ψ′(ai+1) − ψ′(ai)}ϕ′

(

ai+1 − ai

h

)

. (3.4)

In particular, if ψ is convex and ϕ satisfies (ϕ1), then each summand in the right
hand side of (3.4) is the product of two factors with the same sign. It follows that

t→ h
2n
∑

i=1

ψ(ai(t))

is a non-increasing function. Now estimates (2.16) and (2.17) follow with the same
choices of the convex function ψ used in the continuous setting.

Total variation estimate We need a discrete version of (2.2). Given ψ ∈ C1(R)
with ψ′(0) = 0, using (3.3) and simple algebraic manipulations on the sums, we have
that

d

dt

(

h

2n
∑

i=1

ψ

(

ai+1 − ai

h

)

)

= h

2n
∑

i=1

ψ′

(

ai+1 − ai

h

)

ȧi+1 − ȧi

h
=

= −1

h

2n
∑

i=1

{

ψ′

(

ai+1 − ai

h

)

− ψ′

(

ai − ai−1

h

)}

·
{

ϕ′

(

ai+1 − ai

h

)

− ϕ′

(

ai − ai−1

h

)}

.

Now let us apply this equality to the family ψε(σ) =
√
σ2 + ε. Let Fε(t) be the

corresponding sum in the right hand side. Integrating in [0, t] we have that

h
2n
∑

i=1

ψε

(

ai+1(t) − ai(t)

h

)

= h
2n
∑

i=1

ψε

(

ai+1(0) − ai(0)

h

)

− 1

h

∫ t

0

Fε(τ) dτ. (3.5)

Unfortunately, we cannot prove that Fε(t) is non-negative (and examples may be
given where this is false). However, we prove that the limit of Fε(t) as ε → 0+ is
non-negative. To begin with, we observe that

lim
ε→0+

ψ′

ε(σ) =











−1 if σ < 0,

0 if σ = 0,

1 if σ > 0.

18



Now let us examine each summand in the sum defining Fε(t). The limit of the factor
involving ψ′

ε can only be −2, −1, 0, 1, 2, depending on the signs of ai+1−ai and ai−ai−1.
Let us assume that this limit is 2: this means that ai+1−ai > 0 and ai−ai−1 < 0. In this
case by (ϕ1) the term involving ϕ′ is positive, and therefore the limit of the summand
is positive. Examining in the same way the other cases, we prove that the limit of each
summand is always non-negative.

Now we pass to the limit in (3.5): this can be done by Lebesgue’s theorem since
|ψ′

ε(σ)| ≤ 1 for every ε > 0 and every σ ∈ R, and the terms involving ϕ′ are equibounded
by continuity. We obtain that

2n
∑

i=1

|ai+1(t) − ai(t)| ≤
2n
∑

i=1

|ai+1(0) − ai(0)|,

which is exactly (2.18).

Monotonicity of sub(and super)critical regions The main tool is the follow-
ing comparison result for ODEs (see [8, Lemma 4.10]).

Lemma 3.2 Let f : R → R be a Lipschitz continuous function, and let C, V be real
numbers such that f(C) = −f(−C) = V . Let y ∈ C1([0,+∞); R) be a function such
that |y′(t) + f(y(t))| ≤ V for every t ≥ 0, and |y(T )| ≤ C (resp. |y(T )| < C) for some
T ≥ 0.

Then |y(t)| ≤ C (resp. |y(t)| < C) for every t ≥ T . 2

Let us set di(t) := (ai+1(t) − ai(t))/h for i = 1, . . . , 2n − 1, and d0(t) = d2n(t) = 0
for every t ≥ 0. Thesis is equivalent to show that for every index i we have that if
|di(T )| ≤ σ0 (resp. |di(T )| < σ0) for some T ≥ 0, then |di(t)| ≤ σ0 (resp. |di(t)| < σ0)
for every t ≥ T . From (3.3) it is easy to deduce that

∣

∣

∣

∣

d

dt
di(t) +

2

h2
ϕ′(di(t))

∣

∣

∣

∣

=
1

h2
|ϕ′(di+1(t)) − ϕ′(di−1(t))| ≤

2

h2
ϕ′(σ0),

and therefore we can conclude applying Lemma 3.2 with y(t) = di(t), f(σ) = 2ϕ′(σ)/h2,
C = σ0, V = 2ϕ′(σ0)/h

2. 2

Proof of Theorem 2.7 By the standard Ascoli Theorem, it is enough to prove that

(A1) for every t ≥ 0, the sequence {un(t)} is relatively compact in L2((−1, 1));
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(A2) there exists a constant C ∈ R such that

‖un(t1) − un(t2)‖L2((−1,1)) ≤ C|t1 − t2|1/2

for every n ∈ N, and every t2 ≥ t1 ≥ 0.

Let M be the supremum in (2.19). Then by (2.15) we have that (A2) is satisfied
with C = M1/2. Now let us fix t ≥ 0. By (2.16) with p = ∞ and (2.18) we obtain that

‖un(x, t)‖L∞((−1,1)) + ‖D1/nun(x, t)‖L1((−1,1)) ≤M,

and so we have a bound on the L∞ norm and on the total variation of un(x, t) as a
function of x. By a well known result, this implies that the family {un(t)} is relatively
compact in Lp((−1, 1)) for every p ∈ [1,∞) and therefore also assumption (A1) is
satisfied. 2

Proof of Theorem 2.9 Let nk, u0k, and uk be as in Definition 2.8. Since we assumed
that ϕ′ is bounded, the boundedness of ‖D1/nku0k‖L1((−1,1)) implies the boundedness of
PMϕ,nk

(u0k). By (2.20) we have therefore that

M := sup
k∈N

{

PMϕ,nk
(u0k) + ‖u0k‖L∞((−1,1)) + ‖D1/nku0k‖L1((−1,1))

}

< +∞. (3.6)

So we can apply Theorem 2.7 and deduce that GFϕ(u0) is nonempty.

Initial condition, time and space regularity The initial condition is trivial.
From (2.14) we have that

∫ +∞

0

‖u′k(x, t)‖2
L2((−1,1)) dt ≤M. (3.7)

This proves that u′k, up to subsequences, has a weak limit as k → +∞. It is
completely standard to see that this limit is indeed u′ and does not depend on the
subsequence. This proves both the conclusion of statement (2) and (2.23).

Passing to the limit in (2.16) with p = ∞ and using (2.20) we obtain (2.21).
Passing to the limit in (2.18) and using (2.20) we obtain both (2.22) and (2.25).

Weak equation solved From the boundedness of ϕ′ we get a uniform bound on
the L∞ norm of ϕ′

(

D1/nkuk(x, t)
)

. It follows that, up to extracting a further subsequence

(not relabeled), ϕ′
(

D1/nkuk(x, t)
)

converges to a function g(x, t) in the weak * topology
of L∞((−1, 1) × (0,+∞)).
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Now we multiply both sides of (2.12) by a test function φ ∈ C∞((−1, 1)) and we
integrate in (−1, 1) × (0, T ). With some simple algebra we find that

∫ T

0

dt

∫ 1

−1

u′k · φ dx = −
∫ T

0

dt

∫ 1

−1

∇PMϕ,nk
(uk) · φ dx

= −
∫ T

0

dt

∫ 1

−1

ϕ′
(

D1/nkuk

)

·D1/nkφ dx.

Now we pass to the limit as k → +∞ using that u′k ⇀ u′, ϕ′
(

D1/nkuk

)

⇀ g(x, t),

and D1/nkφ→ φx strongly. We obtain that

∫ T

0

dt

∫ 1

−1

u′ · φ dx = −
∫ T

0

dt

∫ 1

−1

g · φx dx.

Since T is arbitrary, we get that for almost every t ≥ 0 the integrals in the space
variable coincide. This is equivalent to say that for almost every t ≥ 0 the function x→
g(x, t) belongs to H1((−1, 1)), g(−1, t) = g(1, t) = 0, and ut = gx. Since this uniquely
characterizes g in terms of u, we can conclude that the whole sequence ϕ′(D1/nkuk)
weakly * converges to g, without extracting further subsequences. Therefore all the
conclusions of statement (4) are proved.

Stability Thanks to the preceding estimates, assumption (2.26) implies uniform
bounds on the L∞ norm, the total variation, and the Hölder constant of uh. Therefore
the compactness of {uh} follows from Ascoli’s Theorem.

So up to subsequences (not relabeled) we may assume that uh converges to some
u∞ in C0([0,+∞);L2((−1, 1))). By definition of GFϕ(u0h), for every h ∈ N there exists
nh ≥ h and v0h ∈ PCnh

with corresponding solution vh of (2.12) such that

‖v0h − u0h‖2 + |‖v0h‖∞ − ‖u0h‖∞| +
∣

∣‖D1/nhv0h‖1 − TV (u0h)
∣

∣ ≤ 1

h
,

‖vh(x, t) − uh(x, t)‖L2((−1,1)) ≤
1

h
∀t ∈ [0, h].

This is enough to conclude that v0h approximates u0 as required in Definition 2.8
and vh → u∞, which is equivalent to say that u∞ ∈ GFϕ(u0). 2

Proof of Theorem 2.10 The strategy of the proof is the following. First of all we
choose an open set Ω1 ⊂⊂ Ω. In Proposition 3.3 we prove a pointwise estimate on
‖u′k(t)‖L2(Ω1) for every t > 0 which improves the integral estimate coming from (2.14).
In Lemma 3.4 we show that the preceding estimate gives the uniform convergence of
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ϕ′(D1/nkuk) in the compact subsets of Ω1, improving the weak * convergence of (2.24).
Finally we exploit the invertibility of ϕ′ in [−σ0, σ0] to deduce that D1/nkuk uniformly
converges to ux in the compact subsets of Ω1, thus showing that the function g(x, t) in
statement (4) of Theorem 2.9 coincides with ϕ′(ux(x, t)) in Ω1 × (0,+∞). Since Ω1 is
arbitrary, this is enough to prove all the conclusions.

Proposition 3.3 For every open set Ω1 ⊂⊂ Ω there exists a constant c = c(Ω1) and a
positive integer k0 = k0(Ω1) such that for every k ≥ k0 we have that

‖u′k(T )‖2
L2(Ω1) ≤ PMϕ,nk

(u0k)

(

1

T
+ c

)

∀T > 0. (3.8)

Proof. Let us choose open sets Ω2 and Ω3 such that Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 ⊂⊂ Ω.
Let k0 be such that the neighborhood of Ω1 with radius 1/nk0

is contained in Ω2 and
the neighborhood of Ω3 with radius 1/nk0

is contained in Ω. Let us choose a function
r ∈ C∞((−1, 1)) such that r(x) ≡ 1 in Ω2, r(x) ≡ 0 outside Ω3, and 0 ≤ r(x) ≤ 1
otherwise. Given k ≥ k0, once again we set h = 1/nk, and we identify uk(t) with the 2nk-
tuple (a1(t), . . . , a2nk

(t)). We also consider the 2nk-tuple of real numbers (r1, . . . , r2nk
)

where ri = r(−1+ ih). Finally we set a0(t) = a1(t), a2nk+1(t) = a2nk
(t), r0 = r2nk+1 = 0.

With these notations estimate (2.14) may be rewritten as

h

∫ +∞

0

2nk
∑

i=1

ȧ2
i (t) dt =

∫ +∞

0

‖u′k(t)‖2
L2((−1,1)) dt ≤ PMϕ,nk

(u0k). (3.9)

Moreover by our choice of k0 and r we have that

‖u′k(t)‖2
L2(Ω1) ≤ h

2nk
∑

i=1

r2
i ȧ

2
i (t), (3.10)

∣

∣

∣

∣

ri+1 − ri

h

∣

∣

∣

∣

≤ ‖rx‖L∞((−1,1)) =: c1. (3.11)

Finally, by the monotonicity of subcritical regions, we have that |D1/nkuk| ≤ σ0 in
Ω × (0,+∞), hence for every t ≥ 0 and every i = 1, . . . , 2nk we have the implication

ri+1 + ri 6= 0 =⇒ ϕ′′

(

ai+1(t) − ai(t)

h

)

≥ 0. (3.12)

Now we are ready to estimate the norm of u′k(t) in L2(Ω1). To this end, we compute
the time derivative of the right hand side of (3.10) multiplied by t.

d

dt

(

t · h
2nk
∑

i=1

r2
i ȧ

2
i

)

= h

2nk
∑

i=1

r2
i ȧ

2
i + t · 2h

2nk
∑

i=1

r2
i ȧiäi. (3.13)
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Let us concentrate on the second sum in the right hand side, where we use (3.3)
to compute äi. Manipulating the sums and using simple algebraic equalities it can be
rewritten as

2nk
∑

i=1

r2
i ȧiäi =

1

h

2nk
∑

i=1

r2
i ȧi

{

d

dt
ϕ′

(

ai+1 − ai

h

)

− d

dt
ϕ′

(

ai − ai−1

h

)}

= −1

h

2nk
∑

i=1

(

r2
i+1ȧi+1 − r2

i ȧi

) d

dt
ϕ′

(

ai+1 − ai

h

)

= − 1

h2

2nk−1
∑

i=1

(

r2
i+1ȧi+1 − r2

i ȧi

)

(ȧi+1 − ȧi)ϕ
′′

(

ai+1 − ai

h

)

= − 1

2h2

2nk−1
∑

i=1

(

r2
i+1 + r2

i

)

(ȧi+1 − ȧi)
2ϕ′′

(

ai+1 − ai

h

)

+

− 1

2h2

2nk−1
∑

i=1

(ri+1 + ri) (ri+1 − ri) (ȧi+1 + ȧi)(ȧi+1 − ȧi)ϕ
′′

(

ai+1 − ai

h

)

=: S1 + S2

Let us consider now the simple algebraic inequality

|(a+ b)(a− b)(c + d)(c− d)| ≤ 1

2

[

(a+ b)2(c− d)2 + (c+ d)2(a− b)2
]

≤ (a2 + b2)(c− d)2 + (c2 + d2)(a− b)2.

Recalling (3.12) we can estimate every nonzero term in S2 applying this inequality
with a = ri+1, b = ri, c = ȧi+1, d = ȧi. We obtain that

S2 ≤ 1

2h2

2nk−1
∑

i=1

(

r2
i+1 + r2

i

)

(ȧi+1 − ȧi)
2ϕ′′

(

ai+1 − ai

h

)

+

+
1

2h2

2nk−1
∑

i=1

(ri+1 − ri)
2 (ȧ2

i+1 + ȧ2
i )ϕ

′′

(

ai+1 − ai

h

)

The first term is exactly −S1, so that coming back to (3.13) we have proved that

d

dt

(

t · h
2nk
∑

i=1

r2
i ȧ

2
i

)

≤ h

2nk
∑

i=1

r2
i ȧ

2
i + t · h

2nk−1
∑

i=1

ϕ′′

(

ai+1 − ai

h

)(

ri+1 − ri

h

)2
(

ȧ2
i+1 + ȧ2

i

)

≤ h

2nk
∑

i=1

ȧ2
i + c2c

2
1t · h

2nk−1
∑

i=1

(

ȧ2
i+1 + ȧ2

i

)

,
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where c1 is given by (3.11) and c2 denotes the supremum of ϕ′′ in [−σ0, σ0]. Integrating
in [0, T ] and using (3.9) we obtain that

T · h
2nk
∑

i=1

r2
i ȧ

2
i (T ) ≤ PMϕ,nk

(u0k)(1 + 2Tc2c
2
1).

Combining with (3.10), estimate (3.8) is proved with c(Ω1) := 2c21c2. 2

Lemma 3.4 Let nk → +∞ be a sequence of positive integers, let vk be a sequence of
functions such that vk ∈ PCnk

for every k ∈ N, and let Ω1 ⊆ (−1, 1) be an open set
such that

sup
k∈N

‖∇PMnk,ϕ(vk)‖L2(Ω1) < +∞. (3.14)

Then there exists a function γ ∈ H1(Ω1) such that, up to subsequences,

∇PMnk,ϕ(vk) ⇀ −γx weakly in L2(Ω1), (3.15)

ϕ′
(

D1/nkvk

)

→ γ uniformly on compact subsets of Ω1. (3.16)

Proof. By (3.14) and the boundedness of ϕ′ we have that there exist γ ∈ L2(Ω1),
ψ ∈ L2(Ω1), and a subsequence (not relabeled) such that

∇PMnk,ϕ(vk) ⇀ ψ weakly in L2(Ω1) (3.17)

ϕ′
(

D1/nkvk

)

⇀ γ weakly in L2(Ω1). (3.18)

Now let φ ∈ C∞

0 (Ω1). It is easy to see that for k large one has that

∫

Ω1

∇PMnk,ϕ(vk) · φ dx =

∫

Ω1

ϕ′
(

D1/nkvk

)

·D1/nkφ dx.

Now we pass to the limit using (3.17), (3.18) and the fact that D1/nkφ→ φx strongly.
We obtain that

∫

Ω1

ψ · φ dx =

∫

Ω1

γ · φx dx,

which is equivalent to say that γ ∈ H1(Ω1) and ψ = −γx, which proves (3.15).
Now let I be a compact interval contained in Ω1, and let x, y ∈ I. Let M be the

supremum in (3.14), let us set γk := ϕ′(D1/nkvk), h = 1/nk, and let us identify vk with
a 2nk-tuple a1, . . . , a2nk

so that

γk(y) = ϕ′

(

aj+1 − aj

h

)

, γk(x) = ϕ′

(

ai+1 − ai

h

)

,
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for some integers i and j. Without loss of generality we can assume that y ≥ x, so that
j ≥ i. If the neighborhood of I with radius h is contained in Ω1, then by the Cauchy
Schwarz inequality we have that

|γk(y) − γk(x)| =

∣

∣

∣

∣

ϕ′

(

aj+1 − aj

h

)

− ϕ′

(

ai+1 − ai

h

)
∣

∣

∣

∣

≤
j
∑

m=i+1

∣

∣

∣

∣

ϕ′

(

am+1 − am

h

)

− ϕ′

(

am − am−1

h

)
∣

∣

∣

∣

≤
√

j − i ·
{

h2

j
∑

m=i+1

1

h2

∣

∣

∣

∣

ϕ′

(

am+1 − am

h

)

− ϕ′

(

am − am−1

h

)
∣

∣

∣

∣

2
}1/2

≤
√

h(j − i) · ‖∇PMϕ,nk
(vk)‖2

L2(Ω1)

≤ M

{

|y − x| + 1

nk

}1/2

.

At this point the uniform convergence in I (up to subsequences) of γk follows from a
simple variant of the classical Ascoli Theorem (keeping into account the vanishing term
1/nk). 2

We are now ready to conclude the proof of Theorem 2.10. Let T > 0. Form
Proposition 3.3 we know that

sup
k∈N

‖∇PMϕ,nk
(uk(T ))‖L2(Ω1) = sup

k∈N

‖u′k(T )‖L2(Ω1) < +∞,

hence applying Lemma 3.4 with vk = uk(T ) we deduce that there exists γ ∈ H1(Ω1)
such that, up to subsequences (not relabeled),

ϕ′
(

D1/nkuk(T )
)

→ γ uniformly on compact subsets of Ω1. (3.19)

Since |D1/nkuk(T )| ≤ σ0 (by the monotonicity of subcritical regions) and ϕ′ is in-
vertible in [−σ0, σ0], we can apply (ϕ′)−1 to (3.19) obtaining that

D1/nkuk(T ) → (ϕ′)−1(γ) uniformly on compact subsets of Ω1.

Compared with (2.25) this proves that (ϕ′)−1(γ) = Du(T ). Therefore u(T ) ∈ C1(Ω1)
and γ = ϕ′(ux). Moreover this characterizes γ and therefore the whole sequence
ϕ′
(

D1/nkuk

)

converges in Ω1 to γ, without extracting further subsequences. Since Ω1 is
arbitrary, this is enough to conclude the proof. 2
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Proof of Theorem 2.13 If the absolutely continuous part of the Du0 is zero and ϕ
satisfies (2.29), then (2.20) implies that PMϕ,nk

(u0k) → 0. Now the conclusion follows
by passing to the limit in (2.15). 2

Proof of Theorem 2.14 The classical gradient flow estimates can be proved in the
usual way.

The Lp estimates and the maximum principle for u can be proved as in dimension one,
up to replacing (2.1) with the following equality: if ψ ∈ C2(R), and u : Ω × [0, T ) → R

is a solution of (1.6), (1.7), (1.8), then

d

dt

∫

Ω

ψ(u(x, t)) dx = −
∫

Ω

ψ′′(u(x, t)) · |∇u(x, t)| · ϕ′(|∇u(x, t)|) dx.

This equality can be proved integrating by parts as in the proof of (2.1). 2

Proof of Theorem 2.15 Let Ω := {x ∈ R
n : |x| < R}. Writing u as a function of

t and r = |x|, equations (1.6), (1.7) take the form (in the n dimensional case we can
assume that ϕ is even)

ut = ϕ′′(ur)urr + (n− 1)
ϕ′(ur)

r
∀(r, t) ∈ (0, R) × [0, T ), (3.20)

ur(0, t) = ur(R, t) = 0 ∀t ∈ [0, T ), (3.21)

and moreover

‖∇u(x, t)‖L1(Ω) = ωn−1

∫ R

0

rn−1|ur(r, t)| dr,

where ωn−1 is the (n− 1)-dimensional Hausdorff measure of the unit sphere in R
n.

Now we need to extend (2.2) to radial solutions. Given ψ ∈ C2(R) with ψ′(0) = 0,
we have that

d

dt

∫ R

0

rn−1ψ(ur) dr =

∫ R

0

rn−1ψ′(ur)urt dr

=

∫ R

0

rn−1ψ′(ur)

(

ϕ′′(ur)urr + (n− 1)
ϕ′(ur)

r

)

r

dr

= −
∫ R

0

(

rn−1ψ′(ur)
)

r
ϕ′′(ur)urr dr +

+(n− 1)

∫ R

0

rn−1ψ′(ur)

(

ϕ′(ur)

r

)

r

dr,

26



where we neglected the boundary terms in the integration by parts due to (3.21) and
our assumption that ψ′(0) = 0. Computing the derivatives, two terms cancel and we
finally obtain that

d

dt

∫ R

0

rn−1ψ(ur) dr = −
∫ R

0

rn−1ψ′′(ur)ϕ
′′(ur)u

2
rr dr − (n− 1)

∫ R

0

ψ′(ur)ϕ
′(ur)r

n−3 dr

(3.22)
Now let us apply this identity to a family {ψε}ε>0 of functions satisfying (4a) and

(4b) as in the proof of Theorem 2.2, and

(4c) ψ′

ε(σ)σ ≥ 0 for every σ ∈ R and every ε > 0.

By (4a) and (ϕ2) we have that ψ′′

ε (σ)ϕ′′(σ) ≥ 0 for every σ ∈ R. By (4c) and (ϕ1)
we have that ψ′

ε(σ)ϕ′(σ) ≥ 0 for every σ ∈ R. It follows that the right hand side of
(3.22) is non-positive, and therefore

∫ R

0

rn−1ψε(ur(r, t)) dr ≤
∫ R

0

rn−1ψε(u0r(r)) dr.

We finally conclude by letting ε→ 0+. 2

4 Counter-examples

In this section we show our counter-examples to gradient estimates in dimension 2 (or
higher). In the first two examples, we consider the function

F (t) :=

∫

Ω

|∇u(x, t)| dx, (4.1)

where u is a solution of the heat equation, and of the Perona-Malik equation, respec-
tively. What we need is to compute F ′(0), which is formally given by

F ′(0) =

∫

Ω

∇u(x, 0)

|∇u(x, 0)| · ∇ut(x, 0) dx, (4.2)

where the dot denotes the scalar product. We expect that this formula holds true for
large classes of functions; just for the reader’s (and our own) comfort, we rigorously
justify it under a set of assumptions on u(x, t) which are satisfied in our examples.

Lemma 4.1 Let Ω ⊆ R
n be an open set, and let u : Ω × [0, T ) → R. Let us assume

that u ∈ C1([0, T );H1(Ω)) and that ∇u(x, 0) 6= 0 for every x ∈ Ω.
Then the function F (t) defined in (4.1) is (right) derivable at t = 0, and F ′(0) is

given by (4.2).
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Proof. Since |∇u(x, 0)| 6= 0 in Ω, we have that

F ′(0) = lim
t→0+

1

t

∫

Ω

{|∇u(x, t)| − |∇u(x, 0)|} dx

= lim
t→0+

1

t

∫

Ω

|∇u(x, t)|2 − |∇u(x, 0)|2
|∇u(x, t)| + |∇u(x, 0)| dx

= lim
t→0+

∫

Ω

∇u(x, t) + ∇u(x, 0)

|∇u(x, t)| + |∇u(x, 0)| ·
∇u(x, t) −∇u(x, 0)

t
dx.

Since the first factor is bounded and u ∈ C0([0, T );H1(Ω)), it follows that the
first factor tends to |∇u(x, 0)|−1∇u(x, 0) in L2(Ω; Rn). Since u ∈ C1([0, T );H1(Ω)), the
second factor tends to ∇ut(x, 0) in L2(Ω; Rn). So we can pass to the limit in the integral,
and this proves (4.2). 2

We point out that in Lemma 4.1 we don’t need that ∇u(x, 0) 6= 0 on ∂Ω.

Example 1 (proof of Theorem 2.16) Let Ω be the shaded region in the following
picture

Ω

analytically described by

Ω := {(x, y) ∈ R
2 : x ≥ 0, y ≥ 0, 1 < xy < 2, −1 < x2 − y2 < 1},

let f ∈ C∞(R) be a non-decreasing function such that f ′(x) > 0 if and only if x ∈ (1, 2),
and let

u0(x, y) := f(xy).

Let u : Ω × [0,+∞) → R be the solution of the heat equation with Neumann
boundary conditions on ∂Ω, and u0 as initial condition, and let F (t) be defined by
(4.1). A direct computation shows that ∇u0 6= 0 in Ω. Moreover, u0 ∈ H3(Ω), and
its normal derivative is identically zero in ∂Ω. By the standard regularity results for
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the heat equation, this implies that u ∈ C0([0,+∞);H3(Ω)) ∩ C1([0,+∞);H1(Ω)). It
follows that all the assumptions of Lemma 4.1 are satisfied, and ut(x, y, 0) = ∆u0(x, y)
in Ω, and therefore by (4.2)

F ′(0) =

∫

Ω

∇u(x, y, 0)

|∇u(x, y, 0)| · ∇ut(x, y, 0) dx dy =

∫

Ω

∇u0

|∇u0|
· ∇∆u0 dx dy.

With our u0, this turns out to be

F ′(0) =

∫

Ω

4xy
√

x2 + y2
f ′′(xy) dx dy +

∫

Ω

(

x2 + y2
)3/2

f ′′′(xy) dx dy.

Using the new variables v = xy, w = x2 − y2, these integrals become

F ′(0) =

∫ 1

−1

dw

∫ 2

1

2v

(4v2 + w2)3/4
f ′′(v) dv +

1

2

∫ 1

−1

dw

∫ 2

1

(

4v2 + w2
)1/4

f ′′′(v) dv.

Now, in the first integral we integrate by parts in v, and in the second integral we
integrate by parts twice in v. We finally obtain that

F ′(0) =

∫ 1

−1

dw

∫ 2

1

2v2 − w2

(4v2 + w2)7/4
f ′(v) dv,

and this is positive because the integrand is positive in the given domain. 2

Remark 4.2 A similar example can be given in an open set with boundary of class
C∞. To this end, it is enough to use the same initial condition u0, but defined in an
open set Ω′ of class C∞ which coincides with our Ω in the region 1 < xy < 2 (note
that Ω′ is still a non-convex set). In order to use (4.2) in this case, one needs to extend
Lemma 4.1, allowing ∇u0 to be zero in Ω′ \ Ω. We leave the details to the interested
reader.

Example 2 (proof of Theorem 2.17) The construction of the counter-example is
organized as follows: in the first paragraph we introduce a function a ∈ C∞(R) and a
constant C > 0; in the second paragraph we introduce a function b ∈ C∞(R) depending
on a parameter λ > 0; then in the third paragraph we consider the rectangular open set

Ω := (0, λ+ C + 2) × (0, λ+ 2), (4.3)

and the initial condition u0 : Ω → R defined by

u0(x, y) := a(x− b(y)) + b(y), (4.4)

and we show that, if λ is big enough, this provides a counter-example.
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First ingredient We show that there exist a constant C > 0, and a function
a ∈ C∞(R) such that a′(x) = 0 if and only if x ≤ 0 or x ≥ C, and

∫ C

0

I(a′(x), a′′(x)) dx > 0, (4.5)

where

I(r, s) :=
s2(2r2 − 2r − 1)

(2r2 − 2r + 1)3/2(r2 − r + 1)
.

Note that the integrand is negative near x = 0 and x = C.
In order to construct such a function, we first choose a function f ∈ C∞(R) such

that f(x) > 2 for every x ∈ (0, 1), and f(x) = 2 otherwise, and a function g ∈ C∞(R)
such that g(x) = 0 if and only if x ≤ 0, and g(x) = 2 for every x ≥ 1. Given a positive
integer n, we consider a function a ∈ C∞(R) such that

a′(x) =



















g(x) if x ∈ [0, 1],

f(x− i) if x ∈ [i, i+ 1] for some i = 1, 2, . . . , n,

g(n+ 2 − x) if x ∈ [n + 1, n+ 2],

0 otherwise.

With this choice we have that
∫ n+2

0

I(a′(x), a′′(x)) dx = 2

∫ 1

0

I(g(x), g′(x)) dx+ n

∫ 1

0

I(f(x), f ′(x)) dx.

The last integral is positive because f(x) > 2 in (0, 1). This means that if C = n+2
is large enough, then (4.5) is satisfied.

Second ingredient Let λ > 0. It is not difficult to see that there exists a function
b ∈ C∞(R) such that b(x) = 0 for every x ≤ 0, b(x) = λ+2 for every x ≥ λ+2, b(x) = x
for every x ∈ [1, λ+ 1], and b′(x) > 0 for every x ∈ (0, λ+ 2).

Conclusion Let Ω and u0 be defined by (4.3) and (4.4), respectively. Let u ∈
C1([0, T );H1(Ω)) ∩ C0([0, T );H3(Ω)) be a solution of the Perona-Malik equation in Ω,
with Neumann boundary conditions on ∂Ω, and initial datum u0. Let F (t) be defined
as in (4.1).

It is easy to verify that u0 ∈ C∞(Ω) and its normal derivative is identically zero in
∂Ω, and moreover ∇u0 6= 0 in Ω.

Applying Lemma 4.1, and integrating by parts, we therefore have that

F ′(0) =

∫

Ω

∇u0

|∇u0|
· ∇ut(x, y, 0) dx dy = −

∫

Ω

div

( ∇u0

|∇u0|

)

ut(x, y, 0) dx dy. (4.6)
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This integration by parts requires some justification. Indeed for the Perona-Malik
equation we have that

ut =
uxx + uyy − u2

xuxx − u2
yuyy + u2

yuxx + u2
xuyy − 4uxuyuxy

(1 + u2
x + u2

y)
2

, (4.7)

and this is true also for t = 0 because of the regularity assumptions on u. Moreover

div

( ∇u
|∇u|

)

=
u2

yuxx − 2uxuyuxy + u2
xuyy

(u2
x + u2

y)
3/2

. (4.8)

With our choice of u0, it is not difficult to see that (4.8) is unbounded near those
points of ∂Ω where |∇u0| = 0. However, in the same points we have that ut(x, y, 0) = 0,
and the product turns out to be bounded, independently on λ (since a lot of terms
are involved, this requires a lengthy, but elementary, calculation, which we leave to the
interested reader).

In the same way, the vector function v(x, y) := ut(x, y, 0)|∇u0(x, y)|−1∇u0(x, y) can
be continuously extended to Ω, and the scalar product between v(x, y) and the exterior
normal to ∂Ω turns out to be identically zero in ∂Ω.

This justifies the integration by parts in (4.6).
Now we need to estimate the second integral in (4.6). Since u0x and u0xx are non-zero

only when 0 ≤ x− b(y) ≤ C, by (4.8) the integral reduces to

F ′(0) = −
∫ λ+2

0

dy

∫ b(y)+C

b(y)

div

( ∇u0(x, y)

|∇u0(x, y)|

)

ut(x, y, 0) dx.

Let us split the integration with respect to y in the three subintervals [0, 1], [1, λ+1],
and [λ+ 1, λ+ 2].

Since the integrand is bounded, independently on λ, we have that the first and
the third integral are constants, independent on λ, which we denote by c1 and c3,
respectively. When y ∈ [1, λ+ 1], we have that b(y) ≡ y, hence u0(x, y) = a(x− y) + y.
Computing the derivatives of u0 in (4.8) and (4.7) in terms of the derivatives of a, and
using the variable change z = x− y, we obtain that

−
∫ λ+1

1

dy

∫ y+C

y

div

( ∇u0

|∇u0|

)

ut(x, y, 0) dx =

∫ λ+1

1

dy

∫ C

0

I(a′(z), a′′(z)) dz =: c2λ.

In conclusion, we have that
F ′(0) = c1 + c3 + c2λ.

Since c2 > 0 by (4.5), it follows that F ′(0) > 0 when λ is large enough. 2
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Example 3 (proof of Theorem 2.18) Let Ω := {(x, y) ∈ R
2 : x2 + y2 < 1}, and

let u0(x, y) = f(r), where r = (x2 + y2)1/2, and f ∈ C∞(R) is any function such that

• f ′(r) > 0 for every r ∈ (0, 1), and f ′(r) = 0 otherwise;

• f ′(r) has a unique maximum point r0;

• f ′(r0) > 1, and f ′′(r0) = f ′′′(r0) = 0.

If u is a radial solution of the Perona-Malik equation in Ω, then u solves (3.20) and
(3.21) with ϕ(σ) = 2−1 log(1 + σ2), and ur = |∇u|.

The maximum of |∇u0| in Ω is f ′(r0) > 1, hence (2.30) is satisfied.
If we prove that urt(r0, 0) < 0, then (2.31) follows by a standard calculus argument.

In order to compute this derivative, we differentiate (3.20) with respect to r in a neigh-
borhood of (r0, 0): this can be done because (3.20) is a backward strictly parabolic
equation in a cylinder of the form (r0 − ε, r0 + ε) × [0, ε), hence its solution is of class
C∞ in the cylinder, also for t = 0. So we obtain that

(ur)t = ϕ′′′(ur)u
2
rr + ϕ′′(ur)urrr +

ϕ′′(ur)

r
urr −

ϕ′(ur)

r2
. (4.9)

Now let us examine this expression for t = 0, and r = r0. The first and the third
summand are zero because urr(r0, 0) = f ′′(r0) = 0. The second summand is zero because
urrr(r0, 0) = f ′′′(r0) = 0. Therefore urt(r0, 0) is equal to the fourth summand, hence it
is negative. 2

Remark 4.3 Since no uniqueness result is known, it may happen that u0 is radial, but
the solution is not radial. Also in this case the computation of

(
√

u2
x + u2

y

)

t
for t = 0

reduces to (4.9), and so the same argument works. We only need to assume that u is
regular enough to compute this derivative.
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