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Abstract. The Dirichlet energy of Sobolev mappings between Riemannian manifolds is studied. After giving an

explicit formula of the polyconvex extension of the energy for currents between manifolds, we prove a strong density

result. As a consequence, we give an explicit formula for the relaxed energy. The fractional space of traces of W 1,2-

mappings is also treated.

Let X = Xn and Y = Ym be two smooth compact connected oriented Riemannian manifolds of dimension
n and m, respectively, where Y is boundaryless and X possibly with a non-empty boundary ∂X . We
assume X and Y equipped with metric tensors (gαβ) and (γij), respectively, in some local coordinate
charts x = (x1, . . . , xn) and U = (U1, . . . Um) on X and Y, respectively. The Dirichlet energy, or action
in physics, of a smooth map U : X → Y is defined as the integral of the square of the derivatives dU . More
precisely, the energy density of U is

e(x,U) :=
1
2
|dUx|2 =

1
2
tr[(dUx)∗dUx] (0.1)

and the Dirichlet energy of U is

Dg(U,X ) :=
∫

X
e(x,U) dvolX =

1
2

∫

X
|dUx|2 dvolX . (0.2)

In local coordinates ( ∂
∂xi )n

i=1 in TxX and ( ∂
∂yj )m

j=1 in TU(x)Y, one computes

2e(x,U)(x) = gαβ(x)γij(U)
∂U i

∂xα

∂U j

∂xβ
,

where (gαβ) = (gαβ)−1, and therefore, since

dvolX =
√

det g dx ,

one concludes that the Dirichlet energy in local coordinates for continuous maps U takes the form

1
2

∫
gαβ(x)γij(U)

∂U i

∂xα

∂U j

∂xβ

√
det g(x) dx . (0.3)

This generalizes the classical Dirichlet’s energy for maps between the flat manifolds Rn and Rm.
By Nash embedding theorem, we may and will assume, without loss of generality, that Y is isometrically

embedded, as a submanifold, in some Euclidean space RN with induced Riemannian metric. This means
that the inner product of two tangent vectors to Y at a point y ∈ Y is simply their Euclidean inner product,
i.e., γij = δij , the Kronecker symbols. We then consider maps u : X → RN that are constrained to take
values into a smooth, boundaryless, compact submanifold Y of RN .

Therefore, in local coordinates, the energy density (0.1) agrees with eg(x,Du), where

eg(x,G) :=
1
2

n∑

α,β=1

N∑

i,j=1

gαβ(x)δij Gi
α Gj

β

√
det g(x) (0.4)

for every x ∈ X , every y ∈ Y, and every (N × n)-matrix G, say G ∈ M(N, n), with im G in TyY, the
tangent space to Y at y. Therefore, for every local parameterization φ : Ω → X , the Dirichlet energy in Ω
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of a map U ∈ W 1,2(X ,Y) on φ(Ω) agrees with

Dg(u, Ω) :=
∫

Ω

eg(x, Du(x)) dx , u = U ◦ φ . (0.5)

Assume that the integral 2-homology group H2(Y) := H2(Y;Z) has no torsion. We recall from [9] [19],
see Sec. 2 below, that the class of Cartesian currents cart2,1(X ×Y) arises as weak Dn,2-limits of sequences
of currents Guk

carried by the graphs of smooth maps uk : X → Y with equibounded W 1,2-energies,

sup
k
‖uk‖W 1,2(X ,Y) < ∞ ,

the weak Dn,2-convergence being given, by duality, by testing with forms in the class Dn,2(X ×Y), i.e., with
smooth, compactly supported n-forms in X × Y with at most two vertical differentials in the Y-directions.
We refer to [7] and [11, Vol. I] for general definitions of currents on Riemannian manifolds.

Every weak limit current T ∈ cart2,1(X × Y) satisfies the null boundary condition (2.3) and can be
decomposed as

T = GuT
+

es∑
s=1

Ls(T )× γs + ST,sing . (0.6)

GuT is the current integration of forms in Dn,2(X × Y) over the rectifiable graph of uT , see Example 2.1,
where uT ∈ W 1,2(X ,Y) is the weak W 1,2-limit of the uk’s. The γi’s are integral cycles in Z2(Y) such that
{[γi]}esi=1 generates the spherical subgroup Hsph

2 (Y) of H2(Y), see (2.1). The Ls(T )’s are integer multiplicity
(say i.m.) rectifiable current in Rn−2(X ). Finally, ST,sing, though completely vertical and homologically
trivial, in general is non zero only possibly on forms ω ∈ Dn,2(X × Y) for which dyω(2) 6= 0, where ω(2) is
the component of ω with exactly two vertical differentials. Moreover, as shown in [10], in principle ST,sing

may be any measure.
In Sec. 1, we shall consider the parametric polyconvex lower semicontinuous envelop of the integrand eg,

defined for every x ∈ X and every n-vector ξ in Rn+N , say ξ ∈ ΛnRn+N , by

Fg(x, ξ) = sup{φ(ξ) | φ : ΛnRn+N → R+ , φ linear,
φ(M(G)) ≤ eg(x,G) ∀G ∈ M(N,n)} ,

(0.7)

where M(G), see (1.1), is the n-vector in ΛnRn+N orienting the graph of G. Since (x,G) 7→ eg(x,G) is
continuous, it turns out that Fg(x, ξ) is l.s.c. in all variables and convex in ξ for any x. Using (0.7),
the polyconvex parametric extension Dg(T ) of the Dirichlet energy (0.5) turns out to be well-defined on
currents T in Dn,2(X × Y) with finite D-norm, see (2.5), and is lower semicontinuous with respect to the
weak Dn,2-convergence.

In Sec. 2 we shall give an explicit formula of the Dirichlet energy Dg(T ) for currents T in cart2,1 (X × Y).
More precisely, if ST,sing = 0 in the decomposition formula (0.6) of T , we shall prove that

Dg(T ) = Dg(uT ) +
es∑

s=1

Mg(Ls(T )) ·M(γs) , (0.8)

where Mg(Ls(T )) denotes the g-mass of Ls(T ), see (2.8). Writing Ls(T ) as Ls(T ) = τ(Ls, θs, τs) for some
(n− 2)-rectifiable set Ls, integer multiplicity θs, and unit orienting (n− 2)-vector τs, we have

Mg(Ls(T )) =
∫

Ls

θs(x) dHn−2 ,

if we choose τs with unit g-norm, |τs|g = 1.
In Secs. 3 and 4 we will then prove a strong density result for the Dirichlet energy in cart2,1 (X × Y).

For that, we recall, following Hang-Lin [21], that X satisfies the d-extension property with respect to Y
if for any given CW-complex K on X , denoting by Kd its d-dimensional skeleton, any continuous map
f : Kd+1 → Y is such that its restriction to Kd can be extended to a continuous map from X into Y.

In [21] it is shown that if X satisfies the 1-extension property with respect to Y, and π2(Y) = 0, every
Sobolev map in W 1,2(X ,Y) is the strong limit in W 1,2 of a sequence of smooth maps from X to Y. We
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notice that, if π1(X ) = 0 and π2(Y) = 0, then the 1-extension property is automatically satisfied. In the
case X = Bn, the unit ball in Rn, the problem of strong density of smooth maps in the Sobolev classes
W 1,p(Bn,Y) was solved by Bethuel [2].

In this paper, we shall assume that X satisfies the 1-extension property with respect to Y, and that for
any base point y0 ∈ Y the Hurewicz homomorphism from the second homotopy group π2(Y; y0) onto the
second real homology group H2(Y;R) is injective (notice that by the Hurewicz theorem this last condition
holds true if Y is 1-connected, i.e., if π1(Y) = 0). Moreover, we assume that for every x ∈ X the metric g
is equivalent to the Euclidean metric, see (2.7), and that x 7→ g(x) is continuous in X . Then in Sec. 3 we
will prove the following density result.

Theorem 0.1 Let T in cart2,1 (X × Y) be such that ST,sing = 0 in (0.6). There exists a sequence of
smooth maps uk : X → Y such that Guk

⇀ T weakly in Dn,2(X × Y) and

lim
k→∞

Dg(uk) = Dg(T ) .

Remark 0.2 Notice that, as shown in [9], compare [19, Sec. 4.9], in every vertical homology class of currents
in cart2,1 (X × Y) there exists a minimizer of the Dirichlet energy that satisfies the condition ST,sing = 0.
On the other hand, a part from the regular case n = 2, it is not clear how to find an explicit formula for the
Dirichlet energy if ST,sing in (0.6) is non-zero.

As an application of Theorem 0.1, in Sec. 5 we shall obtain a representation formula of the relaxed
Dirichlet energy for W 1,2-maps in the weak W 1,2-topology. For every u ∈ W 1,2(X ,Y) and every open set
Ω ⊂ X we let

D̃g(u,Ω) := inf
{
lim inf
k→∞

Dg(uk, Ω) | {uk} ⊂ C1(X ,Y) ,

uk ⇀ u weakly in W 1,2(X ,Y)
} (0.9)

where Dg(u, Ω) is defined by (0.5). By Schoen-Uhlenbeck density theorem [25], in case of dimension n = 2
we clearly have

D̃g(u, Ω) = Dg(u, Ω) ∀u ∈ W 1,2(X ,Y) .

In any dimension n ≥ 3, the following weak sequential density result was proved by Pakzad-Rivière [24],
see [19, Sec. 5.6] for a proof in the easier case Y = S2, the unit 2-sphere in R3.

Theorem 0.3 For every u ∈ W 1,2(X ,Y) there exists a sequence of smooth maps {uk} ⊂ C1(X ,Y) such
that uk ⇀ u weakly in W 1,2(X ,Y).

This clearly yields that for every open set Ω ⊂ X
D̃g(u, Ω) < ∞ ∀u ∈ W 1,2(X ,Y) .

By Theorem 0.1 we then obtain that for every u ∈ W 1,2(X ,Y)

D̃g(u, Ω) = inf{Dg(T, Ω× Y) | T ∈ T 2,1
u }.

In this formula, T 2,1
u denotes the family of vertical equivalence classes of currents in cart2,1 (X × Y), denoted

by CART2,1 (X × Y), such that the underlying W 1,2-maps uT in (0.6) are equal to u, see (5.4). We
recall that every element in CART2,1 (X × Y) has a representative of the type (0.6) with ST,sing = 0, see
Remark 0.2. Moreover, the i.m. rectifiable currents Ls(T ) ∈ Rn−2(X ) in the decomposition (0.6) do not
depend on the choice of the representative in a class of CART2,1 (X × Y). Therefore, the Dirichlet energy
Dg(T ) of T ∈ CART2,1 (X × Y) is well defined by the right-hand side of the formula (0.8), by taking γs

as the mass minimizing integral chain of Z2(Y) in the homology class [γs].
As a consequence, we deduce that for every u ∈ W 1,2(X ,Y)

D̃g(u,Ω) = Dg(u, Ω) + inf
{ es∑

s=1

Ms ·Mg(Ls(T ) Ω) | T ∈ T 2,1
u

}
,

where
Ms := inf{M(γ) | γ ∈ Z2(Y) , γ ∈ [γs]} .
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Therefore, the gap between Dg(u, Ω) and the relaxed energy D̃g(u, Ω) is related to the minimum value of
the g-mass among all the (n− 2)-dimensional i.m. rectifiable currents Γ in Ω that bound the singular set
of u. The above formula reads as

D̃g(u) = Dg(u) +
es∑

s=1

Ms ·Mg(Ls) ,

where Ls ∈ Rn−2(Ω), for s = 1, . . . , s̃, is an integral minimal connection for the g-mass of the singular set
Ps(u) allowing connections to the boundary of Ω, see Definitions 5.8 and 5.11. In the case X = Bn or Sn,
and for the standard Dirichlet integral, this formula was obtained in [26], in the case Y = S2, and in [14],
for more general target manifolds Y as above.

Remark 0.4 From another point of view, one may be interested in studying the quadratic energy
∫

Bn

f(x, Du) dx (0.10)

of mappings u : Bn → Y ⊂ RN , where the quadratic integrand f : Bn ×M(N, n) → R+ is defined by

f(x,G) :=
1
2

tr(GA(x)GT ) , x ∈ Bn , G ∈ M(N,n) , (0.11)

x 7→ A(x) being a continuous map from Bn to the space of positive definite matrices in M(n, n). Setting

g := (det A)1/(n−2) A−1 ⇐⇒ Aαβ(x) :=
√

det(gαβ(x)) gαβ(x) , x ∈ Bn, (0.12)

it turns out that the quadratic energy (0.10) agrees with the Dirichlet energy (0.5) of mappings u : X →
Y ⊂ RN , where (X , g) = (Bn, g), i.e., we have

f(x,G) = eg(x,G) ∀ (x,G) ∈ Bn ×M(N,n) . (0.13)

In the case n = 3, since |τ |2g = τT g τ , we have

|τ |2g = τT (cof A) τ .

Using the same techniques, in Sec. 6 we briefly discuss some analogous features for the fractional Sobolev
class W 1/2(Bn,Y), given by the L2-mappings u : Bn → RN such that u(x) ∈ Y a.e. on Bn and that are
the traces on Bn ' Bn×{0} of some Sobolev map U in W 1,2(Bn×]0, 1[,RN ), equipped with the seminorm

|u|1/2 := inf
{∫

Bn

∫ 1

0

eg(x,DU) dt dx | U ∈ W 1,2(Bn×]0, 1[,RN ) , U = u on Bn × {0}
}

,

compare [23] for the case of W 1/2-maps from B2 into S1, the unit circle in R2.

1 The parametric envelop of the Dirichlet energy density

Notation on multivectors. Denote by I(k,m) the class of ordered multi-indices α in {1, . . . , m}
of length k, i.e., α = (α1, . . . , αk) where 1 ≤ α1 < · · · < αk ≤ m, and, for convenience, I(0,m) := {0}.
Moreover, denote by |α| the length of α, by α the element in I(m− k,m) which complements α, and by
σ(α, α) the sign of the permutation that reorders the multi-index (α, α) in the natural way.

Let e1, . . . , en and ε1, . . . , εN be the standard bases in Rn and RN , respectively, and denote by eα

and εβ , for α ∈ I(k, n) and β ∈ I(h, N), the unit simple multi-vectors eα := eα1 ∧ · · · ∧ eαk
and εβ :=

εβ1 ∧ · · · ∧ εβh
.

If G : Rn → RN is a linear map we let G also denote the (N × n)-matrix in M(N, n) associated to
G with respect to the standard bases. For multi-indices α and β with length respectively |α| = n − k
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and |β| = k, we shall denote by Gβ
α the (k × k)-submatrix of G with rows β = (β1, . . . , βk) and columns

α = (α1, . . . , αk), and by
Mβ

α (G) := det Gβ
α

the determinant of Gβ
α, where by definition

M0
0 (G) := 1 .

Let ΛnRn+N denote the space of n-vectors in Rn+N . Every n-vector ξ in ΛnRn+N can be written as

ξ =
∑

|α|+|β|=n

ξαβeα ∧ εβ , ξαβ ∈ R ,

we refer to ξ00 as the first component of ξ, or as ξ =
∑n

k=0
ξ(k) , where

ξ(k) :=
∑

|α|+|β|=n
|β|=k

ξαβeα ∧ εβ , k = 0, . . . , n := min{n,N} ,

so that ξ(0) = ξ00e1 ∧ · · · ∧ en. We also denote by Σ the class of simple n-vectors in ΛnRn+N and set

Σ1 := {ξ ∈ Σ | ξ00 = 1} , Λ1 := {ξ ∈ ΛnRn+N | ξ00 = 1} ,

Σ+ := {ξ ∈ Σ | ξ00 > 0} , Λ+ := {ξ ∈ ΛnRn+N | ξ00 > 0} .

For G ∈ M(N,n), the vectors ei + Gei ∈ Rn+N , i = 1, . . . , n, yield a basis of the tangent n-plane to the
graph of G in Rn+N that agrees with the graph of G. Letting

M(G) := (e1 + Ge1) ∧ · · · ∧ (en + Gen) ∈ ΛnRn+N , (1.1)

we find that the unit simple n-vector

ξG :=
M(G)
|M(G)| ,

called the tangent n-vector to the graph of G, identifies the n-plane graph of G, and in fact orients such an
n-plane. The map G 7→ M(G) from M(N, n) to ΛnRn+N is injective, as

M(G) =
∑

|α|+|β|=n

σ(α, α)Mβ
α (G) eα ∧ εβ ∈ ΛnRn+N . (1.2)

Moreover, if M(k)(G) := M(G)(k), for every G ∈ M(N,n) we have M(0)(G) = e1 ∧ · · · ∧ en and

M(1)(G) =
N∑

j=1

n∑

i=1

(−1)n−i Gj
i êi ∧ εj , G = (Gj

i )
N,n
j,i=1 .

Conversely, to every ξ ∈ Λ+ we associate the matrix Gξ ∈ M(N, n) defined by

Gξ := M(1)
−1

(
ξ(1)

ξ00

)
.

For ξ ∈ Λ+ we have Gξ = 0 if and only if ξ(1) = 0, whereas Gλξ = Gξ for every ∀λ > 0. Most importantly,
Gξ = M−1(ξ) if and only if ξ ∈ Σ1, i.e.

{
GM(G) = G ∀G ∈ M(N, n) ,
ξ = M(Gξ) ⇐⇒ ξ ∈ Σ1

(1.3)

and finally

ξ ∈ Λ+ is simple if and only if
ξ

ξ00
= M(Gξ) ,
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whereas Λ1 agrees with the convex envelop of the set of n-vector M(G),

co ({M(G) | G ∈ M(N, n)}) = Λ1 . (1.4)

We refer to [11] for background material concerning this section.

Linear mappings on n-vectors. If L : V → W is a linear map between finite dimensional vector
spaces V and W , and ΛkL : ΛkV → ΛkW is the induced linear transformation, defined on simple k-vectors
by

ΛkL(v1 ∧ · · · ∧ vk) := Lv1 ∧ · · · ∧ Lvk ,

we have
M(G) = Λn(Id ./ G)(e1 ∧ · · · ∧ en) ∀G ∈ M(N,n) ,

where (Id ./ G) : Rn → Rn+N is given by (Id ./ G)(x) := (x, Gx). Moreover, the following Laplace’s
formulas hold:

Lemma 1.1 Let L : Rn → Rn be a non-singular linear map. Then

σ(γ, γ)σ(α, α)Mα
γ (L) = (det L) Mγ

α(L−1)

for any 0 ≤ |α| = |γ| ≤ n.

Proof: Let (e1, . . . en) and (ε1, . . . εn) be two orthonormal bases in the domain and in the target space,
respectively. From

(Id ./ L) = (L−1 ./ Id) ◦ L

we get
Λn(Id ./ L) = Λn(L−1 ./ Id) ◦ ΛnL

so that, as Λn(e1 ∧ · · · ∧ en) = (det L)(ε1 ∧ · · · ∧ εn), we get

Λn(Id ./ L)(e1 ∧ · · · ∧ en) = (det L)Λn(L−1 ./ Id)(ε1 ∧ · · · ∧ εn) ,

which in components reads as the above Laplace’s formulas. ¤

Definition 1.2 For any square matrix L ∈ M(n, n), let LL : ΛnRn+N → ΛnRn+N be the linear map
defined by

LL(ξ) :=
∑

|α|+|β|=n

σ(α, α) ξαβ
L eα ∧ εβ , ξαβ

L :=
∑

|γ|=|α|
σ(γ, γ) ξγβ Mγ

α(L) ,

if ξ =
∑

|γ|+|β|=n

ξγβeγ ∧ εβ ∈ ΛnRn+N .

Lemma 1.3 We have
LL(M(G)) = M(GL) ∀G ∈ M(N,n) .

Moreover, if det L 6= 0, then LL is bijective and LL
−1 = LL−1 .

Proof: Since by the Binet’s formulas Mβ
α (GL) =

∑

|γ|=|α|
Mβ

γ (G) Mγ
α(L), by (1.2) we compute

M(GL) =
∑

|α|+|β|=n

σ(α, α)
( ∑

|γ|=|α|
Mβ

γ (G) Mγ
α(L)

)
eα ∧ εβ ,

that proves the first assertion. If det L 6= 0, we trivially have

LL−1 ◦ LL(M(G)) = LL−1(M(GL)) = M(GLL−1) = M(G) .
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Using (1.4), by linearity and continuity we obtain the second assertion. ¤

The parametric polyconvex l.s.c. envelop. Let eg : Bn ×M(N,n) → R be the Dirichlet
energy density (0.4), and let Fg : Bn × ΛnRn+N → R+ be its parametric polyconvex lower semicontinuous
envelop given by (0.7). Since eg is continuous, it turns out that Fg(x, ξ) is l.s.c. in all variables and convex
in ξ for any x. In fact, if eg : Bn×Σ1 → R+ is defined, according to (1.3), by eg(x, ξ) := eg(x,Gξ), taking
x as a parameter, the map ξ 7→ Fg(x, ξ) agrees with the convex l.s.c. envelop of ξ 7→ eg(x, ξ),

Fg(x, ·) := ΓCeg(x, ·) ,

where for every x ∈ Bn we set

eg(x, ξ) :=
{

ξ00eg(x, ξ/ξ00) = ξ00eg(x,Gξ) if ξ ∈ Σ+,
+∞ otherwise .

For future use, we shall denote by F : ΛnRn+N → R+ the parametric polyconvex l.s.c. envelop of the
standard Dirichlet integrand G 7→ 1

2 |G|2, i.e., F = Fg with g = δαβ , so that F does not depend on x and

F (ξ) = sup
{

φ(ξ) | φ : ΛnRn+N → R+ , φ linear,

φ(M(G)) ≤ 1
2
|G|2 ∀G ∈ M(N,n)

}
.

(1.5)

Proposition 1.4 For every x ∈ Bn we have

Fg(x, ξ) = F (LL(ξ)) ∀ ξ ∈ ΛnRn+N ,

where L = L(x) is the unique symmetric positive definite square matrix in M(n, n) satisfying

L(x)L(x)T =
√

det g(x) g(x)−1 , (1.6)

and LL is given by Definition 1.2.

Proof: If A = A(x) ∈ M(n, n) is the positive definite symmetric square matrix given by (0.12), we actually
have LLT = A, i.e., L :=

√
A in (1.6). Therefore, by (0.11) and (0.13) we infer that

2 eg(x,G) = tr(GAGT ) = tr((GL)(GL)T ) = |GL|2 ∀G ∈ M(N,n) . (1.7)

Because of (0.7), this yields that for every x ∈ Bn and ξ ∈ ΛnRn+N

Fg(x, ξ) = sup
{

φ(ξ) | φ : ΛnRn+N → R+ , φ linear,

φ(M(G)) ≤ 1
2
|GL(x)|2 ∀G ∈ M(N, n)

}
.

(1.8)

Since the matrix L(x) in (1.6) is invertible, by (1.8), Lemma 1.3 and (1.5) we get

Fg(x, ξ) = sup
{

φ(ξ) | φ linear, φ(M(GL−1)) ≤ 1
2
|G|2 ∀G ∈ M(N, n)

}

= sup
{

φ(ξ) | φ linear, φ ◦ LL−1(M(G)) ≤ 1
2
|G|2 ∀G ∈ M(N, n)

}

= sup
{

φ ◦ LL−1(LLξ) | φ linear, φ ◦ LL−1(M(G)) ≤ 1
2
|G|2 ∀G ∈ M(N, n)

}

= sup
{

φ̃(LLξ) | φ̃ linear, φ̃(M(G)) ≤ 1
2
|G|2 ∀G ∈ M(N, n)

}
= F (LL(ξ)) ,

as required. ¤
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An explicit formula. We are interested in writing more explicitly the polyconvex extension of the
energy density eg on simple n-vectors ξ in Λn−2Rn ⊗ Λ2RN . We will see that for every x ∈ Bn it agrees
with the length of ξ in the metric on Rn+N given by the product of the metric g(x) on Rn and of the
Euclidean metric on RN . To this purpose, we recall that a metric g on Rn induces a metric on the whole
exterior algebra. In particular, we have

〈τ, η〉g := 〈Λk(g)τ, η〉 ∀ τ, η ∈ ΛkRn ,

so that
|τ |g = |Λk(g1/2)(τ)| ∀ τ ∈ ΛkRn , (1.9)

where g1/2 :=
√

g is the unique symmetric positive definite square matrix g̃ such that g̃2 = g.

Proposition 1.5 If ξ = τ ∧ η ∈ Λn−2Rn ⊗ Λ2RN and L ∈ M(n, n) is non-singular, then

LL(τ ∧ ν) = (det L)(Λn−2L
−1(τ) ∧ η) = Λn−2(g1/2)(τ) ∧ η .

Proof: For any α ∈ I(n− 2, n) and β ∈ I(2, n), by Definition 1.2 we have

LL(eα ∧ εβ) =
∑

|γ|=|α|
σ(γ, γ)σ(α, α)Mα

γ (L) eγ ∧ εβ ,

whereas
Λn−2L

−1(eα) =
∑

|γ|=|α|
Mγ

α(L−1) eγ .

By Lemma 1.1 we thus obtain

LL(eα ∧ εβ) = (det L)
∑

|γ|=|α|
Mγ

α(L−1) eγ ∧ εβ = (detL) (Λn−2L
−1(eα) ∧ εβ) .

The first equality follows by using an argument by linearity on the two factors Λn−2Rn and Λ2RN . Moreover,
by (1.6) we have

det L = ((det g)n/2 g−1)1/2 = (det g)(n−2)/4

and
L−1 = (det g)−1/4 g1/2.

This yields
(det L) Λn−2L

−1 = Λn−2(g1/2)

and hence the second equality. ¤

We recall from [11, Vol. II, Sec. 5.4.4], see also [19, Sec. 4.8], that if ξ = τ ∧ η ∈ Λn−2Rn ⊗ Λ2RN is
simple, and F is given by (1.5), we have

F (τ ∧ η) = |τ | · |η| .
As a consequence of Propositions 1.4 and 1.5, on account of (1.9) we immediately obtain:

Theorem 1.6 Let ξ = τ ∧ η ∈ Λn−2Rn ⊗ Λ2RN be a simple n-vector, and let Fg be given by (1.8). For
every x ∈ Bn we have

Fg(x, τ ∧ η) = F (Λn−2(g1/2)(τ) ∧ η) = |Λn−2(g1/2)(τ)| · |η| = |τ |g · |η| .
Manifold constrained mappings. In the sequel we shall deal with mappings that are constrained
to take values into a smooth manifold Y isometrically embedded in RN . To this purpose, we notice that in
fact the energy density (0.1) is given by the integrand êg : Bn × RN ×M(N,n) → R+ defined by

êg(x, u, G) :=
{

eg(x,G) if u ∈ Y and G ∈ Su

+∞ otherwise ,
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where
Su := {G ∈ M(N, n) | G ∈ TuY} , u ∈ Y ,

TuY being the tangent space to Y at u. We denote by F̂g(x, u, ξ) : Bn×RN×ΛnRn+N → R+ the parametric
polyconvex l.s.c. extension of the integrand êg. The n-vector M(G) corresponding to matrices G ∈ Su

belongs to the subspace Λn(RN ×TuY). This implies the following property, compare [11, Vol. II, Sec. 1.2.4]
or [19, Sec. 4.8].

Proposition 1.7 For every x ∈ Bn we have:

F̂g(x, u, ξ) :=
{

Fg(x, ξ) if u ∈ Y, ξ ∈ Λn(Rn × TuY)
+∞ otherwise ,

(1.10)

where Fg(x, ξ) is given by (1.8) and TuY is the tangent space to Y at u.

Since eg is a local representation of the energy density (0.1), actually F̂g defines locally pointwise a map
F̂g(x, u, ξ) : X × RN × ΛnRn+N → R+

2 Cartesian currents and Dirichlet energy

Cartesian currents. Following [11] [19], we recall that an integral 2-cycle in Z2(Y) is said to be of
spherical type if its homology class contains a Lipschitz image of the 2-sphere S2. We denote by

Hsph
2 (Y) := {[γ] ∈ H2(Y) | ∃φ ∈ Lip(S2,Y) : φ#[[S2 ]] ∈ [γ]} (2.1)

the spherical subgroup of H2(Y), and we shall also assume that H2(Y)/Hsph
2 (Y) has no torsion. Therefore,

there are generators [γ1], . . . , [γs], i.e. integral cycles γ1, . . . , γs in Z2(Y), such that

H2(Y) =

{
s∑

s=1

ns [γs] | ns ∈ Z
}

,

see e.g. [11], Vol. I, Sec. 5.4.1, and we may and do choose the γs’s in such a way that [γ1], . . . , [γes] generate
the spherical homology classes in Hsph

2 (Y) for some s̃ ≤ s. By de Rham’s theorem, we may and do choose
a dual basis [σ1], . . . , [σs] in H2

dR(Y) so that γs(σr) = δsr, the Kronecker symbol. Also, we may and do
assume that σs is the harmonic form in its cohomology class.

We denote by Dk,p(X × Y) the subspace of Dk(X × Y) of compactly supported smooth k-forms in
X × Y of the type ω =

∑p
j=0 ω(j), where ω(j) is the component of ω that contains exactly j differentials

in the vertical Y variables. Also, Dk,p(X × Y) denotes the dual space of Dk,p(X × Y).
We also remark that if T ∈ Dn,2(X × Y) the boundary current ∂T makes sense only as an element of

the dual space of Zn−1,2(X × Y), where

Zk,p(X × Y) := {ω ∈ Dk,p(X × Y) | dyω(p) = 0} (2.2)

and d = dx+dy is the natural splitting of the exterior differential into a horizontal and a vertical differential.

Example 2.1 If u ∈ W 1,2(X ,Y), the current Gu carried by the “graph” of u is well-defined in an approx-
imate sense, see [11], by

Gu(ω) :=
∫

X
(Id ./ u)#ω , ω ∈ Dn,2(X × Y) ,

where (Id ./ u)(x) := (x, u(x)), and hence Gu ∈ Dn,2(X × Y).

Cartesian currents in cart2,1 (X × Y), see Definition 2.2 below, arise as weak limit points of sequences of
graphs Guk

of smooth maps uk : X → Y with equibounded W 1,2-norms

sup
k
‖uk‖W 1,2(X ,Y) < ∞ .
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It turns out that every such weak limit point satisfies the null-boundary condition

∂T (ω) = 0 ∀ω ∈ Zn−1,2(X × Y) (2.3)

and decomposes as

T = GuT
+ ST , ST =

es∑
s=1

Ls(T )× γs on Zn,2(X × Y) , (2.4)

where uT ∈ W 1,2(X ,Y) and Ls(T ) is an i.m. rectifiable current in Rn−2(X ), for every s. Setting

ST,sing := T − (GuT
+ ST )

though completely vertical and homologically trivial, i.e., ST,sing(ω) = 0 if ω(2) = 0 or ω ∈ Zn,2(X × Y),
in general ST,sing is non zero only possibly on forms ω ∈ Dn,2(X × Y) for which dyω(2) 6= 0. Moreover,
even if T is the weak limit of a sequence of smooth graphs with equibounded Dirichlet energies, in principle
ST,sing may be any measure, compare [10].

By lower semicontinuity, it turns out that every such weak limit point T has finite D-norm,

‖T‖D(X ) < ∞ ,

where we define for any open set Ω ⊂ X

‖T‖D(Ω) := sup
{

T (ω) | ω ∈ Dn,2(X × Y), ‖ω‖D ≤ 1, sptω ⊂ Ω× Y
}

‖ω‖D := max
{
sup
x,y

|ω(0)(x, y)|
1 + |y|2 ,

∫

X
sup

y
|ω(1)(x, y)|2 dvolx ,

∫

X
sup

y
|ω(2)(x, y)| dvolx

}
.

(2.5)

Definition 2.2 The class cart2,1 (X × Y) is the class of the currents T in Dn,2(X × Y) that satisfy the
null-boundary condition (2.3), have finite D-norm, and decompose as in (2.4) for some uT ∈ W 1,2(X ,Y)
and some i.m. rectifiable current Ls(T ) ∈ Rn−2(X ), for s = 1, . . . , s̃.

Remark 2.3 By the structure theorem, see e.g. [19, Thm. 4.66], the class cart2,1 (X × Y) agrees with the
one considered in [9] [19].

Example 2.4 If u ∈ W 1,2(X ,Y), the norms ‖u‖W 1,2 and ‖Gu‖D are equivalent. Therefore, the current
Gu belongs to cart2,1 (X × Y) if and only if

∂Gu = 0 on Zn−1,2(X × Y) (2.6)

or, equivalently,

Gu(dω) :=
∫

X
(Id ./ u)#dω = 0 ∀ω ∈ Zn−1,2(X × Y) .

Thanks to Schoen-Uhlenbeck density theorem [25], condition (2.6) is always satisfied in dimension n = 2.
However, if n ≥ 3, for maps u ∈ W 1,2(X ,Y) in general (2.6) is violated. For example, if n = 3, X = B3,
Y = S2, and u(x) := x/|x|, we have, compare [11, Vol. I, Sec. 3.2.2],

∂Gu = −δ0 × [[S2 ]] on D2(B3 × S2) .

The Dirichlet energy on currents. Every current T ∈ Dn,2(X × Y) can be identified, in
terms of its components, with the Rc(n,N)-valued linear functional T :=

(
T 00, (T ij), (Tαβ)

)
, where for every

φ ∈ C∞0 (X × Y) we set T 00(φ) := T (φdx),

T ij(φ) := T (φ d̂xi ∧ dyj) , i = 1, . . . n , j = 1, . . . N ,

Tαβ(φ) := T (φdxα ∧ dyβ) , |α| = |β| = 2 ,

and c(n, N) := 1 + Nn +
(

n
2

) (
N
2

)
. If ‖T‖D < ∞, we can decompose T = ‖T‖D −→

T , where
−→
T is the

Radon-Nikodym derivative of T with respect to ‖T‖D.
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Definition 2.5 The Dirichlet integral (0.2) is extended to currents T in Dn,2(X × Y) with finite D-norm,
‖T‖D < ∞, by letting

Dg(T ) :=
∫

F̂g(x, u,
−→
T ) d‖T‖D ,

where F̂g(x, u, ξ) is the parametric polyconvex l.s.c. extension given in local coordinates by (1.10). For any
measurable set B ⊂ X we define

Dg(T,B × Y) := Dg(T (B × Y)) .

Remark 2.6 Since our considerations are all local, a part from the proof of Theorem 3.1 and the covering
argument in the proof of Theorem 3.4, it looks convenient to look at X as (Bn, g). We shall then denote
by D(T ) the Dirichlet energy of T in the case g ≡ δαβ , the Euclidean metric, i.e., when eg(G) ≡ 1

2 |G|2.
Finally, for every map u ∈ W 1,2(X ,Y) we set

Dg(u,B) :=
∫

B

eg(x, Du(x)) dx , D(u,B) :=
1
2

∫

B

|Du(x)|2 dx .

Properties. From now on we shall assume that there exists an absolute constant C > 0 such that for
every x ∈ X and τ ∈ Rn

C|τ |2 ≤ |τ |2g(x) ≤
1
C
|τ |2 , |τ |2g(x) := τT g(x) τ. (2.7)

This clearly yields that for some absolute constant C̃ > 0 we have

C̃ D(T ) ≤ Dg(T ) ≤ 1

C̃
D(T ) ∀T ∈ cart2,1 (X × Y) .

As a consequence of the closure theorem in [9], we readily obtain the following properties:

i) Dg(T ) < ∞ for every T ∈ cart2,1 (X × Y);

ii) the functional T 7→ Dg(T ) is lower semicontinuous in cart2,1 (X × Y) with respect to the weak Dn,2-
convergence;

iii) the class cart2,1 (X × Y) is closed in the weak Dn,2-convergence along sequences with equibounded
Dg-energies;

iv) Dg-bounded sequences in cart2,1 (X × Y) are relatively compact in the Dn,2-topology.

The g-mass. The g-comass ‖ω‖g of a k-form ω ∈ Dk(X ) is defined by

‖ω(x)‖g(x) := sup{〈ω(x), ξ〉 | ξ ∈ Λk(TxX ) simple, |ξ|g(x) ≤ 1} , x ∈ X ,

where TxX is the tangent n-space to X at x, and the g-mass of a current Γ ∈ Dk(X ) by

Mg(Γ) := sup{Γ(ω) | ω ∈ Dk(X ) , ‖ω(x)‖g(x) ≤ 1 ∀x ∈ X} . (2.8)

If g(x) ≡ δαβ , they agree with the standard comass and mass, respectively. Moreover, if Γ is an i.m.
rectifiable current in Rk(X ), writing Γ = τ(G, θ, ξ), where G is k-rectifiable in X , θ(x) is an integer-valued
multiplicity function on G and ξ(x) is a simple k-vector in Λk(TxX ), with |ξ(x)|g(x) = 1, orienting G at
x, we have

Mg(Γ) = sup
{∫

G
θ(x) 〈ω(x), ξ(x)〉 dHk | ω ∈ Dk(X ) , ‖ω(x)‖g(x) ≤ 1 ∀x ∈ X

}

=
∫

G
θ(x) dHk(x) .
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Remark 2.7 For future use, we point out that in local coordinates, e.g. when X is equal to (Bn, g), the
g-mass of a current Γ = τ(G, θ, ξ), where |ξ| ≡ 1 in the Euclidean metric, agrees with

Mg(Γ) =
∫

G
θ(x) |ξ(x)|g(x) dHk(x) .

An explicit formula. Assume now that T ∈ cart2,1 (X × Y) can be decomposed as in (2.4) on the
whole of Dn,2(X × Y), where uT ∈ W 1,2(X ,Y) and Ls(T ) ∈ Rn−2(X ). Write Ls(T ) = τ(Ls, θs, τs), where
Ls is (n− 2)-rectifiable in X , θs(x) is an integer-valued multiplicity function on Ls and τs(x) is a simple
(n− 2)-vector in Λn−2Rn orienting Ls at x, with |τs(x)|g(x) = 1. In this case, for every Borel set B ⊂ X
we have

Mg(Ls(T ) B) =
∫

Ls∩B

θs(x) dHn−2(x) . (2.9)

Arguing as for the standard Dirichlet integral D(T ), we then compute explicitly:

Proposition 2.8 For every Borel set B ⊂ X we have

Dg(T,B × Y) = Dg(uT , B) +
es∑

s=1

M(γs) ·Mg(Ls(T ) B) . (2.10)

Proof: If ηs ∈ Λ2RN yields an orientation to γs at u ∈ Y, and |ηs| = 1, the simple n-vector τs∧ηs yields
an orientation to Ls(T )× γs at (x, u). By Theorem 1.6 and Proposition 1.7 we have

F̂g(x, u, τs ∧ ηs) = |τs|g(x) · |η| = 1 .

Due to Definition 2.5, using the same argument as for the standard Dirichlet integral, compare [11, Vol. II,
Sec. 5.4.4] or [19, Sec. 4.9], we obtain

Dg(T, B × Y) =
∫

B

eg(x,DuT ) dx +
es∑

s=1

M(γs) ·
∫

Ls∩B

θs(x) dHn−2(x) .

The assertion follows from (2.9). ¤

The case of constant metrics. Assume now that the metric g is constant, so that eg(x,G) ≡
eg(G) in (0.5). Equivalently, compare Remark 0.4, assume that A(x) ≡ A is a constant positive definite
symmetric matrix in M(n, n). If g ≡ δαβ , the Euclidean metric, i.e., if A is the identity matrix, then

eg(G) ≡ 1
2
|G|2 ∀G ∈ M(N,n) .

Therefore, the energy Dg(T ) agrees with the standard Dirichlet energy D(T ) and for every Borel set B ⊂ X
we clearly have

D(T, B × Y) =
1
2

∫

B

|DuT |2 dx +
es∑

s=1

M(γs) ·M(Ls(T ) B) .

In the case (X , gαβ) = (Bn, δαβ), the following density result holds true, compare [17] [19, Sec. 5.4]:

Theorem 2.9 For every T ∈ cart2,1 (Bn × Y) there exists a sequence of smooth maps {uk} ⊂ C1(Bn,Y)
such that Guk

⇀ T weakly in Dn,2(Bn × Y) and 1
2

∫
Bn |Duk|2 dx → D(T ) as k →∞.

Remark 2.10 In dimension n ≥ 3, the hypothesis on the Hurewicz maps is a necessary condition to strong
approximability by smooth sequences. In fact, if the Hurewicz homomorphism π2(Y; y0) → H2(Y;R) is
not injective, there are maps in W 1,2(B3,Y) that are smooth outside the origin, i.e., with only one point
singularity, which cannot be approximated weakly with the D-energy by graphs of smooth maps, even if Gu

satisfies the null-boundary condition (2.6), i.e., Gu ∈ cart2,1(B3,Y), compare [19, Sec. 5.3].
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In the case of constant metrics g, the following link with the standard Dirichlet energy clearly holds
true. For every T ∈ cart2,1 (Bn × Y), we will denote by TL := (L−1 ./ IdRN )#T the Cartesian current in
cart2,1(L−1(Bn) × Y) given by the push forward of T by means of the linear map (L−1 ./ IdRN )(x, y) :=
(L−1x, y), where L is given by (1.6), i.e.,

TL(ω̃) := T ((L−1 ./ IdRN )#ω̃) , ω̃ ∈ Dn,2(L−1(Bn)× Y) .

Notice that if T = GuT
for some Sobolev map uT ∈ W 1,2(Bn,Y), then

(L−1 ./ IdRN )#GuT
= GvT

,

where vT : L−1(Bn) → Y is given by vT (x̃) := uT (Lx̃). This yields that the function vT corresponding to
TL agrees with uT ◦ L.

Proposition 2.11 Assume that the metric g is constant on Bn. Let T ∈ cart2,1 (Bn × Y) be such that
(2.4) holds in the whole of Dn,2(Bn × Y). For every Borel set B ⊂ Bn we have

Dg(T, B × Y) = (det L) ·D(TL, L−1(B)× Y) ,

where L is given by (1.6). In particular, if T = GuT
for some uT ∈ W 1,2(Bn,Y), then

∫

Bn

eg(DuT (x)) dx = (det L) · 1
2

∫

L−1(Bn)

|DvT (x̃)|2 dx̃ , vT (x̃) := uT (Lx̃) .

Proof: The isomorphism L : Rn → Rn induces an isomorphism L# : W 1,2(Bn,Y) → W 1,2(L−1(Bn),Y)
and an isomorphism map (L−1 ./ IdRN )# between Dn,2(Bn×Y) onto Dn,2(L−1(Bn)×Y). Moreover, it is
easily seen that T ∈ cart2,1 (Bn × Y) if and only if TL := (L−1 ./ IdRN )#T belongs to cart2,1(L−1(Bn)×Y)
and

eg(G) = (det L) · 1
2
|G ◦ L|2 ∀G ∈ M(N,n) .

This yields the assertions. ¤

3 A density result for the Dirichlet energy

In this section and in the next one we shall prove a density result for the Dirichlet energy. As before,
we assume that for any y0 ∈ Y the Hurewicz homomorphism from π2(Y; y0) onto H2(Y;R) is injective.
Moreover, we assume that the metric g(x) is continuous in X and satisfies the bound (2.7). Finally, we
assume that X satisfies the 1-extension property with respect to Y. Alternatively, we may assume that X
is 1-connected, i.e., that π1(X ) = 0.

Theorem 3.1 Let T ∈ cart2,1 (X × Y) be such that

T = GuT +
es∑

s=1

Ls(T )× γs on Dn,2(X × Y) , (3.1)

where uT ∈ W 1,2(X ,Y) and Ls(T ) is an i.m. rectifiable current in Rn−2(X ), for every s. There exists a
sequence of smooth maps {uk} ⊂ C1(X ,Y) such that Guk

⇀ T weakly in Dn,2(X × Y) as k →∞ and

lim
k→∞

∫

X
eg(x, Duk(x)) dx = Dg(T ) .

Remark 3.2 Since the metric function x 7→ g(x) is continuous in X , whereas

G 7→ eg(x,G)− eg(x0, G)
|G|2

is positively homogeneous of degree zero, it turns out that there exists a continuous function ω : R+ → R+

satisfying ω(t) → 0 if t → 0, such that for every x, x0 ∈ X and every G ∈ M(N,n)

|eg(x,G)− eg(x0, G)| ≤ ω(|x− x0|) · |G|2 . (3.2)
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Remark 3.3 If (X , gαβ) = (Bn, gαβ), and the metric g is constant on Bn, we immediately deduce Theo-
rem 3.1. In fact, setting TL := (L−1 ./ IdRN )#T , by Theorem 2.9 we find a sequence {vk} ⊂ C1(L−1(Bn),Y)
such that Gvk

⇀ TL weakly in Dn,2 and 1
2

∫
L−1(Bn)

|Dvk|2 dx̃ → D(TL, L−1(Bn)× Y) as k →∞. It then
suffices to apply Proposition 2.11, by taking uk := vk ◦ L−1.

In the case of dimension n = 2, the proof of Theorem 3.1 is an easy adaptation of the one from [13], by
using the continuity of the metric g and Proposition 4.2 below, so we omit to write it. In the case of higher
dimension n ≥ 3, we shall use arguments taken from the density theorem in [18] [20], see also [19], and we
shall adapt the dipole construction to our situation, Theorem 3.8.

To this purpose, for every current T ∈ cart2,1 (X × Y) satisfying (3.1), with Ls(T ) ∈ Rn−2(X ) for every
s, we will denote by µT the finite Radon measure on X given for every Borel set B ⊂ X by

µT (B) :=
es∑

s=1

M(γs) ·Mg(Ls(T ) ∩B) , (3.3)

so that we have
Dg(T, B × Y) = Dg(uT , B) + µT (B) .

For any T as above, we will also denote by F(T ) the flat norm

F(T ) := sup{T (ω) | ω ∈ Dn,2(X × Y) , F(ω) ≤ 1} ,

where for every ω ∈ Dn,2(X × Y)

F(ω) := max
{

sup
z∈X×Y

‖ω(z)‖ , sup
z∈X×Y

‖dω(z)‖
}

.

As |T (ω)| ≤ F(T )F(ω), we infer that Tk ⇀ T weakly in Dn,2(X × Y) provided that F(Tk − T ) → 0.
Moreover, following [9], see also [19, Sec. 4.6], if T ∈ cart2,1 (X × Y) decomposes as in Theorem 3.1, we

can write
T = Gu + ST , ST :=

∑

q∈Hsph
2 (Y)

Lq ×Rq on Dn,2(X × Y) .

Here, u = uT ∈ W 1,2(X ,Y) and every Lq is an i.m. rectifiable current in Rn−2(X ) with multiplicity
one such that, writing Lq = τ(Lq, 1, τq), the (n− 2)-rectifiable sets Lq := set(Lq) are pairwise disjoint and
|τq(x)|g(x) = 1 for all x ∈ Lq. Moreover, Rq ∈ Z2(Y) is an integral 2-cycle of spherical type in the homology
class q. As a consequence, on account of (2.10), the Dirichlet energy of T can be equivalently written for
every Borel set B ⊂ X as

Dg(T,B) := Dg(T,B × Y) = Dg(u, B) +
∑

q∈Hsph
2 (Y)

M(Rq) ·Mg(Lq B) . (3.4)

By (3.3) and (3.4) we then infer that the rectifiable measure µT satisfies

µT = θT Hn−2 LT ,

where LT is the (n− 2)-rectifiable set LT :=
⋃

q∈Hsph
2 (Y) set(Lq), so that Hn−2(LT ) < ∞, and the density

θT : LT → [0, +∞) is the non-negative Hn−2 LT -measurable function on LT given by

θT (x) := M(Rq) if x ∈ set(Lq) .

Finally, by the smoothness and compactness of Y we infer that the function x 7→ θT (x) is uniformly
bounded on LT , and by an isoperimetric theorem, see e.g. [19, Thm. 1.101], there exist an absolute constant
C1, depending on Y and µT , such that

0 < C1 ≤ θT (x) ≤ C2 < ∞ ∀x ∈ LT . (3.5)

Similarly to [19, Sec. 5.4], the proof of Theorem 3.1 is based on the following

14



Theorem 3.4 Let T ∈ cart2,1 (X × Y) be as in Theorem 3.1. Let ε ∈ (0, 1/2) and k ∈ N. We can find a
current T̃ ∈ cart2,1 (X × Y) of the type in (3.1), with Ls(T̃ ) ∈ Rn−2(X ) for every s, such that

Dg(T̃ ) ≤ Dg(T ) + εk ,

F(T̃ − T ) ≤ εk and µeT (X ) ≤ 1
2
· µT (X ) .

Proof of Theorem 3.1: By Theorem 3.4, using a diagonal argument, we find a sequence {Tk} ⊂
cart2,1 (X × Y) that weakly converges to T in Dn,2 with Dg(Tk) → Dg(T ) as k → ∞ and such that
µTk

(X ) = 0. Therefore, Tk agrees with the current Guk
given by the integration of forms in Dn,2(X × Y)

over the “graph” of some uk ∈ W 1,2(X ,Y), see Example 2.4, and hence Dg(Tk) = Dg(uk).
If (X , gαβ) = (Bn, gαβ), by means of Bethuel’s density theorem [2], for every k we find a smooth

sequence {u(k)
h }h ⊂ C1(Bn,Y) that strongly converges to uk in the W 1,2-sense as h →∞. In fact, even if

the second homotopy group π2(Y) is non-trivial, the injectivity hypothesis on the Hurewicz homomorphisms
from π2(Y; y0) onto H2(Y;R), in conjunction with the null-boundary condition (2.6) for uk, and the bound
(2.7) for the energy, allows us to remove the (n − 2)-dimensional singularities, compare [4] and e.g. [19,
Sec. 5.3]. Lower dimensional singularities are removed as in [2]. By the dominated convergence theorem, we
infer that the strong convergence yields G

u
(k)
h

⇀ Guk
with Dg(u

(k)
h ) → Dg(uk). Theorem 3.1 then follows

by means of a diagonal argument.
More generally, if X satisfies the 1-extension property with respect to Y, or if π1(X ) = 0, using

arguments from [21], the hypothesis on the Hurewicz homomorphisms, in conjunction with the null-boundary
condition (2.6) for uk, plays the role of the triviality of π2(Y), and we find again a smooth sequence
{u(k)

h }h ⊂ C1(X ,Y) that strongly converges to uk in the W 1,2-sense as h → ∞. More precisely, if the
Hurewicz homomorphisms from π2(Y; y0) onto H2(Y;R) are injective, it turns out that X has the 1-
extension property with respect to Y if and only if X has the 2-extension property with respect to Y,
compare [21, Lemma 6.4] for the case of ∂X = ∅, and [22] if ∂X 6= ∅. ¤

In order to prove Theorem 3.4, we need the following.

Slicing properties. Let T ∈ cart2,1 (X × Y) be as in Theorem 3.4. Similarly to the case of normal
currents, for every point x0 ∈ X and for a.e. radius r ∈ (0, r0), where r0 = r0(x) > 0 is sufficiently small,
in dependence of x, the sliced current

〈T, dx0 , r〉 = 〈GuT
, dx0 , r〉+ 〈ST , dx0 , r〉 ,

where dx0(x, y) = δx0(x) := distX (x0, x), is a well-defined Cartesian current in cart2,1(∂Br(x0)×Y), where
Br(x0) denotes the geodesic ball of radius r centered at x0, and ∂Br(x0) its boundary. More precisely, see
Example 2.1, we have

〈GuT
, dx0 , r〉(ω) =

∫

∂Br(x0)

(Id ./ u|∂Br(x0))
#ω , ω ∈ Dn−1,2(∂Br(x0)× Y) ,

where u|∂Br(x0) is the restriction of u to ∂Br(x0), which is a function in W 1,2(∂Br(x0),Y). Also,

〈ST , dx0 , r〉 =
∑

q∈Hsph
2 (Y)

〈Lq, δx0 , r〉 ×Rq on Dn−1,2(∂Br(x0)× Y) .

As a consequence, we infer that for every Borel set B ⊂ X the Dirichlet energy of 〈T, dx0 , r〉 on B × Y is
given by

Dg(〈T, dx0 , r〉, B × Y) = Dg(u|∂Br(x0), B) +
∑

q∈Hsph
2 (Y)

M(Rq) ·Mg(〈Lq, δx0 , r〉 B) (3.6)

where Dg(u|∂Br(x0), B) can be written in local coordinates in a way similar to (0.4) (0.5), by using the
distributional derivative Dτ w.r.t. an orthonormal frame τ tangential to ∂Br(x0). For example, in the
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case gαβ = δαβ , we clearly have

Dg(u|∂Br(x0), B) =
1
2

∫

∂Br(x0)∩B

|Dτu(r,x0)|2 dHn−1 .

We also let
Dg(〈T, dx0 , r〉) := Dg(〈T, dx0 , r〉, ∂Br(x0)× Y) .

Remark 3.5 For future use, we denote by

Yε := {y ∈ RN | dist(y,Y) ≤ ε}
the ε-neighborhood of Y and we observe that, since Y is smooth and compact, there exists ε0 > 0 such that
for 0 < ε ≤ ε0 the nearest point projection Πε of Yε onto Y is a well defined Lipschitz map with Lipschitz
constant Lε → 1+ as ε → 0+. For y ∈ Y and 0 < ε < ε0 we denote by

BY(y, ε) := B
N

(y, ε) ∩ Y

the intersection of Y with the closed N -ball of radius ε centered at y, so that Πε(B
N

(y, ε)) = BY(y, ε).
Moreover, we let Ψ(y,ε) : RN → BY(y, ε) be the retraction map given by Ψ(y,ε)(z) := Πε ◦ ξ(y,ε), where

ξ(y,ε)(z) :=





z if z ∈ B
N

(y, ε)

ε
z − y

|z − y| if z ∈ RN \B
N

(y, ε)
(3.7)

so that Ψ(y,ε) is a Lipschitz continuous function with LipΨ(y,ε) = LipΠε → 1+ as ε → 0+.

The proof of Theorem 3.4 is based on the following local arguments. First, Proposition 3.6, we show how to
“deform” a current T , satisfying suitable energy estimates on the boundary of a ball, into a current satisfying a
bound on the oscillation. Secondly, Proposition 3.7 and Theorem 3.8, we use a local approximation argument.
In the sequel we will denote by c > 0 an absolute constant, possibly varying from line to line.

Projecting the image of a current. For n ≥ 3, we set

Bn
ρ := Bn(0, ρ) , x = (x̃, x̂) ∈ Rn−2 × R2 , Dρ := Bn−2(0Rn−2 , ρ) .

Proposition 3.6 Let 0 < R < d < 1 and T ∈ cart2,1(Bn
d × Y) be such that

Dg(〈T, d0, R〉, ∂Bn
R \ (DR × {0})) ≤ c σ θT (0)Rn−3 ,

Dg(〈T, d0, R〉) ≤ c θT (0)Rn−3 ,∫

∂BR

|uT (x)− y|2 dHn−1 ≤ c σ Rn−1
(3.8)

for some y ∈ Y and for σ > 0 small enough. Then there exists an absolute constant c > 0 such that, if
q ∈ N+ is the integer part of c σα(n), where α(n) := 1/(6(2 − n)) < 0, we can find a Cartesian current
T̃ ∈ cart2,1((Bn

R \B
n

r )× Y), where r = R(1− 1/q), such that the following facts hold:

(a) 〈T̃ , d0, R〉 = 〈T, d0, R〉 and 〈T̃ , d0, r〉 = (ψR,r ./ Ψ(y,εσ))#〈T, d0, R〉, where εσ := c · σ2/3, ψR,r(x) :=
rx/R, and Ψ(y,εσ)(z) := Πεσ ◦ ξ(y,εσ), see (3.7), so that spt〈T̃ , d0, r〉 ⊂ ∂Bn

r ×BY(y, εσ);

(b) T̃ has small energy on Bn
R \Bn

r , i.e.,

Dg(T̃ , Bn
R \Bn

r ) ≤ c
R

q
Dg(〈T, d0, R〉) ; (3.9)

(c) we finally have
F((T̃ −Gy) (Bn

R \B
n

r )× Y) ≤ c · σ

q
·Rn ≤ c · σ · dn−1 . (3.10)
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Proof: We use an argument very similar to the one in Step 3 of [20]. Roughly speaking, using the first
inequality in (3.8), we can find a suitable subdivision of ∂Bn

R in a grid made of small (n − 1)-dimensional
“cubes” of side R/q. Denoting by Σk

R the union of the k-faces of the grid that do not intersect DR × {0},
we may and do estimate the energy of the restriction of 〈T, d0, R〉 to Σk

R × Y by c σ θT (0) Rk−2, for every
k = 1, . . . , n − 2. In particular, if σ1/3 < 1/C2, see (3.5), the energy of the restriction of 〈T, d0, R〉 to
Σ2

R × Y is smaller than c σ2/3. Now, by the above cited isoperimetric theorem, the infimum of the mass of
the nontrivial spherical cycles Rq in Hsph

2 (Y) is bounded from below by a positive constant. Therefore,
taking σ > 0 small, it turns out that the restriction of 〈T, d0, R〉 to Σ2

R × Y has no vertical part, hence
agrees with the current carried by the graph of a W 1,2-map w with values into Y. As a consequence, by
using the bound (2.7) we obtain that

∫

Σ1
R

|Dw|Σ1
R
|2 dH1 ≤ c σ2/3 1

R
.

The grid of ∂Bn
R being made of qn−1 cubes of side R/q, we have H1(Σ1

R) ≤ cR qn−2 and hence, by the
Hölder inequality, ∫

Σ1
R

|Dw|Σ1
R
| dH1 ≤ c q(n−2)/2 σ1/3 ≤ c σ1/4 ,

provided that q ∈ N+ is chosen as in the thesis. By using the third inequality in (3.8) and the above formula,
we infer that we may and do assume that the oscillation of w|Σ1

R
is smaller than c σ1/4 and that the image

w(Σ1
R) is contained in the geodesic ball BY(y, εσ).

Therefore, using the argument of Step 3 of [20], we may and do define the current T̃ satisfying the
above properties. However, since we deal with currents acting on k-forms in Dk,2, i.e., with two vertical
differentials in the Y-direction, when extending T̃ from the 2-skeleton to the 3-skeleton of a partition of
Bn

R \ Bn
r in “cubes”, it turns out that T̃ has a non-zero boundary of the type δxl

× Sl for each 3-face
Fl of such a cubeulation, where xl is the barycenter of Fl and Sl is the integral 2-cycle in Y given by
w#[[ Il ]]−Ψ(y,εσ)◦w#[[ Il ]], where Il is the 2-face of Fl that intersects the boundary ∂Bn

R. By the rectangular
inequality, it turns out that the mass of Sl is lower than twice the Dirichlet energy of w|Il

, which is small
with σ, by construction. Therefore, using again the cited isoperimetric theorem, we infer that for σ > 0
small the 2-cycle Sl is homologically trivial in Y, and hence we can find an integral 3-current Rl in Y such
that ∂Rl = Sl and M(Rl) ≤ cn M(Sl)3/2. As a consequence, in case of dimension n = 3, by adding the
terms −δxl

× Rl for each 3-cube Fl, we may and do define the current Tl with no interior boundary, by
paying an amount of energy that is bounded by the energy of the restriction of 〈T, d0, R〉 to the 2-skeleton
Σ2

R. In dimension n ≥ 4, for k = 4, . . . , n, no extra-boundary is produced when extending T̃ from the
(k − 1)-skeleton to the k-skeleton of the cubes of the partition of Bn

R \ Bn
r , as (k − 1)-currents of the type

δx ×R, where R ∈ Dk−1(Y), are always zero when tested on forms in Dk−1,2.
Arguing this way on the cubes of Bn

R \Bn
r that do not intersect DR ×{0} yields a bound of the energy

of T̃ in terms of
c

R

q
Dg(〈T, d0, R〉, ∂Bn

R \ (DR × {0}))
and hence in terms of the right-hand side of (3.9).

Using a slightly different argument when defining T̃ on the cubes of Bn
R \Bn

r that intersect DR × {0},
by the second inequality in (3.8) we obtain an extra term in the estimate of the energy of T̃ given by the
right-hand side of (3.9).

By the third inequality in (3.8), by the construction of T̃ , and since 0 < R < d < 1, we obtain the bound
(3.10) of the flat distance, whereas property (a) follows by using the argument of Step 3 of [20]. ¤

Approximation on a ball. Let y(x̃) := (r − |x̃|) denote the distance of x̃ from the boundary of
the (n− 2)-disk Dr and

φδ(x) := (x̃, ϕδ(y(x̃)) x̂) , x ∈ Dr ×B
2
, ϕδ(y) := min{y, δ} , (3.11)

so that Ωδ := φδ(Dr ×B
2
) is a small neighborhood of the interior of the disk Dr × {0R2} in Bn

R. Also, let

Ω̃δ := φδ(Dr ×B
2

1/2) = {(x̃, x̂) | x̃ ∈ Dr , ρ ≤ ϕδ(y(x̃))/2} , (3.12)
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where in the sequel ρ := |x̂| =
√

xn−1
2 + xn

2, and

Ω(r,δ) := Ωδ \ (Dr × {0R2}) .

In the proof of Theorem 3.4 we shall make use of the following

Proposition 3.7 Let T ∈ cart2,1(Bn
r × Y) be such that T = Gu +

∑
q∈Hsph

2 (Y)
Lq ×Rq. Assume that

spt T ⊂ B
n

r ×BY(y, εσ), where y ∈ Y and εσ = c · σ2/3, with σ > 0 small, and that Dr ×{0R2} ⊂ set(Lq0)
for some q0 ∈ Hsph

2 (Y). For δ > 0 small enough, we can find a current T̃ ∈ cart2,1((Bn
r \Ω̃δ)×Y) satisfying

the following properties:

i) ∂(T̃ (Bn
r \ Ω̃δ)× Y) = ∂(T Bn

r × Y)− [[ Ω̃δ ]]× δy − [[ ∂Dr × {0R2} ]]×Rq0 ;

ii) Dg(T̃ , (Bn
r \ Ω̃δ)× Y) ≤ Dg(u, (Bn

r \ Ωδ)) + c σ rn−2 + c µT (Ω(r,δ));

iii) F((T̃ − T ) (Bn
r \ Ω̃δ)× Y) ≤ c σ rn−2.

Proof: Let ψδ : Ωδ \ Ω̃δ → Ω(r,δ) be the bijective map

ψδ(x̃, x̂) :=
(

x̃,

(
2− ϕδ(y(x̃))

ρ

)
x̂

)
.

Similarly to [19, Sec. 5.5], we infer that the current

T := ((ψδ)−1 ./ IdRN )#(T (int(Ω(r,δ))× Y))

belongs to cart2,1(int(Ωδ \ Ω̃δ)× Y), its underlying W 1,2-function is v := uT ◦ ψδ : (Ωδ \ Ω̃δ) → BY(y, εσ),
where uT : Bn

r → BY(y, εσ) is the W 1,2-function corresponding to T , and

µT (int(Ωδ \ Ω̃δ)) ≤ µT (int(Ω(r,δ))) .

Setting then w : (Ωδ \ Ω̃δ) → RN by

w(x) :=
(

2ρ

ϕδ(y(x̃))
− 1

)
· v(x) +

(
2− 2ρ

ϕδ(y(x̃))

)
· y ,

by using the bound (2.7) and the fact that the oscillation of v is small with σ > 0, we infer that the energy
Dg(w, Ωδ \ Ω̃δ) is small if δ and σ are small. Moreover, by projecting w into the manifold Y, we may and
will assume that w belongs to W 1,2(Ωδ \ Ω̃δ,Y).

We then may and do define a current T̂ ∈ cart2,1(int(Ωδ \ Ω̃δ) × Y), with underlying W 1,2-function w,
that satisfies the boundary condition

∂T̂ = ∂(T Ωδ × Y)− [[ ∂Ω̃δ ]]× δy − [[ ∂Dr × {0R2} ]]×Rq0

and, taking δ small, the energy estimate

Dg(T̂ , int(Ωδ \ Ω̃δ)× Y) ≤ c σ rn−2 + c µT (Ω(r,δ)) .

We finally set
T̃ := T (Bn

r \ int(Ωδ))× Y + T̂ (int(Ωδ) \ Ω̃δ)× Y .

Property iii) readily follows, for δ > 0 small. ¤

The dipole construction. We shall finally make use of the following theorem, the proof of which
is postponed to the next section.
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Theorem 3.8 Let C ∈ Z2(Y) be an integral 2-cycle of spherical type and y ∈ Y be a given point. For
every σ > 0 there exists a function vσ ∈ W 1,2(Ω̃δ,Y), with δ > 0 sufficiently small, such that Gvσ ∈
cart2,1(int(Ω̃δ)× Y), ∫

eΩδ

eg(0, Dvσ) dx ≤ σ rn−2 + |τ |g(0) · Hn−2(Dr) ·M(C) , (3.13)

where τ := e1 ∧ · · · ∧ en−2 ∈ Λn−2Rn, and

∂Gvσ
= ∂[[ Ω̃δ ]]× δy + [[ ∂Dr × {0R2} ]]× C . (3.14)

Moreover, vσ#[[ Ω̃δ ]] ⇀ C weakly in D2(Y), as σ → 0+.

We are now ready to give the

Proof of Theorem 3.4: Applying arguments as for instance in the proof of Federer [7, 4.2.19], by [7,
3.2.29] there exists a countable family G of (n − 2)-dimensional C1-submanifolds Mj of X such that
µT -almost all of X is covered by G.

Let σ ∈ (0, 1) to be fixed. By the Vitali-Besicovitch theorem, and by the properties of the class
cart2,1(X × Y), we can find a number t = tσ ∈ (1/2, 1), a countable disjoint family of closed geodesic balls
Bj := B(pj , rj), contained in X and centered at points pj in LT , satisfying the properties listed below.
In the sequel we will denote by c > 0 an absolute constant, possibly varying from line to line, which is
independent of σ and of the radii rj of the balls Bj .

i) µT (X \⋃
j Bj) = 0.

ii) For every j there is a manifold Mj of G such that the center pj of Bj belongs to Mj .

iii) Since Hn−2(LT ) < ∞, then
∞∑

j=1

rj
n−2 ≤ c · Hn−2(LT ) < ∞ . (3.15)

iv) We have
µT (B(pj , rj) \ (B(pj , trj) ∩Mj)) ≤ σ · µT (B(pj , rj)) ∀ j . (3.16)

v) We have Mj ⊂ set(Lq) for some q = qj ∈ Hsph
2 (Y).

vi) All the pj ’s are Lebesgue points of u = uT and of Du, with Lebesgue values u(pj) = zj , and by a
slicing argument ∫

∂B(pj ,trj)

|u(x)− zj |2 dHn−1 ≤ c · σ rj
n−1 . (3.17)

vii) Using a blow-up argument at pj in the x-variables, we may and do assume that the current Sj :=
[[Bj ]]× δzj + [[Mj ]]×Rqj has small flat distance from T on Bj × Y, i.e.

F((Sj − T ) Bj × Y) ≤ c · σ · rj
n−2 . (3.18)

viii) By a slicing argument, we may and will assume that for some R ∈ (trj , 2trj) the current 〈T, dpj , trj〉
belongs to cart2,1 and satisfies

Dg(〈T, dpj , trj〉, ∂B(pj , trj) \Mj) ≤ c

rj
·Dg(T,B(pj , R) \Mj) .

Moreover, by the construction, and by the bound (2.7), we may assume that both (3.16) and

µT (B(pj , ρ)) ≤ c θT (pj) ρn−2 , Dg(u,B(pj , ρ)) ≤ c |Du(pj)|2 ρn (3.19)

hold true for any 0 < ρ < 2rj . Therefore, taking rj small so that |Du(pj)|2 rj
2 ≤ σ θT (pj), we readily

obtain that
Dg(〈T, dpj , trj〉, ∂B(pj , trj) \Mj) ≤ c σ θT (pj) rj

n−3 . (3.20)
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ix) Using a similar slicing argument and (3.19), we also may and do assume that

Dg(〈T, dpj
, trj〉) ≤ c θT (pj) rj

n−3 . (3.21)

x) By the continuity property (3.2), we may take the radii rj sufficiently small so that for every x ∈ Bj

|eg(x,G)− eg(pj , G)| ≤ σ |G|2 ∀G ∈ M(N, n) . (3.22)

xi) Since θT (pj) is the (n− 2)-dimensional density of µT at pj , and pj ∈ set(Lq), we also may and will
assume that

|µT (Bj)−M(Rq) · ωn−2 rj
n−2| ≤ σ · ωn−2 rj

n−2 . (3.23)

xii) There exists a bilipschitz homeomorphism ψσ from X onto itself, with Lip ψσ ≤ 2 and Lipψ−1
σ ≤ 2,

such that ψσ maps bijectively Bj onto Bj , with ψσ|∂Bj
= Id|∂Bj

, for all j, and ψσ is equal to the
identity outside the union of the balls Bj .

xiii) For every j, ψσ(B(pj , tσrj)∩Mj) = B(pj , ρj)∩(pj +Tan(Mj , pj)) and ψσ(∂B(pj , tσrj)) = ∂B(pj , ρj),
where ρj ∈ (rj/2, rj) and Tan(Mj , pj) is the (n− 2)-dimensional tangent space to Mj at pj .

Setting now for any j
T σ

j := (ψσ ./ IdRN )#T int(Bj)× Y ,

Tσ
j belongs to cart2,1(int(Bj)×Y), with underlying function uσ

j := (uT ◦ψ−1
σ )| int(Bj) in W 1,2(int(Bj),Y),

and µT σ
j

= ψσ#(µT int(Bj)). Moreover, by (3.20), (3.21), and (3.17) we readily infer that T σ
j satisfies

(3.8), where y = zj ∈ Y is the Lebesgue value of uT at pj , with pj = 0, d = rj and R = ρj , i.e.,

Bj = B
n

d , B(pj , ρj) = Bn
R , B(pj , ρj) ∩ (pj + Tan(Mj , pj)) = DR × {0} ⊂ Rn−2 × R2 .

Proposition 3.6 yields a Cartesian current T̃j ∈ cart2,1((B(pj , ρj)\B(pj , δj))×Y), where δj := ρj(1−1/q).
Set now β(n) := 1/(12(n − 2)) > 0. Since 1/q ≤ c σ1/(6(n−2)), by (3.9), (3.8), and (3.21), taking σ > 0
small so that σβ(n) < 1/C2, see (3.5), we readily obtain that

Dg(T̃j , B(pj , ρj) \B(pj , δj)) ≤ c σβ(n) ρj
n−2 , (3.24)

whereas by (3.10)
F((T̃j −Gzj ) (B(pj , ρj) \B(pj , δj))× Y) ≤ c · σ · rj

n−1 . (3.25)

Setting now
T̆σ

j := (ψj ./ Ψ(zj ,εσ))#(Tσ
j B(pj , ρj)× Y) ,

where ψj(x) := pj+
δj

ρj
(x− pj), we have spt T̆ σ

j ⊂ B(pj , δj)×BY(zj , εσ), whence T̆σ
j satisfies the hypotheses

of Proposition 3.7, with B(pj , δj) instead of Bn
r , y = zj , and q0 = qj , that yields a current T̂ σ

j ∈
cart2,1((B(pj , δj) \ Ω̃j

δ)× Y), where Ω̃j
δ is defined similarly to (3.12), but in correspondence of B(pj , δj).

Moreover, by applying Theorem 3.8, with B(pj , δj) instead of Bn
r and C = Rqj , we find a suitable

function vσ
j ∈ W 1,2(Ω̃j

δ,Y). Setting then

T
σ

j := T̂σ
j + Gvσ

j
,

(3.14) and i) in Proposition 3.7 yield that T
σ

j ∈ cart2,1(B(pj , δj)× Y) and that

∂(T
σ

j B(pj , δj)× Y) = ∂(T̆ σ
j B(pj , δj)× Y) . (3.26)

Moreover, according to Remark 2.7, by (3.13) we have
∫
eΩδ

eg(pj , Dvσ
j ) dx ≤ σ δj

n−2 +Hn−2(Drj ) ·M(Rq) .
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Therefore, since δj ∈ (rj/2, rj), by (3.23) we obtain that
∫
eΩδ

eg(pj , Dvσ
j ) dx ≤ c σ rj

n−2 + µT (Bj) . (3.27)

On the other hand, as 0 < σ < 1, by (3.22), (2.7), and (3.27) we obtain
∣∣∣∣
∫
eΩδ

eg(x, Dvσ
j ) dx−

∫
eΩδ

eg(pj , Dvσ
j ) dx

∣∣∣∣ ≤

≤ σ

∫
eΩδ

|Dvσ
j |2 dx ≤ c σ

∫
eΩδ

eg(pj , Dvσ
j ) dx

≤ c σ (µT (Bj) + rj
n−2)

where c > 0 is an absolute constant. Therefore, if δ > 0 is small, (3.27) yields
∫
eΩδ

eg(x, Dvσ
j ) dx ≤ c σ rj

n−2 + (1 + c σ)µT (Bj) .

Finally, using (3.16) to estimate the last term in the right-hand side of ii) in Proposition 3.7, we obtain

Dg(T
σ

j , B(pj , δj)× Y) ≤ Dg(uσ
j , B(pj , δj)) + c σ rj

n−2 + (1 + c σ)µT (B(pj , δj)) . (3.28)

We now set
T̃σ

j := T
σ

j + T̃j + T σ
j (B(pj , rj) \B(pj , ρj))× Y .

Property (a) in Proposition 3.6, the definition of T̆σ
j , and (3.26) yield that T̃σ

j belongs to cart2,1(int(Bj)×Y).
Moreover, by (3.24) and (3.28) we obtain that

Dg(T̃ σ
j , Bj × Y) ≤ Dg(Tσ

j , Bj × Y) + c σβ(n) rj
n−2 + c σµT σ

j
(Bj) . (3.29)

Finally, arguing as in [19, Sec. 5.5, Step 3], by (3.10), property iii) in Proposition 3.7, and by the dipole
construction, Theorem 3.8, we obtain that for ε, δ small enough

F((T̃ σ
j − T σ

j ) Bj × Y) ≤ c · σ · rj
n−2 .

Setting now
T

(σ)
j := (ψ−1

σ ./ IdRN )#T̃
(σ)
j int(Bj)× Y ,

by (3.29) we infer that for every j

Dg(T
(σ)
j , int(Bj)× Y) ≤ Dg(uT , Bj)

+ (1 + c σ)µT (Bj) + c σβ(n) rj
n−2

(3.30)

whereas
F((T (σ)

j − T ) Bj × Y) ≤ c · σ · rj
n−2 . (3.31)

In conclusion, setting T σ ∈ Dn,2(X × Y) by

T σ :=
∞∑

j=1

T
(σ)
j + T

(X \
∞⋃

j=1

int(Bj)
)× Y ,

we have Tσ ∈ cart2,1 (X × Y). By (3.30) and the hypothesis
∑∞

j=1 rj
n−2 ≤ c · Hn−2(LT ) we obtain that

Dg(T σ) ≤ Dg(uT ) + (1 + c σ) µT (X ) + c σβ(n)Hn−2(LT ) ,

so that if σ = σ(ε, k,LT , µT ) > 0 is small, we have

Dg(T σ) ≤ Dg(T ) + εk .
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Moreover, by (3.16), taking σ small, the above construction yields that

µT σ (X ) ≤ c

∞∑

j=1

µT (B(pj , rj) \ (B(pj , trj) ∩Mj)) + µT (X \ LT )

≤ c σ µT (X ) <
1
2
· µT (X ) .

Also, by (3.31) and (3.15) we have

F(T σ − T ) ≤
∞∑

j=1

F((T (σ)
j − T ) Bj × Y)

≤ c · σ
∞∑

j=1

rj
n−2 < εk ,

if σ = σ(ε, k,LT , µT ) > 0 is small. Taking T̃ = Tσ for σ > 0 small, the proof is complete. ¤

4 The dipole construction

In this section we shall prove Theorem 3.8.
Set Ω := Dr ×B2

1/2, and assume that u ∈ W 1,2(Ω,Y) only depends on the last two variables,

u = u(x̂) , x = (x̃, x̂) ∈ Rn−2 × R2 .

By Fubini’s theorem, for every 0 < ρ < r we have
∫

Dρ×B2
1/2

eg(0, Du(x)) dx = Hn−2(Dρ) ·
∫

B2
1/2

eg(0, Du(x̂)) dx̂ .

Now, writing u := ũ ◦ L−1, L = L(0), by (1.7) we have

eg(0, Du(x̂)) =
1
2
|Dũ(z)|2 , z := L−1x .

Let {v1, . . . , vn} ⊂ Rn be a g(0)-orthogonal basis given by eigenvectors of the matrix g(0), and let
S ∈ M(n, n) be given by Si

j := vi
j , where vj := (v1

j , . . . , vn
j ). Since τ orients the (n− 2)-disk Dr, it turns

out that v ∈ W 1,2(L−1(Ω),Y) only depends on the orthogonal directions to ST τ . Setting ẽi := ST ei, this
means that

ũ(z) = F (zn−1, zn) , z =
n∑

i=1

zi ẽi (4.1)

for some function F ∈ W 1,2(D̃,Y), where D̃ := L−1({0} ×B2
1/2). On the other hand, since x̂ = L̂z, where

L̂ ∈ M(2, n) is the matrix of the last two rows of L, by a change of variable we find that
∫

B2
1/2

eg(0, Du(x̂)) dx̂ = |M(2)L̂| ·
1
2

∫
eD |DF |2 dH2 , (4.2)

where |M(2)L̂| is the 2-dimensional Jacobian of L̂. In addition, we obtain:

Lemma 4.1 We have |M(2)L̂| = |τ |g, where g = g(0).

Proof: Setting α0 := (1, . . . , n− 2) ∈ I(n− 2, n), we have

|M(2)L̂|2 =
∑

|γ|=n−2

Mα0
γ (L)2 ,
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whereas by (1.9) and Proposition 1.5

|τ |g = (det L) |Λn−2L
−1(τ)| , L = L(0) , g = g(0) .

Since Λn−2L
−1(τ) = L−1e1 ∧ · · · ∧ L−1en−2, we compute

Λn−2L
−1(τ) =

∑

|γ|=n−2

Mγ
α0

(L−1) eγ .

Moreover, Lemma 1.1 yields

(det L)Mγ
α0

(L−1) = σ(γ, γ)σ(α0, α0)Mα0
γ (L) ,

so that we obtain
|τ |2g =

∑

|γ|=n−2

(detL)2 Mγ
α0

(L−1)2 =
∑

|γ|=n−2

Mα0
γ (L)2

and hence the assertion. ¤

We now make use of following proposition, that was essentially proved in [13], see also [19, Sec. 5.1]. As
before, we let D̃ := L−1({0} ×B2

1/2).

Proposition 4.2 Let C ∈ Z2(Y) be an integral 2-cycle of spherical type and y ∈ Y be a given point. There
exists a family of Lipschitz functions F y

ε : D̃ → Y such that F y
ε |∂ eD ≡ y and

1
2

∫
eD |DF y

ε |2 dH2 ≤ M(C) + ε .

Moreover, the 2-cycle Cε := F y
ε#[[ D̃ ]] in Z2(Y) does not depend on the choice of y ∈ Y, and Cε ⇀ C

weakly in D2(Y) with M(Cε) → M(C), as ε → 0.

As a consequence, taking F = F y
ε in (4.1), by (4.2) and Lemma 4.1 we obtain uε ∈ W 1,2(Ω,Y) such

that for every ρ ∈ (0, r]
∫

Dρ×B2
1/2

eg(0, Duε) dx ≤ Hn−2(Dρ) · |τ |g(0) · (M(C) + ε) . (4.3)

The following lemma is proved in a way similar e.g. to the one in [19, Sec. 5.5], by using the bound (2.7).

Lemma 4.3 Let 0 < δ < 1 and uε
δ := uε ◦ φ−1

δ : Ω̃δ → Y, where φδ is given by (3.11). Then we have

∫
eΩδ

eg(0, Duε
δ) dx ≤

∫

Dr×B2
1/2

eg(0, Duε) dx + c

∫

(Dr\Dr−δ)×B2
1/2

eg(0, Duε) dx ,

where c > 0 is an absolute constant.

Proof of Theorem 3.8: On account of (4.3), we obtain the energy estimate
∫
eΩδ

eg(0, Duε
δ) dx ≤ (Hn−2(Dr) + cHn−2(Dr \Dr−δ)) · |τ |g(0) · (M(C) + ε)

and hence, setting vσ := uε
δ for ε > 0 sufficiently small, and for δ sufficiently small in dependence of ε and

of the Lipschitz constant of F y
ε , we get (3.13), whereas (3.14) and the last assertion in Theorem 3.8 trivially

follow. ¤
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5 The relaxed Dirichlet energy

In this section, as an application of the density theorem from Sec. 3, we give a representation formula for
the relaxed energy (0.9), Propositions 5.5 and 5.6. Of course, we shall assume that the manifolds X and Y
satisfy the hypotheses of Theorem 3.1.

To our purpose, we may and do consider equivalence classes of Cartesian currents. More precisely, if
T, T̃ ∈ cart2,1 (X × Y), see Definition 2.2, we say that

T ∼ T̃ ⇐⇒ T (ω) = T̃ (ω) ∀ω ∈ Zn,2(X × Y) , (5.1)

the forms in Zn,2(X × Y) being defined as in (2.2). We also say that Tk ⇀ T weakly in Zn,2 if Tk(ω) →
T (ω) for every ω ∈ Zn,2(X × Y). It is easily checked that equivalent currents have the same underlying
W 1,2-function, i.e.,

T ∼ T̃ =⇒ uT = ueT ∈ W 1,2(X ,Y) . (5.2)

Moreover, if T and T̃ are decomposed as in (2.4), then

T ∼ T̃ =⇒ Ls(T ) = Ls(T̃ ) ∈ Rn−2(X ) ∀ s = 1, . . . , s̃ .

Definition 5.1 Denote by CART2,1 (X × Y) the family of all the equivalence classes of Cartesian currents
in cart2,1 (X × Y), where the equivalence relation is given by (5.1).

On account of (2.10), we also set:

Definition 5.2 Let T ∈ CART2,1 (X × Y), one of its representatives being decomposed as in (2.4), where
Ls(T ) ∈ Rn−2(X ). For every open set Ω ⊂ X we define the Dirichlet energy of T by

Dg(T, Ω× Y) := Dg(uT , Ω) +
es∑

s=1

Mg(Ls(T ) Ω) ·Ms ,

where Ms is the mass of the mass minimizing integral spherical 2-cycle in the homology class [γs], i.e.,

Ms := min{M(C) | C ∈ Z2(Y) , C ∈ [γs]} . (5.3)

Remark 5.3 For the sake of simplicity, in this section we denote by T an equivalence class of currents.
We also notice that the weak convergence Tk ⇀ T in Zn,2 is well-defined for Cartesian currents in
CART2,1 (X × Y) as the weak Zn,2-convergence of any representative of Tk to any representative of T .

One checks:

i) the class CART2,1 is closed under the weak convergence in Zn,2 with equibounded Dirichlet energies;

ii) the Dirichlet energy is lower semicontinuous with respect to the weak Zn,2-convergence in CART2,1;

iii) if {Tk} ⊂ CART2,1 satisfies supk Dg(T ) < ∞, possibly passing to a subsequence, Tk weakly converges
in Zn,2 to some current T in CART2,1;

iv) if Y = S2 or, more generally, Y has dimension m = 2, we have CART2,1 = cart2,1.

A representation formula. Arguing as in Theorem 3.1, we readily prove the following.

Theorem 5.4 For every T ∈ CART2,1 (X × Y) there exists a sequence of smooth maps {uk} ⊂ C1(X ,Y)
such that Guk

⇀ T weakly in Zn,2 and Dg(uk) → Dg(T ) as k →∞.

For every u ∈ W 1,2(X ,Y), we now denote by

T 2,1
u := {T ∈ CART2,1 (X × Y) | uT = u} (5.4)

the class of Cartesian current in CART2,1 (X × Y) such that the underlying W 1,2-function uT in the
decomposition (2.4) is equal to u, compare (5.2). As a consequence of Theorems 0.3 and 5.4, we obtain:
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Proposition 5.5 For every u ∈ W 1,2(X × Y) the class T 2,1
u is non-empty. Moreover, for every open set

Ω ⊂ X we have
D̃g(u, Ω) = inf{Dg(T, Ω× Y) | T ∈ T 2,1

u } < ∞ . (5.5)

Proof: Let {uk} ⊂ C1(X ,Y) be such that uk ⇀ u weakly in W 1,2, see Theorem 0.3. Since by (2.7)

C̃

∫

X
|Duk|2 dx ≤ Dg(uk) ≤ 1

C̃

∫

X
|Duk|2 dx ,

the relaxed energy D̃g(u) is always finite. By closure-compactness, possibly passing to a subsequence
Guk

⇀ T weakly in Zn,2 to some current T ∈ CART2,1 (X × Y) such that uT = u, whence T 2,1
u is

non-empty. As to the second assertion, since D̃g(u) < ∞, by closure-compactness, for every ε > 0 we find a
sequence {uk} ⊂ C1(X ,Y) such that uk ⇀ u weakly in W 1,2, with energies Dg(uk) ≤ D̃g(u)+ ε for every
k, such that the graphs Guk

weakly converge in Zn,2 to a current T ∈ T 2,1
u . Since by lower semicontinuity

Dg(T, Ω× Y) ≤ lim inf
k→∞

Dg(uk, Ω) , Dg(uk, Ω) = Dg(Guk
,Ω× Y) ,

we readily obtain the inequality “≥” in (5.5). Moreover, by applying Theorem 5.4, for every T ∈ T 2,1
u we

find a sequence {uk} ⊂ C1(X ,Y) such that Guk
⇀ T weakly in Zn,2 and Dg(uk) → Dg(T ) as k → ∞.

Since the weak convergence Guk
⇀ T yields the convergence uk ⇀ uT weakly in W 1,2-sense, and uT = u,

we find that D̃g(u, Ω) ≤ Dg(T, Ω × Y), which yields the inequality “≤” in (5.6), by the arbitrariness of
T ∈ T 2,1

u . ¤

As a consequence, on account of Definition 5.2 we immediately obtain the following

Proposition 5.6 For every u ∈ W 1,2(X ,Y) and every open set Ω ⊂ X we have

D̃g(u, Ω) = Dg(u, Ω) + inf
{ es∑

s=1

Ms ·Mg(Ls(T ) Ω) | T ∈ T 2,1
u

}

=
∫

Ω

eg(x,Du) dx + inf
{ es∑

s=1

Ms ·
∫

Ls∩Ω

θs(x) |τs(x)|g dHn−2 | T ∈ T 2,1
u

}
,

(5.6)

where Ms is given by (5.3) and Ls(T ) = τ(Ls, θs, τs) ∈ Rn−2(X ) in the decomposition (2.4) of T , for
s = 1, . . . , s̃.

Remark 5.7 If the second homology group H2(Y) is trivial, e.g., if Y is 2-connected, from (5.6) we readily
infer that in any dimension n

D̃g(u, Ω) =
∫

Ω

eg(x,Du) dx ∀u ∈ W 1,2(X × Y) .

The singular set. To write more explicitly the formula (5.6), we recall the following facts from [11,
Sec. 5.4.2] or [19, Sec. 4.3]. In the sequel we shall denote by π : X × Y → X and π̂ : X × Y → Y the
orthogonal projections onto the first and second factor, respectively. Following Sec. 2, we set

Definition 5.8 Let u ∈ W 1,2(X ,Y). For every s = 1, . . . , s, we set Ps(u) := π#((∂Gu) π̂#σs) ∈
Dn−3(X ), and Ds(u) := π#(Gu π̂#σs) ∈ Dn−2(X ), so that, in local coordinates

Ps(u)(φ) = ∂Gu(π̂#σs ∧ π#φ)

= Gu(π̂#σs ∧ π#dφ) =
∫

X
u#σs ∧ dφ

for every φ ∈ Dn−3(X ), and similarly

Ds(u)(γ) = Gu(π̂#σs ∧ π#γ) =
∫

X
u#σs ∧ γ ∀ γ ∈ Dn−2(X ) .
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It turns out that Ps(u) does not depend on the representative in the cohomology class [σs], and that for
every open set Ω ⊂ X

Ps(u) Ω = (∂ Ds(u)) Ω ∀ s = 1, . . . , s .

Moreover, since by Bethuel’s theorem [2] the so called class R∞2 (X ,Y) is strongly dense in W 1,2(X ,Y), it
turns out that

Ps(u) = 0 ∀ s = s̃ + 1, . . . , s .

Therefore, the homological singular set of u is well-defined by the current P(u) ∈ Dn−3(X ; Hsph
2 (Y;R)),

where Hsph
2 (Y;R) := Hsph

2 (Y)⊗ R, given by

P(u) :=
es∑

s=1

Ps(u)⊗ [γs] ,

and it satisfies ∂ P(u) = 0. In general, P(u) 6= 0.

Example 5.9 If Y = S2, we let ωS2 denote the volume 2-form on S2,

ωS2 := y1dy2 ∧ dy3 + y2dy3 ∧ dy1 + y3dy1 ∧ dy2 ,

so that
[[S2 ]](ωS2) =

∫

S2
ωS2 = 4π .

The current Ps(u) simply reduces to the (n− 3)-current 4π P(u) := π#((∂Gu) π̂#ωS2) ∈ Dn−3(X ), i.e.,

P(u)(φ) :=
1
4π

∂Gu(π̂#ωS2 ∧ π#φ) =
1
4π

∫

X
u#ωS2 ∧ dφ

for every φ ∈ Dn−3(X ), and Ds(u) to the (n− 2)-current 4π D(u) := π#(Gu π̂#ωS2) ∈ Dn−2(X ), i.e.,

D(u)(γ) :=
1
4π

Gu(π̂#ωS2 ∧ π#γ) =
1
4π

∫

X
u#ωS2 ∧ γ

for every γ ∈ Dn−2(X ), so that for every open set Ω ⊂ X
P(u) Ω = (∂ D(u)) Ω . (5.7)

In the particular case n = 3, the above can be stated in terms of the so called D-field of Brezis-Coron-Lieb,
see [6], defined by

D(u) := (u · ux2 × ux3 , u · ux3 × ux1 , u · ux1 × ux2) ,

where

u · uxi × uxj := det




u1 u2 u3

u1
xi

u2
xi

u3
xi

u1
xj

u2
xj

u3
xj


 .

It turns out that the vector D(u)(x) is tangent to the naturally oriented level lines {z ∈ X | u(z) = u(x)},
if u is smooth. More precisely, when normalized, the vector D(u)(x) orients the slices of [[X ]] by the map
u at u(x) ∈ S2. Moreover, by (5.7) we have

P(u) = 0 ⇐⇒ divD(u) = 0 on X .

In higher dimension n ≥ 4, the smooth (n− 2)-vector field D(u) can be defined as the dual to u#ωS2 ,

〈η,D(u)(x)〉 dx := u#ωS2(x) ∧ η ∀ η ∈ Λn−2(Rn) .

More precisely, D(u) may be identified with ? u#ωS2 , where ? is the Hodge operator. Of course, we have

D(u)(γ) =
1
4π

∫

X
〈γ, D(u)〉 dx ∀ γ ∈ Dn−2(X ) .

Moreover, the (n − 2)-vector D(u)(x) is tangent to the naturally oriented level (n − 2)-surfaces {z ∈ X |
u(z) = u(x)}, if u is smooth. Finally, we have:
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Proposition 5.10 For every u ∈ W 1,2(X , S2) and every open set Ω ⊂ X
(P(u) Ω)× [[S2 ]] = ((∂ D(u)) Ω)× [[S2 ]] = (∂Gu) Ω× S2 .

Also, defining the differential du#ωS2 in the weak sense, we have

P(u) Ω = 0 ⇐⇒ (∂ D(u)) Ω = 0
⇐⇒ (∂Gu) Ω× S2 = 0 ⇐⇒ du#ωS2 = 0 in Ω .

Minimal connections. Let Ω ⊂ X be an open set. Extending the well-known definition for the
standard mass, we set:

Definition 5.11 Let 0 ≤ k ≤ n− 2. For every Γ ∈ Dk(Ω) we denote by

mg
i,Ω(Γ) := inf{Mg(L) | L ∈ Rk+1(Ω) , (∂L) Ω = Γ}

the integral g-mass of Γ relative to Ω. In case mg
i,Ω(Γ) < ∞, an i.m. rectifiable current L ∈ Rk+1(Ω) is an

integral minimal connection for the g-mass of Γ allowing connections to the boundary of Ω if (∂L) Ω = Γ
and Mg(L) = mg

i,Ω(Γ). Finally, we denote by mi,Ω(Γ) the standard integral mass of Γ relative to Ω.

Now, if T ∈ cart2,1 (X × Y) is decomposed as in (2.4), the null-boundary condition (2.3) reads as

(∂ Ls(T )) Ω = −Ps(u) Ω ∀ s = 1, . . . , s̃ ,

i.e., Ls(T ) yields (up to the sign) an integral connection of Ps(uT ). As a consequence, we infer that for
every u ∈ W 1,2(X ,Y)

T 2,1
u =

{
Gu +

es∑
s=1

Ls × γs | Ls ∈ Rn−2(X ) , (∂Ls) Ω = −Ps(u) Ω ∀ s , ∀Ω ⊂ X open
}

. (5.8)

In particular, as T 2,1
u is non-empty, see Proposition 5.5, it turns out that for every u ∈ W 1,2(X ,Y)

mg
i,Ω(Ps(u)) < ∞ ∀ s = 1, . . . , s̃ , ∀Ω ⊂ X open .

On account of (5.8), by Proposition 5.6 we readily obtain the following formula, already obtained in [14]
in the case of the standard Dirichlet integrand eg(G) := 1

2 |G|2, i.e., when g is the Euclidean metric.

Corollary 5.12 For every u ∈ W 1,2(X ,Y) and every open set Ω ⊂ X we have

D̃g(u, Ω) = Dg(u, Ω) +
es∑

s=1

Ms ·mg
i,Ω(Ps(u)) ,

where Ms is given by (5.3) and mg
i,Ω(Ps(u)) is the integral g-mass of the singular set Ps(u) allowing

connections to the boundary of Ω, see Definitions 5.8 and 5.11.

The case of constant metrics. Assume now that the metric g is constant on X . Arguing as in
the proof of Proposition 2.11, it turns out that an integral minimal connection Ls for the g-mass of Ps(u),
allowing connections to the boundary of Ω, is also an integral minimal connection for the mass of Ps(u),
and

mg
i,Ω(Ps(u)) = C(g) ·mi,Ω(Ps(u)) ∀ s = 1, . . . , s̃ ,

where the constant C(g) > 0 is given by the formula

Mg(L) = C(g)M(L) ∀L ∈ Rn−3(X ) . (5.9)

Boundary data. Let Ω, Ω̃ be open sets in X such that Ω ⊂⊂ Ω̃ and ϕ : Ω̃ → Y be a given smooth
W 1,2-function. For X = W 1,2, C1, let

Xϕ(Ω̃,Y) := {u ∈ X(Ω̃,Y) | u = ϕ on Ω̃ \ Ω} .
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For u ∈ W 1,2
ϕ (Ω̃,Y), let

D̃g,ϕ(u, Ω̃) := inf{lim inf
k→∞

Dg(uk, Ω̃) | {uk} ⊂ C1
ϕ(Ω̃,Y) ,

uk ⇀ u weakly in W 1,2(Ω̃,Y)}

denote the relaxed energy functional with prescribed boundary data. Moreover, let

CART2,1
ϕ (Ω̃× Y) := {T ∈ CART2,1(Ω̃× Y) |

(T −Gϕ) (Ω̃ \ Ω)× Y = 0} .

Similarly to Theorem 5.4, it can be shown that for every T ∈ CART2,1
ϕ (Ω̃ × Y) there exists a sequence

of smooth maps {uk} ⊂ C1
ϕ(Ω̃,Y) such that Guk

⇀ T weakly in Zn,2 and Dg(uk, Ω̃) → Dg(T, Ω̃× Y) as
k →∞. As a consequence, setting

T 2,1
u,ϕ := {T ∈ CART2,1

ϕ (Ω̃× Y) | uT = u} ,

arguing as in Proposition 5.5 we obtain that for every u ∈ W 1,2
ϕ (Ω̃,Y)

D̃g,ϕ(u, Ω̃) = inf{Dg(T, Ω̃× Y) | T ∈ T 2,1
u,ϕ} .

Since every Cartesian current T ∈ T 2,1
u,ϕ can be written as in (2.4), this time on forms in Zn,2(Ω̃ × Y),

where uT = u and Ls(T ) ∈ Rn−2(Ω̃), similarly to Proposition 5.6 we obtain that for every u ∈ W 1,2
ϕ (Ω̃,Y)

D̃g,ϕ(u, Ω̃) = Dg(u, Ω̃) + inf
{ es∑

s=1

Ms ·Mg(Ls(T )) | T ∈ T 2,1
u,ϕ

}

=
∫
eΩ eg(x,Du(x)) dx + inf

{ es∑
s=1

Ms ·
∫

Ls

θs(x) |τs(x)|g dHn−2 | T ∈ T 2,1
u,ϕ

}

where Ms is given by (5.3) and Ls(T ) = τ(Ls, θs, τs) ∈ Rn−2(Ω), for s = 1, . . . , s̃.
For 0 ≤ k ≤ n− 2 and Γ ∈ Dk(Ω̃) with spt Γ ⊂ Ω, we let

mg
i (Γ) := inf{Mg(L) | L ∈ Rk+1(Ω̃) , sptL ⊂ Ω , ∂L = Γ}

denote the integral g-mass of Γ. Also, in case mg
i (Γ) < ∞, an i.m. rectifiable current L ∈ Rk+1(Ω̃) is said

to be an integral minimal connection for the g-mass of Γ if spt L ⊂ Ω, ∂L = Γ, and Mg(L) = mg
i (Γ).

Finally, we denote by mi(Γ) the standard integral mass of Γ, i.e., when g is the Euclidean metric or,
equivalently, Mg(L) = M(L).

For every u ∈ W 1,2
ϕ (Ω̃,Y) and s = 1, . . . , s, setting Ps(u) := π#((∂Gu) π̂#σs) ∈ Dn−3(Ω̃), i.e., by

Definition 5.8, with Ω̃ instead of X , we infer that sptPs(u) ⊂ Ω, as u = ϕ on Ω̃ \ Ω, with Ps(u) = 0
for s = s̃ + 1, . . . , s. Moreover, if T ∈ T 2,1

u,ϕ the i.m. rectifiable currents Ls(T ) ∈ Rn−2(Ω̃) have support
sptLs(T ) ⊂ Ω and boundary ∂ Ls(T ) = −Ps(uT ). Therefore, similarly to Corollary 5.12 we find that

D̃g,ϕ(u, Ω̃) = Dg(u, Ω̃) +
es∑

s=1

Ms ·mg
i (Ps(u)) ∀u ∈ W 1,2

ϕ (Ω̃,Y) .

Moreover, if the metric g is constant on Ω̃, again we have that an integral minimal connection Ls for the
g-mass is also an integral minimal connection for the mass, and

mg
i (Ps(u)) = C(g) ·mi(Ps(u)) ∀ s = 1, . . . , s̃ ,

where the constant C(g) > 0 is given by the formula (5.9).
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The case n = 3 and Y = S2. Let Γ ∈ Dk(X ) be such that Γ = (∂D) Ω for some current
D ∈ Dk+1(Ω) with finite g-mass; moreover, let Γ̃ ∈ Dk(Ω̃), with support in Ω, be such that Γ̃ = ∂D̃ for
some D̃ ∈ Dk+1(Ω̃) with spt D̃ ⊂ Ω. By Federer’s theorem [8], if k = 0 we have

mg
i,Ω(Γ) = mg

r,Ω(Γ) , mg
i (Γ̃) = mg

r(Γ̃) ,

where
mg

r,Ω(Γ) := inf{Mg(D) | D ∈ Dk+1(Ω) , (∂D) Ω = Γ}
mg

r(Γ̃) := inf{Mg(D̃) | D̃ ∈ Dk+1(Ω̃) , spt D̃ ⊂ Ω , ∂D̃ = Γ}
denote the real g-mass of Γ relative to Ω and the real g-mass of Γ, respectively. Moreover, for every k we
have

mg
r,Ω(Γ) = F g

Ω(Γ) , mg
r(Γ̃) = F g

Ω
(Γ̃) ,

where F g
Ω(Γ) is the flat g-norm of Γ relative to Ω

F g
Ω(Γ) := sup{Γ(ξ) | ξ ∈ Dk(Ω) , ‖dξ(x)‖g(x) ≤ 1 ∀x ∈ Ω}

and F g

Ω
(Γ̃) is the flat g-norm of Γ̃

F g

Ω
(Γ̃) := sup{Γ̃(ξ) | ξ ∈ Dk(Ω) , max{‖ξ(x)‖g(x), ‖dξ(x)‖g(x)} ≤ 1 ∀x ∈ Ω} .

Assume now that n = 3 and Y = S2. Taking Γ = P(u) Ω for some u ∈ W 1,2(X , S2), by Example 5.9
we infer that the integral g-mass mg

i,Ω(P(u)) of P(u) relative to Ω agrees with

Lg(u) :=
1
4π

sup
{∫

Ω

D(u) ·Dφdx | φ ∈ C∞c (Ω) , ‖dφ(x)‖g(x) ≤ 1 ∀x ∈ Ω
}

.

Similarly, taking Γ̃ = P(u) for some u ∈ W 1,2
ϕ (Ω̃,Y), if the boundary ∂Ω is smooth we infer that the integral

g-mass mg
i (P(u)) agrees with

L̃g(u) :=
1
4π

sup
φ∈ eD0(eΩ)

{∫

Ω

D(u) ·Dφdx−
∫

∂Ω

D(ϕ) · ν φ dH2

}
,

where ν is the outward unit normal to ∂Ω and

D̃0(Ω̃) := {φ ∈ C∞0 (Ω̃) | max{‖φ(x)‖g(x), ‖dφ(x)‖g(x)} ≤ 1 ∀x ∈ Ω} .

This was proved in [6] in the case of the Euclidean metric and X = B3 or S3, where Lg(u) is called the
length of the minimal connection of the singularities of u.

Remark 5.13 We finally notice that for any u ∈ W 1,2
ϕ (Ω̃,Y) we clearly have

D̃g(u, Ω̃) ≤ D̃g,ϕ(u, Ω̃) ,

and that the strict inequality may occur, in general. For example, in the case of a constant metric g, the
strict inequality holds if for some s = 1, . . . , s̃ we have

mi,eΩ(Ps(u)) < mi(Ps(u)) ,

i.e., if the mass of an integral minimal connection L ∈ Rn−2(Ω̃) of Ps(u) allowing connections to the
boundary of Ω̃, i.e., such that (∂L) Ω̃ = P(u), see Definition 5.11, is strictly lower than the mass of an
integral minimal connection L̃ ∈ Rn−2(Ω̃) of Ps(u), i.e., such that spt L̃ ⊂ Ω and ∂L̃ = Ps(u). This happen
e.g. if Ω ⊂ R3 and Ps(u) = δa+ − δa− for some points a± ∈ Ω such that the line segment connecting them
is not contained in Ω.
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6 The case of W 1/2-maps

In this section we shall briefly consider the analogous problem for manifold constrained W 1/2-maps. We
refer to [12] [16] [19, Ch. 6] for details on the definitions and properties involved.

For the sake of simplicity, in the sequel we let Xn = Bn or Sn, the unit sphere in Rn+1. Moreover,
Y = Ym is a smooth compact boundaryless connected oriented Riemannian submanifold of RN . We shall
also assume that the first homology group H1(Y) is torsion-free. Setting

W 1/2(X ,Y) := {u ∈ W 1/2(X ,RN ) | u(x) ∈ Y for a.e. x ∈ X} ,

see [1], every map u ∈ W 1/2(X ,Y) is the trace on X × {0} of Sobolev functions U in W 1,2(Cn+1,RN ), say
T(U) = u, where Cn+1 is the cylinder

Cn+1 := X × [0, 1] .

Moreover, the classical norm ‖u‖2L2(X ) + |u|1/2,X is equivalent to the standard Dirichlet integral D(U) :=
D(U, Cn+1) of the extension U = U(x, t) := Ext(u) of u, i.e., of the harmonic function that minimizes
D(U, Cn+1) among all functions in W 1,2(Cn+1,RN ) such that T(U) = u.

The energy on maps. As above, we assume that for every x ∈ X the metric g(x) on X satisfies the
bound (2.7) and is continuous in X . We equip Cn+1 with the metric ĝ given by the product of the metric
g on X times the Euclidean metric on [0, 1]. This yields that ĝαβ = ĝβα and

ĝαβ = gαβ , ĝ(n+1)β = 0 , ĝ(n+1)(n+1) = 1 , α, β = 1, . . . n .

The Dirichlet energy of a map U ∈ W 1,2(Cn+1,RN ) is then given by

Dg(U) :=
∫

Cn+1
eg(x,DU(x, t)) dx dt , (6.1)

where this time the quadratic integrand eg : X ×M(N, n + 1) → R+ is defined by

2eg(x,G) := ĝαβ(x)δij Gi
αGj

β

√
det ĝ(x) , x ∈ X , G ∈ M(N, n + 1) .

Therefore, if g is the Euclidean metric on X , the energy (6.1) agrees with the standard Dirichlet integral
D(U).

Graphs of W 1/2-maps. To any map u ∈ W 1/2(X ,Y) we can associate an (n, 1)-current Gu in
Dn,1(X × Y), compare Sec. 2. If u is “smooth”, Gu agrees with the current carried by the graph of u.
Moreover, if U := Ext(u), by Stokes’ theorem, and by a density argument, we infer that

(−1)n−1∂GU = Gu on Dn,1(X × {0} × Y) . (6.2)

Definition 6.1 We say that an i.m. 1-cycle C ∈ Z1(Y) is an integral flat cycle if there exists an i.m.
rectifiable current R ∈ R2(RN ) such that ∂R = C.

It turns out that an element q in H1(Y, ∅;Z), the relative integral homology, see [8], is an equivalence class
of integral flat 1-cycles of Y, where

C ∼ Z ⇐⇒ ∃W ∈ R2(Y) : C − Z = ∂W .

In each homology class q in H1(Y, ∅;Z) there exists a homological mass minimizer, i.e., an integral flat cycle
C̃ ∈ Z1(Y) with finite mass such that

M(C̃) = inf{M(C) | C ∈ Z1(Y, ∅;Z) , [C] = γ} < ∞ .

Moreover, H1(Y, ∅;Z) is isomorphic to H1(Y), that is assumed to be torsion-free. Therefore, we may and
will denote by [γ̃1], . . . , [γ̃s] a family of generators of H1(Y, ∅;Z), i.e., the γ̃s’s are integral flat cycles, and by
[σ̃1], . . . , [σ̃s] a dual basis in H1

dR(Y) so that γ̃s(σ̃r) = δsr. We will then denote by Rs the i.m. rectifiable
current of least mass among all currents in R2(RN ) such that ∂Rs is in the homology class γ̃s. Notice that
a priori the mass of ∂Rs is not finite. Moreover, for s = 1, . . . , s, we set

M̃s := M(Rs) = inf{M(R) | R ∈ R2(RN ) , ∂R ∈ [γ̃s]} < ∞ . (6.3)
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Definition 6.2 Let T ∈ Dn,1(X × Y). We say that T is in E1/2-graph(X × Y) if

∂T = 0 on Zn−1,1(X × Y) (6.4)

and T can be decomposed as

T = GuT
+ ST , ST :=

s∑
s=1

Ls(T )× γ̃s , on Zn,1(X × Y) (6.5)

where uT ∈ W 1/2(X ,Y) and the Ls(T )’s are i.m. rectifiable current in Rn−1(X ).

Remark 6.3 Currents in E1/2-graph(X × Y) are defined in a homological sense, compare Remark. 5.3, as
the decomposition (6.5) does not depend on the choice of the representative γ̃s in the homology class [γ̃s].

Definition 6.4 Let T ∈ E1/2-graph(X ×Y) be such that (6.5) holds. We define its extension T̃ := Ext(T )
in Dn+1,2(Cn+1 × RN ) by

T̃ = (−1)n−1
(
GUT

+
s∑

s=1

Ls(T )×Rs

)
, UT := Ext(uT ) . (6.6)

Remark 6.5 From Definition 6.4 and (6.2) we infer that the boundary of T̃ over X × {0} × Y is equal to
T on Zn,1(X × Y).

The Eg-energy. If T̃ ∈ Dn+1,2(Cn+1 × RN ) satisfies (6.6), where Ls(T ) = τ(Ls, θs, τs), arguing as in
Sec. 2 we infer that its Dirichlet energy is given by

Dg(T̃ ) =
∫

Cn+1
eg(x,DUT (x, t)) dx dt +

s∑
s=1

M̃s ·Mg(Ls(T )) , (6.7)

where M̃s is given by (6.3), with Dg(GU ) = Dg(U) if T̃ = GU for some U ∈ W 1,2(Cn+1,RN ). In fact,
since Ls ⊂ X ×{0}, the orienting (n−1)-vector τs ∈ Λn−1Rn+1 does not depend on the t-direction, whence
|τs(x)|bg(x) = |τs(x)|g(x), and the ĝ-mass of Ls(T ) agrees with its g-mass,

Mbg(Ls(T )) =
∫

Ls

|τs(x)|g(x) dHn−1 = Mg(Ls(T )) .

Remark 6.6 If g is the Euclidean metric, the energy of T̃ agrees with the Dirichlet energy

D(T̃ ) =
1
2

∫

Cn+1
|DUT |2 dx dt +

s∑
s=1

M̃s ·M(Ls(T )) .

Moreover, see Remark 0.4, in the simple case n = 2 the g-norm of the tangent vector τs(x) is given by

|τs(x)|2g = τs(x)T (cof A(x))τs(x) ,

where A ∈ M(n, n) is given by (0.12).

Definition 6.7 Let T be in E1/2-graph(X ×Y), so that (6.5) holds. The Eg-energy Eg(T ) of T is defined
as the Dirichlet energy Dg(T̃ ) of the extension T̃ := Ext(T ), see (6.6) and (6.7).

Therefore, if eg(x,G) = 1
2 |G|2, the Eg-energy Eg(T ) reduces to the E1/2-energy studied in [16]. Moreover, if

T = Gu for some u ∈ W 1/2(X ,Y) and U = Ext(u), we let

Ext(Gu) := (−1)n−1GU , Eg(u) := Eg(Gu) = Dg(GU ) = Dg(U) ,
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see (6.1), and by the bound (2.7) we have

Dg(U) ' D(U) ' |u|1/2 .

Finally, for every open set Ω ⊂ X we let

Eg(T, Ω× Y) := Dg(T̃ , Ω× [0, 1]× RN ) , T̃ := Ext(T )
Eg(u, Ω) := Dg(U,Ω× [0, 1]) , U := Ext(u) .

Definition 6.8 A current T ∈ Dn,1(X × Y) is said to be in cart1/2(X × Y) if T belongs to the class
E1/2-graph(X × Y) and the E1/2-energy E1/2(T ) of T is finite, see Definitions 6.2 and 6.7.

We also say that Tk ⇀ T weakly in Zn,1 if Tk(ω) → T (ω) for every ω ∈ Zn,1(X × Y).

Density results. It is well-known that if n = 1 maps in C1(X 1,Y) are dense in W 1/2(X 1,Y), compare
e.g. [5]. For n ≥ 2, let R∞1/2(X ,Y) be the set of all maps u ∈ W 1/2(X ,Y) which are smooth except on a
singular set Σ(u) of the type

Σ(u) =
r⋃

i=1

Σi , r ∈ N ,

where Σi is a smooth (n− 2)-dimensional subset of X with smooth boundary, if n ≥ 3, and Σi is a point if
n = 2. In [15] we proved that in any dimension n ≥ 2 the class R∞1/2(X ,Y) is dense in W 1/2(X ,Y). On
account of the dominated convergence theorem, we then obtain:

Proposition 6.9 For every u ∈ W 1/2(X ,Y) there exists a sequence {uk} ⊂ R∞1/2(X ,Y) such that uk ⇀ u

weakly in W 1/2 and Eg(uk) → Eg(u) as k →∞.

We recall that if the first homotopy group of the target manifold is nontrivial, π1(Y) 6= 0, there exist
functions u ∈ W 1/2(X ,Y), for n ≥ 2, which cannot be approximated strongly in W 1/2 by smooth maps
in W 1/2(X ,Y). In [15] we showed that the converse holds true. As a consequence, by the dominated
convergence theorem, in any dimension n ≥ 2 we obtained the following.

Proposition 6.10 Let π1(Y) = 0. For every u ∈ W 1/2(X ,Y) there exists a sequence of smooth maps
{uk} ⊂ C1(X ,Y) such that uk ⇀ u weakly in W 1/2 and Eg(uk) → Eg(u) as k →∞.

Finally, we have:

Theorem 6.11 Let n ≥ 1 and let π1(Y) be commutative. For every T ∈ cart1/2(X × Y) there exists a
sequence of smooth maps {uk} ⊂ C∞(X ,Y) such that Guk

⇀ T weakly in Zn,1 and

lim
k→∞

Eg(uk) = Eg(T ) .

This theorem was proved in [16] in the case of the E1/2-energy, i.e., when eg(x,G) = 1
2 |G|2. In the case of

dimension n = 1, the commutativity hypothesis on the first homotopy group can be removed, compare [19,
Sec. 6.6]. However, even in the case of dimension n = 2, and eg(x,G) = 1

2 |G|2, if π1(Y) is non-commutative
there exist currents T in cart1/2(B2 × Y) of the type T = Gu which cannot be approximated weakly in
Zn,1 by graphs of smooth maps uk : B2 → Y such that E1/2(Guk

) → E1/2(Gu), compare [16].

Proof of Theorem 6.11: Since the metric ĝ is continuous in Cn+1, we infer that (3.2) holds true, this
time for every G ∈ M(N, n + 1). The proof can be obtained by an adaptation of the one given for the E1/2-
energy in [16], by using arguments similar to the one in the proof of Theorem 3.8 for the dipole construction.
For this reason, we omit any further comment. ¤

The relaxed Eg-energy. We now introduce the relaxed Eg-energy with respect to the weak W 1/2-
convergence, defined for every u ∈ W 1/2(X ,Y) and every open set Ω ⊂ X by

Ẽg(u,Ω) := inf
{
lim inf
k→∞

Eg(uk, Ω) | {uk} ⊂ C1(X ,Y) ,

uk ⇀ u weakly in W 1/2(X ,Y)
}

.
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Moreover, for every u ∈ W 1/2(X ,Y) we denote by

T 1/2
u := {T ∈ cart1/2(X × Y) | uT = u}

the class of Cartesian current in cart1/2(X ×Y) such that the underlying W 1/2-function uT in the decom-
position (6.5) is equal to u.

By the strong density of smooth maps, in case of dimension n = 1 we clearly have

Ẽg(u,Ω) = Eg(u, Ω) =
∫

Ω×[0,1]

eg(x,DU(x, t)) dx dt ∀u ∈ W 1/2(X 1,Y) ,

where U = Ext(u). In dimension n ≥ 2, as a consequence of Theorem 6.11, using Theorem 0.3 and the
closure-compactness of the class cart1/2 (X × Y), and arguing as in the proof of Proposition 5.5, we obtain
the following

Proposition 6.12 Under the hypotheses of Theorem 6.11, for every u ∈ W 1/2(X ,Y) and every open set
Ω ⊂ X we have

Ẽg(u, Ω) = inf{Eg(T, Ω× Y) | T ∈ T 1/2
u } < ∞ .

By Definition 6.7 we then obtain:

Proposition 6.13 For every u ∈ W 1/2(X ,Y) and every open set Ω ⊂ X we have

Ẽg(u,Ω) =
∫

Ω×[0,1]

eg(x,DU(x, t)) dx dt + inf
{ s∑

s=1

M̃s ·Mg(Ls(T ) Ω) | T ∈ T 1/2
u

}
,

where U := Ext(u), M̃s is given by (6.3), and Ls(T ) ∈ Rn−1(X ) is given by the decomposition (6.5) of T ,
for s = 1, . . . , s.

Remark 6.14 If the first homotopy group π1(Y) is trivial, e.g., if Y = Sp for some p ≥ 2, by the Hurewicz
theorem we have H1(Y) = 0. As a consequence, we readily infer that in any dimension n

Ẽg(u, Ω) = Eg(u, Ω) ∀u ∈ W 1/2(X ,Y) .

In order to write more explicitly the relaxed energy, for every u ∈ W 1/2(X ,Y) and every s we set
Ps(u) := −π#((∂Gu) π̂#σ̃s) ∈ Dn−2(X ), so that

Ps(u)(φ) =
∫

X
u#σ̃s ∧ dφ , φ ∈ Dn−2(X ) . (6.8)

By the null-boundary condition (6.4), we infer that for every T ∈ T 1/2
u and every open set Ω ⊂ X we have

∂(Ls(T )) Ω = (−1)n Ps(u) Ω ∀ s = 1, . . . , s .

Remark 6.15 Notice that mg
i,Ω(Ps(u)) < ∞ for every map u ∈ W 1/2(X ,Y) and every open set Ω ⊂ X ,

see Definition 5.11. Moreover, by the definition of the metric ĝ it turns out that when minimizing the ĝ-mass
Mbg(L) among all i.m. rectifiable currents L in Rn−1(Cn+1) such that (∂Ls) (Ω×{0}) = Ps(u) Ω, there
exists a solution Ls such that spt Ls ⊂ X × {0}, so that Mbg(Ls) = Mg(Ls).

Similarly to Corollary 5.12, using Definition 5.11 with k = n− 2 we then obtain the following formula,
that goes back to [16] in the case of the Euclidean metric g, i.e., when Eg = E1/2 and mg

i,Ω = mi,Ω.

Corollary 6.16 For every u ∈ W 1/2(X ,Y) and every open set Ω ⊂ X we have

Ẽg(u, Ω) = Eg(u,Ω) +
s∑

s=1

M̃s ·mg
i,Ω(Ps(u))

where M̃s is given by (6.3) and Ps(u) by (6.8).

We finally mention that the case with prescribed boundary data can be treated in a similar way.
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