
         

THREE OPTIMIZATION PROBLEMS IN MASS
TRANSPORTATION THEORY

GIUSEPPE BUTTAZZO

Abstract: We give a model for the description of an urban transporta-
tion network and we consider the related optimization problem which consists
in finding the desing of the network which has the best transportation per-
formances. This will be done by introducing, for every admissible network, a
suitable metric space with a distance that inserted into the Monge-Kantorovich
cost functional provides the criterion to be optimized. Together with the op-
timal design of an urban transportation network, other kinds of optimization
problems related to mass transportation can be considered. In particular we
will illustrate some models for the optimal design of a city, and for the optimal
pricing policy on a given transportation network.

1. Introduction

In this paper we present some models of optimization problems in mass
transportation theory; they are related to the optimal design of urban struc-
tures or to the optimal management of structures that already exist. The
models we present are very simple and do not pretend to give a careful de-
scription of the urban realities; however, adding more parameters to fit more
realistic situations, will certainly increase the computational difficulties but
does not seem to modify the theoretical scheme in an essential way. Thus we
remain in the simplest framework, since our goal is to stress the fact that mass
transportation theory is the right tool to attack this kind of problems.

The problems we will present are of three kinds; all of them require the use
of the Wasserstein distances Wp between two probabilities f+ and f−, that we
will introduce in the next section. Let us illustrate here shortly the problems
that we are going to study later in more details.

Optimal transportation networks. In a given urban area Ω, with two
given probabilities f+ and f−, which respectively represent the density of resi-
dents and the density of services, a transportation network has to be designed
in an optimal way. A cost functional has to be introduced through a suitable
Wasserstein distance between f+ and f−, which takes into account the cost
of residents to move outside the network (by their own means) and on the
network (for instance by paying a ticket). The admissible class of networks
where the minimization will be performed consists of all closed connected one-
dimensional subsets of Ω with prescribed total length.

Optimal pricing policies. With the same framework as above (Ω, f+, f−

given) we also consider the network as prescribed. The unknown is here the
ticket pricing policy the manager of the network has to choose, and the goal
is to maximize the total income. Of course, a too low ticket price policy will
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not be optimal, but also a too high ticket price policy will push customers to
use their own transportation means, decreasing in this way the total income
of the company.

Optimal design of an urban area. In this case the urban area Ω is still
considered as prescribed, whereas f+ and f− are the unknowns of the problem
that have to be determined in an optimal way taking into account the following
facts:

• there is a transportation cost for moving from the residential areas to the
services poles;
• people desire not to live in areas where the density of population is too

high;
• services need to be concentrated as much as possible, in order to increase

efficiency and decrease management costs.

2. The Wasserstein distances

Mass transportation theory goes back to Gaspard Monge (1781) when he
presented a model in a paper on Académie de Sciences de Paris. The elemen-
tary work to move a particle x into T (x), as in Figure 1, is given by |x−T (x)|,
so that the total work is ∫

remblais
|x− T (x)| dx .

remblais

déblais•

•

x

T(x)

gg

Figure 1. The Monge problem.

A map T is called admissible transport map if it maps “remblais” into
“déblais”. The Monge problem is then

min
{∫

remblais
|x− T (x)| dx : T admissible

}
.

It is convenient to consider the Monge problem in the framework of metric
spaces:

• (X, d) is a metric space;



            

THREE OPTIMIZATION PROBLEMS IN MASS TRANSPORTATION THEORY 3

• f+, f− are two probabilities on X (f+ represents the “remblais”, f− the
“déblais”);
• T is an admissible transport map if it maps f+ onto f−, that is T#f+ =
f−.

The Monge problem is then

min
{∫

X

d
(
x, T (x)

)
df+(x) : T admissible

}
.

The question about the existence of an optimal transport map Topt for the
Monge problem above is very delicate and does not belong to the purposes of
the present paper (we refer the interested reader to the several papers available
in the literature). Since we want to consider f+ and f− as general probabil-
ities, it is convenient to reformulate the problem in a relaxed form (due to
Kantorovich [24], [25]): instead of transport maps we consider measures γ on
X ×X (called transport plans); γ is said an admissible transport plan if

π#
1 γ = f+, π#

2 γ = f−

where π1 and π2 respectively denote the projections of X ×X on the first and
second factors. In this way, the Monge-Kantorovich problem becomes:

min
{∫

X×X
d(x, y) dγ(x, y) : γ admissible

}
.

Theorem 2.1. There exists an optimal transport plan γopt; in the Euclidean
case γopt is actually a transport map Topt whenever f+ and f− are in L1.

We denote by MK(f+, f−, d) the minimum value in the Monge-Kantorovich
problem above. This defines the Wasserstein distance (of exponent 1) by

W1(f+, f−, d) = MK(f+, f−, d)

where the metric space (X, d) is considered as fixed. The Wasserstein distances
of exponent p > 1 are defined in a similar way:

Wp(f
+, f−, d) = min

{(∫

X×X
dp(x, y) dγ(x, y)

)1/p

: γ admissible
}
.

When X is a compact metric space all the distances Wp are topologically equiv-
alent, and the topology generated by them coincides with the weak∗ topology
on the probabilities on X.

3. Optimal transportation networks

We consider here a model for the optimal planning of an urban transporta-
tion network (see [8]). Suppose that the following objects are given:

• a compact regular domain Ω of RN (N ≥ 2); it represents the geographical
region or urban area we are dealing with;

• a nonnegative measure f+ on Ω; it represents the density of residents in
the urban area Ω;

• a nonnegative measure f− on Ω; it represents the density of services in
the urban area Ω.
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We assume that f+ and f− have the same mass, that we normalize to 1; so
f+ and f− are supposed to be probability measures. The main unknown of the
problem is the transportation network Σ that has to be designed in an optimal
way to transport the residents f+ into the services f−. The goal is to introduce
a cost functional F (Σ) and to minimize it on a class of admissible choices. We
assume that Σ varies among all closed connected 1-dimensional subsets of Ω
with total length bounded by a given constant L. Thus the admissible class
where Σ varies is

AL =
{

Σ ⊂ Ω, closed, connected, H1(Σ) ≤ L
}
.(3.1)

In order to introduce the optimization problem we associate to every “admissi-
ble urban network” Σ a suitable “point-to-point cost function” dΣ which takes
into account the costs for residents to move by their own means as well as by
using the network. The cost functional will be then

F (Σ) = Wp(f
+, f−, dΣ)(3.2)

for some fixed p ≥ 1, so that the optimization problem we deal with is

min{F (Σ) : Σ ∈ AL}.(3.3)

It remains to introduce the function dΣ (that in the realistic situations will be
a semi-distance on Ω). To do that, we consider:

• a continuous and nondecreasing function A : [0,+∞[→ [0,+∞[ with
A(0) = 0, which measures the cost for residents of traveling by their own
means;
• a lower semicontinuous and nondecreasing function B : [0,+∞[→ [0,+∞[

with B(0) = 0, which measures the cost for residents of traveling by using
the network.

More precisely, A(t) represents the cost for a resident to cover a length t by his
own means (walking, time consumption, car fuel, . . . ), whereas B(t) represents
the cost to cover a lenght t by using the transportation network (ticket, time
consumption, . . . ). The assumptions made on the pricing policy function B
allow us to consider the usual cases below: the flat rate policy of Figure 2 (a)
as well as the multiple-zones policy of Figure 2 (b).

• •

Figure 2. (a) flat rate policy (b) multiple-zones policy.

Therefore, the function dΣ is defined by:

dΣ(x, y) = inf
{
A
(
H1(φ \ Σ)

)
+B

(
H1(φ ∩ Σ)

)
: φ ∈ Cx,y

}
,(3.4)

where Cx,y denotes the class of all curves in Ω connecting x to y.
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Theorem 3.1. The optimization problem (3.3) admits at least a solution Σopt.

Once the existence of Σopt is established, several interesting questions arise:

• study the regularity properties of Σopt, under reasonable regularity as-
sumptions on the data f+ and f−;
• study the geometrical necessary conditions of optimality that Σopt has to

fulfill (nonexistence of closed loops, bifurcation points, distance from the
boundary ∂Ω, . . . );
• perform an asymptotic analysis of the optimization problem (3.3) as L→

0 and as L→ +∞.

Most of the questions above are still open in the general framework covered by
the existence Theorem 3.1 above. However, some partial results are available
in particular situations; we refer the interested reader to the several recent
papers on the subject (see for instance [8], [11], [16], [27]).

4. Optimal pricing policies

With the notation above, we consider the urban area Ω and the measures
f+, f− as fixed, as well as the transportation network Σ. The unknown is in
this case the pricing policy function B that the manager of the network has
to choose among all lower semicontinuous monotone nondecreasing functions
B, with B(0) = 0. The goal is to maximize the total income, which of course
depends on the policy B chosen, so it can be seen as a functional F (B).

The function B can be seen as a control variable and the corresponding
Kantorovich transport plan γB as a state variable, which solves the minimum
problem

min
{∫

Ω×Ω

dpB(x, y) dγ(x, y) : γ admissible
}

(4.1)

where p is the Wasserstein exponent and dB is the cost function

dB(x, y) = inf
{
A
(
H1(φ \ Σ)

)
+B

(
H1(φ ∩ Σ)

)
: φ ∈ Cx,y

}
.(4.2)

The quantity dB(x, y) can be seen as the total minimal cost a customer has
to pay to go from a point x to a point y, using the best path φ. This cost is
divided in two parts: a part A

(
H1(φ \ Σ)

)
due to the use of his own means,

and a part iB(x, y) = B
(
H1(φ ∩ Σ)

)
due to the ticket to pay for using the

transportation network. The only condition we assume to make the problem
well posed is that, in case several paths φ realize the minimum in (4.2), the
customer chooses the one with minimal own means cost (and so with maximal
network cost). The total income is then

F (B) =

∫

Ω×Ω

iB(x, y) dγB(x, y),(4.3)

so that the optimization problem we consider is:

max
{
F (B) : B l.s.c., nondecreasing, B(0) = 0

}
.(4.4)

The following result has been proved in [12].
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Theorem 4.1. There exists an optimal pricing policy Bopt solving the maximal
income problem (4.4).

Also in this case some necessary conditions of optimality can be obtained.
It may happen that several functions Bopt solve the maximal income problem
(4.4); in this case, as a canonical representative, we choose the smallest one,
with respect to the usual order between functions. It is possible to show that
it is still a solution of problem (4.4). In particular, the function Bopt turns out
to be continuous, and its Lipschitz constant can be bounded by the one of A.
We refer to [12] for all details as well as for the proofs above.

5. Optimal design of an urban area

We consider the following model for the optimal planning of an urban area
(see [13]).

• The domain Ω (the geographical region or urban area), a regular compact
subset of RN , is prescribed;
• the probability measure f+ on Ω (the density of residents) is unknown;
• the probability measure f− on Ω (the density of services) is unknown.

Here the distance d in Ω is taken for simplicity as the Euclidean one, but
with a similar procedure one could also study the cases in which the distance
is induced by a transportation network Σ, as in the previous sections. The
unknowns of the problem are f+ and f−, that have to be determined in an
optimal way taking into account the following facts:

• residents have to pay a transportation cost for moving from the residential
areas to the services poles;
• residents like to live in areas where the density of population is not too

high;
• services need to be concentrated as much as possible, in order to increase

efficiency and decrease management costs.

The transportation cost will be described through a Monge-Kantorovich
mass transportation model; it is indeed given by a p-Wasserstein distance
(p ≥ 1) Wp(f

+, f−).
The total unhappiness of residents due to high density of population will be

described by a penalization functional, of the form

H(f+) =

{ ∫
Ω
h(u) dx if f+ = u dx

+∞ otherwise,

where h is assumed to be convex and superlinear (i.e. h(t)/t → +∞ as
t → +∞). The increasing and diverging function h(t)/t then represents the
unhappiness to live in an area with population density t.

Finally, there is a third term G(f−) which penalizes sparse services. We
force f− to be a sum of Dirac masses and we consider G(f−) as a functional
defined on measures, of the form studied by Bouchitté and Buttazzo in [3], [4],
[5]:

G(f−) =

{ ∑
n g(an) if f− =

∑
n anδxn

+∞ otherwise,
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where g is concave and with infinite slope at the origin ((i.e. g(t)/t → +∞
as t → 0+). Every single term g(an) in the sum above represents the cost for
building and managing a service pole of dimension an, located at the point
xn ∈ Ω.

We have then the optimization problem

min
{
Wp(f

+, f−) +H(f+) +G(f−) : f+, f− probabilities on Ω
}
.(5.1)

Theorem 5.1. There exists an optimal pair (f+, f−) solving the problem
above.

Also in this case we obtain some necessary conditions of optimality. In
particular, if Ω is sufficiently large, the optimal structure of the city consists
of a finite number of disjoint subcities: circular residential areas with a service
pole at their center.
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