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Introduction
In these lecture notes we will explore the mathematics of the space of immersed
curves, as is nowadays used in applications in computer vision. In this field,
the space of curves is employed as a “shape space” ; for this reason, we will also
define and study the space of geometric curves, that are immersed curves up
to reparameterizations. To develop the usages of this space, we will consider
the space of curves as an infinite dimensional differentiable manifold; we will
then deploy an effective form of calculus and analysis, comprising tools such
as a Riemannian metric, so as to be able to perform standard operations such
as minimizing a goal functional by gradient descent, or computing the distance
between two curves. Along this path of mathematics, we will also present some
current literature results. (Another common and interesting example of “shape
spaces” is the space of all compact subsets of lRn — we will briefly discuss this
option as well, and relate it to the aforementioned theory).

These lecture notes aim to be as self-contained as possible, so as to be acces-
sible to young mathematicians and non-mathematicians as well. For this reason,
many examples are intermixed with the definitions and proofs; in presenting
advanced and complex mathematical ideas, the rigorous mathematical definitions
and proofs were sometimes sacrificed and replaced with an intuitive description.

These lecture notes are organized as follows. Section 1 introduces the def-
initions and some basilar concepts related to immersed and geometric curves.
Section 2 overviews the realm of applications for a shape space in computer
vision, that we divide in the fields of “shape optimization” and “shape analysis”;
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and hilights features and problems of those theories as were studied up to a
few years ago, so as to identify the needs and obstacles to further developments.
Section 3 contains a summary of all mathematical concepts that are needed for
the rest of the notes. Section 4 coalesces all the above in more precise defini-
tions of spaces of curves to be used as “shape spaces”, and sets mathematical
requirements and goals for applications in computer vision. Section 5 indexes
examples of “shape spaces” from the current literature, inserting it in a common
paradigm of “representation of shape”; some of this literature is then elaborated
upon in the following sections 6,7,8,9, containing two examples of metrics of
compact subsets of lRn, two examples of Finsler metrics of curves, two examples
of Riemannian metrics of curves “up to pose”, and four examples of Riemannian
metrics of immersed curves. The last such example is the family of Sobolev-type
Riemannian metrics of immersed curves, whose properties are studied in Section
10, with applications and numerical examples. Section 11 presents advanced
mathematical topics regarding the Riemannian spaces of immersed and geometric
curves.

I gratefully acknowledge that a part of the theory and many numerical
experiments exposited were developed in joint work with Prof. Yezzi (GaTech)
and Prof. Sundaramoorthi (UCLA); other numerical experiments were by A.
Duci and myself. I also deeply thank the organizers for inviting me to Cetraro
to give the lectures that were the basis for this lecture notes.

1 Shapes & curves
What is this course about? In the first two sections we begin by summarizing in
a simpler form the definitions, reviewing the goals, and presenting some useful
mathematical tools.

1.1 Shapes
A wide interest for the study of shape spaces arose in recent years, in particular
inside the computer vision community. Some examples of shape spaces are as
follows.

• The family of all collections of k points in lRn.

• The family of all non empty compact subsets of lRn.
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• The family of all closed curves in lRn.

There are two different (but interconnected) fields of applications for a good
shape space in computer vision:

shape optimization where we want to find the shape that best satisfies a
design goal; a topic of interest in engineering at large;
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shape analysis where we study a family of shapes for purposes of statistics,
(automatic) cataloging, probabilistic modeling, among others, and possibly
create an a-priori model for a better shape optimization.

1.2 Curves
S1 = {x ∈ lR2 | |x| = 1} is the circle in the plane. It is the template for all
possible closed curves. (Open curves will be called paths, to avoid confusion).

Definition 1.1 (Classes of curves) • A C1 curve is a continuously dif-
ferentiable map c : S1 → lRn such that the derivative c′(θ) := ∂θc(θ) exists
at all points θ ∈ S1.

• An immersed curve is a C1 curve c such that c′(θ) 6= 0 at all points
θ ∈ S1.

c : S1 → c(S1)

����
7→

Note that, in our terminology , the “curve” is the function c, and not just the
image c(S1) inside lRn.

Most of the theory following will be developed for curves in lRn, when this
does not complicate the math. We will call planar curves those whose image
is in lR2.

The class of immersed curves is a differentiable manifold. For the purposes
of this introduction, we present a simple, intuitive definition.

Definition 1.2 The manifold of (parametric) curves M is the set of all
closed immersed curves. Suppose that c ∈M , c : S1 → lRn is a closed immersed
curve.

• A deformation of c is a function h : S1 → lRn.

• The set of all such h is the tangent space TcM of M at c.

• An infinitesimal deformation of the curve c0 in “direction” h will yield (on
first order) the curve c0(u) + εh(u).

• A homotopy C connecting c0 to c1 is a continuous function
C : [0, 1] × S1 → S1 such that c0(θ) = C(0, θ) and c1(θ) =
C(1, θ).
By defining γ(t) = C(t, ·) we can associate C to a path γ :
[0, 1]→M in the space of curves M , connecting c0 to c1.

c0

c1

h

M
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1.3 Geometric curves and functionals
Shapes are usually considered to be geometric objects. Representing a curve
using c : S1 → lRn forces a choice of parameterization, that is not really part
of the concept of “shape”. To get rid of this, we first summarily present what
reparameterizations are. (We will provide more detailed definitions and properties
in Section 3.8).

Definition 1.3 Let Diff(S1) be the family of diffeomorphisms of S1: all the
maps φ : S1 → S1 that are C1 and invertible, and the inverse φ−1 is C1.

Diff(S1) enjoys some important mathematical properties:

• Diff(S1) is a group, and its group operation is the composition φ, ψ 7→
φ ◦ ψ.

• Diff(S1) acts onM , the action is the right function composition c, φ 7→ c◦φ.
This action is a reparameterization of c.

Definition 1.4 The quotient space

B = M/Diff(S1)

is the space of curves up to reparameterization, also called geometric curves
in the following. Two parametric curves c1, c2 ∈M such that c1 = c2 ◦ φ are the
same geometric curve inside B.

B is mathematically defined as the set B = {[c]} of all equivalence classes
[c] of curves that are equal but for reparameterization,

[c] := {c ◦ φ for φ ∈ Diff(S1)}.

Remark 1.5 We may also consider the family Diff+(S1) of diffeomorphisms
with derivative φ′ > 0. Its action does not change the orientation of a curve. We
may then consider the quotient w.r.t Diff+(S1). The quotient space M/Diff+(S1)
is the space of geometric oriented curves.

We can now define the geometric functionals.

Definition 1.6 A functional F (c) defined on curves will be called geometric
if it is invariant w.r.to reparameterization of c, that is, if F (c1) = F (c2) when
c1 = c2 ◦ φ.

In this case, F may be “projected” to B = M/Diff(S1), that is, it may be
considered as a function F : B → lR.

It is important to remark that “geometric” theories have often provided the
best results in computer vision.
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1.4 Curve–related quantities
A good way to specify the design goal for shape optimization is to define an
objective function (a.k.a. energy) F : M → lR that is minimum in the curve
that is most fit for the task.

When designing our F , we will want it to be geometric; this is easily ac-
complished if we use geometric quantities to start from. We now list the most
important such quantities.

In the following, given v, w ∈ lRn we will write |v| for the standard Euclidean
norm, and 〈v, w〉 or (v · w) for the standard scalar product. We will again
write c′(θ) := ∂θc(θ).

Definition 1.7 (Derivations) If the curve c is immersed, we can define the
derivation with respect to the arc parameter

∂s = 1
|c′|

∂θ .

(We will sometimes also write Ds instead of ∂s.)

Definition 1.8 (Tangent) At all points where c′(θ) 6= 0, we define the tangent
vector

T (θ) = c′(θ)
|c′(θ)|

= ∂sc(θ) .

(At the points where c′ = 0 we may define T = 0).

It is easy to prove (and quite natural for our geometric intuition) that T is a
geometric quantity: if c̃ = c ◦ φ and T̃ is its tangent, then T̃ = T ◦ φ.

Definition 1.9 (Length) The length of the curve c is

len(c) :=
∫
S1
|c′(θ)|dθ . (1.9.∗)

We can define formally the arc parameter s by

ds := |c′(θ)|dθ ;

we use it only in integration, as follows.

Definition 1.10 (Integration by arc parameter) We define the integra-
tion by arc parameter of a function g : S1 → lRk along the curve c by∫

c

g(s) ds :=
∫
S1
g(θ)|c′(θ)|dθ .

and the average integral∫
c

g(s) ds := 1
len(c)

∫
c

g(s) ds

and we will sometimes shorten this as avgc(g).
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Figure 1: Example of a regular curve and its curvature.

1.4.1 Curvature

Suppose moreover that the curve is immersed and is C2 regular (that means that
it is twice differentiable, and the second derivative is continuous); in this case
we may define curvatures, that indicate how much the curve bends. There are
two different definitions of curvature of an immersed curve: mean curvature H
and signed curvature κ, that is defined when c is planar. H and k are extrinsic
curvatures, they are properties of the embedding of c into lRn.

Definition 1.11 (H) If c is C2 regular and immersed, we can define the mean
curvature H of c as

H = ∂s∂sc = ∂sT

where ∂s = 1
|c′|∂θ is the derivation with respect to the arc parameter. It enjoys

the following properties.

Properties 1.12 • It is easy to prove that H ⊥ T .

• H is a geometric quantity. If c̃ = c ◦ φ and H̃ is its curvature, then
H̃ = H ◦ φ.

• 1/|H| is the radius of a tangent circle that best approximates the curve to
second order.

Definition 1.13 (N) When the curve c is immersed and planar, we can define
a normal vector N to the curve, by requiring that |N | = 1, N ⊥ T and N is
rotated π/2 degree anticlockwise with respect to T .

Definition 1.14 (κ) If c is planar and C2 regular, then we can define a signed
scalar curvature κ = 〈H,N〉, so that

∂sT = κN = H and ∂sN = −κT .

See fig. 1.
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2 Shapes in applications
A number of methods have been proposed in shape analysis to define distances
between shapes, averages of shapes and statistical models of shapes. At the
same time, there has been much previous work in shape optimization, for ex-
ample image segmentation via active contours, 3D stereo reconstruction via
deformable surfaces; in these later methods, many authors have defined energy
functionals F (c) on curves (or on surfaces), whose minima represent the desired
segmentation/reconstruction; and then utilized the calculus of variations to derive
curve evolutions to search minima of F (c), often referring to these evolutions
as gradient flows. The reference to these flows as gradient flows implies a cer-
tain Riemannian metric on the space of curves; but this fact has been largely
overlooked. We call this metric H0, and properly define it in eqn. (2.9).

2.1 Shape analysis
Many method and tools comprise the shape analysis. We may list
• distances between shapes,

• averages for shapes,

• principle component analysis for shapes and

• probabilistic models of shapes.
We will present a short overview of the above, in theory and in applications. We
begin by defining the distance function and signed distance function, two tools
that we will use often in this theory.
Definition 2.1 Let A,B ⊂ lRn be compact.
• uA(x) := infy∈A |x− y| is the distance function,

x1

x2

A
B

uA

uB

• bA(x) := uA(x)− ulRn\A(x) is the signed distance function.

x1

x2

A
B

bA

bB
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2.1.1 Shape distances

A variety of distances have been proposed for measuring the difference between
two given shapes. Two examples follows.

Definition 2.2 The Hausdorff distance

dH(A,B) :=
(

sup
x∈A

uB(x)
)
∨
(

sup
x∈B

uA(x)
)

(2.2.∗)

where A,B ⊂ lRn are compact, and uA(x) is the distance function.

The above can be used for curves; in this case a distance may be defined by
associating to the two curves c1, c2 the Hausdorff distance of the image of the
curves

dH(c1(S1), c2(S1)) .

If c1, c2 are immersed and planar, we may otherwise use dH (̊c1, c̊2) where
c̊1, c̊2 denote the internal region enclosed by c1, c2.

Definition 2.3 Let A,B be two measurable sets, let

A∆B := (A \B) ∪ (A \B)

be the set symmetric difference; let |A| be the Lebesgue measure of A. We
define the set symmetric distance as

d(A,B) =
∣∣A∆B

∣∣ .
In the case of planar curves c1, c2, we can apply to above idea to define

d(c1, c2) =
∣∣̊c1∆c̊2∣∣ .

2.1.2 Shape averages

Many definitions have also been proposed for the average c̄ of a finite set of
shapes c1, . . . , cN . There are methods based on the arithmetic mean (that are
representation dependent).

• One such case is when the shapes are defined by a finite family of N
parameters; so we can define the parametric or landmark averaging

c̄(p) = 1
N

N∑
n=1

cn(p)

where p is a common parameter/landmark.
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• More in general, we can define the signed distance level set averaging
by using as a representative of a shape its signed distance function, and
computing the average shape by

c̄ =
{
x | b̄(x) = 0

}
, where b̄(x) = 1

N

N∑
n=1

bcn(p)

where bcn is the signed distance function of cn; or in case of planar curves,
of the part of plane enclosed by cn.

Then there are non parametric, representation independent, methods. The
(possibly) most famous one is the

Definition 2.4 The distance-based average.1 Given a distance dM between
shapes, an average shape c̄ may be found by minimizing the sum of its squared
distances.

c̄ = arg min
c

N∑
n=1

dM (c, cn)2

It is interesting to note that in Euclidean spaces there is an unique minimum,
that coincides with the arithmetic mean; while in general there may be no
minimum, or more than one.

2.1.3 Principal component analysis (PCA)

Definition 2.5 Suppose that X is a random vector taking values in lRn; let
X = E(X) be the mean of X. The principal component analysis is the
representation of X as

X = X +
n∑
i=1

YiSi

where Si are constant vectors, and Yi are uncorrelated real random variables
with zero mean, and with decreasing variance. Si is known as the i-th mode of
principal variation.

The PCA is possible in general in any finite dimensional linear space equipped
with an inner product. In infinite dimensional spaces, or equivalently in case of
random processes, the PCA is obtained by the Karhunen-Loève theorem.

Given a finite number of samples, it is also possible to define an empirical
principal component analysis, by estimating the expectation and variance of the
data.

In many practical cases, the variances of Yi decrease quite fast: it is then
sensible to replace X by a simplified variable

X̃ := X +
k∑
i=1

YiSi

1Due to Fréchet, 1948; but also attributed to Karcher.
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with k < n.
So, if shapes are represented by some “linear” representation, the PCA is

a valuable tool to study the statistics, and it has then become popular for
imposing shape priors in various shape optimization problems. For more general
manifold representations of shapes, we may use the exponential map (defined in
3.30), replacing Sn by tangent vectors and following geodesics to perform the
summation.

We present here an example in applications.

Example 2.6 (PCA by signed distance representation) In these pictures
we see an example of synergy between analysis and optimization, from Tsai et al.
[60]. The figure 2 contains a row of pictures that represent the (empirical)
PCA of signed distance function of a family of plane shapes. The figure 3
contains a second row of images that represent: an image of a plane shape (a)
occluded (b) and noise degraded (c), an initialization for the shape optimizer (d)
and the final optimal segmentation (e).

(a) (b) (c) (d) (e) (f) (g)︸ ︷︷ ︸
mean

︸ ︷︷ ︸
first mode

︸ ︷︷ ︸
second mode

︸ ︷︷ ︸
third mode

Figure 2: PCA of plane shapes. (From Tsai et al. [60] c© 2001 IEEE. Reproduced with
permission).

(a) (b) (c) (d) (e)

Figure 3: Segmentation of occluded plane shape. (From Tsai et al. [60] c© 2001 IEEE.
Reproduced with permission).
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2.2 Shape optimization & active contours
2.2.1 A short history of active contours

In the late 20th century, the most common approach to image segmentation
was a combination of edge detection and contour continuation. With edge
detection [5], small edge elements would be identified by a local analysis of
the image; then a continuation method would be employed to reconstruct
full contours. The methods were suffering from two drawbacks, edge detection
being too sensitive to noise and to photometric features (such as, sharp shadows,
reflections) that were not related to the physical structure of the image; and
continuation was in essence a NP-complete algorithm.

Active contours, introduced by Kass et al. [26], have been widely used for
the segmentation problem. The idea is to minimize an energy F (c) (where the
variable c is a contour i.e. a curve), that contains an edge-based attraction
term and a smoothness term, which becomes large when the curve is irregular.
An evolution is derived to minimize the energy based on principles from the
calculus of variations.

An unjustified feature of the model of [26] is that the evolution is dependent
on the way the contour is parameterized. Hence there have been geometric
evolutions similar to the idea of [26] in Caselles et al. [6], Malladi et al. [33],
which can be implemented by the level set method by Osher and Sethian [44].
Thereafter, Kichenassamy et al. [27] Caselles et al. [7] considered minimizing
a geometric energy, which is a generalization of Euclidean arc length, defined
on curves for the edge detection problem. The authors derived the gradient
descent flow in order to minimize the geometric energy.

In contrast to the edge-based approaches for active contours (mentioned
above), region-based energies for active contours have been proposed in Ronfard
[46] Zhu et al. [69] Yezzi et al. [64] Chan and Vese [8]. In these approaches, an
energy is designed to be minimized when the curve partitions the image into
statistically distinct regions. This kind of energy has provided many desirable
features; for example, it provides less sensitivity to noise, better ability to capture
concavities of objects, more dependence on global features of the image, and less
sensitivity to the initial contour placement.

In Mumford and Shah [42, 43], the authors introduce and rigorously study a
region-based energy that is designed to both extract the boundary of distinct
regions while also smoothing the image within these regions. Subsequently,
Tsai et al. [61] Vese and Chan [63] gave a curve evolution implementation of
minimizing the energy functional considered by Mumford&Shah in a level set
method; the gradient descent flows are calculated to minimize these energies.

2.2.2 Energies in computer vision

A variational approach to solving shape optimization problems is to define and
consequently minimize geometric energy functionals F (c) where c is a planar
curve. We may identify two main families of energies,
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• the region based energies:

F (c) =
∫
R

fin(x) dx+
∫
Rc
fout(x) dx

where
∫
· · · dx is area element integral, and R and Rc

are the interior and exterior areas outlined by c; and

• the boundary based energies:

F (c) =
∫
c

φ(c(s)) ds

R
2

Rc R

c

where φ is designed to be small on the salient features of the image, and
∫
C
· · · ds

is the integration by arc parameter defined in 1.10. Note that φ(x)ds may be
interpreted as a conformal metric on lR2, so minima curves are geodesics w.r.to
the conformal metric.

2.2.3 Examples of geometric energy functionals for segmentation

Suppose I : Ω→ [0, 1] is the image (in black & white). We propose two examples
of energies taken from the above families.

• The Chan-Vese segmentation energy [63]

F (c) =
∫
R

∣∣∣I(x)− avgR(I)
∣∣∣2 dx+

∫
Rc

∣∣∣I(x)− avgRc(I)
∣∣∣2 dx

where avgRI = 1
|R|

∫
R

I(x)dx is the average of I on the region R.

• The geodesic active contour, (Caselles et al. [7],Kichenassamy et al. [27])

F (c) =
∫
c

φ(c(s)) ds (2.7)

where φ may be chosen to be

φ(x) = 1
1 + |∇I(x)|2

that is small on sharp discontinuities of I (∇I is the gradient of I w.r.to
x). Since real images are noisy, the function φ in practice would be more
influenced by the noise than by the image features; for this reason, usually
the function φ is actually defined by

φ(x) = 1
1 + |∇G ? I(x)|2

where G is a smoothing kernel, such as the Gaussian.
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2.3 Geodesic active contour method
2.3.1 The “geodesic active contour” paradigm

The general procedure for geodesic active contours goes as follows:
1. Choose an appropriate geometric energy functional, E.

2. Compute the directional derivative (a.k.a Gâteaux differential)2

DE(c)(h) = d
dt

E(c+ th)|t=0

where c is a curve and h is an arbitrary perturbation of c.

3. Manipulate DE(c)(h) into the form∫
c

h(s) · v(s) ds .

4. Consider v to be the “gradient”, the direction which increases E fastest.

5. Evolve c = c(t, θ) by the differential equation ∂tc = −v; this is called the
gradient descent flow.

2.3.2 Example: geodesic active contour edge model

We propose an explicit computation starting from the classical active contour
model.

1. Start from an energy that is minimal along image contours:

E(c) =
∫
c

φ(c(s)) ds

where φ is defined to extract relevant features; for examples as discussed
after eqn. (2.7).

2. Calculate the directional derivative:

DE(c)(h) =
∫
c

∇φ(c) · h+ φ(c)(Dsh ·Dsc) ds (2.8)

=
∫
c

h ·
(
− φκN + (∇φ ·N)N

)
ds .

3. Deduce the “gradient”:

∇E = −φκN + (∇φ ·N)N .

4. Write the gradient flow
∂c

∂t
= φκN − (∇φ ·N)N .

(Note that the flow of geometric energies moves only in orthogonal direction w.r.t
the curve — this will be properly explained in in Section 11.10.)

2A discussion of all this will be in Section 3.7
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2.3.3 Implicit assumption of H0 inner product

We have made a critical assumption in going from the directional derivative

DE(c)(h) =
∫
c

h(s) · v(s) ds

to deducing that the gradient of E is ∇E(c) = v. Namely, the definition of the
gradient 3 is based on the following equality

〈h(s),∇E〉 =
∫
c

h(s)︸︷︷︸
h1=h

· v(s)︸︷︷︸
h2=∇E

ds,

that needs an inner-product structure.
This implies that we have been presuming all along that curves are equipped

with a H0-type inner-product defined as follows〈
h1, h2

〉
H0 :=

∫
c

h1(s) · h2(s) ds . (2.9)

2.4 Problems & goals
We will now briefly list some examples that show some limits of the usual active
contour method.

2.4.1 Example: geometric heat flow

We first review one of the most mathematically studied gradient descent flows of
curves. By direct computation, the Gâteaux differential of the length of a closed
curve is

∂ len(c)
∂h

=
∫
S1
〈∂sh · T 〉ds = −

∫
S1
〈h ·H〉ds (2.10)

Let C = C(t, θ) be an evolving family of curves. The geometric heat flow
(also known as motion by mean curvature) is

∂C

∂t
= ∂s∂sC

In the H0 inner-product, this is the gradient descent for curve length.4
This flow has been studied deeply by the mathematical community, and is

known to enjoy the following properties.

Properties 2.11 • Embedded planar curves remain embedded.

• Embedded planar curves converge to a circular point.

3The precise definition of what the gradient is is in section 3.7.
4A different gradient descent flow for curve length will be discussed in 10.45.
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• Comparison principle: if two embedded curves are used as initialization,
and the first contains the second, then it will contain the second for all
time of evolution. This is important for level set methods.

• The flow is well posed only for positive times, that is, for increasing t
(similarly to the usual heat equation).

For the proofs, see Gage and Hamilton [21], Grayson [23].

2.4.2 Short length bias

The usual edge-based active contour energy is of the form

E(c) =
∫
c

g(c(s)) ds

supposing that g is reasonably constant in the region where c is running, then
E(c) ' g len(c), due to the integral being performed w.r.to the arc parameter ds.
So one way to reduce E is to shrink the curve. Consequently, when the image is
smooth and featureless (as in medical imaging), the usual edge based energies
would often drive the curve to a point.

To avoid it, an inflationary term νN (with ν > 0) was usually added to
the curve evolution, to obtain

∂c

∂t
= φκN −∇φ+ νN ,

see [7, 27]. Unfortunately, this adds a parameter that has to be tuned to match
the characteristics of each specific image.

2.4.3 Average weighted length

As an alternative approach we may normalize the energy to obtain a more
length-independent energy, the average weighted length

avgc(g(c)) := 1
len(c)

∫
c

g(c(s)) ds (2.12)

but this generates an ill-posed H0-flow, as we will now show.

2.4.4 Flow computations

Here we write L := len(c). Let g : lRn → lRk ; let

avgc(g(c)) := 1
L

∫
c

g(c(s)) ds = 1
L

∫
S1
g(c(θ))|c′(θ)|dθ ;
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then the Gâteaux differential of avgc(g(c)) is

∂avgc(g(c))
∂h

= 1
L

∫
c

∇g(c) · h+ g(c)〈∂sh · T 〉ds−

− 1
L2

∫
c

g(c) ds
∫
c

〈∂sh · T 〉ds =

=
∫
c

∇g(c) · h+
(
g(c)− avgc(g(c))

)
〈∂sh · T 〉ds . (2.13)

In the above, we omit the argument (s) for brevity; ∇g is the gradient of g w.r.to
x.

If the curve is planar, we define the N and T as by 1.13 and 1.14; then,
integrating by parts, the above becomes

∂avgc(g(c))
∂h

= 1
L

∫
S1
∇g(c) · h− 〈∇g(c) · T 〉〈h · T 〉 −

−
(
g(c)− avgc(g(c))

)
〈h ·D2

sc〉ds =

=
∫
S1

(
∇g(c) ·N − κ

(
g(c)− avgc(g(c))

))
〈h ·N〉ds .(2.14)

Suppose now that we have a shape optimization functional E including a term
of the form avgc(g(c)); let C = C(t, θ) be an evolving family of curves trying to
minimize E; this flow would contain a term of the form

∂C

∂t
= . . .

(
g(c(s))− avgc(g)

)
κN . . .

unfortunately the above flow is ill defined: it is a backward-running geometric
heat flow on roughly half of the curve. We will come back to this example in
Section 10.8.1.

2.4.5 Centroid energy

We will now propose another simple example where the above phenomenon is
again evident.

Example 2.15 (Centroid-based energy) Let us fix a target point v ∈ lRn.
We recall that avgc(c) is the center of mass of the curve. The energy

E(c) := 1
2
|avgc(c)− v|2 (2.15.∗)

penalizes the distance from the center of mass to v. Let in the following c =
avgc(c) for simplicity. The directional derivative of E in direction h is

DE(c)(h) =
〈
c− v,D(c)(h)

〉

16



where in turn (by eqn. (2.13) and (2.14))

D(c)(h) =
∫
h+ (c− c)(Dsh ·Dsc) ds = (2.15.†)

=
∫
h−Dsc (h ·Dsc)− (c− c)(h ·D2

sc) ds

supposing that the curve is planar, then

h−Dsc (h ·Dsc) = N(h ·N)

so
DE(c)(h) =

∫
〈c− v,N〉(h ·N)− 〈c− v, c− c〉κ(h ·N) ds .

The H0 gradient descent flow is then

∂c

∂t
= −∇H0E(c) = 〈(v − c), N〉N − κN

〈
(c− c), (v − c)

〉
.

The first term 〈(v − c) ·N〉N in this gradient descent
flow moves the whole curve towards v.

Let P := {w : 〈(w − c) · (v − c)
〉
≥ 0} be the half plane

“on the v side” . The second term −κN
〈
(c− c) · (v − c)

〉
in this gradient descent flow tries to decrease the curve
length out of P and increase the curve length in P , and
this is ill posed.

P

v

c

c

We will come back to this example in Proposition 10.30.

2.4.6 Conclusions

More recent works that use active contours for segmentation are not only based
on information from the image to be segmented (edge-based or region-based),
but also prior information, that is information known about the shape of the
desired object to be segmented. The work of Leventon et al. [31] showed how to
incorporate prior information into the active contour paradigm. Subsequently,
there have been a number of works, for example Tsai et al. [62], Rousson and
Paragios [47], Chen et al. [12], Cremers and Soatto [13], Raviv et al. [45], which
design energy functionals that incorporate prior shape information of the desired
object. In these works, the main idea is designing a novel term of the energy
that is small when the curve is close, in some sense, to a pre-specified shape.

The need for prior information terms arose from several factors such as

• the fact that some images contain limited information,

• the energies functions considered previously could not incorporate complex
information,

17



• the energies had too many extraneous local minima, and the gradient flows
to minimize these energies allowed for arbitrary deformations that gave
rise to unlikely shapes; as in the example in Fig. 4 of segmentation using
the Chan-Vese energy, where the flowing contour gets trapped into noise.

Figure 4: H0 gradient descent flow of Chan–Vese energy, to segment a noisy
square

Works on incorporating prior shape knowledge into active contours have
led to a fundamental question on how to define distance between two curves
or shapes. Many works, for example Younes [68], Soatto and Yezzi [51], Mio
and Srivastava [40], Charpiat et al. [9], Michor and Mumford [37], Yezzi and
Mennucci [67, 65], in the shape analysis literature have proposed different ways
of defining this distance.

However, [37, 65] observed that all previous works on geometric active
contours that derive gradient flows to minimize energies, which were described
earlier, imply a natural notion of Riemannian metric, given by the geometric
inner product H0 (that we just “discovered” in eqn. (2.9)). Subsequently, [37, 67]
have shown a surprising property: the H0 Riemannian metric on the space of
curves is pathological, since the “distance” between any two curves is zero.

In addition to the pathologies of the Riemannian structure induced by H0,
there are also undesirable features of H0 gradient flows. Some of these features
are listed below.

1. There are no regularity terms in the definition of the H0 inner product.
That is, there is nothing in the definition of H0 that discourages flows that
are not smooth in the space of curves. Thus, when energies are designed
to depend on the image that is to be segmented, the H0 gradient is very
sensitive to noise in the image.
Therefore, in geometric active contour models, a penalty on the curve’s
length is added to keep the curve smooth. However, this changes the
energy that is being optimized and ends up solving a different problem.

2. H0 gradients, evaluated at a particular point on the curve, depend locally
on derivatives of the curve. Therefore, as the curve becomes non-smooth,
as mentioned above, the derivative estimates become inaccurate, and thus,
the curve evolution becomes inaccurate. Moreover, for region-based and
edge-based active contours, the H0 gradient at a particular point on the
curve depends locally on image data at the particular point. Although
region-based energies may depend on global statistics, such as mean values
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of regions, the H0 gradient still depends on local data. These facts imply
that the H0 gradient descent flow is sensitive to noise and local features.

3. The H0 norm gives non-preferential treatment to arbitrary deformations
regardless of whether the deformations are global motions (not changing
the shape of the curve) such as translations, rotations and scales or whether
they are more local deformations.

4. Many geometric active contours (such as edge and region-based active
contours) require that the unit normal to the evolving curve be defined. As
such, the evolution does not make sense for polygons. Moreover, since in
general, an H0 active contour does not remain smooth, one needs special
numerical schemes based on viscosity theory in a level set framework to
define the flow.

5. Many simple and apparently sound energies cannot be implemented for
shape optimization tasks;

• some energies generate ill-posed H0 flows;
• if an energy integrand uses derivatives of the curve of degree up to d,
then the PDE driving the flow has degree 2d; but derivatives of the
curves of high degree are noise sensitive and are difficult to implement
numerically, and

• the active contours method works best when implemented using the
level set method, but this is difficult for flows PDEs of degree higher
than 2.

In conclusion, if one wishes to have a consistent view of the geometry of the
space of curves in both shape optimization and shape analysis, then one should
use the H0 metric when computing distances, averages and morphs between
shapes. Unfortunately, H0 does not yield a well define metric structure, since
the associated distance is identically zero. So to achieve our goal, we will need
to devise new metrics.

3 Basic mathematical notions
In this section we provide the mathematical theory that will be needed in the
rest of the course. (Some of the definitions are usually known to mathematics’
students; we will present them nonetheless as a chance to remark less known
facts.)We will though avoid technicalities in the definitions, and for the most part
just provide a base intuition of the concepts. The interested reader may obtain
more details from a books in analysis, such as [2], in functional analysis, such
as [48], and in differential and Riemannian geometry, such as [14], [29] or [30].

We start with a basic notion, in a quite simplified form.

Definition 3.1 (Topological spaces) A topological space is a set M with
associated a topology τ of subsets, that are the open sets in M .
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The topology is the simplest and most general way to define what are the
“convergent sequences of points” and the “continuous functions”. We will not
provide details regarding topological spaces, since in the following we will mostly
deal with normed spaces and metric spaces, where the topology is induced by a
norm or a metric. We just recall this definition.

Definition 3.2 A homeomorphism is an invertible continuous function φ :
M → N between two topological spaces M,N , whose inverse φ−1 is again
continuous.

3.1 Distance and metric space
Definition 3.3 Given a set M , a distance d = dM is a function

d : M ×M → [0,∞]

such that

1. d(x, x) = 0,

2. if d(x, y) = 0 then x = y,

3. d(x, y) = d(y, x) (d is symmetric)

4. d(x, z) ≤ d(x, y) + d(y, z) (the triangular inequality).

There are some possible generalizations.

• The second request may be waived, in this case d is a semidistance.

• The third request may be waived: then d would be an asymmetric
distance. Most theorems we will see can be generalized to asymmetric
distances; see [34].

3.1.1 Metric space

The pair (M,d) is a metric space. A metric space has a distinguished topology,
generated by balls of the form B(x, r) := {y | d(x, y) < r}; according to this
topology, xn →n x iff d(xn, x)→n 0; and functions are continuous if they map
convergent sequences to convergent sequences. We will assume in the following
that the reader is acquainted with the concepts of “open, closed, compact sets”
and “continuous functions” in metric spaces. We recall though the definition of
“completeness”.

Definition 3.4 A metric space (M,d) is complete iff, for any given sequence
(cn) ⊂M , the fact that

lim
m,n→∞

d(cm, cn) = 0

implies that cn converges.
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Example 3.5 • lRn is usually equipped with the Euclidean distance

d(x, y) = |x− y| =

√√√√ n∑
i=1

(xi − yi)2 ;

and (lRn, d) is a complete metric space.

• Any closed subset of a complete space is complete.

• If we cut away an accumulation point out of a space, the resulting space is
not complete.

A complete metric space is a space without “missing points”. This is important
in optimization: if a space is not complete, any optimization method that moves
the variable and searches for the optimal solution may fail since the solution
may, in a sense, be “missing” from the space.

3.2 Banach, Hilbert and Fréchet spaces
Definition 3.6 Given a vector space E, a norm ‖ · ‖ is a function

‖ · ‖ : E → [0,∞]

such that

1. ‖ · ‖ is convex

2. if ‖x‖ = 0 then x = 0.

3. ‖λx‖ = |λ| ‖x‖ for λ ∈ lR

Again, there are some possible generalizations.

• If the second request is waived, then ‖ · ‖ is a seminorm.

• If the third request holds only for λ ≥ 0, then the norm is asymmetric;
in this case, it may happen that ‖x‖ 6= ‖ − x‖.

Each (semi/asymmetric)norm ‖ · ‖ defines a (semi/asymmetric)distance

d(x, y) := ‖x− y‖.

So a norm induces a topology.
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3.2.1 Examples of spaces of functions

We present some examples and definitions.

Definition 3.7 A locally-convex topological vector space E (shortened
as l.c.t.v.s. in the following) is a vector space equipped with a collection of
seminorms ‖ · ‖k (with k ∈ K an index set); the seminorms induce a topology,
such that cn → c iff ‖cn − c‖k →n 0 for all k; and all vector space operations
are continuous w.r.to this topology.

The simplest example of l.c.t.v.s. is obtained when there is only one norm; this
gives raise to two renowned examples of spaces.

Definition 3.8 (Banach and Hilbert spaces) • A Banach space is a
vector space E with a norm ‖ · ‖ defining a distance d(x, y) := ‖x− y‖ such
that E is metrically complete.

• A Hilbert space is a space with an inner product 〈f, g〉, that defines a
norm ‖f‖ :=

√
〈f, g〉 such that E is metrically complete.

(Note that a Hilbert space is also a Banach space).

Example 3.9 Let I ⊂ lRk be open; let p ∈ [1,∞]. A standard example of
Banach space is the Lp space of functions f : I → lRn with norm

‖f‖Lp := p

√∫
I

|f(x)|p dx for p ∈ [1,∞) , ‖f‖L∞ := sup
I
|f(x)| ;

those spaces contain all functions such that |f |p is Lebesgue integrable (resp.
f ∈ L∞ when |f | is bounded, on I \ N where N is a set of measure zero). If
p = 2, L2 is a Hilbert space by inner product

〈f, g〉 :=
∫
I

f(x) · g(x) dx .

Note that, in these spaces, by definition, f = g iff the set {f 6= g} has zero
Lebesgue measure.

3.2.2 Fréchet space

The following citations [24] are referred to the first part of Hamilton’s 1982
survey on the Nash&Moser theorem.

Definition 3.10 A Fréchet space E is a complete Hausdorff metrizable l.c.t.v.s.;
where we define that the l.c.t.v.s. E is

complete when, for any sequence (cn), the fact that

lim
m,n→∞

‖cm − cn‖k = 0

for all k implies that cn converges;
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Hausdorff when, for any given c, if ‖c‖k = 0 for all k then c = 0;

metrizable when there are countably many seminorms associated to E.

The reason for the last definition is that, if E is metrizable, then we can define a
distance

d(x, y) :=
∞∑
k=0

2−k ‖x− y‖k
1 + ‖x− y‖k

that generates the same topology as the family of seminorms ‖ · ‖k; and the vice
versa is true as well, see [48].

3.2.3 More examples of spaces of functions

Example 3.11 Let I ⊂ lRm be open and non empty.

• The Banach space Cj(I → lRn), with associated norm

‖f‖ := sup
i≤j

sup
t
|f (i)(t)| ;

where f (i) is the j-th derivative. In this space fn → f iff f
(i)
n → f (i)

uniformly for all i ≤ j.

• The Sobolev space Hj(I → lRn), with scalar product

〈f, g〉Hn :=
∫
c

f(t) · g(t) + · · ·+ f (j) · g(j) dt

where f (j) is the j-th derivative5.

• The Fréchet space of smooth functions C∞(I → lRn).
The seminorms are

‖f‖k = sup
x∈I
|f (k)(x)|

where f (k) is the k-th derivative. In this space, fn → f iff all the derivatives
f

(k)
n converge uniformly to derivatives f (k).

This last is one of the strongest topology between the topologies usually associated
to spaces of functions.

5The derivatives are computed in distributional sense, and must exists as Lebesgue
integrable functions
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3.2.4 Dual spaces.

Definition 3.12 Given a l.c.t.v.s. E, the dual space E∗ is the space of all
linear functions L : E → lR.

If E is a Banach space, it is easy to see that E∗ is again a Banach space, with
norm

‖L‖E∗ := sup
‖x‖E≤1

|Lx| .

The biggest problem when dealing with Fréchet spaces, is that the dual of
a Fréchet space is not in general a Fréchet space, since it often fails to be
metrizable. (In most cases, the duals of Fréchet spaces are “quite wide” spaces;
a classical example being the dual elements of smooth functions, that are the
distributions). So given F,G Fréchet spaces, we cannot easily work with “the
space L(F,G) of linear functions between F and G”.

As a workaround, given an auxiliary space H, we will consider “indexed
families of linear maps” L : F ×H → G, where L(·, h) is linear, and L is jointly
continuous; but we will not consider L as a map

h 7→ (f 7→ L(f, h))
H → L(F,G) (3.13)

3.2.5 Derivatives

An example is the Gâteaux differential.

Definition 3.14 We say that a continuous map P : U → G, where F,G are
Fréchet spaces and U ⊂ F is open, is Gâteaux differentiable if for any h ∈ F
the limit

DP (f)(h) := lim
t→0

P (f + th)− P (f)
t

(3.14.∗)

exists. The map DP (f) : F → G is the Gâteaux differential.

Definition 3.15 We say that P is C1 if DP : U × F → G exists and is jointly
continuous.

(This is weaker than what is usually required in Banach spaces).
The basics of the usual calculus hold.

Theorem 3.16 ([24, Thm. 3.2.5]) DP (f)(h) is linear in h.

Theorem 3.17 (Chain rule [24, Thm. 3.3.4]) If P,Q are C1 then P ◦Q is
C1 and

D(P ◦Q)(f)(h) = DQ(P (f))
(
DP (f)(h)

)
.

Also, the implicit function theorem holds, in the form due to Nash&Moser:
see again [24] for details.
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3.2.6 Troubles in calculus

But some important parts of calculus are instead lost.

Example 3.18 Suppose P : U ⊂ F → F is smooth, and consider the O.D.E.

d

dt
f = Pf

to be solved for a solution f : (−ε, ε)→ F .

• if F is a Banach space, then, given initial condition f(0) = x, the solution
will exist and be unique (for ε > 0 small enough);

• but if F is a Fréchet space, then f may fail to exist or be unique.

See [24, Sec. 5.6]

A consequence (that we will discuss more later on) is that the exponential
map in Riemannian manifolds may fail to be locally surjective. See [24, Sec.
5.5.2].

3.3 Manifold
To build a manifold of curves, we have ahead two main definitions of “manifold”
to choose from.

Definition 3.19 (Differentiable Manifold) An abstract differentiable
manifold is a topological space M associated to a model l.c.t.v.s. U . It is
equipped with an atlas of charts φk : Uk → Vk, where Uk ⊂ U are open sets,
and Vk ⊂M are open sets that cover M . The maps φk are homeomorphisms.

The composition φ−1
1 ◦ φ2 restricted to V1 ∩ V2 is usually

required to be a smooth map.

The dimension dim(M) of M is the dimension of U .
When M is finite-dimensional, the model space is always
U = lRn.

M

c

U

φ2φ1

V2

V1

U2U1

Since φk are homeomorphisms, then the topology of M is “identical” to the
topology of U . The rôle of the charts is to define the differentiable structure of
M mimicking that of U . See for example the definition of directional derivative
in eqn. (3.37.∗).

3.3.1 Submanifold

Definition 3.20 Suppose A,B are open subsets of two linear spaces. A diffeo-
morphism is an invertible differentiable function φ : A → B, whose inverse
φ−1 is again differentiable.
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c

U

V1

φ1

U1

TcM

x

Figure 5: Tangent space

Let U be a fixed closed linear subspace of a l.c.t.v.s. X.

Definition 3.21 A submanifold is a subset M
of X, such that, at any point c ∈M we may find
a chart φk : Uk → Vk, with Vk, Uk ⊂ X open sets,
c ∈ Vk. The maps φk are diffeomorphisms, and
φk maps U ∩ Uk onto M ∩ Vk.

M

c

X

U

V1

φ1

U1

Most often, M = {Φ(c) = 0} where Φ : X → Y ; so, to prove that M is a
submanifold, we will use the implicit function theorem.

Note that M is itself an abstract manifold, and the model space is U ; so
dim(M) = dim(U) ≤ dim(X). Vice versa any abstract manifold is a submanifold
of some large X (by well known embedding theorems).

3.4 Tangent space and tangent bundle
Let us fix a differentiable manifold M , and c ∈ M . We want to define the
tangent space TcM of M at c.

Definition 3.22 • The tangent space TcM is more easily described for
submanifolds; in this case, we choose a chart φk and a point x ∈ Uk s.t.
φk(x) = c; TcM is the image of the linear space U under the derivative
Dxφk. TcM is itself a linear subspace in X. In figure 5, we graphically
represent TcM though as an affine subspace, by translating it to the point
c.

• The tangent bundle TM is the collection of all tangent spaces. If M is
a submanifold of the vector space X, then

TM := {(c, h) | c ∈M,h ∈ TcM} ⊂ X ×X .

The tangent bundle TM is itself a differentiable manifold; its charts are of the
form (φk, Dφk), where φk are the charts for M .

3.5 Fréchet Manifold
When studying the space of all curves, we will deal with Fréchet manifolds,
where the model space E will be a Fréchet space, and the composition of local
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charts φ−1
1 ◦ φ2 is smooth.

Some objects that we may find useful in the following are Fréchet manifolds.

Example 3.23 (Examples of Fréchet manifolds) Given two finite-dimensional
manifolds S,R, with S compact and n-dimensional,

• [24, Example 4.1.3]. the space C∞(S;R) of smooth maps f : S → R is a
Fréchet manifold. It is modeled on U = C∞(lRn;R).

• [24, Example 4.4.6]. The space of smooth diffeomorphisms Diff(S) of S
onto itself is a Fréchet manifold. The group operation φ, ψ → φ ◦ ψ is
smooth.

• But if we try to model Diff(S) on Ck(S;S), then the group operation is
not even differentiable.

• [24, Example 4.6.6]. The quotient of the two above

C∞(S;R)/Diff(S)

is a Fréchet manifold. It contains “all smooth maps from S to R, up to a
diffeomorphism of S”.

So the theory of Fréchet space seems apt to define and operate on the manifold
of geometric curves.

3.6 Riemann & Finsler geometry
We first define Riemannian geometries, and then we generalize to Finsler ge-
ometries.

3.6.1 Riemann metric, length

Definition 3.24 • A Riemannian metric G on a differentiable manifold
M defines a scalar product 〈h1, h2〉G|c on h1, h2 ∈ TcM , dependent on
the point c ∈M . We assume that the scalar product varies smoothly w.r.to
c.

• The scalar product defines the norm |h|c = |h|G|c =
√
〈h, h〉

G|c
.

Suppose γ : [0, 1]→M is a path connecting c0 to c1.

• The length is Len(γ) :=
∫ 1

0
|γ̇(v)|γ(v)dv

where γ̇(v) := ∂vγ(v).

• The energy (or action) is E(γ) :=
∫ 1

0
|γ̇(v)|2γ(v) dv

c1

c0

γ

M
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3.6.2 Finsler metric, length

Definition 3.25 We define a Finsler metric to be a function F : TM → lR+,
such that

• F is continuous and,

• for all c ∈M , v 7→ F (c, v) is a norm on TcM .

We will sometimes write |v|c := F (c, v).

(Sometimes F is called a “Minkowsky norm”).
As for the case of norms, a Finsler metric may be asymmetric; but, for sake

of simplicity, we will only consider the symmetric case.
Using the norm |v|c we can then again define the length of paths by

LenF (γ) =
∫ 1

0
|γ̇(t)|γ(t) dt =

∫ 1

0
F (γ(t), γ̇(t)) dt

and similarly the action.

3.6.3 Distance

Definition 3.26 The distance d(c0, c1) is the infimum of Len(γ) between all
C1 paths γ connecting c0, c1 ∈M .

Remark 3.27 In the following chapter, we will define some differentiable man-
ifolds M of curves, and add a Riemann (or Finsler) metric G on those; there
are two different choices for the model space,

• suppose we model the differentiable manifold M on a Hilbert space U , with
scalar product 〈, 〉U ; this implies that M has a topology τ associated to
it, and this topology, through the charts φ, is the same as that of U . Let
now G be a Riemannian metric; since the derivative of a chart Dφ(c)
maps U onto TcM , one natural hypothesis will be to assume that 〈, 〉U and
〈, 〉G,c be locally equivalent (uniformly w.r.to small movements of c); as
a consequence, the topology generated by the Riemannian distance d will
coincide with the original topology τ . A similar request will hold for the
case of a Finsler metric G, in this case U will be a Banach space with a
norm equivalent to that defined by G on TcM .

• We will though find out that, for technical reasons, we will initially model
the spaces of curves on the Fréchet space C∞; but in this case there cannot
be a norm on TcM that generates the same original topology (for the proof,
see I.1.46 in [48]).
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3.6.4 Minimal geodesics

Definition 3.28 If there is a path γ∗ providing the minimum of Len(γ) between
all paths connecting c0, c1 ∈M , then γ∗ is called a minimal geodesic.

The minimal geodesic is also the minimum of the action (up to reparameteri-
zation).

Proposition 3.29 Let ξ∗ provide the minimum minγ E(γ) in the class of all
paths γ in M connecting x to y. Then ξ∗ is a minimal geodesic and its speed
|ξ̇∗| is constant.

Vice versa, let γ∗ be a minimal geodesic, then there is a reparameterization
ξ∗ = γ∗ ◦ φ s.t. ξ∗ provides the minimum minγ E(γ).

A proof may be found in [34].

3.6.5 Exponential map

The action E is a smooth integral, quadratic in γ̇, and we can compute the
Euler-Lagrange equations; its minima are more regular, since they are guaranteed
to have constant speed; consequently, when trying to find geodesics, we will try
to minimize the action and not the length. This also related to the idea of the
exponential map.

Definition 3.30 Let γ̈ = Γ(γ̇, γ) be the Euler-Lagrange ODE of the action
E(γ) =

∫ 1
0 |γ̇(v)|

2 dv. Any solution of this ODE is a critical geodesic. Note
that any minimal geodesic is a critical geodesic.

Define the exponential map expc : TcM →M as expc(η) = γ(1), where
γ is the solution of{

γ̈(v) = Γ(γ̇(v), γ(v)), γ(0) = c, γ̇(0) = η (3.30.∗)

Solving the above ODE (3.30.∗) is informally known as shooting geodesics.
The exponential map is often used as a chart, since it is the least possibly

deforming map at the origin.

Theorem 3.31 Suppose that M is a smooth differentiable manifold modeled
on a Hilbert space with a smooth Riemannian metric. The derivative of the
exponential map expc : TcM →M at the origin is an isometry, hence expc is a
local diffeomorphism between a neighborhood of 0 ∈ TcM and a neighborhood of
c ∈M .

(See [30], VIII §5). The exponential map can then “linearize” small portions of
M , and so it will enable us to use linear methods such as the principal component
analysis. Unfortunately, the above result does not hold if M is modeled on a
Fréchet space.
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3.6.6 Hopf–Rinow theorem

Theorem 3.32 (Hopf–Rinow) Suppose M is a finite dimensional Rieman-
nian or Finsler manifold. The following are equivalent:

• (M,d) is metrically complete;

• the O.D.E. (3.30.∗) can be solved for all c ∈M , η ∈ TcM and v ∈ lR;

• the map expc is surjective;

and all those imply that, ∀x, y ∈M there exist a minimal geodesic connecting x
to y.

3.6.7 Drawbacks in infinite dimensions

In a certain sense, infinite dimensional manifolds are simpler than their corre-
sponding finite-dimensional counterparts: indeed, by Eells and Elworthy [18],

Theorem 3.33 (Eells–Elworthy) Any smooth differentiable manifoldM mod-
eled on an infinite dimensional separable Hilbert space H may be embedded as
an open subset of that Hilbert space.

In other words, it is always possible to express M using one single chart. (But
note that this may not be the best way for computations/applications).

When M is infinite dimensional Riemannian manifold, though, only a small
part of the Hopf–Rinow theorem still holds.

Proposition 3.34 Suppose M is infinite dimensional, modeled on a Hilbert
space, and (M,d) is complete, then the O.D.E. (3.30.∗) of a critical geodesic
can be solved for all v ∈ lR.

But other implications fails.

Example 3.35 (Atkin [3]) There exists an infinite dimensional complete Hilbert
smooth manifold M and x, y ∈M such that there is no critical geodesic connect-
ing x to y.

That is,

• (M,d) is complete 6⇒ expc is surjective,

• and (M,d) is complete 6⇒ minimal geodesics exist.

It is then, in general, quite difficult to prove that an infinite dimensional
manifold admits minimal geodesics (even when it is known to be metrically
complete). There are though some positive results, such as Ekeland [19] (that
we cannot properly discuss for lack of space); or the following.

Theorem 3.36 (Cartan–Hadamard) Suppose that M is connected, simply
connected and has seminegative curvature; then these are equivalent:
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• (M,d) is complete

• for a c, the map η → expc(η) is well defined

and then there exists an unique minimal geodesic connecting any two points.

For the proof, see Corollary 3.9 and 3.11 in sec. IX.§3 in Lang [30].

3.7 Gradient in abstract differentiable manifold
Let M be a differentiable manifold, c ∈ M , and φ : U → V be a chart with
c ∈ V .

Definition 3.37 Let E : M → lR be a functional; we say that it is Gâteaux
differentiable at c if for all h ∈ TcM there exists the directional derivative
at c in direction h

DE(c)(h) := lim
t→0

E(φ(x+ tk))− E(c)
t

. (3.37.∗)

where x = φ−1(c), k = [Dφ(c)]−1(h).

Fixing c (and then x), DE(c) is a linear function from h ∈ TcM into lR; for
this reason DE(c) is an element of the cotangent space T ∗cM (that is the dual
space of TcM — and we will not discuss here further). Suppose now that we
add a Riemannian geometry to M ; this defines an inner product 〈·, ·〉c on TcM ,
so we can then define the gradient.

Definition 3.38 (Gradient) The gradient ∇E(c) of E at c is the unique
vector v ∈ TcM such that

〈v, h〉c = DE(c)(h) ∀h ∈ TcM .

If M is modeled on a Hilbert space H, and the inner product 〈·, ·〉c used on
TcM is equivalent to the inner product in H (as we discussed in 3.27), then the
above equation uniquely defines what the gradient is. When M is modeled on a
Fréchet space, though, there is no choice of inner product that is “compatible”
with M ; and there are pathological situations where the gradient does not exist.

Example 3.39 Let M = C∞([−1, 1] → lR); since M is a vector space, then
it is trivially a manifold, with a single identity chart; and TcM = M . Let
E : M → lR be the evaluation functional E(f) = f(0); let

〈f, g〉 =
∫ 1

−1
f(t)g(t) dt ;

then the gradient of E would be δ0 (the Dirac’s delta), that is a distribution (or
more simply a probability measure) but not an element of M .
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3.8 Group actions
Definition 3.40 Let G be a group, M a set. We say that G acts on M if there
is a map

G ×M → M
g,m 7→ g ·m

that respects the group operations:

• if e is the identity element then e ·m = m, and

• for any g, h ∈ G,m ∈M

h · (g ·m) = (h · g) ·m . (3.40.∗)

If G is topological group, that is, a group with a topology such that the group
operation is continuous, and M has a topology as well, we will require that the
action be continuous. Similarly for smooth actions between smooth manifolds.

The action of a group G on M induces an equivalence relation ∼, defined
by

m1 ∼ m2 iff there exists g such that m1 = g ·m2.

We can then define the following objects.

Definition 3.41 • The orbit [m] of m is the family of all m1 equivalent to
m.

• The quotient M/G is the space M/ ∼ of equivalence classes.

• There is a projection π : M →M/G, sending each m to its orbit π(m) =
[m].

We will see many examples of actions in Example 4.6.

3.8.1 Distances and groups

Let dM (x, y) be a distance on a space M , and G a group acting on M ;

Definition 3.42 a distance may be defined on B = M/G by

dB([x], [y]) := inf
x∈[x],y∈[y]

dM (x, y) = inf
g,h∈G

dM (g · x, h · y)

that is the lowest distance between two orbits.

We write dB(x, y) for simplicity.

Proposition 3.43 If dM is invariant w.r.to the action of the group G,
that is

dM (g · x, g · y) = dM (x, y) ∀g ∈ G ,
then

dB(x, y) = inf
g∈G

dM (g · x, y) . (3.43.∗)
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Remark 3.44 There is a main problem: is dB([x], [y]) > 0 when [x] 6= [y] ?
That is, there is no guarantee, in line of principle, that the above definition
(3.43.∗) won’t simply result in dB ≡ 0.

4 Spaces and metrics of curves
In this section we review the mathematical definitions regarding the space of
curves in full detail, and express a set of mathematical goals for the theory.

4.1 Classes of curves
Remember that S1 = {x ∈ lR2 | |x| = 1} is the circle in the plane.

We will often associate lR2 = IC, for convenience. Consequently,

• sometimes S1 will be identified with lR/(2π) (that is lR modulus 2π trans-
lations).

• but other times (and in particular if the curve is planar) we will associate
S1 = {eit, t ∈ lR} ⊂ IC.

We recall that a curve is a map c : S1 → lRn. The image of the curve is
c(S1).

Definition 4.1 (Classes of Curves)

• Imm(S1, lRn) is the class of immersed curves c, such that c′ 6= 0
at all points.

• Immf (S1, lRn) is the class of freely immersed curve, the immersed
curves c such that, moreover, if φ : S1 → S1 is a diffeomorphism and
c(φ(t)) = c(t) for all t, then φ =Id. So, in a sense, the curve is “completely”
characterized by its image.

• Emb(S1, lRn) are the embedded curves, maps c that are diffeo-
morphic onto their image c(S1); and the image is an embedded
submanifold of lRn of dimension 1.

Each class contains the one following it. The following is an example of a
non-freely immersed curve.

Example 4.2 We define the doubly traversed circle using the complex nota-
tion c(z) = z2 for z ∈ S1 ⊂ IC; or otherwise identifying S1 = lR/(2π), and in
this case

c(θ) = (cos(2θ), sin(2θ))

for θ ∈ lR/(2π). Setting φ(t) = t+ π, we have that c = c ◦ φ, so c is not freely
immersed.

Vice versa, the following result is a sufficient condition to assert that a curve is
freely immersed.
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Proposition 4.3 (Michor and Mumford [37]) If c is immersed and there
is a x ∈ lRn s.t. c(t) = x for one and only one t, then c is freely immersed.

Remark 4.4 Imm(S1, lRn) , Immf (S1, lRn) , Emb(S1, lRn) , are open subset
of the Banach space Cr(S1 → lRn) when r ≥ 1, so they are trivially submanifolds
(the charts are identity maps); and similarly for the Fréchet space C∞(S1 → lRn).

Imm(S1, lRn) , Immf (S1, lRn) , Emb(S1, lRn) are connected iff n ≥ 3;
whereas in the case n = 2 of planar curves, they are divided in connected
components each containing curves with the same winding number (see Prop. 8.1
for the definition).

4.1.1 Gradient in the space M of immersed curves

In the case of the space M of immersed curves, since charts are trivial (as noted
in 4.4), the definition (3.37.∗) of Gâteaux differential simplifies to

DE(c)(h) = lim
t→0

E(c+ th)− E(c)
t

. (4.5)

Still, though, to define the gradient we need an inner product; this inner
product may possibly be dependent on c — so in the end we need to study
Riemannian metrics on M .

4.1.2 Group actions on curves

Let M again be the manifold of immersed curves. An example of group action
that we saw in Definition 1.3 is obtained when G = Diff(S1); G acts on curves
by right composition, and its action is the reparameterization.

In general, all groups that act on lRn also act on M ; many are of interest
in computer vision. The action of these groups on curves is always of the form
c, A 7→ A ◦ c, where A : lRn → lRn is the group action on lRn.

Example 4.6 • O(n) is the group of rotations in lRn. It is represented by
the group of orthogonal matrixes

O(n) := {A ∈ lRn×n | AAt = AtA = Id}

The action on v ∈ lRn is the matrix·vector multiplication Av.

• SO(n) is the group of special rotations in lRn with det(A) = 1.

• lRn is the group of translations in lRn. The action on v ∈ lRn is the
vector sum v 7→ v + T .

• E(n) is the Euclidean group, generated by rotations and translations.

• lR+ is the group of rescalings.

The quotient spaces M/G are the spaces of curves up to rotation and/or
translations and/or scaling (. . . ).
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4.2 Two categories of shape spaces
Let M be a manifold of curves. We should distinguish two different ideas of
shape spaces of curves.

geometric curves geometric curves up to
pose

The space of shapes = curves up to reparam-
eterization,

shapes = curves up to reparam-
eterization, rotation, transla-
tion, scaling,

is modeled as M/Diff(S1) , M/Diff(S1)/E(n)/lR+ ,
is well-suited to shape optimization. shape analysis.

References:

Michor and Mumford [37],
Yezzi-M.-Sundaramoorthi
[53–58] [35] Glaunès et al.
[22], Trouvé and Younes [59]

Srivastava et al. [52], Mio and
Srivastava [41], Klassen et al.
[28], Younes [68], Michor et al.
[39]

The term preshape space is sometimes used for the leftmost space, when both
spaces are studied in the same paper.

4.3 Geometric curves
Unfortunately the quotient

Bi = Imm(S1, lRn)/Diff(S1)

of immersed curves up to reparameterization is not a Fréchet manifold.
We (re)define the space of geometric curves.

Definition 4.7

Bi,f (S1, lRn) = Immf (S1, lRn)/Diff(S1)

is the quotient of Immf (S1, lRn) (the free immersions) by the diffeomorphisms
Diff(S1) (that act as reparameterizations).

The good news is that

Proposition 4.8 (§2.4.3 in Michor and Mumford [37]) If Immf has the
topology of the Fréchet space of C∞ functions, then Bi,f is a Fréchet manifold
modeled on C∞.

The bad news is that

• when we add a simple Riemannian metric to Bi,f , the resulting metric
space is not metrically complete; indeed, there cannot be any norm on C∞
that generates the same topology of the Fréchet space C∞ (as we discussed
in 3.27);

• by modeling Bi,f as a Fréchet manifold, some calculus is lost, as we saw in
Section 3.2.5.
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Remark 4.9 It seems that this is the only way to properly define the manifold.
If otherwise we choose M = Ck(S1 → lRn) to be the manifold of curves, then if
c ∈M , ċ 6∈ TcM . Hence we (must?) model M on C∞ functions.

4.3.1 Research path

Following Michor and Mumford [37] we so obtained a possible program of math
research:

• define
B = Bi,f (S1, lRn) = Immf (S1, lRn)/Diff(S1)

and consider B as a Fréchet manifold modeled on C∞,

• define a Riemann/Finsler geometry on it, study its properties,

• metrically complete the space.

In the last step, we would hope to obtain a differentiable manifold; unfortunately,
this is sometimes not true, as we will see in the overview of the literature.

4.4 Goals (revisited)
We formulate an abstract set of goal properties on a metric 〈h1, h2〉G|c on spaces
of curves.

1. [rescaling invariance] For any λ > 0, if we rescale c to λc, then

〈h1, h2〉G|λc = λa〈h1, h2〉G|c

(where a ∈ lR is an universal constant);

2. [Euclidean invariance] Suppose that A is an Euclidean transformation,
and R is its rotational part; if we apply A to c and R to h0, h1, then

〈Rh1, Rh2〉G|Ac = 〈h1, h2〉G|c ;

3. [parameterization invariance] the metric does not depend on the
parameterization of the curve, that is ‖h̃‖c̃ = ‖h‖c when c̃(t) = c(ϕ(t))
and h̃(t) = h(ϕ(t)).

If a metric satisfies the above three properties, we say that it is a geometric
metric.
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4.4.1 Well posedness

We also add a more basic set of requirements.

0. [well-posedness and existence of minimal geodesics]

• The metric induces a good distance d: that is, the distance between different
curves is positive, and d generates the same topology that the atlas of the
manifold M induces;

• (M,d) is complete;

• for any two curves in M , there exists a minimal geodesic connecting them.

4.4.2 Are the goal properties consistent?

So we state the abstract problem:

Problem 4.10 Consider the space of curves M , and the family of all Rieman-
nian (or, Finsler) Geometries F on M .

Does there exist a metric F satisfying the above properties 0,1,2,3?
Consider metrics F that may be written in integral form

F (c, h) =
∫
c

f
(
c(s), ∂sc(s), . . . , ∂jsjc(s), h(s), . . . , ∂

i
sih(s)

)
ds

what is the relationship between the degrees i, j and the properties in this section?

All this boils down to a fundamental question: can we design metrics to satisfy
our needs?

5 Representation/embedding/quotient in the cur-
rent literature

5.1 The representation/embedding/quotient paradigm
A common way to model shapes is by representation/embedding:

• we represent the shape A by a function uA

• and then we embed this representation in a space E, so that we can
operate on the shapes A by operating on the representations uA.

Most often, representation/embedding alone do not directly provide a satisfac-
tory shape space. In particular, in many cases it happens that the representation
is “redundant”, that is, the same shape has many different possible representa-
tions. An appropriate quotient is then introduced.

There are many examples of shape spaces in the literature that are studied
by means of the representation/embedding/quotient scheme. Understanding the
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basic math properties of these 3 operations is then a key step in understanding
shape spaces and designing/improving them.

We now present a rapid overview of how this scheme is exploited in the
current literature of shape spaces; then we will come back to some of them to
explain more in depth.

5.2 Current literature
Example 5.1 (The family of all non empty compact subsets of lRN) A
standard representation is obtained by associating each closed subset A to the
distance function uA or the signed distance function bA (that were defined in
2.1). We may then define a topology of shapes by deciding that An → A when
uAn → uA uniformly on compact sets. This convergence coincides with the
Kuratowski topology of closed sets; if we limit shapes to be compact sets, the
Kuratowski topology is induced by the Hausdorff distance. See section 6.2.

Example 5.2 Trouvé-Younes et al (see Glaunès et al. [22], Trouvé and Younes
[59] and references therein) modeled the motion of shapes by studying a left
invariant Riemannian metric on the family G of diffeomorphisms of the space
lRN ; to recover a true metric of shapes, a quotient is then performed w.r.t to all
diffeomorphisms G0 that do not move a template shape.

But the representation/embedding/quotient scheme is also found when dealing
with spaces of curves:

Example 5.3 (Representation by angle function) In the work of Klassen
et al. [28], Srivastava et al. [52], Mio and Srivastava [41], smooth planar closed
curves c : S1 → lR2 of length 2π are represented by a pair of angle-velocity
functions ċ(u) = exp(φ(u)+iα(u)) (identifying lR2 = IC) then (φ, α) are embedded
as a subset N in L2(0, 2π) or W 1,2(0, 2π). Since the goal is to obtain a shape
space representation for shape analysis purposes, a quotient is then introduced
on N . See Section 8.1.

Example 5.4 Another representation of planar curves for shape analysis is
found in Younes [68]. In this case the angle function is considered mod(π). This
representation is both simple and very powerful at the same time. Indeed, it is
possible to prove that geodesics do exist and to explicitly show examples
of geodesics. See Section 8.2.

Example 5.5 (Harmonic representation) A. Duci et al (see [16, 17]) rep-
resent a closed planar contour as the zero level of a harmonic function. This novel
representation for contours is explicitly designed to possess a linear structure,
which greatly simplifies linear operations such as averaging, principal component
analysis or differentiation in the space of shapes.

And, of course, we have in this list the spaces of embedded curves.
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Example 5.6 When studying embedded curves, usually, for the sake of math-
ematical analysis, the curves are modeled as immersed parametric curves; a
quotient w.r.t the group of possible reparameterizations of the curve c (that
coincides with the group of diffeomorphisms Diff(S1)) is applied afterward to all
the mathematical structures that are defined (such as the manifold of curves, the
Riemannian metric, the induced distance, etc.).

It is interesting to note this fact.

Remark 5.7 (A remark on the quotienting order) When we started talk-
ing of geometric curves, we proposed the quotient B = M/Diff(S1) (the space of
curves up to reparameterization); and this had to be followed by other quotients
w.r.to Euclidean motions and/or scaling, to obtain M/Diff(S1)/E(n)/lR+. In
practice, though, the space B happens to be more difficult to study; hence most
shape space theories that deal with curves prefer a different order: the quotient
M/E(n)/lR+ is modeled and studied first; then the quotientM/E(n)/lR+/Diff(S1)
is performed (often, only numerically).

6 Metrics of sets
We now present two examples of Shape Theories where a shape may be a generic
subset of the plane; with particular attention to how they behave w.r.to curves.

6.1 Some more math on distance and geodesics
We start by reviewing some basic results in abstract metric spaces theory.

6.1.1 Length induced by a distance

In this subsection (M,d) is a generic metric space.

Definition 6.1 (Length by total variation) Define the length of a contin-
uous curve γ : [α, β]→M , by using the total variation

Lend γ := sup
T

n∑
i=1

d
(
γ(ti−1), γ(ti)

)
.

t1 t6

t2

t4
t3

t0 t5
where the supremum is carried out over all finite subsets T = {t0, · · · , tn} ⊂

[α, β] and t0 ≤ · · · ≤ tn.

Definition 6.2 (The induced geodesic distance)

dg(x, y) := inf
γ

Lend γ (6.2.∗)

the infimum is in the class of all continuous γ in M connecting x to y.

Note that dg(x, y) <∞ iff x, y may be connected by a Lipschitz path.
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6.1.2 Minimal geodesics

Definition 6.3 If in the definition (6.2.∗) there is a curve γ∗ providing the
minimum, then γ∗ is called a minimal geodesic connecting x to y.

Proposition 6.4 In Riemann and Finsler manifolds, the integral length Len(γ)
that we defined in Section 3.6.1 coincides with the total variation length Lend γ
that we defined in Definition 6.1 on the previous page. As a consequence, d = dg:
we say that d is path-metric.

In general, though, it is easy to devise examples where d 6= dg.

Example 6.5 The set M = S1 ⊂ lR2 is a metric space, if
associated with d(x, y) = |x−y| (dotted the picture); in this case,
dg(x, y) = | arg(x)− arg(y)| (dashed in the picture).

6.1.3 Existence of geodesics and of average

Proposition 6.6 If for a ρ > 0 the closed ball

Dg(x, ρ) := {y | dg(x, y) ≤ ρ}

is compact, then x and any y ∈ Dg may be connected by a geodesic.

Proposition 6.7 If for a x ∈M and all ρ > 0,Dg is compact, then the distance-
based average (that was defined in 2.4) exists.

The proofs may be found in [15].

6.1.4 Geodesic rays

More in general,

Definition 6.8 a continuous curve γ : I →M (where I ⊂ lR is an interval) is
a geodesic ray if for each t ∈ I there is a ε > 0 s.t. J = [t− ε, t+ ε] ⊂ I and
γ restricted to J is the geodesic between γ(t− ε) and γ(t+ ε).

A critical geodesic in a Riemann or Finsler smooth manifold is always a
geodesic ray, as in this example.

Example 6.9 The multiply traversed full circle γ(t) = (0, cos(t), sin(t)) with
t ∈ lR is a geodesic ray in the sphere S2.

6.1.5 Hopf–Rinow , Cohn-Vossen Theorem

Definition 6.10 • (M,d) is path-metric if d = dg.

• (M,d) is locally compact if small closed balls are compact.
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Theorem 6.11 (Hopf–Rinow , Cohn-Vossen) Suppose (M,d) is locally com-
pact and path-metric; the following statements are equivalent:

• for all x ∈M,ρ > 0, the closed ball

D(x, ρ) := {y | d(x, y) ≤ ρ}

is compact;

• (M,d) is complete;

• any geodesic ray γ : [0, 1)→M may be extended on [0, 1];

and all imply that any two points may be connected by a minimal geodesic.

Note that the above theorem cannot be used in infinite dimensional differen-
tiable manifolds, since the the closed balls are never compact in that case (see
Theorems 1.21, 1.22 in Chapter I in [48]).

6.2 Hausdorff metric
Let Ξ be the collection of all compact subsets of lRN . (This is sometimes
called the “topological hyperspace” of lRN ). Let A,B ⊂ lRN compact non-empty.
We already defined the distance function uA(x) := infy∈A |x − y|, and the
Hausdorff distance of two sets A,B as

dH(A,B) :=
(

sup
x∈A

uB(x)
)
∨
(

sup
x∈B

uA(x)
)
.

We now list some known properties.

Properties 6.12 • dH(A,B) = sup
x∈lRN

|uA(x)− uB(x)| .

• (Ξ, dH) is path-metric;

• each family of compact sets that are contained in a fixed large closed ball
in lRN is compact in (Ξ, dH); so

• any closed ball D(A, ρ) := {B | dH(A,B) ≤ ρ} is compact in (Ξ, dH), and
moreover

• by Theorem 6.11, minimal geodesics exist in (Ξ, dH).
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Figure 6: Fattening of a set

6.2.1 An alternative definition

Let Dr(x) be the closed ball of center x and radius r > 0 in lRN , and Dr = Dr(0).
We define the fattened set to be

A+Dr := {x+ y | x ∈ A, |y| ≤ r} =
⋃
x∈A

Dr(x) = {y | uA(y) ≤ r}.

Note that the fattened set is always closed, (since the distance function uA(x) is
continuous).

Example 6.13 In figure 6 we see an example of a set A fattened to r = 1, 2;
the set A is the black polygon (and is filled in), whereas the dashed lines in the
drawing are the contours of the fattened sets. 6

We can then state the following equivalent definition of the Hausdorff distance:

dH(A,B) = min{δ > 0 | A ⊂ (B +Dδ), B ⊂ (A+Dδ)} .

6.2.2 Uncountable many geodesics

Unfortunately dH is quite “unsmooth”. There are choices of A,B compact that
may be joined by an uncountable number of geodesics. In fact we can consider
this simple example.

Example 6.14 (Duci and Mennucci [15]) Let us set
A = {x = 0, 0 ≤ y ≤ 2}

B = {x = 2, 0 ≤ y ≤ 1}

Ct =
{
x = 1, 0 ≤ y ≤ 3

2
}
∪ {y = 0, 1 ≤ x ≤ t}

with 1 ≤ t ≤
√

5/2;

A

B

Ct

6The fattened sets are not drawn filled — otherwise they would cover A.
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and in the picture we represent (dashed) the fattened sets A + D√5/2 and
B + D√5/2. Note that dH(A,B) =

√
5 while dH(A,Ct) = dH(B,Ct) =

√
5/2:

so Ct are all midpoints that are on different geodesics between A and B.

6.2.3 Curves and connected sets

Let again Ξ be the collection of all compact subsets of lRN . Let Ξc be the
subclass of compact connected subsets of lRN . We now relate the space of curves
to this metric space, by listing these properties and remarks.

• Ξc is a closed subset of (Ξ, dH);

• Ξc is the closure in (Ξ, dH) of the class of (images of) all embedded curves.

• Ξc is Lipschitz-path-connected 7;

• for all above reasons, it is possible to connect any two A,B ∈ Ξc by a
minimal geodesic moving in Ξc.

• So, if we try to find a minimal geodesic connecting two curves using the
metric dH , we will end up finding a geodesic in (Ξc, dH); and similarly if
we try to optimize an energy defined on curves.

• But note that Ξc is not geodesically convex in Ξ, that is, there exist two
points A,B ∈ Ξc and a minimal geodesics ξ connecting A to B in the
metric space (Ξ, d), such that the image of ξ is not contained inside Ξc.

• We don’t know if (Ξc, dH) is path-metric.

6.2.4 Applications in computer vision

Charpiat et al. [9] propose an approximation method to compute lenH(ξ) by
means of a family of energies defined using a smooth integrand; the approximation
is mainly based on the property ‖f‖Lp →p ‖f‖L∞ , for any measurable function
f defined on a bounded domain; they successively devise a method to find
approximation of geodesics.

6.3 A Hausdorff like distance of compact sets
In Duci and Mennucci [15] a Lp-like distance on the compact subsets of lRN was
proposed. (Here p ∈ [1,∞).)

To this end, we fix ϕ : [0,∞)→ (0,∞) , decreasing, C1, with ϕ(|x|) ∈ Lp. We
then define vA(x) := ϕ(uA(x)), where uA is the distance function. We eventually
define the distance

d(A,B) := ‖vA − vB‖Lp . (6.15)

7That is, any A,B ∈ Ξc can be connected by a Lipschitz arc γ : [0, 1]→ Ξc
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Figure 7: Example of a minimal geodesic

Remark 6.16 This shape space is a perfect example of the representation/
embedding/quotient scheme. Indeed, this shape space is represented as Nc =
{vA | A compact} and embedded in Lp. Given v ∈ Nc, we recover the shape
A = {v = ϕ−1(0)} (that is a level set of v).

Example 6.17 A simple example (that works for all p) is given by ϕ(t) = e−t,
so that vA(x) = exp (−uA(x)); in this case, A = {v = 1}.

The distance d of eqn. (6.15) enjoys the following properties.

Properties 6.18 • It is Euclidean invariant;

• it is locally compact but not path-metric;

• the topology induced is the same as that induced by dH ;

• minimal geodesics do exist, since Dg := {B | dg(A,B) ≤ ρ} is compact.

The proofs are in [15]. We present a numerical computation of a minimal geodesic
(by A. Duci) in Figure 7.

6.3.1 Analogy with the Hausdorff metric, Lp vs L∞

We recall that dH(A,B) = ‖uA(x) − uB(x)‖L∞ ; whereas instead now we are
proposing d(A,B) := ‖vA−vB‖Lp . The idea being that this distance of compact
sets is modeled on Lp, whereas the Hausdorff distance is “modeled” on L∞.
(Note that the Hausdorff distance is not really obtained by embedding, since
uA 6∈ L∞). Lp is more regular than L∞, as shown by this remark.
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Remark 6.19 Given any f, g ∈ Lp with p ∈ (1,∞), the segment connecting
f to g is the unique minimal geodesic connecting them. Suppose now that the
dimension of L∞(Ω,A, µ) is greater than 1. Given generically f, g ∈ L∞, there
is an uncountable number of minimal geodesics connecting them.8

(For the proof see 2.11 & 2.13 in [15]). The above result suggests that it may
be possible to shoot geodesics in the “Riemannian metric” associated to this
distance.

6.3.2 Contingent cone

Let again Nc = {vA | A compact} be the family of all representations. Given a
v ∈ Nc, let TvNc ⊂ Lp be the contingent cone

TvNc := {lim
n
tn(vn − v) | tn > 0, vn ∈ Nc, vn → v}

=
{
λ lim

n

vn − v
‖vn − v‖Lp

| λ ≥ 0, vn → v

}
,

where it is intended that the above limits are in the sense of strong convergence
in Lp.

TvNc contains all directions in which it is possible “in the Lp sense” to
infinitesimally deform a compact set. For example, if Φ(x, t) : lRN × (−ε, ε)→
lRN is smooth diffeomorphical motion of lRN , and At := Φ(A, t), then vAt is
(locally) Lipschitz, so it is differentiable for almost all t, and the derivative
is in TNc. This includes all perspective, affine, and Euclidean deformations.
Unfortunately the contingent cone is not capable of expressing some shape
deformations.

Example 6.20 We consider the removing motion; let A be compact, and
suppose that x is in the internal part of A; let At := A \B(x, t) be the removal
of a small ball from A. The motion vAt inside Nc is Lipschitz, but the limit

lim
t→0+

vAt − vA
‖vAt − vA‖Lp

does not exist in Lp. (Morally, if p = 1, the limit would be the measure δx).

6.3.3 Riemannian metric

Let now p = 2. The set Nc may fail to be a smooth submanifold of L2; yet
we will, as much as possible, pretend that it is, in order to induce a sort of
“Riemannian metric” on Nc from the standard L2 metric.

Definition 6.21 We define the “Riemannian metric” on Nc simply by

〈h, k〉 := 〈h, k〉L2

8“Generically” is meant in the Baire sense: the set of exceptions is of first category.
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y(θ)

ν(θ) y(θ) + ρν(θ)

Figure 8: Polar coordinates around a convex set

for h, k ∈ TvNc and correspondingly a norm by

|h| :=
√
〈h, h〉

where TvNc is the contingent cone.

Proposition 6.22 The distance induced by this “Riemannian metric” coincides
with the geodesically induce distance dg.

The proof is in 3.22 in Duci and Mennucci [15].
To conclude, we propose an explicit computation of the Riemannian Metric

for the case of compact sets in the plane with smooth boundaries; we then pull
back the metric to obtain a metric of closed embedded planar curves. We start
with the case of convex sets.We fix p = 2, N = 2.

6.3.4 Polar coordinates of smooth convex sets

Let Ω ⊂ lR2 be a convex set with smooth boundary; let y(θ) : [0, L] → ∂Ω be
a parameterization of the boundary (by arc parameter), ν(θ) the unit vector
normal to ∂Ω and pointing external to Ω. The following “polar” change of
coordinates ψ holds:

ψ : lR+ × [0, L]→ lR \ Ω , ψ(ρ, θ) = y(θ) + ρν(θ) (6.23)

see figure 8. We suppose that y(θ) moves on ∂Ω in anticlockwise direction; so
ν = J∂sy, ∂ssy = −κν; where J is the rotation matrix (of angle −π/2), κ is the
curvature, and ∂sy is the tangent vector.

We can then express a generic integral through this change of coordinates as∫
lR2\Ω

f(x) dx =
∫

lR+

∫
∂Ω
f(ψ(ρ, s))|1 + ρκ(s)|dρds

where s is arc parameter, and ds is integration in arc parameter.

6.3.5 Smooth deformations of a convex set

We want to study a smooth deformation of Ω, that we call Ωt; then the border
y(θ, t) depends on a time parameter t. Suppose also that κ(θ) > 0, that is, that
the set is strictly convex: then for small smooth deformations, the set Ωt will
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still be strictly convex. We suppose that the border of Ωt moves with orthogonal
speed α; more precisely, we assume that (∂ty) ⊥ ∂sy, that is, (∂ty) = αν with
α = α(t, θ) ∈ lR. Since this deformation is smooth, we expect that it will be
associated to a vector hα ∈ TvNc, defined by hα := ∂tvΩt . We now show briefly
how to explicitly compute it.

Suppose that x is a fixed point in the plane, x 6∈ Ωt, and express it using
polar coordinates x = ψ(ρ, θ), with ρ = ρ(t), θ = θ(t). With some computations,
ρ′ = −α. Now, for x 6∈ Ωt, uΩt(x) = ρ(t) hence we obtain the explicit formula
for hα

hα := ∂tvΩt(x) = −ϕ′(uΩt(x))α ;

whereas hα(x) = 0 for x ∈ Ω̊t.

6.3.6 Pullback of the metric on convex boundaries

Let us fix two orthogonal smooth vector fields α(s)ν(s), β(s)ν(s), that represent
two possible deformations of ∂Ω; those correspond to two vectors hα, hβ ∈ TvNc;
so the Riemannian Metric that we defined in 6.21 can be pulled back on ∂Ω, to
provide the metric

〈α, β〉 :=
∫

lR2
hα(x)hβ(x)dx =

∫
lR2\Ω

hα(x)hβ(x)dx =

=
∫
∂Ω

[∫
lR+

(ϕ′(ρ))2(1 + ρκ(s)) dρ
]
α(s)β(s)ds

that is,
〈α, β〉 =

∫
∂Ω

(a+ bκ(s))α(s)β(s)ds (6.24)

with
a :=

∫
lR+

(ϕ′(ρ))2 dρ , b :=
∫

lR+
(ϕ′(ρ))2ρdρ .

6.3.7 Pullback of the metric on smooth contours

If Ω is smooth but not convex, then the above formula holds up to the cutlocus.

Definition 6.25 The cutlocus (a.k.a. the external skeleton) is the set of
points x 6∈ Ω such that there are two (or more) different points y1, y2 ∈ Ω of
minimum distance from x to Ω, that is,

|x− y1| = |x− y2| = uΩ(x) .

We define a function R(s) : [0, L]→ [0,∞] that measures the distance from ∂Ω
to the cutlocus Cut, that is,

Cut = {ψ(R(s), s) | s ∈ [0, L], R(s) <∞} ;
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Ω

Cut

(The arrows represent the distance R(s) from y(s) ∈ ∂Ω to the cutlocus).

Figure 9: Smooth contour and cutlocus.

R(s) is locally Lipschitz where it is finite (by results in Itoh and Tanaka [25],Li
and Nirenberg [32]). The “polar” change of coordinates ψ (defined in (6.23)) is
a diffeomorphism between the sets

{(ρ, s) s ∈ [0, L], 0 < ρ < R(s)} ↔ lR2 \ (Ω ∪ Cut) .

See fig. 9.
The pullback metric for deformations of the contour ∂Ω is

〈h, k〉 =
∫
∂Ω

[∫ R(s)

0
(ϕ′(ρ))2(1 + ρκ(s)) dρ

]
α(s)β(s) ds

6.3.8 Conclusion

In this case we have found (a posteriori) a Riemannian metric of closed embedded
planar curves, and we know the structure of the completion, and the completion
admits minimal geodesics. On the down side, the completion is not really “a
smooth Riemannian manifold”. For example, it is difficult to study the minimal
geodesics, and to prove any property about them. Anyway, the fact that Nc is
locally compact and the regularity property 6.19 of Lp spaces suggest that it
may be possible to “shoot geodesics” (in some weak form). Unfortunately the
topology has too few open sets to be used for shape optimization: many simple
energy functionals are not continuous.

7 Finsler geometries of curves
We present two examples of Finsler geometries of curves that have been used
(sometimes covertly) in the literature.

7.1 Tangent and normal
Let v, T ∈ lRN , let

N = T⊥ = {w ∈ lRN : w · T = 0}

be the space orthogonal to T . Usually T will be the tangent to a curve c.9

9There is a slight abuse of notation here, since in the definition N = T⊥ given for planar
curves in 1.13, we defined N to be a “vector” and not the “vector space orthogonal to T”.
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Definition 7.1 We define the projection onto the normal space N = T⊥

πN : lRN → lRN , πNv = v − 〈v, T 〉T

and the projection on the tangent T

πT : lRN → lRN , πT v = 〈v, T 〉T

so πNv + πT v = v and |πNv|2 + |πT v|2 = |v|2.

7.2 L∞ metric and Fréchet distance
If we wish to define a norm on TcM that is modeled on the norm of the Banach
space L∞(S1 → lRN ), we define

F∞(c, h) := ‖πNh‖L∞ = sup
θ
|πNh(θ)|

where N = (Dsc)⊥. This metric weights the maximum normal motion of the
curve. (The rôle of πN will be properly explained in §11.10). This Finsler metric
is geometric. The length of a homotopy is

Len∞(C) :=
∫ 1

0
sup
θ∈S1

|πN∂tC(t, θ)|dt .

Definition 7.2 (Fréchet distance)

df (c0, c1) := inf
φ

sup
u
|c1(φ(u))− c0(u)|

where u ∈ S1 and φ is chosen in the class of diffeomorphisms of S1.

This distance is induced by the Finsler metric F∞(c, h).

Theorem 7.3 df (c0, c1) coincides with the infimum of the length Len∞(C) for
C connecting c0 to (a reparameterization of) c1.

For the proof, see theorem 15 in [35].

7.3 L1 metric and Plateau problem
If we wish to define a geometric norm on TcM that is modeled on the norm of
the Banach space L1(S1 → lRN ), we may define the metric

F 1(c, h) = ‖πNh‖L1 =
∫
|πNh(θ)||c′(θ)|dθ ;

the length of a homotopy is then

Len(C) =
∫∫
|πN∂tC(t, θ)||C ′(t, θ)|dtdθ
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which coincides with

Len(C) =
∫∫
|∂tC(t, θ)× ∂θC(t, θ)|dθ dt

This last is easily recognizable as the surface area of the homotopy (up to
multiplicity); the problem of finding a minimal geodesic connecting c0 and c1 in
the F 1 metric may be reconducted to the Plateau problem of finding a surface
which is an immersion of I = S1 × [0, 1] and which has fixed borders to the
curves c0 and c1. The Plateau problem is a wide and well studied subject upon
which Fomenko expounds in the monograph [20].

8 Riemannian metrics of curves up to pose
A particular approach to the study of shapes is to define a shape to be a curve up
to reparameterization, rotation, translation, scaling; to abbreviate, we call this
the shape space of curves up to pose. We present two examples of Riemannian
metrics.

8.1 Shape Representation using direction functions
Klassen, Mio, Srivastava et al in [28, 41] represent a planar curve c by a pair of
velocity-angle functions (φ, α) through the identity

c′(u) = exp(φ(u) + iα(u))

(identifying lR2 = IC), and then defining a metric on the velocity-angle function
space. They propose models of spaces of curves where the metrics involve higher
order derivatives in [28].

We review here the simplest such model, where φ = 0. We consider in the
following planar curves ξ : S1 → lR2 of length 2π and parameterized by arc
length. (Note that such curves are automatically Lipschitz continuous).

Proposition 8.1 (Continuous lifting, winding number) If ξ ∈ C1 and pa-
rameterized by arc parameter, then ξ′ is continuous and |ξ′| = 1, so there exists
a continuous function α : lR → lR satisfying

ξ′(s) =
(
cos(α(s)), sin(α(s))

)
(8.1.∗)

and α(s) is unique, up to adding the constant k2π with k ∈ Z.
Moreover α(s+ 2π)− α(s) = 2πI, where I is an integer, known as winding

number, or rotation index of ξ. This number is unaltered if ξ is homotopically
deformed in a smooth way.

See the examples in Fig. 10 on the following page.
The addition of a real constant to α(s) is equivalent to a rotation of ξ. We

then understand that we may represent arc parameterized curves ξ(s), up to
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Figure 10: Examples of curves of different winding number.

translation, scaling, and rotations, by considering a suitable class of liftings α(s)
for s ∈ [0, 2π].

Two spaces are defined in Klassen et al. [28]; we present the case of “Shape
Representation using Direction Functions” ;

Definition 8.2 let L2 := L2([0, 2π]→ lR); Φ : L2 → lR3 is defined by

Φ1(α) :=
∫ 2π

0
α(s) ds , Φ2(α) :=

∫ 2π

0
cosα(s) ds , Φ3(α) :=

∫ 2π

0
sinα(s) ds .

and the space of (pre)-shapes is defined as the closed subset S of L2,

S :=
{
α ∈ L2 | Φ(α) = (2π2, 0, 0)

}
;

the condition Φ1(α) = 2π2 forces a choice of rotation, while Φ2 = 0,Φ3 = 0
ensure that α represents a closed curve.

For any α ∈ S, it is possible to reconstruct the curve by integrating

ξ(s) =
∫ s

0

(
cos(α(t)), sin(α(t))

)
dt (8.3)

This means that α identifies an unique curve (of length 2π, and arc parameterized)
up to rotations and translations, and to the choice of the base point ξ(0); for
this last reason, S is called in [28] a preshape space.

Inside the family of arc parameterized curves, the reparameterization of ξ is
restricted to the transformation ξ̂(u) = ξ(u − s0), that is a different choice of
base point for the parameterization along the curve. Inside the preshape space
S, the same operation is encoded by the relation α̂(s) = α(s− s0).

To obtain a model of immersed curves up to reparameterization, rotation,
translation, scaling we need to quotient S by the relation α ∼ α̂, for all possible
s0 ∈ lR. We do not discuss this quotient here.

We now prove that S \ Z is a smooth manifold. We first define Z.

Definition 8.4 (Flat curves) Let Z be the set of all α ∈ L2([0, 2π]) such that
α(s) = a+ k(s)π where k(s) ∈ Z and k is measurable, a = 2π −

∫
k ∈ lR, and

|{k(s) = 0mod 2}| = |{k(s) = 1mod 2}| = π

• Z is closed (by thm. 4.9 in Brezis [4]).

51



• S \ Z contains the (representation α by continuous lifting of) all smooth
immersed curves.

• Z contains the (representations α of) flat curves ξ, that is, curves ξ whose
image is contained in a line;

Example 8.5 one such curve is

ξ1(s) = ξ2(s) =

{
s/
√

2 s ∈ [0, π]
(2π − s)/

√
2 s ∈ (π, 2π]

, α =

{
π/2 s ∈ [0, π]
3π/2 s ∈ (π, 2π]

Proposition 8.6 S \ Z is a smooth immersed submanifold of codimension 3 in
L2.

Proof. By the implicit function theorem. Indeed, suppose by contradiction
that ∇Φ1,∇Φ2,∇Φ3 are linearly dependant at α ∈ S, that is, there exists
a ∈ lR3, a 6= 0 s.t.

a1 cos(α(s)) + a2 sin(α(s)) + a3 = 0

for almost all s; then, by integrating, a3 = 0, therefore a1 cos(α(s))+a2 sin(α(s)) =
0 that means that α ∈ Z.

The manifold S \ Z inherits a Riemannian structure, induced by the scalar
product of L2; (critical) geodesics may be prolonged smoothly as long as they
do not meet Z.

Even if S may not be a manifold at Z, we may define the geodesic distance
dg(x, y) in S as the infimum of the length of Lipschitz paths γ : [0, 1]→ L2 going
from x to y and whose image is contained in S;10 since dg(x, y) ≥ ‖x − y‖L2 ,
and S is closed in L2, then the metric space (S, dg) is metrically complete.

We don’t know if (S, dg) admits minimal geodesics, or if it falls in the category
of the Atkin example 3.35.

8.1.1 Multiple measurable representations

We may represent any Lipschitz closed arc parameterized curve ξ using a mea-
surable α ∈ S.

Definition 8.7 A measurable lifting is a measurable function α : lR → lR
satisfying (8.1.∗). Consequently, ameasurable representation is a measurable
lifting α satisfying conditions Φ(α) = (2π2, 0, 0) (from Definition 8.2).

We remark that

• a measurable representation always exists; for example, let arc : S1 →
[0, 2π) be the inverse of α 7→ (cos(α), sin(α)); arc() is a Borel function;
then ((arc ◦ ξ′)(s) + a) ∈ S, for a choice of a ∈ lR.

10It seems that S is Lipschitz-arc-connected, so dg(x, y) <∞; but we did not carry on a
detailed proof
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• The measurable representation is never unique: for example, given any
measurable A,B ⊂ [0, 2π] with |A| = |B|,

α(s) + 2π1A(s)− 2π1B(s)

will as well represent ξ.

This implies that the family Aξ of measurable α ∈ S that represent the same
curve ξ is infinite. It may be then advisable to define a quotient distance d̂
as follows:

d̂(ξ1, ξ2) := inf
α1∈Aξ1 ,α2∈Aξ2

d(α1, α2) (8.8)

where d(α1, α2) = ‖α1 − α2‖L2 , or alternatively d = dg is the geodesic distance
on S.

8.1.2 Continuous vs measurable lifting — no winding

If ξ ∈ C1, we have an unique11 continuous representation α ∈ S; but note
that, even if ξ1, ξ2 ∈ C1, the infimum (8.8) may not be given by the continuous
representations α1, α2 of ξ1, ξ2. Moreover there are rectifiable curves ξ that do
not admit a continuous representation α, as for example the polygons.

A problem similar to the above is expressed by this proposition.

Proposition 8.9 For any h ∈ Z, the set of closed smooth curves ξ with rotation
index h, when represented in S using the continuous lifting, is dense in S \ Z.

It implies that we cannot properly extend the concept of rotation index to S.
The proof is based on this lemma.

Lemma 8.10 Suppose that ξ is not flat, let τ be one of the measurable liftings
of ξ. There exists a smooth projection π : V → S defined in a neighborhood
V ⊂ L2 of τ such that, if f ∈ L2 ∩ C∞ then π(f) is in L2 ∩ C∞.

This is the proof of both the lemma and the proposition.

Proof. Fix α0 ∈ S \ Z. Let T = Tα0S be the tangent at α0. T is the vector
space orthogonal to ∇φi(α0) for i = 1, 2, 3. Let ei = ei(s) ∈ L2 ∩ C∞c be near
∇φi(α0) in L2, so that the map (x, y) : T × lR3 → L2

(x, y) 7→ α = α0 + x+
3∑
i=1

eiyi (8.11)

is an isomorphism. Let S′ be S in these coordinates; by the Implicit Function
Theorem (5.9 in Lang [30]), there exists an open set U ′ ⊂ T , 0 ∈ U ′, an open
V ′ ⊂ lR3, 0 ∈ V ′, and a smooth function F : U → lR3 such that the local part
S′ ∩ (U ′ × V ′) of the manifold S′ is the graph of y = F (x).

11Indeed, the continuous lifting is unique up to addition of a constant to α(s), which is
equivalent to a rotation of ξ; and the constant is decided by Φ1(α) = 2π2
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We immediately define a smooth projection π : U ′ × V ′ → S′ by set-
ting π′(x, y) = (x, F (x)); this may be expressed in the original L2 space; let
(x(α), y(α)) be the inverse of (8.11) and U = x−1(U ′); we define the projection
π : U → S by setting

π(α) = α0 + x+
3∑
i=1

eiFi(x(α))

Then

π(α)(s)− α(s) =
3∑
i=1

ei(s)ai , ai := (Fi(x(α))− yi(α)) ∈ lR (8.12)

so if α(s) is smooth, then π(α)(s) is smooth.
Let αn be smooth functions such that αn → α in L2, then π(αn) → α0; if

we choose them to satisfy αn(2π)− αn(0) = 2πh, then, by the formula (8.12),
π(α)(2π)− π(α)(0) = 2πh so that π(αn) ∈ S and it represents a smooth curve
with the assigned rotation index h.

8.2 A metric with explicit geodesics
A similar method has been proposed recently in Michor et al. [39], based on
an idea originally in [68]. We consider immersed planar curves and again we
identify lR2 = IC.

Proposition 8.13 (Continuous lifting of square root) If ξ : [0, 2π] → IC
is an immersed planar curve, then ξ′ is continuous and ξ′ 6= 0, so there exists a
continuous function α :→ IC satisfying

ξ′(θ) = α(θ)2 (8.13.∗)

and α is uniquely identified up to multiplying by ±1.
If the rotation index of ξ is even then α(0) = α(2π), whereas if the rotation

index of ξ is odd then α(0) = −α(2π).

We will use this lifting to obtain, as a first step, a representation of curves up
to rotation, translation, scaling. To this end, let ξ be an immersed planar closed
curve of len(ξ) = 2 (not necessarily parameterized by arc parameter); let α be
the square root lifting of the derivative ξ′. Let e, f be the real and imaginary
part of α, that is, α = e+ if . The condition that ξ is a closed curve translates
into

∫ 2π
0 (e+ if)2 dθ = 0 (where equality is in IC), hence we have two equalities

(for real and imaginary part)∫ 2π

0
e2 − f2 dθ = 0,

∫ 2π

0
ef dθ = 0

while the condition that len(ξ) = 2 translates into∫ 2π

0
|ξ′|dθ =

∫ 2π

0
|e+ if |2 dθ =

∫ 2π

0
(e2 + f2) dθ = 2 .
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With some algebra we obtain that the above conditions are equivalent to∫ 2π

0
e2 dθ = 1,

∫ 2π

0
f2 dθ = 1,

∫ 2π

0
ef dθ = 0.

Let L2 = L2([0, 2π]→ lR); let S ⊂ L2 × L2 be defined by

S :=
{

(e, f) |
∫ 2π

0
e2 dθ = 1 =

∫ 2π

0
f2 dθ,

∫ 2π

0
ef dθ = 0.

}
S is the Stiefel manifold of orthonormal pairs in L2. S is a smooth manifold,
and inherits the (flat) metric of L2 × L2. What is most surprising is that

Theorem 8.14 (2.2 in [39]) Let δξ be a small deformation of ξ, and δe, δf
be the corresponding small deformation of the representation e, f . Then∫

ξ

|Dsδξ|2 ds =
∫ 2π

0
(δe)2 + (δf)2 dθ

that is, the (geometric) Riemannian metric in M is mapped into the (flat and
parametric) metric in S.

It is then natural to “embed” closed planar curves (up to translation and
scaling) into S.

8.2.1 Curves up to rotation ↔ Grassmanian

We note that rotation of ξ by an angle τ is equivalent to rotation of the frame
(e, f) by an angle τ/2. So the orbit of all rotations of ξ is associated to the plane
generated by (e, f) in L2: the space of curves up to rotation/translation/scaling
is represented by the Grassmanian manifold of 2-planes in L2. A theorem
by Neretin then applies, that provides a closed form formula for critical and
minimal geodesics. See section 4 in [39].

8.2.2 Representation

The Stiefel manifold is a complete smooth Riemannian manifold; it contains the
(representation of) all closed rectifiable parametric planar curves, up to scaling
and translation. So with this choice of metric and representation, we obtain
that the completion of the Fréchet manifold of smooth curves is a Riemannian
smooth manifold. There are two problems left.

• The quotient w.r.to reparameterization. This is studied in [39], where it
is proven that unfortunately geodesics in the quotient space may develop
singularities in the reparameterizations at the end times of the geodesic.

• But there is also the quotient w.r.to representation.
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8.2.3 Quotient w.r.to representation

As in the previous section, we may define a measurable square root lifting; this
lifting will not be unique. Indeed, let (e, f) be the square root representation of
ξ, that is ξ′ = (e+ if)2; choose any function a : S1 → {−1, 1} arbitrarily (but
measurable); then (ae, af) represents the same curve. So again we may define a
quotient metric d̂(ξ1, ξ2) as we did in eqn. (8.8); similar comments to those at
the end of Section 8.1.2 hold.

9 Riemannian metrics of immersed curves
Metrics of “geometric” curves have been studied by Michor and Mumford [37, 36,
38] and Yezzi and Mennucci [65, 66, 67]; more recently, Yezzi-M.-Sundaramoorthi
[53–58, 35] have studied Sobolev-like metrics of curves and shown many good
properties for applications to shape optimization; similar results have also been
shown independently by Charpiat et al. [9, 10, 11].

We now discuss some Riemannian metrics on immersed curves.

• The H0 metric
〈h1, h2〉H0 =

∫
c

〈h1(s), h2(s)〉ds .

• Michor and Mumford [37]’s metric

〈h1, h2〉HA =
∫
c

(1 +A|κc|2)〈h1, h2〉ds .

• Yezzi and Mennucci [67] conformal metric

〈h1, h2〉H0
φ

= φ(c)
∫
c

〈h1, h2〉ds .

• Charpiat et al. [10] rigidified norms

• Sundaramoorthi et al. [53] Sobolev type metrics

〈h1, h2〉Hn =
∫
c

〈h1, h2〉ds+ len(c)2n
∫
c

〈∂ns h1, ∂
n
s h2〉ds

〈h1, h2〉H̃n =
〈∫

c

h1 ds,
∫
c

h2 ds
〉

+ len(c)2n
∫
c

〈∂ns h1, ∂
n
s h2〉ds .

We will now present a quick overview of all metrics (but for the latter, that
is discussed in the next section).
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9.1 H0

The H0 inner product was defined in eqn. (2.9) as〈
h1, h2

〉
H0 :=

∫
c

h1(s) · h2(s) ds ; (9.1)

it is possibly the simplest geometric inner product that we may imagine to
apply to curves. We already noted that the minimizing flows implemented in
traditional active contour methods are “gradient flows” only if we use this H0

inner product.
We will show in Sec. 11.3 that the H0-induced distance is identically zero. In

[67] there is a result that shows that the distance is non degenerate, and minimal
geodesics exists, when the shape space is restricted to curves with bounded
curvature.

9.2 HA

Michor and Mumford [37] propose the metric HA

〈h1, h2〉HA|c =
∫ L

0
(1 +A|κc|2)〈h1, h2〉ds

where κc is the curvature of c, and A > 0 is fixed.

Properties 9.2 • The induced distance is non degenerate.

• The completion M (intended in the metric sense) is

BV 2 ⊂M ⊂ Lip

where BV 2 are the curves that admit curvature as a measure and Lip are
the rectifiable curves.

• There are compactness bounds.

9.3 Conformal metrics
Yezzi and Mennucci [67] proposed to change the metric, from H0 to a conformal
metric

〈h1, h2〉H0
ψ

= ψ(c)
∫
c

〈h1, h2〉ds

where ψ(c) associates to each curve c a positive number. Then the gradient
descent flow of an energy E defined on curves C(t, ·) is

∂C

∂t
= −∇ψE(C) = − 1

ψ(C)
∇E(C)

where ∇E(C) is the gradient for the H0 metric. This is equivalent in a change
of time variable t in the gradient descent flow. So all properties of the flows are
unaffected if we switch from a H0 to a conformal-H0 metric.
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Properties 9.3 Consider a conformal metric where ψ(c) depends (monotoni-
cally) on the length len(c) of the curve.

• If ψ(c) ≥ len(c), the induced metric is non degenerate;

• unfortunately, according to a result by Shah [50], when ψ(c) ≡ L(c) very
few (minimal) geodesics do exist (only “grassfire” geodesics, moving by
constant normal speed).

9.4 “Rigidified” norms
Charpiat et al.[10] consider norms that favor pre-specified rigid motions. They
decompose a motion h using the H0 projection as

h = hrigid + hrest

where hrigid contains the rigid part of the motion; then they choose λ large, and
construct the norm

‖h‖2
rigid

= λ‖hrigid‖2H0 + ‖hrest‖2H0 .

Note that these norms are equivalent to the H0-type norm; as a result the
induced distance is (again) degenerate.

10 Sobolev type Riemannian metrics
In this part we discuss the Sobolev norms, with applications and experiments.
What follows summarizes [55, 57, 58, 35].

10.1 Sobolev-type metrics [53]
Recently in [53–58, 35] Yezzi–M.–Sundaramoorthi studied a family of Sobolev-
type metrics. Let Ds := 1

|c′|∂θ be the derivative with respect to arc parameter.
Let j ≥ 1 be an integer12 and

〈h1, h2〉Hj0 :=
∫
c

〈Dj
sh1, D

j
sh2〉ds

where
∫
c
· · · ds was defined in 1.10. Let λ > 0 a fixed constant; we define the

Sobolev-type metrics

〈h1, h2〉Hj :=
∫
c

〈h1, h2〉ds+ λL2j 〈h1, h2〉Hj0 (10.1)

〈h1, h2〉H̃j :=
〈∫

c

h1 ds,
∫
c

h2 ds
〉

+ λL2j 〈h1, h2〉Hj0 (10.2)

where L = len(c). Notice that these metrics are geometric:
12It is though possible to define Sobolev metrics for any j ∈ lR, j > 0; see Prop. 3.1 in [57].
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• they are easily seen to be invariant w.r.to rotations and translations, (in a
stronger sense than in page 36, indeed in this case

〈h1, h2〉Ac = 〈h1, h2〉c , 〈Rh1, Rh2〉c = 〈h1, h2〉c

for any Euclidean transformation A and rotation R);

• they are reparameterization invariant due to the usage of the arc parameter
in derivatives and integrals;

• they are scale invariant, since the normalizing factors L2j make them
0-homogeneous w.r.to rescaling of the curve.

For this last reason, we redefine the H0 metric to be〈
h1, h2

〉
H0

:=
∫
c

h1 · h2 ds (10.3)

so that it is again 0-homogeneous.This is a conformal version of the H0 metric
defined in eqn. (2.9), so a gradient descent flow is a time reparameterization of
the flow for the original H0 metric; and the induced distance is again degenerate.

When we will present a shape optimization energy E and we will minimize
E using a gradient descent flow driven by the Hj or H̃j gradient of E, we will
call the resulting algorithm a Sobolev active contour method (abbreviated
as SAC in the following).

10.1.1 Related works

A family of metrics similar to Hj above (but for the length dependent scale
factors13) was studied (independently) in Michor and Mumford [36]: the Sobolev-
type weak Riemannian metric on Imm(S1,R2)

〈h, k〉Gjc =
∫
c

j∑
i=0
〈Di

sh,D
i
sk〉ds ;

in that paper the geodesic equation, horizontality, conserved momenta, lower and
upper bounds on the induced distance, and scalar curvatures are computed. Note
that this metric is locally equivalent to the above metrics defined in equation
(10.1), (10.2).

Charpiat et al in [10, 11] studied (again independently) some generalized
metrics and relative gradient flows; in particular they defined the Sobolev-type
metric ∫

c

〈h1, h2〉+ 〈Dsh1, Dsh2〉ds .

13A scale-invariant Sobolev metric is proposed in in §4.8
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10.1.2 Properties of Hj metrics

This is a list of important properties that will be discussed in the following
sections.

• Flow regularization: Sobolev gradient flows are smoother than H0 flows.

• PDE order reducing property: Sobolev gradient flows are lower order than
H0 flows.

• SAC does not require derivatives of the curve to be defined for many
commonly used region-based and edge-based energies.

• Coarse-to-fine deformation property: a SAC automatically favors coarse-
scale deformations before moving to fine-scale deformations; this is ideal
for visual tracking.

• Sobolev-type norms induce a well-defined distance on space of curves;

• moreover the structure of the completion of the space of immersed curves
w.r.to H1 and H2 norm is fairly well understood. So they offer a consistent
theory of shape optimization and shape analysis.

10.2 Mathematical properties
We start summarizing the main mathematical properties, that were presented in
[35] mostly. We first of all cite this lemma.

Lemma 10.4 (Poincaré inequality) Pick h : [0, l] → lRn, weakly differen-
tiable, with h(0) = h(l) (so h is periodically extensible); let ĥ = 1

l

∫ l
0 h(x) dx;

then
sup
u
|h(u)− ĥ| ≤ 1

2

∫ l

0
|h′(x)|dx . (10.4.∗)

This is proved as Lemma 18 in [35]; it is one of the main ingredients for the
following propositions, whose full proofs are in [35].

Proposition 10.5 The Hj and H̃j distances are equivalent:

dH̃j ≤ dHj ≤

√
1 + (2π)2jλ

(2π)2jλ
dH̃j

whereas dHj ≤ dHk for j < k.

Proposition 10.6 The Hj and H̃j distances are lower bounded (with appropri-
ate constants depending on λ) by the Fréchet distance (defined in 7.2).

Proposition 10.7 c 7→ len(c) is Lipschitz in M with Hj metric, that is,

| len(c0)− len(c1)| ≤ dHj (c0, c1)
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Theorem 10.8 (Completion of Bi w.r.to H1) let dH1 be the distance in-
duced by H1; the metric completion of the space of curves is equal to the space
of all rectifiable curves.

Theorem 10.9 (Completion of Bi w.r.to H2) Let E(c) :=
∫
|D2

sc|2 ds be
defined on non-constant smooth curves; then E is locally Lipschitz in w.r.to dH2 .
Moreover the completion of C∞(S1) according to the metric H2 is the space of
curves that admit curvature D2

sc ∈ L2(S1).

The hopeful consequence of the above theorem would be a possible solution to
the problem 4.10; it implies that the space of geometric curves B with the H2

Riemannian metric completes onto the usual Hilbert space H2. 14 This result
in turn would ease a (possible) proof of existence geodesics.

Concluding, it seems that, to have a complete Riemannian manifold of
geometric (freely) immersed curves, a metric should penalize derivatives of 2nd
order (at least).

10.3 Sobolev metrics in shape optimization
We first present a definition.

Definition 10.10 (Convolution) A arc-parameterized convolutional kernel
K along the curve c of length L is a L-periodic function K : lR → lR. Given a
vector field f : S1 → lRn and a kernel K, we define the convolution by arc
parameter15 formally as

(f ? K)(s) :=
∫
c

K(s− ŝ)f(ŝ) dŝ . (10.10.∗)

By defining the run-length function l : lR → lR

l(τ) :=
∫ τ

0
|c′(x)|dx

we can rewrite the above eqn. (10.10.∗) explicitly in θ parameter as

(f ? K)(θ) :=
∫ 2π

0
K
(
l(θ)− l(τ)

)
f(τ)|c′(τ)|dτ . (10.10.†)

Recall the definition 3.38 of gradient ∇E by means of the identity

〈∇E, h〉c = DE(c)(h) ∀h ∈ TcM .

Let f = ∇H0E, g = ∇H1E be the gradients w.r.to the inner products H0 and
H1; by the definition of gradient, we obtain that

〈f, h〉H0,c = 〈g, h〉H1,c ∀h ∈ TcM
14The detailed proof has not yet been written...
15Note this definition is different from the eqn. (13) in [55].
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that is16 ∫
c

h · f ds =
∫
c

h · g + λL2(Dsh ·Dsg) ds ∀h

by integrating by parts this becomes∫
c

h · (f − g + λL2D2
sg) ds = 0 ∀h

then we conclude that

∇H0E = ∇H1E − λL2D2
s(∇H1E) . (10.11)

With similar computation, for H̃1 we obtain that

∇H0E =
∫
c

∇H̃1E ds− λL2D2
s(∇H̃1E) . (10.12)

Given ∇H0E, both equations can be solved for ∇H1E and ∇H̃1E, by means
of suitable convolution kernels K̃λ,Kλ, that is, we have the formulas

∇H1E = ∇H0E ? Kλ , ∇H̃1E = ∇H0E ? K̃λ ;

The kernels K̃λ,Kλ are known in closed form:

Kλ(s) =
cosh

(
s−L2√
λL

)
2L
√
λ sinh

(
1

2
√
λ

) , for s ∈ [0, L], (10.13)

K̃λ(s) = 1
L

(
1 + (s/L)2 − (s/L) + 1/6

2λ

)
, s ∈ [0, L]. (10.14)

and Kλ, K̃λ are periodically extended to all of lR. See Fig. 11 on the next page.
The above idea extends to any j: it is possible to obtain ∇HjE and ∇H̃jE

from ∇H0E, by convolution. But there is also a way to compute ∇H̃jE without
resolving to convolutions, see Prop. 10.19.

The bad news is that, when shape optimization is implemented using a level
set method (as is usually the case), the curve must be traced out to compute
gradients.17 This in particular leads to some problems when a curve undergoes
a topological change, since the Sobolev gradient depends on the global shape of
the curve; but those problems are easily bypassed when the optimization energy
is continuous across topological changes of the curves: see Sec. 5.1 in [55].

16We use the definition (10.3) of H0.
17Though, an alternate method that does not need the tracing of the curve is described in

Sec. 5.3 in [55] – but it was not successively used, since it depends on some difficult-to-tune
parameters.
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Figure 11: Plots of Kλ (left) and K̃λ (right) for various λ with L = 1. The plots
show the kernels over one period.

10.3.1 Smoothing of gradients, coarse-to-fine flowing

In Sundaramoorthi et al. [57] it was noted that the regularizing properties may
be explained in the Fourier domain: indeed, if we calculate Sobolev gradients
∇HjE of an arbitrary energy E in the frequency domain, then

∇̂HjE(l) = ∇̂H0E(l)
1 + λ(2πl)2j

for l ∈ Z (10.15)

and

∇̂H̃jE(0) = ∇̂H0E(0), ∇̂H̃jE(l) = ∇̂H
0E(l)

λ(2πl)2j
for l ∈ Z\{0}, (10.16)

It is clear from the previous expressions that high frequency components of
∇H0E(c) are increasingly less pronounced in the various forms of theHj gradients.
So Hj and H̃j gradients are much smoother than H0 gradients. Note that using
a SAC method smooths the gradients, so it induces smoother minimization flows,
but it does not smooth the curves themselves.

The above phenomenon may be also explained by the following argument.
The gradient satisfies the following property.

Proposition 10.17 If DE(c) 6= 0, the gradient ∇E(c) is the vector v in TcM
that provides the maximum in

DE(c)(v)
‖v‖c

= sup
h∈TcM\{0}

|DE(c)(h)|
‖h‖c

. (10.17.∗)

Thus, the gradient is the most efficient perturbation, i.e., it maximizes

change in energy by moving in direction h
cost of moving in direction h
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By constructing ‖ · ‖c to penalize “unfavorable” directions, we have control
over the path taken to minimize E without changing the energy E. 18

Since higher frequencies are more penalized in H1 than in H0, this explains
why a SAC prefers to move the curves in a coarser scale w.r.t a traditional active
contour method.

10.3.2 Flow regularization

It is also possible to show mathematically that the Sobolev–type gradients
regularize the flows of well known energies, by reducing the degree of the P.D.E.,
as shown in this example.

Example 10.18 (Elastica) In the case of the elastic energy

E(c) =
∫
c

κ2 ds =
∫
c

|D2
sc|2 ds ,

the H0 gradient is19

∇H0E = LDs(2D3
sc+ 3|D2

sc|2Dsc)

that includes fourth order derivatives; whereas the H̃1-gradient is

− 2
λL

D2
sc+ 3L(|D2

sc|2Dsc) ? (DsK̃λ) (10.18.∗)

that is an integro-differential second order P.D.E.

A practical positive outcome of this phenomenon will be shown in Section 10.9.1.

10.4 H̃j is faster than Hj

We will now show that the metric H̃1 (that is metrically equivalent to H1, by
Prop. 10.5) leads to a simpler calculus for gradients; with benefits in numerical
applications as well.

Let E(c) be an energy of curves. Gradients are implicitly defined by the
following relations

DE(c)(h) = 〈h,∇H0E〉H0 = 〈h,∇H1E〉H1 = 〈h,∇H̃1E〉H̃1 ∀h .

As we saw in equations (10.11) and (10.12), the above leads to the ODEs

Norm ODE

H1 ∇H0E = ∇H1E − λL2D2
s(∇H1E)

H̃1 ∇H0E = avgc(∇H̃1E)− λL2D2
s(∇H̃1E)

18In a sense, the focus of research in active contours has been mostly on the numerator in
eqn. (10.17.∗) — whereas we now focus on the denominator.

19We use the definition (10.3) of H0.
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The second ODE is much easier to solve.

Proposition 10.19 Let f = ∇H0E, g = ∇H̃1E, then g is derived from f by the
following closed form formulas

g(s) = g(0) + sg′(0)− 1
λL2

∫ s

0
(s− ŝ)(f(ŝ)− avgc(f)) dŝ

g′(0) = − 1
λL3

∫ L

0
s(f(s)− avgc(f)) ds

g(0) =
∫ L

0
f(s)K̃λ(s) ds .

where K̃λ was defined in (10.14).

Proof. The ODE
f = avgc(g)− λL2D2

sg

immediately tells that avgc(f) = avgc(g); so we rewrite it as

λL2D2
sg = −f + avgc(f)

and we simply integrate twice! Moreover, exploiting the identity∫ s

0

(∫ t

0
h(r) dr

)
dt =

∫ s

0
(s− r)h(r) dr ,

and with some extra computations, we obtain the result.

In the end we obtain that the H̃1 gradient need not be computed as a convolution;
so the H̃1 gradient enjoys nearly the same computational speed as the H0

gradient; moreover the resulting gradient flow is more stable, so it works fine in
numerical implementations for a larger choice of time step discretization. For
these reasons, H̃1 Sobolev active contours are very fast.

10.5 Analysis and calculus of H̃1 gradients
We write h ∈ TcM as h = avgc(h) + h̃; this decomposes

TcM = lRn ⊕DcM (10.21)

with
DcM :=

{
h : S1 → lRn | avgc(h) = 0

}
.

If we assign to lRn its usual Euclidean norm, and to DcM the Hj
0 norm, then

‖h‖2
H̃j

= |avgc(h)|2lRn + λL2j‖h̃‖2
Hj0

.

This means that the two spaces lRn and DcM are orthogonal w.r.to H̃j .
A remark on this decomposition is due.
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Remark 10.22 In the above, lRn is akin to be the space of translations and
DcM the space of non-translating deformations.

That labeling is not rigorous, though! since the subspace of TcM of deforma-
tions that do not move the center of mass avgc(c) is not DcM , but rather{

h :
∫
S1
h+

(
c− avgc(c)

)
〈Dsh · T 〉ds = 0

}
,

as is easily deduced from equation (2.14).

The decomposition (10.21) is quite useful in the calculus when analytically
computing H̃1 gradients and proving existence of flows. Indeed, let f = ∇H0E,
g = ∇H̃1E; decompose f = avgc(f) + f̃ , g = avgc(g) + g̃. To solve

f = avgc(g)− λL2D2
sg

we have to solve two equations:

avgc(g) = avgc(f) λL2D2
s g̃ = −f̃

lRn ⊕ DcM .

We will now show how to properly solve these coupled equations.

We will need to define some useful objects.

Definition 10.23 We define the projection operator

Πc : TcM → DcM
h 7→ h−

∫
c
hds (10.23.∗)

Definition 10.24 When we consider the derivation with respect to the arc
parameter as a linear operator

Dc : DcM → DcM
h 7→ Dsh

(10.24.∗)

then it admits the inverse, that is the primitive operator

Pc : DcM → DcM (10.24.†)

Proof. The proof is just based on noting that, for any smooth h ∈ TcM , h ∈ DcM
iff there is a smooth k ∈ TcM with h = Dsk. Vice versa, two primitives differ
by a constant, hence when h ∈ DcM there is exactly one primitive k in DcM
such that h = Dsk.

Example 10.25 The tangent vector field Dsc is in DcM , and its primitive is

PcDsc = c− avgc(c) .
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Proposition 10.26 Fix a curve c, let L = len(c). We can extend the primitive
operator by composing it with the projection; the resulting composite operator
can be expressed in convolutional form as

PcΠch = KPc ? h (10.26.∗)

for any continuous h ∈ TcM ; where the kernel KPc is

KPc (s) := − s
L

+ 1
2

for s ∈ [0, L) (10.26.†)

(and extended periodically to s ∈ lR — note that KPc (s) jumps at all points of
the form s = nL, n ∈ Z).

The above properties lead to this theorem, that can be used to shed a new
light to what was expressed in 10.19 in the previous section.

Theorem 10.27 Let f = ∇H0E, g = ∇H̃1E; the solution of

f = avgc(g)− λL2D2
sg

can be expressed as

g = avgc(f)− 1
λL2PcPcΠcf = avgc(f)− 1

λL2K
P
c ? KPc ? f .

Corollary 10.28 In particular, the kernels defined in eqn. (10.13), (10.26.†)
are related by

K̃λ = 1
L
− 1
λL2K

P
c ? KPc

By deriving,
DsK

P
c = δ0 −

1
L

(10.28.∗)

where δ0 is the Dirac’s delta; so we obtain the relations

DsK̃λ = − 1
λL2K

P
c

DssK̃λ = − 1
λL2 δ0 + 1

λL3 .

We also recall this Lemma.

Lemma 10.29 (De la Vallée-Poussin) Suppose that f : S1 → lRn is inte-
grable and satisfies ∫

c

k · f ds = 0

for all k ∈ DcM smooth; then f is almost everywhere equal to a constant.

For the proof, see Chapter 13 in [1], or Lemma VIII.1 in [4].
We now compute the gradient of the centroid energy (2.15.∗).
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Proposition 10.30 (Gradient of the centroid-based energy) Let in the
following again, for simplicity of notation, c = avgc(c) be the center of mass of
the curve. Let

E(c) = 1
2
|c− v|2 .

The H̃1 gradient of E is

∇H̃1E(c) = c− v + 1
λL2PcΠc

(
Dsc〈(c− v), (c− c)〉

)
. (10.30.∗)

Proof. We already computed the Gâteaux differential of E; but this time we
prefer to use the first form of eqn. (2.15.†), so as to write

DE(c)(h) = (c− v) · h+
∫
c

〈c− v, c− c〉(Dsh,Dsc) ds .

Let f = ∇H̃1E(c) be the H̃1 gradient of E. The equality

DE(c)(h) = 〈h, f〉H̃1 ∀h

becomes

〈c− v − f, h〉 +
∫
c

Dsh ·
(
〈c− v, c− c〉Dsc− λL2Dsf

)
ds = 0, ∀h .

Since h is arbitrary, using de la Vallée-Poussin Lemma, we obtain that

f = c− v , λL2Dsf = Dsc〈(c− v), (c− c)〉+ α , (10.30.†)

where the constant α is the unique α ∈ lRn such that the rightmost term is in
DcM . In conclusion we obtain (10.30.∗).

We similarly compute the gradient of the active contour energy.

Proposition 10.31 (Gradient of geodesic active contour model) We con-
sider once again the geodesic active contour model [7, 27] (that was presented
in Section 2.7) where the energy is

E(c) =
∫
c

φ(c(s)) ds

with φ : lR2 → lR+ appropriately designed. The gradient with respect to H̃1 is

∇H̃1E(c) = Lavgc(∇φ(c))− 1
λL
PcPcΠc

(
∇φ(c)

)
+ 1
λL
PcΠc

(
φ(c)Dsc

)
.

(10.31.∗)

Proof. Let us note 20 (recalling eqn. (2.8)) that

∇H0E = L∇φ(c)− LDs(φ(c)Dsc) ,
20We use the definition (10.3) of H0.
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so the above equation (10.31.∗) can be obtained by the relation in Theorem 10.27.
Alternatively, we know that

DE(c)(h) = L

∫
c

∇φ(c) · h+ φ(c)(Dsh ·Dsc) ds ;

let f = ∇H̃1E(c) be the H̃1 gradient of E; the equality

DE(c)(h) = 〈h, f〉H̃1 ∀h

becomes∫
c

(L∇φ(c)− avgc(f)) · h+Dsh · (Lφ(c)Dsc− λL2Dsf) ds = 0

imitating the proof of the previous proposition, we obtain (10.31.∗).

We remark a few things.

• Note that the first term in the formula (10.31.∗) is in lRn while the other
two are in DcM .

• Using the kernel K̃λ that was defined in (10.13), we can rewrite

∇H̃1E(c) = LK̃λ ? (∇φ(c)) + 1
λL
PcΠc

(
φ(c)Dsc

)
(10.32)

• The formula for the gradient does not require that the curve be twice
differentiable: we will use this fact to prove an existence result for the
gradient flow, in Theorem 10.44.

10.6 Existence of gradient flows
We recall this definition (that was already presented informally in the introduc-
tion).

Definition 10.33 (Gradient descent flow) Given a differentiable energy E :
M → lR, and a metric 〈, 〉c, let ∇E(c) be the gradient. Let us fix moreover
c0 : S1 → lRn, c0 ∈ M . The gradient descent flow of E is the solution
C = C(t, θ) of the initial value P.D.E.{

∂tC = −∇E(C)
C(0, θ) = c0(θ)

We present an example computation for the geodesic active contour model
on a radially symmetric “image”.

Example 10.34 Let

C(t, θ) = r(t) (cos θ, sin θ) , φ(x) = d(|x|)
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with r, d : lR → lR+, then C is the H̃1 gradient descent iff

r′(t) = − 1
λ2π

(
d(r(t)) + r(t) d′(r(t))

)
.

whereas C is the H0 gradient descent iff

r′(t) = −
(
d(r(t))
r(t)

+ d′(r(t))
)

Indeed,

len(C) = 2πr(t)
φ(C) = d(r(t))

∇φ(x) = x

|x|
d′(|x|) for x 6= 0

∇φ(C) = d′(r(t))(cos θ, sin θ)
avgc(∇φ(C)) = 0
PcΠC∇φ(C) = Pc∇φ(C) = r(t) d′(r(t)) (sin θ,− cos θ)

PcPcΠC∇φ(C) = −r(t)2 d′(r(t)) (cos θ, sin θ)
φ(C)DsC = d(r(t))(− sin θ, cos θ)

Pc(φ(C)DsC) = r(t)d(r(t)) (cos θ, sin θ)

∇H̃1E(C) = Lavgc(∇φ(C))− 1
λL
PCPCΠC

(
∇φ(C)

)
+ 1
λL
PCΠC

(
φ(C)DsC

)
=

= 1
λ2π

(
d(r(t)) + r(t) d′(r(t))

)
(cos θ, sin θ) ;

whereas for the H̃0 gradient descent we have

κN = DssC = − 1
r(t)

(cos θ, sin θ)

N = −(cos θ, sin t)
∇H0E(C) = −φκN + (∇φ(C) ·N)N =

=
(
d(r(t))
r(t)

+ d′(r(t))
)

(cos θ, sin θ) .

Note also that

E(C) = 2π r(t) d(r(t))
∂tE(C) = r′(t)

(
d(r(t)) + r(t)d′(r(t))

)
.

We will show in the following theorems how to prove that H̃1 gradient flows
of common energies are well defined; to this end, we will provide a detailed proof
for the centroid energy E (2.15.∗) discussed in the previous section, and for the
geodesic active contour model [7, 27] (that was presented in Section 2.7); those
proofs illustrates methods that may be used for many other energies.
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10.6.1 Lemmas and inequalities

Let us also prepare the proof by presenting some useful inequalities in three
Lemma.

Definition 10.35 We recall from 3.11 that C0 = C0(S1 → lRn) is the space of
continuous functions, that is a Banach space with norm

‖c‖0 := sup
θ∈[0,2π]

|c(θ)| .

Similarly, C1 = C1(S1 → lRn) is the space of continuously differentiable func-
tions, that is a Banach space with norm

‖c‖1 := ‖c‖0 + ‖c′‖0

where c′(θ) = ∂c
∂θ (θ) is the usual parametric derivative of c.

Lemma 10.36 • We will use repeatedly the two following inequalities. If
a1, a2, b1, b2 ∈ lR then

|a1b1 − a2b2| ≤ |b1|+|b2|
2 |a1 − a2|+ |a1|+|a2|

2 |b1 − b2|
|a1
b1
− a2

b2
| ≤ |b1|+|b2|

2|b1b2| |a1 − a2|+ |a1|+|a2|
2|b1b2| |b1 − b2|

. (i)

• The length functional (from C1 to lR) is Lipschitz, since

len(c1)− len(c2) ≤ 2π‖c′1 − c′2‖0 ; (ii)

• if h1, h2 : S1 → lRn are continuous fields, by (i)

|
∫
c1

h1(s) ds−
∫
c2

h2(s) ds| ≤ π(‖h1‖0 + ‖h2‖0)‖c′1 − c′2‖0 +

+ π(‖c′1‖0 + ‖c′2‖0)‖h1 − h2‖0 ; (iii)

• similarly

|
∫
c1

h1(s) ds−
∫
c2

h2(s) ds| ≤ A‖c′1 − c′2‖0 + ‖h1 − h2‖0 (iv)

where
A := 2π2(‖h1‖0 + ‖h2‖0)(‖c′1‖0 + ‖c′2‖0)

len(c0) len(c1)
. (v)

• Let then Πc be the projection operator (as in definition (10.23.∗)); note
that (Πch)′ = h′; from all above inequalities we obtain that

‖Πc1h1 −Πc2h2‖0 ≤ A‖c′1 − c′2‖0 + 2‖h1 − h2‖0
‖Πc1h1 −Πc2h2‖1 = ‖Πc1h1 −Πc2h2‖0 + ‖(Πc1h1)′ − (Πc2h2)′‖0 ≤

≤ A‖c′1 − c′2‖0 + 2‖h1 − h2‖0 + ‖h′1 − h′2‖0
≤ A‖c1 − c2‖1 + 2‖h1 − h2‖1 . (vi)
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We will now prove the local Lipschitz regularity of the operators Pc(h), Dc(h)
(that were defined in 10.24) in both the two variables h and c. Unfortunately
to prove the theorem 10.40 we will need to also compare the action of Pc for
different values of c; since Pch is properly defined only when h ∈ DcM (and in
general Dc1M 6= Dc2M), we will actually need to study the composite operator
PcΠch.

Lemma 10.37 Let Πc the projector from TcM to DcM (that we defined in
eqn. (10.23.∗)). Let c, c1, c2 be C1 immersed curves, and h, h1, h2 be continuous
fields; then

‖PcΠch‖1 ≤ (2π + 2)‖c′‖0‖h‖0 (10.37.∗)
and

‖Pc1Πc1h1 − Pc2Πc2h2‖1 ≤ P ‖c′1 − c′2‖0 + (10.37.†)
+ Q ‖h2 − h0‖0

where
Q := (1/2 + π)(‖c′2‖0 + ‖c′1‖0) .

and similarly P is the evaluation

P = p
(
‖h1‖0, ‖h2‖0, ‖c′1‖0, ‖c′2‖0, 1/(len(c1) len(c2))

)
of a polynomial p(x1, x2, x3, x4, x5) with constant positive coefficients (that is
explicitly defined in the proof).

Proof. Fix ci immersed, and hi ∈ TciM for i = 1, 2; let Li = len(ci); let

ki := PciΠcihi(s)

for simplicity. We rewrite this in the convolutional form

ki(s) :=
∫
ci

Ki(s− ŝ)hi(ŝ) dŝ =
∫
ci

Ki(ŝ)hi(s− ŝ) dŝ (10.37.‡)

when integrals are performed in arc parameter, and the kernel (following (10.26.†))
is

Ki(s) := − s

Li
+ 1

2
for s ∈ [0, Li]

and Ki is extended periodically. By substituting and integrating on only one
period of Ki,

ki(s) =
∫ s

s−Li

(
1
2
− s− ŝ

Li

)
hi(ŝ) dŝ =

∫ Li

0

(
1
2
− ŝ

Li

)
hi(s− ŝ) dŝ .

We can then prove easily (10.37.∗): indeed by the convolutional representation
(10.37.‡)

|(PcΠch)(t)| ≤ ‖h‖0
∫ len(c)

0

∣∣∣∣− s

len(c)
+ 1

2

∣∣∣∣ ds ≤ len(c)‖h‖0
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and instead, deriving,

|(PcΠch)′(θ)| = |Πch(θ)||c′(θ)| ≤ 2‖h‖0‖c′‖0 .

To prove (10.37.†), we write (10.37.‡) in θ parameter, as was done in the
Definition 10.10; we need the run-length functions li : lR → lR

li(τ) :=
∫ τ

0
|c′i(x)|dx

so that, setting s = li(τ) and ŝ = li(θ) we can write

ki(τ) =
∫ τ

τ−2π

(1
2
− li(τ)− li(θ)

Li

)
hi(θ)|c′i(θ)|dθ

We can eventually estimate the difference |k1(τ)− k2(τ)| by using e.g. the
inequality

|A2B2C2 −A1B1C1| ≤ |A1B1| |C2 − C1|+ |A1C2| |B2 −B1|+ |B2C2| |A2 −A1|

on the difference of the integrands(1
2
− l2(τ)− l2(θ)

L2

)
︸ ︷︷ ︸

A2

h2(θ)︸ ︷︷ ︸
B2

|c′2(θ)|︸ ︷︷ ︸
C2

−
(1

2
− l1(τ)− l1(θ)

L1

)
︸ ︷︷ ︸

A1

h1(θ)︸ ︷︷ ︸
B1

|c′1(θ)|︸ ︷︷ ︸
C1

to obtain that the above term is less or equal than

‖h1‖0 ‖c′2− c′1‖0 + ‖c′2‖0 ‖h2− h0‖0 + ‖h2‖0‖c′2‖0
∣∣∣∣ l2(θ)− l2(τ)L2

− l1(θ)− l1(τ)
L1

∣∣∣∣
since |Ai| ≤ 1/2. In turn (since the formulas defining k1(τ), k2(τ) the parameters
are bound by τ − 2π ≤ θ ≤ τ) then

|A2 −A1| =
∣∣∣∣ l2(τ)− l2(θ)L2

− l1(τ)− l1(θ)
L1

∣∣∣∣ =
∣∣∣∣∣
∫ τ
θ
|c′2(x)|dx
L2

−
∫ τ
θ
|c′1(x)|dx
L1

∣∣∣∣∣ ≤
≤ π

L1 + L2

L1L2
‖c′1 − c′2‖0 + π

‖c′1‖0 + ‖c′2‖0
L1L2

|L1 − L2| ≤

≤ 4π2 ‖c′1‖0 + ‖c′2‖0
L1L2

‖c′1 − c′2‖0

(by equations (ii) and (i) in lemma 10.36). Summarizing

|k1(τ)− k2(τ)| ≤ 2π
(
‖h1‖0 + ‖h2‖0‖c′2‖0 4π2 ‖c′1‖0 + ‖c′2‖0

L1L2

)
‖c′1 − c′2‖0 +

+ 2π‖c′2‖0 ‖h2 − h0‖0 .
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If we derive, k′i(θ) = hi(θ)|c′i(θ)|, so

|k′2(θ)−k′2(θ)| ≤
|h2(θ)|+ |h1(θ)|

2
|c′2(θ)−c′1(θ)|+

|c′2(θ)|+ |c′1(θ)|
2

|h′2(θ)−h′1(θ)| .

Symmetrizing we prove (10.37.†) with

P = p(‖h1‖0, ‖h2‖0, ‖c′1‖0, ‖c′2‖0, 1/L1L2) :=

:= π(‖h1‖0 + ‖h2‖0) + 2π2(‖h2‖0‖c′2‖0 + ‖h1‖0‖c′1‖0)
‖c′1‖0 + ‖c′2‖0

L1L2
+

+ ‖h2‖0 + |h1‖0
2

.

Lemma 10.38 Conversely, let c1, c2 be two C1 immersed curves, and h1, h2
be two differentiable fields; then (by using once again eqn. (i) from the lemma
10.36)

‖Dc1h1 −Dc2h2‖0 ≤
‖c1‖1 + ‖c2‖1

2ε2
‖h1 − h2‖1 + ‖h1‖1 + ‖h2‖1

2ε2
‖c1 − c2‖1

(10.38.∗)
where ε = min(infS1 |c′1|, infS1 |c′2|).

10.6.2 Existence of flow for the centroid energy (2.15.∗)

Theorem 10.40 Let us fix v ∈ lRn, let E(c) = 1
2 |avgc(c) − v|

2; let the initial
curve c0 ∈ C1, then the H̃1 gradient descent flow of E has an unique solution
C = C(t, θ), for all t ∈ lR, and C(t, ·) ∈ C1.

Results of a numerical simulation of the above gradient descent flow are
shown in figure 12 on the following page.

Before proving the theorem, let us comment on an interesting property of
the above gradient flow.
Remark 10.41 The length of the curves len(C(t, ·)) is constant during the
evolution in t.

Proof. Indeed it is easy to prove that ∂t len(C(t, ·)) = 0: the Gâteaux differential
of the length of a curve c is

D(len(c))(h) =
∫
c

(Dsc ·Dsh) ds ;

substituting the value of DsC(t, ·)) from eqn. (10.30.†),

∂t len(C(t, ·)) = D(len(C))(∂tC)

= 1
λL2

∫ 〈
DsC,

(
DsC〈(avgc(C)− v), (C − avgc(C))〉+ α

)〉
ds =

= 1
λL2

〈
(avgc(C)− v),

∫
(C − avgc(C)) ds

〉
+
∫

(DsC · α) ds = 0 .
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C(0, θ) = c0(θ) =
(
cos(θ), sin(θ)(1 + 2 cos(θ)4)

)
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C(0, θ) = c0(θ) =
(
cos(θ), 2 sin(θ)
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Two numerical simulation of the H̃1 gradient descent flow of the centroid energy
E(c) = 1

2 |avgc(c)− v|
2, for two different initial curves c0. The constants were set to

λ = 1/(4π2), v = (2, 2). Steps for numerical discretization were set to ∆t = 1/30,
∆θ = π/64 (on [0, 2π]). Note that plots for t < 0 are shown in a smaller scale.

Figure 12: H̃1 gradient descent flow of the centroid energy. See 10.30 and 10.40.
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We now present the proof of the theorem 10.40.

Proof. We will first of all prove existence and uniqueness of the gradient flow for
small time, using the Cauchy–Lipschitz theorem22 in the space M of immersed
curves, seen as an open subset of the C1 Banach space (see Definition 10.35).
To this end we will prove that c 7→ ∇H̃1E(c) is a locally Lipschitz functional

from C1 into itself. Afterward, we will directly prove that the solution exists for
all times.

So, let us fix c1, c2 ∈ C1 ∩M that are two curves near c0. Let us fix ε > 0 by

ε := inf
θ
|c′0(θ)|/2 .

By “near” we mean that, in all of the following, we will require that ‖ci−c0‖1 < ε,
for i = 1, 2. We will need the following (easy to prove) facts. (In the following,
the index i will represent both 1, 2).

• infθ |c′i(θ)| ≥ ε, so all curves in the neighborhood are immersed.

• Setting a0 := ‖c0‖1 + ε, we have ‖ci‖1 ≤ a0.

• By equation (ii) in lemma 10.36,

len(c0)− 2π‖c0 − ci‖1 ≤ len(ci) ≤ len(c0) + 2π‖c0 − ci‖1

and in particular

2πε ≤ len(ci) ≤ len(c0) + 2πε .

Let fi = ∇H̃1E(ci) be the gradient, whose formula was expressed in (10.30.∗).
We decompose fi using the relation TcM = lRn ⊕DcM , as done previously:

f i = avgci(fi) ∈ lRn , f̃i = f − avgci(fi) ∈ DciM

and obtain

f i = avgci(ci)− v

f̃i = 1
λL2

i

PciΠcihi, where

hi := Dsci〈(avgci(ci)− v), (ci − avgci(ci))〉 , (10.42)

by rewriting (10.30.†) in the notation of this proof.
We will then exploit all the inequalities in the lemmas to prove that

|f1 − f2| ≤ a1‖c1 − c2‖1 , ‖f̃1 − f̃2‖1 ≤ a2‖c1 − c2‖1

for two constants a1, a2 > 0 and all c1, c2 near c0; this effectively proves that

|f1 − f2| ≤ (a1 + a2)‖c1 − c2‖1
22A.k.a. as the Picard–Lindelöf theorem
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that is, ∇H̃1E(c) is a locally Lipschitz functional.
The first term is dealt with equation (iv) in lemma 10.36, whence we obtain

|f1 − f2| = |
∫
c1

c1(s) ds−
∫
c2

c2(s) ds| ≤ a1‖c1 − c2‖1 with a1 := 2a2
0

ε2
.

By repeated applications of the inequalities listed in lemma 10.36, we prove
that, in the designed neighborhood, the following inequalities hold

‖h2 − h1‖0 ≤ a3‖c2 − c1‖1
‖hi‖ ≤ a4

for two constants a3, a4 > 0. So we can choose constants P,Q > 0 such that the
inequality (10.37.†) holds uniformly in the neighborhood, and then

‖Pc1Πc1h1 − Pc2Πc2h2‖1 ≤ P ‖c′1 − c′2‖0 +Q ‖h2 − h1‖0 ≤
≤ (P +Qa3)‖c1 − c2‖1

By using (i) and (ii) from lemma 10.36 once again, we can conclude that

‖f̃1 − f̃2‖1 ≤ a2‖c1 − c2‖1

for a constant a2 > 0. The Cauchy–Lipschitz theorem is now invoked to guarantee
that the gradient descent flow does exist and is unique for small times. Let then
C(t, θ) be the solution, that will exist for t ∈ (t−, t+), the maximal interval.

In the following, given any g = g(t, θ) we will simply write ‖g‖0 instead of

‖g(t, ·)‖0 = sup
θ
|g(t, θ)|

and similarly

‖g‖1 = ‖g‖0 + ‖∂θg‖0 = sup
θ

(|g(t, θ)|+ |∂θg(t, θ)|) ;

we will also write len(C) = len(C(t, ·)) for the length of the curve at time t.
We want to prove that the maximal interval is actually lR, that is, t+ =

−t− =∞. The base and rough idea of the proof is assuming that t+ or t− are
finite, and derive a contradiction by showing that ∇E(C) does not blow up when
t↘ t− or t↗ t+.

More precisely, we will show that, if t− > −∞ then

lim sup
t↘t−

‖∇E(C)‖1 <∞ (∗∗)

this implies that the flow C(t, ·) admits a limit (inside the Banach space C1) as
t→ t−, and then it may continued (contradicting the fact that t− is the lowest
time limit of existence of the flow). A similar result may be derived when t↗ t+

(but we will omit the proof, that is actually simpler).
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One key step in showing that (∗∗) holds is to consider the two fundamental
quantities

I(t) := inf
θ
|∂θC(t, θ)| , N(t) := ‖C‖1

and prove that
lim inf I(t) > 0 , lim supN(t) <∞

when t− > −∞ and t↘ t−. 23. We proceed in steps.

• By remark 10.41, we know that len(C) is constant (for as long as the flow
is defined), and then equal to len(c0).

• During the flow, the value of the energy changes with rate

∂tE(C) = −‖∇H̃1E(C)‖2
H̃1 =

= −|C − v|2 − 1
λ len(C)2

∫
C

〈C − v, C − C〉2 ds

where C is the center of mass of C(t, ·); since

|C − C| ≤ len(C)/2 = len(c0)/2

at any fixed time by (10.4.∗), we can bound

|∂tE(C)| ≤ E(C)(2 + 1/λ)

from which we obtain that E(C) does not blow up, and then |C| does not
blow up as well.

• Let
H := DsC〈(C − v), (C − C)〉 ,

from the above we obtain that H does not blow up as well, since

‖H(t, ·)‖0 ≤ len(c0)
√

2E(C) (10.43)

• The parameterization of the curves changes according to the law

∂t log(|∂θC|2) = 2〈Ds∂tC,DsC〉 = 2H ·DsC

λ len(c0)2

so

|∂t log(|∂θC|2)| ≤
2
√

2E(C)
λ len(c0)

this proves that lim inf I(t) > 0 and lim sup supθ |∂θC(t, θ)| <∞. 24.

23Actually, by tracking the first part of the proof in detail, it possible to prove that all other
constants a1, a2, a3, a4, P,Q may be bounded in terms of these two quantities I(t), N(t)

24As a consequence, ∂θC(t, θ) 6= 0 at all times: curves will always be immersed

78



• So by (10.37.∗)

‖PCΠCH‖1 ≤ (2π + 2)‖C ′‖0‖H‖0

does not blow up as well.

• Since len(C) is constant and both |C| and ‖∂θC‖0 do not blow up, then
‖C‖1 does not blow up.

• Decomposing F = −∂tC = ∇H̃1E(C) (as was done in (10.42)) we write

‖F̃‖1 = 1
λ len(c0)2

‖PCΠCH‖1

and from all above ‖F̃‖1 does not blow up; but also

|F | = |avgC(C)− v| ≤
√

2E(C)

as well; but then ‖∇H̃1E(C)‖1 itself does not blow up, as we wanted to
prove.

10.6.3 Existence of flow for geodesic active contour

Theorem 10.44 Let once again

E(c) =
∫
c

φ(c(s)) ds

be the geodesic active contour energy. Suppose that φ ∈ C1,1
loc (that is, φ ∈ C1

and its derivative is Lipschitz on compact subsets of lRn), let the initial curve be
c0 ∈ C1; then the gradient flow

dc

dt
= −∇H̃1E(c)

exists and is unique in C1 for small times.

We now prove the theorem; in the next subsection we will present some
comments on global existence.

Proof. We rapidly sketch the proof, that is quite similar to the proof of the
previous theorem. We show that ∇H̃1E(c) is locally Lipschitz in the C1 Banach
space (see Definition 10.35). Indeed, since φ ∈ C1,1

loc , the maps

c 7→ ∇φ(c)
c 7→ φ(c)Dsc
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are locally Lipschitz as maps from C1 to C0, so (using Lemmas 10.36 and 10.37)
we obtain that

c 7→ avgc(∇φ(c))

is loc.Lip. from C1 to lRn, and

c 7→ PcPcΠc

(
∇φ(c)

)
c 7→ PcΠc

(
φ(c)Dsc

)
are locally Lipschitz as maps from C1 to C1; combining all together (and using
the Lemma 10.36 again)

∇H̃1E(c) = Lavgc(∇φ(c))− 1
λL
PcPcΠc

(
∇φ(c)

)
+ 1
λL
PcΠc

(
φ(c)Dsc

)
is locally Lipschitz as maps from C1 to C1; so by the Cauchy–Lipschitz theorem
we know that the gradient flow exists for small times.

Remark 10.45 (Gradient descent of curve length) Of particular interest
is the case when φ = 1, that is E = L, the length of the curve. In this case, we
already know that the H0 flow is the geometric heat flow. By 10.25, the H̃1

gradient instead reduces to

∇H̃1L = c− avgc(c)
λL

. (10.45.∗)

So the H̃1 gradient flow constitutes a simple rescaling of the curve about its
centroid (!).

It is interesting to notice that the H1 and H̃1 gradient flows are well-posed
for both ascent and descent while the H0 gradient flow is only well-posed for
descent. This is related to the fact that the H0 gradient descent flow smooths
the curve, whereas the H̃1 gradient descent (or ascent) has neither a beneficial
nor a detrimental effect on the regularity of the curve.

10.7 Regularization of energy vs regularization of flow/metric
Imagine an energy E minimized on curves (numerically sampled to p points).
Suppose it is not satisfactory in applications (it may be ill posed, or not robust
to noise). We have two solutions available.

• Add a regularization term R(c) and minimize E(c)+εR(c) by H0 gradient
descent. The numerical complexity of computing ∇H0R is of order O(p).

• Minimize E(c) by H̃1 gradient descent. The numerical complexity of
computing ∇H̃1E is in the equations in Prop. 10.19; this is of order O(p).

The numerical complexity of the two approaches is similar; but in the second
case we are minimizing the original energy. This can bring evident benefits, as
shown in the following example (originally presented in the 2006 IMA conference
on shape spaces).
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Example 10.46 We consider a region-based segmentation of a synthetic noisy
image, where the energy is the Chan-Vese energy

E(c) =
∫
cin

(I − u)2 dA+
∫
cout

(I − v)2 dA

plus the regularization terms α len(c) for H0 flows.
When flowing according to −∇H0E + ακN and a small value of α > 0, we

obtain the following evolution of the curve, where the curve gets trapped in a
local minima due to noise.

For a larger value of α, the regularization term forces the curve away from
the square shape.

When evolving using −∇H̃1E, the curve captures the correct shape on coarse
scale, and then segments the noisy boundary of the square further.

10.7.1 Robustness w.r.to local minima due to noise

The concept of local depends on the norm.

Definition 10.47 A curve c0 is a local minimum of an energy E iff ∃ε > 0
such that if ‖h‖c0 < ε then E(c0) ≤ E(c0 + h).

Note that Sobolev-type norms dominate H0-type norm:

‖h‖H0 ≤ ‖h‖Sobolev ,

and the norms are not equivalent. As a result the neighborhood of critical points
in Sobolev-type space is different than in H0 space.

We present an experimental demonstration of what “local” means (originally
presented in [57]).

Example 10.48 1. We initialize a contour in a noisy image.
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2. We run the H0 gradient flow on energy

E(c) = Ecv(c) + α len(c),

where Ecv is the Chan-Vese energy. Let’s call the con-
verged contour c0; it is shown in the picture on the right.

3. We adjust c0 at one sample point by one pixel, and call the modification
ĉ0. Note: ĉ0 is an H0 (but also “rigidified”) local perturbation of c0.

4. We run and compare H0, “rigidified,” and Sobolev gradient flows initialized
with ĉ0.

The results are in Figure 13. As we can see, the SAC evolution can escape
from the local minimum that is induced by noise. Surprisingly, in the numerical
experiments, the same result holds for SAC even without perturbing the local
minimum (due to numerical noise).

Many other examples, on synthetic and on real images, are present in [55,
57, 58].

H0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . time → . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

“Rigidified”
(Translation
favored)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . time → . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sobolev
Active

Contours

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . time → . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 13: Comparison of minimization flows when initialized near a local
minimum; see Example 10.48. (From [57] c© 2008 IEEE. Reproduced with permission).
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10.8 New shape optimization energies
Most of what follows was originally presented in [56, 58].

There are many useful active contour energies that cannot be optimized using
H0 gradient flow. There are mainly two reasons why this happens.
• Some energies result in ill-posed H0 flows.

• Some energies result in high-order PDE and are difficult to implement
numerically.

In many cases, we can optimize these energies using Sobolev active contours
and avoid ill-posed problems and reduce order of PDE.

We remark that other gradients (e.g. the “rigidified” active contours of
Charpiat et al. [10]) cannot be used in the examples we will present: the
minimization flows still are ill posed or high order. Similarly global methods
(e.g. graph cuts) cannot deal with these types of energies.

10.8.1 Average weighted length

A simple example that falls in the first category is the average weighted
length energy that we presented in equation (2.12) in the introduction:

E1(c) =
∫
c

φ(c(s)) ds = avgc(φ) ;

this energy was introduced since it does not present the short length bias (that
was discussed in §2.4.2).

Let Lφ =
∫
c
φds and L = len(c) so that E1(c) = Lφ/L, then the gradient is

∇E1 = 1
L
∇Lφ −

Lφ
L2∇L .

We already presented all the calculus needed to compute the H0 and H̃1

gradients of E1 (see Section 2.4.4 and Example 10.31); let us summarize all the
results.
• In the case of H0 gradient descent flow, the second term is ill posed , since
Lφ/L

2 > 0 and ∇H0L is the driving term in the geometric heat flow.
This is also clear from the explicit formula

∇H0E1(c) = [∇φ ·N − κ(φ− avgc(φ))]N (10.49)

since avgc(φ) is the average value of φ, therefore φ− avgc(φ) is negative
on roughly half of the curve; so the second term tries to increase length on
half of curve using a geometric heat flow (and this is ill posed); whereas
the first term ∇φ does not stabilize the flow.

• In the case of the Sobolev gradient, we saw in the proof of Theorem 10.44
that the gradients ∇H̃1Lφ and ∇H̃1L are locally Lipschitz in C1, so, by using
Lemma 10.36 we conclude that the gradient ∇H̃1E1 is locally Lipschitz as
well, hence the gradient flow is well defined.
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10.8.2 New edge-based active contour models

The average weighted length idea can be used to build new energies with inter-
esting applications in tracking.

The traditional edge-based active contour energy is

Eold(c) =
∫
c

φ(c(s)) ds

that has a length shrinking effect, which leads to undesirable local minima. When
using a Sobolev–type norm, we can consider non-shrinking edge-based models,
as in the following examples.

Example 10.50 Let us consider the energy

Enew(c) =
∫
c

φ(c(s))
(
L−1 + αLκ2(s)

)
ds

where

• the first term is edge-detection without shrinking bias (nor regularity),

• and the second term is a kind of elastic regularization (that will be
discussed more in the next section) that is moreover relaxed near edges;

the length terms render the whole energy scale invariant.
The frames in Figure 14 on the following page show initialization and final

results obtained with different norms and energies.

Example 10.51 Let us consider a length increasing edge-based model. In
this case, we maximize the energy

Einc(c) =
∫
c

φ(c(s)) ds− α
∫
c

κ2(s) ds

where φ > 0 is high near edges. We compare numerical results with a typical
edge-based balloon model

Ebal(c) =
∫
c

φ(c(s)) ds− α
∫
R

φ(x) dx

where R is the area enclosed by c. See figure 15 on the next page.

10.9 New regularization methods
Typically, in active contour energies a length penalty is added to obtain regularity
of the evolving contour:

E(c) = Edata(c) + L(c) .

Regularity is obtained since the H0 gradient flow of length is the geometric heat
flow; we are partly relying on the H0 norm’s property to obtain regularity.
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Initial Eold, H
0 Eold, Sobolev Enew, Sobolev

Figure 14: Comparison of segmentations obtained with different energies, as
explained in Example 10.50. (From [58] c© 2008 IEEE. Reproduced with permission).

Figure 15: Left to right we see the initial contour, the minima of Ebal for
α = 0.2, 0.25, 0.4 using H0; the maximum for Einc with α = 0.1 using H̃1

flowing. (From [58] c© 2008 IEEE. Reproduced with permission).
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10.9.1 Elastic regularization

We can now consider an alternative approach for regularity of curve:

E(c) = Edata(c) + α len(c)
∫
c

κ2(s) ds

where α > 0 is a fixed constant. This energy favors regularity of curve, but not
relying on properties of the metric; and the regularization is scale invariant.
Note that the H0 gradient flow of this energy is ill posed.

The numerical results (originally presented in [56]) are in Fig. 16. In all
frames, the final limit of the gradient descent flow is shown; between different
frames, the value of α was increased.

Edata(c) + α len(c)

(H0 gradient descent)

. . . . . . . . . . . .minima for α increasing → . . . . . . . . . . . .

Edata(c) +
α len(c)

∫
c
κ2(s) ds

(Sobolev gradient descent)

Figure 16: Elastic regularization. (From [58] c© 2008 IEEE. Reproduced with permission).

11 Mathematical properties of the Riemannian
space of curves

In this section we study some mathematical properties, and add some final
remarks, regarding the Riemannian manifold of geometric curves, when this is
endowed with the metrics that were presented previously.

11.1 Charts
Let again

M = Mi,f = Immf (S1, lRn)
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be the space of all smooth freely-immersed curves. We will study the manifold

B = Bi,f := M/Diff(S1)

of geometric curves. Since B is an abstract object, we will actually work with
M in everyday calculus. To recombine the two needs, we will identify an unique
family of “small deformations” inside M , that has a specific meaning in B. One
such choice is to restrict the family of infinitesimal motions h to those such that
h(θ) is orthogonal to the curve, that is, to c′(θ).

We already remarked in Remark 4.4 that, if the topology on M is strong
enough to maintain immersions, then the immersed curves are an open subset
of all functions. We moreover represent both curves c ∈ M and deformations
h ∈ TcM as functions S1 → lRn; this is a special structure that is not usually
present in abstract manifolds: so we can easily define “charts” for M .

Remark 11.1 (Charts in Mi,f) Given a curve c, there is a neighborhood Uc
of 0 ∈ TcM such that for h ∈ Uc, the curve c+h is still immersed; then this map
h 7→ c+h is the simplest natural candidate to be a chart of Φc : Uc →M . Indeed,
if we pick another curve c̃ ∈M and the corresponding Uc̃ such that Uc̃ ∩ Uc 6= ∅,
then the equality Φc(h) = c+ h = c̃+ h̃ = Φc̃(h̃) can be solved for h to obtain
h = (c̃− c) + h̃.

To define charts on this Bi,f , we imitate what was done for M .

Proposition 11.2 (Charts in Bi,f) Let Π be the projection from M to the
quotient B. Let [c] ∈ B: we pick a curve c such that Π(c) = [c]. We
represent the tangent space T[c]B as the space of all k : S1 → lRn such that k(s)
is orthogonal to c′(s). Again we can define a simple natural chart Φ[c] by
projecting the chart Φc (defined in 11.1): the chart is

Φ[c](k) := Π(c(·) + k(·))

that is, it moves c(u) in direction k(u); and it is easily seen that the chart does
not depend on the choice of c such that Π(c) = [c]. We can solve Φ[c](k) = Φ[c̃](k̃)
(this is not so easy to prove: see Michor and Mumford [37], or 4.4.7 and 4.6.6
in Hamilton [24]).

11.2 Reparameterization to normal motion
In the preceding proposition we decided to use “orthogonal motion” as distin-
guished chart for the manifold B. This choice leads also to a “lifting”.

Lemma 11.3 Given any smooth homotopy C of immersed curves, there exists
a reparameterization given by a parameterized family of diffeomorphisms Φ :
[0, 1]× S1 → S1, so that setting

C̃(t, θ) := C(t,Φ(t, θ)) ;
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we have that ∂tC̃ is orthogonal to ∂θC̃ at all points; more precisely,

πT̃∂tC̃ = 0 , πÑ∂tC̃ = πN∂tC

(where in last equality is up to reparameterization Φ).

For the proof, see Thm. 3.10 in [67] or §2.5 in [37].
This explains what is commonly done in the level set method, where the

tangent part of the flow is discarded.
It is unclear that this choice is actually the best possible choice for computer

vision application. Consider the following example.

Example 11.4 Suppose that c(θ) = (cos(θ), sin(θ)) is a planar circle. Let
C(t, θ) = c(θ) + vt be an uniform translation of c. Let C̃ be as in the previous
proposition; the Figure 17 shows the two motions. The two motions C and
C̃ coincide in B but are represented differently in M . Which one is best? Both
“translation” and “orthogonal motions” seem a natural idea at first glance.

C C

~

The dotted line represents the trajectory of a point on the curve.

Figure 17: Translation of a circle as a normal-only motion, by Prop. 11.3.

11.3 The H0 distance is degenerate
In §C in [67], or §3.10 in [37], the following theorem is proved.

Theorem 11.5 The H0-induced distance is degenerate: the distance between
any two curves is 0.

This results is generalized in [38] to L2-type metrics of submanifolds of any
codimension.

Here we will sketch the main idea of the proof for a very simple case: it is
possible to connect two segments

c0(u) = (u, 0) , c1(u) = (u, 1)

with a family of “zigzag” homotopies Ck(t, θ) so that theH0 action is infinitesimal
when k →∞. A snapshot of the curves along the homotopy, for t = 0, 1/8 . . . 1
and k = 5, is in Fig. 18 on the following page.
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case t ∈ [1/2, 1]

case t ∈ [0, 1/2]
1/k

t = 3/4

t = 7/8

t = 1

t = 1/2

t = 1/4

t = 1/8

t = 0

t = 1/2

α

∂C
∂v∂C

∂θ

Figure 18: Zig-zag homotopy

In the following, let C = Ck for k large. We recall that the H0 action is

E(C) =
∫ 1

0

∫
C

|∂tC|2 dsdt =
∫ 1

0

∫ 1

0
|∂tC|2|∂θC|dθ dt ;

and we also define

E⊥(C) =
∫ 1

0

∫
C

|πN∂tC|2 dsdt =
∫ 1

0

∫ 1

0
|πN∂tC|2|∂θC|dθ dt (11.6)

(this “action” will be explained in Sec. 11.10). The argument goes as follows.

1. The angle α is (the absolute value of) the angle between ∂θC and the
vertical direction (that is also the direction of ∂tC). Note that

• α = α(k, t), and
• at t = 1/2 it achieves the maximum α(k, 1/2) = arctan(1/(2k)), and
also

• |∂θC| = 1/ sin(α).

2. Now
|πN∂tC|2|∂θC| = |∂tC|2|∂θC| sin2(α) ∼ sin(α)

so if k is large, then the angle α is small and then E⊥(C) < ε ∼ 1/k.

3. We now smooth C just a bit to obtain Ĉ, so that E⊥(Ĉ) < 2ε.

4. We then apply Prop. 11.3 to Ĉ to finally obtain C̃, that moves only in the
normal direction, so

E⊥(Ĉ) = E⊥(C̃) = E(C̃) < 2ε

as we wanted to show.
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11.4 Existence of critical geodesics for Hj

In contrast, it is possible to show that a Sobolev-type metric does admit critical
geodesics.

Theorem 11.7 (4.3 in Michor and Mumford [36]) Consider the Sobolev
type metric

〈h, k〉Gnc =
∫
S1
〈h, k〉+ 〈Dn

s h,D
n
s k〉ds

with n ≥ 1. Let k ≥ 2n+ 1; suppose c, h are in the (usual and parametric) Hk

Sobolev space (that is, c, h admit k-th (weak)derivative, that is square integrable).
Then it is possible to shoot the geodesic, starting from c and in direction h, for
short time.

In §4.8 in [36] it is suggested that the theorem may similarly hold for Sobolev
metrics with length-dependent scale factors.

11.5 Parameterization invariance
LetM be the manifold of (freely)immersed curves. Let 〈h1, h2〉c be a Riemannian
metric, for h1, h2 ∈ TcM ; let ‖h‖c =

√
〈h, h〉c be its associated norm. Let

E(γ) :=
∫ 1
0 ‖γ̇(v)‖

2
γ(v) dv be the action.

Let C : [0, 1]×S1 → S1 be a smooth homotopy. We recall the definition that
we saw in Section 4.4, and add a second stronger version.

Definition 11.8 A Riemannian metric is

• curve-wise parameterization invariant when the metric does not de-
pend on the parameterization of the curve, that is ‖h̃‖c̃ = ‖h‖c when
c̃(t) = c(ϕ(t)) and h̃(t) = h(ϕ(t));

• homotopy-wise parameterization invariant if, for any ϕ : [0, 1] ×
S1 → S1 smooth, ϕ(t, ·) a diffeomorphism of S1 for all fixed t, let C̃(t, θ) =
C(t, ϕ(t, θ)), then E(C̃) = E(C).

It is not difficult to prove that the second condition implies the first. There
is an important remark to note: a homotopy-wise-parameterization-invariant
Riemannian metric cannot be a proper metric.

Proposition 11.9 Suppose that a Riemannian metric is homotopy-wise param-
eterization invariant; if h1, h2 ∈ TcM and h1 is tangent to c at all points, then
〈h1, h2〉c = 0. So the Riemannian metric in this case is actually a semimetric
(and ‖ · ‖c is not a norm, but rather a seminorm in TcM).

Proof. Let C(t, u) = c(ϕ(t, u)) with ϕ(t, ·) be a time-varying family of diffeomor-
phisms of S1. So E(C) = E(c) = 0, that is∫ 1

0
‖c′∂tφ‖2c dt = 0
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so ‖c′∂tφ‖c = 0; but note that, by choosing appropriately φ, we may represent
any h ∈ TcM that is tangent to c as h = c′∂tφ. By polarization, we obtain the
thesis.

11.6 Standard and geometric distance
We also present a remark on distance of curves. The standard distance
d(c0, c1) in M is the infimum of Len(γ) where γ connects c0, c1 ∈ M — but
we are interested in studying metrics and distances in the quotient space B :=
M/Diff(S1).

We suppose that the metric G is “curve-wise parameterization invari-
ant”; then G may be projected to B := M/Diff(S1).

Consider two geometric curves [c0], [c1] ∈ B, and a path γ :
[0, 1]→ B connecting them.
Associate γ to a homotopy C : [0, 1]× S1 → lRn, that connects
a c0 to c1 ◦ φ1.

c1
oφ’

γ’

c
0

Oc

Definition 11.10 (geometric distance) dB is the infimum of the length Len(C)
in the class of all homotopies C connecting the curve c0 to a reparameteriza-
tion c1 ◦ φ of c1.

This implements the quotienting formula that we saw in Definition 3.42 (in this
case, the group is G = Diff(S1)).

Note that we are abusing notation: dB is not a distance in the space M ; it is
a semidistance, since the distance between c and a reparameterization c ◦ φ is
zero.

11.7 Horizontal and vertical space
Consider a metric G (curve-wise parameterization invariant) on M . Let Π
once again be projection from M := Immf (S1) to the quotient B = Bi,f =
M/Diff(S1).

We present a list of definitions (see also the figure 19 on the next page).

Definition 11.11 • The orbit is Oc= [c] = {c ◦ φ | φ} = Π−1({c}).

• The vertical space Vc is the tangent to Oc:

Vc := TcOc ⊂ TcM

that can be explicitly written as

Vc := {h = b(s)c′(s) | b : S1 → lR}

i.e. all the vector fields h where h(s) is tangent to c.
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• The horizontal space Wc is the orthogonal complement inside TcM

Wc := V ⊥c .

Note that Wc depends on G, but Vc does not.

W

c

M O
c

c
V

c

Figure 19: The action of Diff(S1) on M . The orbits Oc are dotted, the spaces
Wc and Vc are dashed.

The figure 20 may also help in understanding. The whole orbit Oc is projected
to [c]. The vertical space Vc is the kernel of DΠc, so it is projected to 0.

W
c

c

c

Oc

V

[c]

M

B

Π

Figure 20: The vertical and horizontal spaces, and the projection Π from M to
B.

11.8 From curve-wise parameterization invariant to homotopy-
wise parameterization invariant

The following results hold under reasonable hypotheses on the metric G.25.
25We will not dwelve in depicting the general hypotheses, since we just aim to give an

overview of the theory; we will though, case by case, present references to how the results can
be proven for the metrics discussed in this paper, and in particular the Sobolev-type metrics.
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Definition 11.12 The horizontally projected metric G⊥ is defined by
〈h, k〉G⊥,c := 〈h̃, k̃〉G,c (11.12.∗)

where h̃, k̃ are the projections of h, k to Wc.
Proposition 11.13 Equivalently

‖h‖G⊥ = inf
b
‖h+ bc′‖G (11.13.∗)

where the infimum is in the class of smooth b : S1 → lR.

Proof. We sketch the proof.26.Indeed by the projection theorem,
inf
b
‖h+ bc′‖G = ‖h̃‖G

where h̃ is the projections of h to Wc. By polarization we obtain (11.12.∗).
It is easy to prove that G⊥ is curve-wise parameterization invariant, but moreover
Proposition 11.14 G⊥ is homotopy-wise parameterization invariant.

Proof. Let C̃(t, θ) = C(t, ϕ(t, θ)), then
∂tC̃ = ∂tC + C ′ϕ′

so at any given time t
‖∂tC̃(t, ·)‖G⊥ = ‖∂tC + C ′ϕ′‖G⊥ = ‖∂tC‖G⊥

by eqn. (11.13.∗), where the terms RHS are evaluated at (t, ϕ(t, ·)); since G⊥ is
curve-wise parameterization invariant, then

‖∂tC̃(t, ·)‖G⊥ = ‖∂tC(t, ·)‖G⊥ .

Consequently,
Corollary 11.15 G is homotopy-wise parameterization invariant if and only if

‖h‖G = ‖h+ bċ‖G
for all b.

So we understand/study/design the metric G on B by:
1. choose a metric G on M that is curve-wise parameterization invariant

2. G generates the horizontal space W = V ⊥

3. project G on W to define G⊥ that is homotopy-wise parameterization
invariant.

In the first step, we choose G not to be homotopy-wise parameterization
invariant, and to be a metric; this is useful also in numerical methods to compute
geodesics, as we will explain in the following.

26Note that this proof needs the projection theorem, and this in general would need some
strong hypotheses on G and on M ; anyway it does hold for Sobolev-type metrics, see §4.5 in
[36]
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11.8.1 Horizontal G⊥ as length minimizer

As we defined in 11.10, to define the distance we minimize the length of the
paths γ : [0, 1]→ M that connect a curve c0 to a reparameterization c1 ◦ φ of
the curve c1. Consider the following sketchy example.

Example 11.16 Consider two paths γ1 and γ2 connect-
ing c0 to reparameterizations of c1. Recall that the space
Wc is orthogonal to the orbits, the space Vc is tangent to
the orbits. The path γ1 (that moves in some tracts along
the orbits, with γ̇1 ∈ Vγ) is longer than the path γ2.

The above example explains the following lemma.
c

c1

o φ
1

oφ’

W
c

c

c

c
0

O
c
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γ
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1

2

Lemma 11.17 1. Let C̃(t, θ) = C(t, ϕ(t, θ)) where ϕ(t, ·) is a diffeomorphism
for all fixed t. Minimize

min
ϕ

EG(C̃)

Then at the minimum C̃∗, ∂tC̃∗ is horizontal at every point, and EG(C̃∗) =
EG⊥(C̃∗).

2. So the distance can be equivalently computed as the infimum of LenG⊥ or
of LenG; and distances are equal, dG⊥ = dG.

The proof is based on the validity of “the lifting Lemma” :

Lemma 11.18 (lifting Lemma) Given any smooth homotopy C of immersed
curves, there exists a reparameterization given by a parameterized family of
diffeomorphisms Φ : [0, 1]× S1 → S1, so that setting

C̃(t, θ) := C(t,Φ(t, θ))

we have that ∂tC̃ is in the horizontal space WC at all times t.

For the metric H0, this reduces to lemma 11.3 in this paper; for Sobolev-type
metrics, see §4.6 in [36].

Note that a more general Lemma can be stated for Finsler metrics.

11.9 A geometric gradient flow is horizontal
Proposition 11.19 If E is a geometric energy of curves 27, then ∇E is hori-
zontal.

27That is, E is invariant w.r.to reparameterizations
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Proof. Let c be a smooth curve; suppose for simplicity (and with no loss of
generality) that it has len(c) = 2π and that it is parameterized by arc parameter,
so that |c′| ≡ 1 and c′ = Dsc. Let b : S1 → lR be smooth, and define φ :
lR × S1 → S1 by solving the b flow, that is the ODE

∂tφ(t, θ) = b(φ(t, θ))

with initial data φ(0, θ) = θ. Let C(t, θ) = c(φ(t, θ)), note that

∂tC(t, θ) = b(φ(t, θ))c′(φ(t, θ))

then E(C) = E(c), so that (deriving and setting t = 0)

∂tE(C) = 0 = 〈∇E(c), bc′〉

we conclude by arbitrariness of b.

11.10 Horizontality according to H0

Proposition 11.20 The horizontal space Wc w.r.to H0 is

Wc := {h : h(s) ⊥ c′(s)∀s}

that is the space of vector fields orthogonal to the curve.

So Prop. 11.19 guarantees that the H0 gradients of geometric energies have
only a normal component w.r.to the curve — and this couples well with level set
methods.

The horizontal version of H0 is〈
h1, h2

〉
H0,⊥

:=
∫
S1
πNh1 · πNh2 ds (11.21)

where πNh1(s) is the component of h1(s) that is orthogonal to c′ (as was defined
in Section 7.1); note that the action of this (semi)metric was already presented
in eqn. (11.6).

So a good paradigm is to think at the metric H0 as∫
S1 h1 · h2 ds on M ,∫

S1 πNh1 · πNh2 ds on B.

Remark 11.22 The horizontal space Wc is isometric (thru DΠc) with the
tangent space T[c]B: this implies that we may decide to use Wc and Πc as a
“local chart” for B. If the metric is G = H0, this brings us back the chart 11.2;
with other metrics, this process instead defines a novel choice of chart.

The same reasoning above holds for the HA metric (from Sec. 9.2), and for
the Finsler metrics F 1 and F∞ (from Section 7); in this latter case, we already
presented the horizontally projected version of the metrics.

For all above reasons, it is common thinking that “a good movement of a
curve is a movement that is orthogonal to the curve”. But, when using a different
metric (as for example, the Sobolev-type metrics) the above is not true anymore.
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11.11 Horizontality according to Hj

Horizontality according to Hj is a complex matter. To study the horizontally
projected metric, we need to express the solution of

inf
b
‖h+ bc′‖Hj

in closed form, and this needs (pseudo)differential operators: see [36] for details.
We just remark that in this case, “a good movement of a curve is not necessarily
a movement that is orthogonal to the curve.”

11.12 Horizontality is for any group action
In the above we studied the horizontality properties of the quotient B =
M/Diff(S1). But the theory works in general for any other quotient. So we may
apply the same study and ideas to further quotients (such as B/E(n)).

11.13 Momenta
What follows comes from §2.5 in Michor and Mumford [36].

Consider again the action of a group G on a Riemannian manifold M (as
defined in Sect. 3.8). Most groups that act on curves are smooth differentiable
manifolds themselves, and the group operations are smooth: so they are Lie
groups. In our cases of interest, the actions are smooth as well.

We want to study some differentiable properties of the action g ·m; using
the rule (3.40.∗), we see that we can restrict to studying the case e ·m, where
e ∈ G is the identity element.

11.13.1 Conservation of momenta

Given a curve c ∈ M , and a tangent vector ξ ∈ TeG (where TeG is the Lie
algebra of G), we derive the action, for fixed c and e “moving” in direction ξ;
the result of this derivative is a ζ = ζξ,c ∈ TcM (depending linearly on ξ). This
direction ζ is intuitively “the infinitesimal motion of c, when we infinitesimally
act in direction ξ on c”.

To exemplify the above process, we provide a simple toy example.

Example 11.23 (Rotation action on the plane) The group of 2D rotations
G = lR/(2π) (the real line modulus 2π, with the + operation) acts on the plane,
as follows

G × lR2 → lR2

g,m 7→ g ·m = Rgm

with
Rg :=

(
cos g − sin g
sin g cos g

)
.

Since TeG = lR, there is only one direction in the tangent to G, hence the
derivative in direction ξ = 1 is just the standard derivative d/dg; similarly
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T lR2 = lR2; by deriving the action in point g = e = 0 (the identity element), we
obtain that

ζ1,m = Jm

with
J :=

(
0 −1
1 0

)
.

Note that Jm is the vector (normal to m) obtained by rotating m of an angle π/2
counterclockwise. The physical interpretation is that, when rotating the plane in
counterclockwise direction with speed ξ = 1, each point m will move with velocity
ζ = Jm.

In the above toy example, the result ζ is vector; but in the case of immersed
curves M , since ζ ∈ TcM , then ζ = ζ(θ) : S1 → lRn is a vector field.

We then recall a very interesting condition by Emmy Noether

Theorem 11.24 Suppose that the Riemannian metric 〈·, ·〉c on M is invariant
w.r.to the action of G: this is equivalent to saying that the action is an isometry.
Let γ(t) be a critical geodesic: then〈

ζξ,γ(t), γ̇(t)
〉
γ(t)

(11.24.∗)

is constant in t (for any choice of ξ ∈ TeG).

The quantity (11.24.∗) is called “the momentum of the action”.
As an alternative interpretation, note that the vectors ζ that are obtained

by deriving the action are exactly all the vectors in the vertical spaces Vc of
the corresponding action G (since ζ are infinitesimal motions inside the orbit).
Recall that h ∈ TcM is horizontal (that is, h ∈ Wc) iff it is orthogonal to Vc
〈ζ, h′〉 = 0 for all ζ ∈ Vc. So, as corollary of Emmy Noether’s theorem, we obtain
that

Corollary 11.25 if a geodesic is shot in a horizontal direction γ̇(0), then the
geodesic will be horizontal for all subsequent times.

The following are examples of momenta that are related to the actions on
curves (that we saw in Example 4.6).

Example 11.26 • The rescaling group is represented by lR+, that is one
dimensional, so there is only one tangent direction ξ = 1 in lR+. The
action is l, c 7→ lc, so there is only one direction, that is ζ = c.

• The translation group is represented by lRn, that is a vector space, so the
tangent directions are ξ ∈ lRn; the action is ξ, c 7→ ξ + c; then ζ = ξ (and
note that this is constant in θ).

• The rotation group is represented by orthogonal matrixes, so we set G =
O(n); the group identity e is the identity matrix; the action is matrix-
vector multiplication A, c(θ) 7→ Ac(θ); the tangent TeG is the set of the
antisymmetric matrixes B ∈ lRn×n; then ζ = Bc.
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• The reparameterization group is G = Diff(S1); a tangent vector is a scalar
field ξ : S1 → lR; the action is the composition φ, c 7→ c ◦ φ; we in the end
have that

ζ(θ) = ξ(θ)c′(θ)
(where c′ = Dθc) that is, ζ is a generic vector field parallel to the curve.

For the H̃1 metric, this implies the following properties of a geodesic path γ(t).

Proposition 11.27 • Scaling momentum:

〈γ, γ̇〉H̃1 = avgc(γ) · avgc(γ̇) + λL2
∫
Dsγ ·Dsγ̇ ds = constant.

• Linear momentum: avgc(γ̇) is constant, since, for all ξ ∈ lRn,

〈ξ, γ̇〉H̃1 = ξ · avgc(γ̇) = constant;

since ξ is arbitrary, this means that avgc(γ̇) is constant in t.

• Angular momentum: for any antisymmetric matrix B ∈ lRn×n,

〈Bγ, γ̇〉H̃1 = (Bavgc(γ)) · avgc(γ̇) + λL2
∫

(BDsγ) · (Dsγ̇) ds = constant.

• Reparameterization momentum: for any scalar field ξ : S1 → lR, setting

ζ(θ, t) = ξ(θ)γ′(θ, t)

we get

〈ζ, γ̇〉H̃1 = avgc(ξγ′) · avgc(γ̇) + λL2
∫
Ds(ξγ′) ·Dsγ̇ = constant;

integrating by parts,

avgc(ξγ′) · avgc(γ̇)− λL2
∫

(ξγ′) ·Dssγ̇ = constant;

since ξ is arbitrary, this means that

γ′ · avgc(γ̇)− λL2γ′ ·Dssγ̇

is constant in t, for any θ ∈ S1.
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90, 93

curves
up to pose, 50

cutlocus, 47

de la Vallée-Poussin, 67, 68
degenerate, 88
derivation with respect to the arc pa-

rameter, 5, 58, 66
diffeomorphism, 4, 25
differentiable manifold

abstract, 25
submanifold, 26

dimension, 25
Dirac’s delta, 31, 67
directional derivative, 13, 16, 25, 31
distance, 20, 28
distance function, 7, 8, 41, 43
distance-based average, 9, 40
distribution, 24, 31
doubly traversed circle, 33
dual space, 24

edge detection, 11
edge-based, 11, 12, 15, 84
Eells, 30
elastic regularization, 84
elastica, 64
Elworthy, 30
embedded curves, 33
embedding theorems, 26
Emmy Noether, 97
empirical principal component analysis,

9
energy, 5, 27

of a path, 27
equivalence classes, 4
equivalence relation, 32

Euclidean
distance, 21
invariance, 36, 59

Euclidean group, 34, 97
Euclidean norm, 5
evaluation functional, 31
exponential map, 10, 29
external skeleton, 47

fattened set, 42
Finsler metric, 28
Fréchet mean, 9, 40
Fréchet distance, 49, 60
Fréchet manifolds, 26
Fréchet space, 22, 23
freely immersed curve, 33

Gâteaux differentiable, 24, 31
Gâteaux differential, 13, 14, 16, 24, 24,

34, 68
of the length, 74

Gaussian, 12
geodesic active contour, 12, 68–70, 79
geodesic distance, 52
geodesic ray, 40
geometric, 4, 58
geometric active contour, 18, 19
geometric curves, 4, 35
geometric distance, 91
geometric energy, 94
geometric functional, 4, 5
geometric heat flow, 14, 16, 83, 84
geometric oriented curves, 4
gradient ∇E(c), 31
gradient descent

for curve length, 14
gradient descent flow, 11, 13, 69
gradient descent flows, 11
Grassmanian manifold, 55
group action, 32, 96

on curves, 34
group operation, 4

Hadamard, 30
Hausdorff, 23
Hausdorff distance, 8, 42
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heat equation, 15
Hilbert space, 22
homeomorphism, 20, 25
homotopy, 3
homotopy-wise parameterization invari-

ant, 90, 93
Hopf, 30, 40, 41
horizontal space, 92, 95
horizontality, 90
horizontally projected metric, 93

ill-posed, 15, 17, 19, 83, 83, 86
image of the curve, 8, 33, 43
image segmentation, 11
immersed curve, 3
immersed curves, 33
implicit function theorem, 26
induced geodesic distance, 39
inflationary term, 15
integral length, 27, 40
integration by arc parameter, 5, 12
invariance

Euclidean, 36, 59
parameterization, 36, 59
rescaling, 36, 59
rotation, 36, 59
translation, 36, 59

invariant w.r.to the action of the group,
32

Karcher mean, 9, 40
Karhunen-Loève theorem, 9
kernel, 61

l.c.t.v.s., 22, 24–26
landmark, 8
Lebesgue measure, 22
length, 5, 27, 39
length increasing, 84
length shrinking effect, 15, 84
level set, 44
level set averaging, 9
level set method, 11, 15, 19, 62, 88, 95
Lie algebra, 96
Lie groups, 96
lifing lemma, 94

for H0, 87
locally compact, 40
locally-convex topological vector space,

22

manifold of (parametric) curves, 3
matrix, 34, 46

antisymmetric, 97, 98
orthogonal, 34, 97

mean curvature, 6
measurable lifting, 52
measurable representation, 52
metric space, 20
metrizable, 23
minimal geodesic, 29, 29, 40
momentum, 97

angular, 98
linear, 98

motion by mean curvature, 14

neighborhood, 81
Noether, Emmy, 97
norm, 21, 27
normal vector, 6

objective function, 5
open sets, 19
orbit, 32, 91
orthogonal

decomposition of deformation, 65

parameterization
invariance, 36, 59

curve-wise, 90
homotopy-wise, 90

parametric or landmark averaging, 8
path-metric, 40
pathological, 18, 88
paths, 3
PCA, 9
Picard–Lindelöf theorem, 76
planar curves, 3
polar change of coordinates, 46
pose, 50
preshape space, 35, 51
primitive operator, 66
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principal component analysis, 9
principal variation, 9
prior information, 17, 17
probability measure, 7, 31
projection, 32
projection operator, 66, 71

quotient, 32
quotient distance d̂, 53
quotient space, 4

random processes, 9
random vector, 9
region based energies, 12
region-based, 11, 12, 81
removing, 45
reparameterization, 4, 98
rescaling, 34, 80, 83, 97

invariance, 36, 59
Riemannian metric, 27
rigidified norm, 58
rigidified norms, 56
Rinow, 30, 40, 41
rotation, 34, 97

invariance, 36, 59
rotation index, 50
run-length function, 61, 73

SAC, 59
scalar product, 5, 27
scale invariant, 59, 84, 86
segmentation, 81
semidistance, 20, 91
semimetric, 90
seminorm, 21, 90
set symmetric difference, 8
set symmetric distance, 8
shape, 17
shape analysis, 3, 7, 60
shape optimization, 2, 19, 60
shape space, 2, 35, 37–39, 44

of curves up to pose, 50
categories of —, 35

shooting geodesics, 29
short length bias, 15, 83
signed distance function, 7

signed distance level set averaging, 9
signed scalar curvature, 6
smooth functions, 23
Sobolev active contour, 59
Sobolev space, 23, 90
Sobolev-type metrics, 58
space of non-translating deformations,

66
space of translations, 66
special rotation, 34
square root lifting, 54
standard distance, 91
Stiefel manifold, 55
stochastic processes, 9
submanifold, 26

tangent bundle, 26
tangent space, 3, 26
tangent vector, 5
topological hyperspace, 41
topological space, 19
topology, 19
total variation length, 39, 40
translation, 34, 97

invariance, 36, 59

up to pose, 50

vertical space, 91

winding number, 50
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