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Abstract. We study the geodesics in a planar chessboard structure with two values 1
and β > 1. The results for a fixed structure allow us to infer the properties of the Finsler
metrics obtained, with an homogenization procedure, as limit of oscillating chessboard
structures.

1. Introduction

In this paper we deal with optical paths in a dioptric material with parallel geometry
and a chessboard structure on transversal planes. Further to a bidimensional reduction,
we fix the optical features of the composite material in terms of its refractive index: given
β > 1, let us define on [0, 2)× [0, 2) the function

(1) aβ(x, y) =

{
β, if (x, y) ∈ [(0, 1)× (1, 2)] ∪ [(1, 2)× (0, 1)],
1, otherwise,

and extend it by periodicity to a function defined on R2 which we still denote by aβ.
Hence, normalizing to 1 the speed of light in the vacuum, light travels in the dioptric

material with a speed 1/aβ.
Since we are dealing with a system employing only refraction, Fermat’s principle dictates

that the optical paths between two points minimize the optical path length, which coincides
with the time spent. Thus, in an homogeneous material, where the speed of light is
constant, the optical path is a segment. Moreover, Fermat’s principle leads to Snell’s law
of refraction, which completely describes the optical paths in layered materials (see [5] for
a comprehensive introduction on the principles of optics). The explicit description of the
optical paths in the chessboard structure becomes harder since, for example, no necessary
condition prescribes their behaviour at corners.

From a geometrical viewpoint, we are interested in the description of the geodesics in the
Riemannian structure (R2, aβ), that hereafter will be called standard chessboard structure.
We shall refer to light squares or to dark squares, when, respectively, aβ = 1 or aβ = β.

In the mathematical model, a virtual path emanated from the origin is a solution
u : [0, T ] → R2 to the differential inclusion

(2)

{
u′(t) ∈ Gβ(u(t)), 0 ≤ t ≤ T,

u(0) = 0 ,

where the set–valued map (with nonconvex values) Gβ is defined by

Gβ(x, y) =
1

aβ(x, y)
∂B1(0), (x, y) ∈ R2
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(see e.g. [3] for an introduction to differential inclusions).
Fermat’s Principle states that a ray of light from O to ξ is a solution of the minimum

time problem with target ξ

(3) Tβ(ξ) = inf{T ≥ 0; ∃ u(·) solution of (2), with u(T ) = ξ} .

In [7] it is proved that the infimum in (3) is reached. Moreover, if u(·) is a solution of (2)
satisfying u(T ) = ξ, then the optical length of the curve Γ = {u(t); 0 ≤ t ≤ T} is

Lβ(Γ) =
∫ T

0
aβ(u(t)) |u′(t)| dt = T.

Then optical paths are geodesic curves in the Riemannian structure (R2, aβ). We underline
again that the global minimization procedure considers only refracted rays, excluding all
reflected rays, because a reflected ray is never a global geodesics. Hence our results have
a reasonable physical meaning either if the number of interfaces traversed in the periodic
media is not very high, or for β near to 1, since in both cases the reflected light can be
neglected. Anyhow the results are intended as a depiction of curves of minimal length in
the Riemannian structure (R2, aβ).

A starting point is the elementary observation that, for β > 2, any geodesic joining two
points in the light material (i.e. in the set {aβ = 1}) is a “light path”, i.e. it never crosses
the dark material. With little more work it is not difficult to prove the same conclusion if
β >

√
2, provided that the endpoints of the geodesic have integer coordinates. Moreover,

the value β =
√

2 is an optimal threshold in this class of geodesics, since the diagonal of
a dark square is a geodesic for every β ≤ √

2.
In this paper we obtain a perhaps surprising result, focusing our attention to geodesics

joining two points with coordinates (2n + j, j), n, j ∈ Z, that we call light vertices. For
β ≥ √

3/2 we depict explicitly the geodesics joining the origin to a light vertex. As a
consequence, we prove that the threshold value for the minimality of light paths is given
by βc

0 ∈ (
√

3/2,
√

2), which is exactly the value of β such that the optical path joining
O with the light vertex (3, 1) has the same length (2 +

√
2) of the optimal light paths.

More precisely, we show that for β > βc
0 the geodesics are optimal light paths, whereas for√

3/2 < β < βc
0 the minimal curves are constructed concatenating the maximal number

of translations of the optical path joining O with (3, 1), with segments either on the sides
of the squares or on light diagonals.

For 1 < β <
√

3/2 the characterization of the geodesics seems to be a hard problem,
for reasons that will be clarified in Section 5. Anyhow, we are able to compute the optical
paths joining the origin to a light vertex in a small cone {0 ≤ K y ≤ x}, where K = K(β)
is an odd positive integer, whose value diverges to +∞ as β approaches 1.

The knowledge of the minimal length of curves joining the origin to light vertices in the
chessboard structure is enough to characterize the so-called homogenized model. Namely,
the results described above give information about the optical paths in an inhomoge-
neous dioptric material whose observed refractive index, at a mesoscopic level, is given
by the chessboard structure, that is the observed refractive index at a given scale ε > 0
is aε

β(x, y) = aβ (x/ε, y/ε). We are interested in the behavior of the optical length of
geodesics when ε → 0.
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We already know that, at the scale ε, a virtual path emanated from the origin is a
solution u : [0, T ] → R2 of the differential inclusion

(4)





u′(t) ∈ 1
aε

β(u(t))
∂B1(0), 0 ≤ t ≤ T,

u(0) = 0 ,

and Fermat’s Principle states that a ray of light from O to ξ is a solution of the minimum
time problem with target ξ

(5) T ε
β(ξ) = inf{T ≥ 0; ∃ u(·) solution of (4), with u(T ) = ξ} .

We are interested in the characterization of the limit, as ε → 0, of the minimum time
problems (4)–(5).

The minimum time problems can be rephrased in terms of minimum problems of the
Calculus of Variations. Let us denote by Lε

β the length functional in the chessboard
structure corresponding to aε

β, that is

Lε
β(u) =

∫ 1

0
aε

β(u(t)) |u′(t)| dt , u ∈ AC([0, 1],R2) ,

and by dε
β(0, ξ) the distance between O and ξ in such a structure, that is

(6) dε
β(0, ξ) = inf

{
Lε

β(u) : u ∈ AC([0, 1];R2) s.t. u(0) = 0, u(1) = ξ
}

.

If u(·) is a solution of (4) satisfying u(T ) = ξ, then T equals the optical length of the
curve Γ = {u(t); 0 ≤ t ≤ T} so that

(7) T ε
β(ξ) = dε

β(0, ξ), ξ ∈ R2.

The advantage of this formulation is that the asymptotic behavior of dε
β can be discussed

in terms of Γ–convergence of the functionals F ε
β (see e.g. [6] for an introduction to Γ–

convergence). In [2] it was shown that the sequence (Lε
β) Γ–converges in AC([0, 1],R2)

(w.r.t. the L1 topology) to the functional

Lhom
β (u) =

∫ 1

0
Φβ(u′(t)) dt , u ∈ AC([0, 1],R2) ,

where Φβ : R2 → [0,+∞) is a convex, positively 1-homogeneous function, such that |ξ| ≤
Φβ(ξ) ≤ β|ξ| for every ξ ∈ R2. As a consequence, Φβ turns out to be a homogeneous
Finsler metric in R2 (see e.g. [4] for an introduction to Finsler geometry).

In [1] it is shown that Φβ is not a Riemannian metric in R2 for every β > 1. In this
paper we shall refine this result proving that the optical unit ball {Φβ ≤ 1} is neither
strictly convex nor differentiable (see Theorem 6.4 and Corollary 6.5 below).

Since Φβ is characterized by

Φβ(ξ) = lim
ε→0+

dε
β(0, ξ) ,

then the limit of the minimum time problems (4)–(5) is given by

Tβ(ξ) = inf{T ≥ 0; ∃ u(·) such that Φβ(u′(t)) = 1, u(0) = 0, u(T ) = ξ} = Φβ(ξ) .

This is what we have called homogenized model related to the chessboard structure.
Since Φβ is positively 1-homogeneous, it is completely determined by the geometry of the

optical unit sphere {Φβ = 1}, which is, in some sense, a generalized geometric wavefront
with source point located at O. Moreover, due to elementary symmetry properties, it is
enough to describe the set {Φβ = 1} ∩ {0 ≤ y ≤ x}.
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Starting from our results on chessboard structures, we obtain that, if β ≥ βc
0, then the

homogenized metric is

(8) Φβ(x, y) = (
√

2− 1)min{|x|, |y|}+ max{|x|, |y|} , ∀ (x, y) ∈ R2 ,

and the geometric wavefront {Φβ = 1} is the regular octagon inscribed in the unit circle,
whose vertices lie on the coordinate axes and on the diagonals. This result generalizes
the trivial remark concerning the case β ≥ 2 (see [6]). On the other, we obtain that
the octagonal geometry of the wavefront breaks for β = βc

0, and the optical unit sphere
becomes an irregular polygon with sixteen sides for

√
3/2 ≤ β < βc

0 (see Figure 11). These
are two of the main results of our paper; we refer to Theorem 6.3 below for their precise
statement.

For 1 < β <
√

3/2 we will be able to compute the optical unit ball in the two small cones
{K |y| ≤ |x|} and {K |x| ≤ |y|}, where K = K(β) is the odd positive integer introduced
above for the chessboard structure. More precisely, we shall show that in these regions
the boundary {Φβ = 1} is piecewise flat with corners at the points (1, 0), (0, 1), (−1, 0),
and (0,−1) (see Theorem 6.4). As a consequence, the optical unit ball {Φβ ≤ 1} is neither
strictly convex nor differentiable.

We conclude this introduction with a warning on the physical interpretation of our
results concerning the homogenized model. First of all, the geometrical optics approxi-
mation is valid if the lengthscale ε is much greater than the wavelength of light. If ε is
of the same order of magnitude of the wavelength, then we fall in the domain of photonic
crystals optics, for which the full system of Maxwell equations must be considered. On
the other hand, even in the range of geometric optics, our global minimization procedure
considers only refracted rays, excluding all reflected rays. Since, at a macroscopic level,
the number of interfaces traversed in the periodic media can be very high, the reflected
light cannot in general be neglected.

In the paper the following notation will be used.

• [[P, Q]]: closed segment joining P,Q ∈ R2

• ]]P, Q]] = [[P,Q]] \ {P}, [[P, Q[[ = [[P, Q]] \ {Q}
• [[P1, P2, . . . , Pn]]: polygonal line joining the ordered set of points P1, P2, . . . , Pn.
• btc = max{k ∈ Z : k ≤ t}.
• fs =

∂f

∂s
: partial derivative of a function f with respect to s

• S(A,B): Snell path joining A to B (defined in Section 2)
• Lβ(Γ) = L1

β(Γ): length of Γ in the standard chessboard structure (optical length).

2. Snell paths

Let us consider the flat Riemannian structure (R2, aβ), where

aβ(x, y) =

{
1 if bxc is even,

β if bxc is odd ,
β ∈ R, β > 1 .

Note that this structure corresponds to a composite medium whose structure is made
by alternate vertical strips of light and dark material.

It is well known that for every pair A = (xA, yA), B = (xB, yB) there exists a unique
curve of minimal length (the geodesic curve) joining A to B, which is an affine path in
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Figure 1. A Snell path in the layered material and the equivalent Snell
path with a single interface.

every vertical strip {bxc = k}, k ∈ Z. Moreover, at every interface between two strips, the
change of slope is governed by the Snell’s Law of refraction

(9) sin θ1 = β sin θ2 ,

where θ1 and θ2 are the angles of incidence with the interface from the light strip and the
dark strip, respectively (see, e.g., [5, §3.2.2] or [8, §3.4]).

In the sequel, this geodesic curve will be called the Snell path joining A and B and will
be denoted by S(A,B). In order to fix the ideas, we shall always assume that xA < xB,
and yA ≤ yB. We shall refer to the positive quantity xB −xA as the thickness of the Snell
path.

Let p, q ≥ 0 be, respectively, the thickness of the light and of the dark zone crossed by
the path S(A,B), so that xB − xA = p + q, and let h be the vertical height h = yB − yA.
Since h = p tan θ1 + q tan θ2 (see Figure 1), and (9) holds true, then σ̂(p, q, h) = sin θ1 is
implicitly determined in term of p, q and h by the constraint

(10)
p σ̂√
1− σ̂2

+
q σ̂√

β2 − σ̂2
= h .

Clearly, σ̂(p, q, h) is a strictly decreasing function w.r.t. p and q, while it is a strictly
increasing function w.r.t. h.

Finally, the optical length of the Snell path S(A,B), given by p/ cos θ1 +βq/ cos θ2, can
be expressed in terms of p, q and h taking again into account (9):

(11) L(p, q, h) :=
p√

1− σ̂(p, q, h)2
+

β2 q√
β2 − σ̂(p, q, h)2

.

Lemma 2.1. Let σ̂ and L be defined by (10) and (11) respectively. Then

Lp(p, q, h) =
√

1− σ̂2 , Lq(p, q, h) =
√

β2 − σ̂2 ,

for every p, q ≥ 0, and for every h ∈ R.

Proof. Differentiating (10) w.r.t. p, we get

σ̂√
1− σ̂2

+
p σ̂p

(1− σ̂2)3/2
+

β2 q σ̂p

(β2 − σ̂2)3/2
= 0 .
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Figure 2. The solid line corresponds to the Snell path S(A,B), while the
dashed line is a minimal path joining A and B without crossing the dark
squares.

Hence

Lp(p, q, h) =
1√

1− σ̂2
+

p σ̂pσ̂

(1− σ̂2)3/2
+

β2 q σ̂pσ̂

(β2 − σ̂2)3/2

=
1√

1− σ̂2
− σ̂2

√
1− σ̂2

=
√

1− σ̂2 .

By an analogous computation one obtains the expression for Lq. ¤

Remark 2.2. By Lemma 2.1, it follows that, given the thickness τ = p + q and the height
h ∈ R of a Snell path we have that

d

dq
L(τ − q, q, h) = −

√
1− σ̂2 +

√
β2 − σ̂2 > 0 .

The geometrical meaning of this formula is clear: for Snell paths with fixed thickness, the
more is the thickness of the dark material crossed, the more is the optical length of the
path.

3. The normalized length

Let us consider now R2 endowed with the standard chessboard structure.

Definition 3.1. The n-th light diagonal, n ∈ Z, is the straight line Dn of equation
y = x− 2n. A light vertex is a point having integer coordinates and belonging to a light
diagonal.

Definition 3.2. Given two points A and B in the same horizontal strip {y ∈ [r, r + 1]},
r ∈ Z, the Snell path joining A to B (in the chessboard structure) is the geodesic S(A,B)
in the corresponding parallel layer structure a(x + r, y).

We are interested in the properties of the Snell paths starting from a light vertex A
(say A = O, without loss of generality) and ending in a point B on the other side of the
horizontal strip containing A (say B = (xB, 1), xB > 0) (see Figure 2).

If 0 < xB ≤ 1, clearly S(O, B) = [[O, B]] is the unique geodesic joining O to B. On
the other hand, S(O, B) need not to be a geodesic when xB > 1. Namely, we already
know that for β large enough the optical length of S(O,B) is strictly greater than the
optical length of the path obtained by a concatenation of horizontal segments on the lines
x = 0 or x = 1, with total length xB − 1, and a segment on a light diagonal, with length√

2. In this section we discuss the behavior of the difference Lβ(S(O,B))− xB + 1−√2
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Figure 3. Plot of σ̂(t, β), β = 1.15.

for xB ≥ 1. To this aim, for t ≥ 0 and β ≥ 1, with some abuse of notation we define
σ̂(t, β) = σ̂(p(t), q(t), 1), where

(12) q(t) =

{ bt+1c
2 if btc is odd,

t− btc
2 if btc is even,

and p(t) = t + 1− q(t). Recall that σ̂(t, β) is determined by the constraint

(13)
p(t) σ̂√
1− σ̂2

+
q(t) σ̂√
β2 − σ̂2

− 1 = 0 .

As a consequence we have

(14) σ̂t(t, β) =
− σ̂pt√

1− σ̂2
− σ̂qt√

β2 − σ̂2

p

(1− σ̂2)3/2
+

β2q

(β2 − σ̂2)3/2

< 0 , t > 0, t 6∈ N ,

since pt(t), qt(t) ≥ 0, and pt(t)+qt(t) = 1 for every t > 0, t 6∈ N . Thus the map t 7→ σ̂(t, β)
is strictly decreasing in [0, +∞), and satisfies σ̂(0, β) = 1/

√
2, limt→+∞ σ̂(t, β) = 0 (see

Figure 3).
Moreover, as a straightforward consequence of the Implicit Function Theorem, we have

that σ̂β(t, β) > 0 for every t > 0. In particular we have

(15) σ̂(t, β) > σ̂(t, 1) =
1√

(1 + t)2 + 1
, ∀t > 0, ∀β > 1.

Definition 3.3. We shall call normalized length the function

(16) l(t, β) :=
p(t)√

1− σ̂(t, β)2
+

β2 q(t)√
β2 − σ̂(t, β)2

− t−
√

2 .

Notice that l(t, β) is the length of the Snell path joining the origin (0, 0) with the point
(t + 1, 1) normalized by subtracting the minimal length of the paths joining the same two
points without crossing the dark squares (see Figure 2).

In order to simplify the notation we introduce the sets

IL =
⋃

k∈N
(2k + 1, 2k + 2), ID =

⋃

k∈N
(2k, 2k + 1) .

If t ∈ IL then the last segment of the Snell path is in the interior of a light square, while,
if t ∈ ID, it is in the interior of a dark square.
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The basic properties of the normalized length are collected in the following lemma.

Lemma 3.4. The following properties hold.
(i) lt(t, β) =

√
1− σ̂2(t, β)− 1 for every t ∈ IL;

(ii) lt(t, β) =
√

β2 − σ̂2(t, β)− 1 for every t ∈ ID;
(iii) l(·, β) is strictly convex in any interval of IL ∪ ID;
(iv) l(·, β) is strictly monotone decreasing in any interval of IL;
(v) if β ≥ √

3/2, then l(·, β) is strictly monotone increasing in any interval of ID;
(vi) if 1 < β <

√
3/2, then there exists a unique t0 > 0, characterized by σ̂(t0, β) =√

β2 − 1, and such that

lt(t, β) < 0, ∀ t ∈ [0, t0) ∩ ID ,

lt(t, β) > 0, ∀ t ∈ (t0, +∞) ∩ ID .

Proof. The derivatives in (i) and (ii) follow from Lemma 2.1, upon observing that pt = 1
and qt = 0 in IL, while pt = 0 and qt = 1 in ID. Clearly (i) implies (iv), while (ii) and the
fact that 0 ≤ σ̂2(t, β) ≤ 1/2 imply (v) and (vi).

(iii) follows from (i), (ii), and the fact that σ̂(·, β) is a decreasing function. ¤

In conclusion, since l(0, β) = 0 for every β ≥ 1, by Lemma 3.4 we have that, for
β ≥ √

3/2, l(t, β) > 0 for t ∈ (0, 1) and the local minima of l(·, β) are attained at t = 2k,
k ∈ N, corresponding to the Snell paths ending in the light vertices (see Figures 5 and 4).

On the contrary, if β <
√

3/2, a new local minimum for l(·, β) may appear (see Figures 6
and 7). One may wonder if l(t0, β) is an absolute minimum for some β. The following
result shows that this is never the case. (We warn the reader that the proof is rather long
and technical, and can be skipped in a first reading.)

Theorem 3.5. Given 1 < β <
√

3/2, let t0 > 0 be as in Lemma 3.4(vi). Then

l(2k0 + 2, β) ≤ l(t0, β),

where k0 = min{k ∈ N : t0 ≤ 2k+2}. Moreover, the strict inequality holds if t0 6= 2k0 +2.

Proof. If t0 ∈ [2k0 +1, 2k0 +2], then by Lemma 3.4(iv),(vi), l(2k0 +2, β) < l(t, β) for every
t ∈ [0, 2k0 + 2), and the result is straightforward.

Let us now consider the case t0 ∈ (0, 1), so that k0 = 0.
Recalling that σ̂(t0, β) =

√
β2 − 1, we obtain that l(t0, β) =

√
2− β2 +

√
β2 − 1−√2.

On the other hand we have

l(2, β) =
2√

1− σ2
3

+
β2

√
β2 − σ2

3

− 2−
√

2− σ3


 2σ3√

1− σ2
3

+
σ3√

β2 − σ2
3

− 1




= 2
√

1− σ2
3 +

√
β2 − σ2

3 − 2−
√

2− σ3 ,

where σ3 = σ̂(2, β), and we have used the constraint (13) satisfied by σ3. Hence, denoting
by

(17) ϕ(σ, β) = 2
√

1− σ2 +
√

β2 − σ2 − 2− σ −
√

2− β2 −
√

β2 − 1 ,

we have to show that l(2, β)− l(t0, β) = ϕ(σ3, β) < 0.
One can easily check that ϕ(σ, β) is strictly monotone decreasing w.r.t. σ in [0, 1], so

that, by (15), we obtain ϕ(σ3, β) < ϕ(1/
√

10, β) for every β ≥ 1. In addition, ϕ(1/
√

10, β)
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is a strictly monotone increasing function w.r.t. β, so that we get

ϕ(σ3, β) < ϕ(1/
√

10, β) < ϕ(1/
√

10,
√

3/2) =
5√
10
− 2 +

√
14
10
−
√

2 < 0 ,

for every β ∈ (1,
√

3/2), which concludes the proof for t0 ∈ (0, 1).
Assume now that t0 ∈ (2k0, 2k0 + 1) with k0 ≥ 1.
Since we have

l(2k0 + 2, β) = l(t0, β) +
∫ 2k0+1

t0
lt(t, β) dt +

∫ 2k0+2

2k0+1
lt(t, β) dt

=
∫ 2k0+1

t0

(√
β2 − σ̂2(t, β)− 1

)
dt +

∫ 2k0+2

2k0+1

(√
1− σ̂2(t, β)− 1

)
dt ,

our aim is to prove that

(18)
∫ 2k0+1

t0

√
β2 − σ̂2(t, β) dt +

∫ 2k0+2

2k0+1

√
1− σ̂2(t, β) dt < 2k0 + 2− t0 .

We split the proof of (18) into three steps.
Step 1. Setting

f(k, t, γ) = 2k + 1 + (β2 − 1)t + β2

− β
√

(2k + 2)2 + (t + 1)2(β2 − 1)− (k + 1) log


1 +

√
1 + (γ − 1)e−2/(k+1)

√
γ + 1


(19)

and c = 1/(1− σ̂(2k0 + 1, β)2), we show that if f(k0, t0, c) ≥ 0 then (18) holds.
Step 2. Setting

(20) g(b) = 1 + 3b2 − 4b
√

c0 + (1− e−1)
√

c0 − 1√
c0

, c0 = c0(b) = 1 +
9
16

(b2 − 1),

then f(k0, t0, c) ≥ g(β).
Step 3. g(b) > 0 for every b ∈ (1,

√
3/2).

Proof of Step 1. Let us consider the functions

ψ(t) =
√

β2 − σ̂2(t, β) , χ(t) =
√

1− σ̂2(t, β) .

Recalling (14), and taking into account that pt(t) = 0 and qt(t) = 1 for t ∈ [t0, 2k0 + 1),
we obtain

ψ′ = − σ̂tσ̂√
β2 − σ̂2

=
σ̂2

β2 − σ̂2
· 1

p

(1− σ̂2)3/3
+

β2q

(β2 − σ̂2)3/3

<
σ̂2

√
β2 − σ̂2

β2(t + 1)
,

where in the last inequality we have used the fact that the function b 7→ b2/(b2− σ̂2)3/2 is
strictly monotone decreasing, and p + q = t + 1. In conclusion we obtain that ψ satisfies
the differential inequality

(21)





ψ′ <
1

t + 1
ψ − 1

β2(t + 1)
ψ3, t ∈ [t0, 2k0 + 1),

ψ(t0) = 1.
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Similarly, recalling that pt(t) = 1 and qt(t) = 0 for t ∈ (2k0 + 1, 2k0 + 2), we obtain

χ′ = − σ̂tσ̂√
1− σ̂2

=
σ̂2

1− σ̂2
· 1

p

(1− σ̂2)3/3
+

β2q

(β2 − σ̂2)3/3

<
σ̂2

p

√
1− σ̂2,

and, since p ≥ k0 + 1, we conclude that χ satisfies the differential inequality

(22)





χ′ <
χ− χ3

k0 + 1
, t ∈ (2k0 + 1, 2k0 + 2),

χ(2k0 + 1) =
√

1− β2 + ψ2(2k0 + 1).

Solving the Cauchy problems associated to the differential inequalities (21), (22), we get

ψ(t) ≤ 1√
1
β2

+
(

1− 1
β2

)
(t0 + 1)2

(t + 1)2

, t ∈ [t0, 2k0 + 1],(23)

χ(t) ≤ 1√
1 +

(
1

1− β2 + ψ2
1

− 1
)

e−2(t−2k0−1)/(k0+1)

, t ∈ [2k0 + 1, 2k0 + 2].(24)

As a consequence of these estimates we obtain
∫ 2k0+1

t0

√
β2 − σ2(t, β) dt ≤ β

(√
(2k0 + 2)2 + (t0 + 1)2(β2 − 1)− β(t0 + 1)

)

∫ 2k0+2

2k0+1

√
1− σ2(t, β) dt ≤ 1 + (k0 + 1) log


1 +

√
1 + (c− 1)e−2/(k0+1)

√
c + 1


 ,

where c = 1/(1− β2 + ψ(2k0 + 1)2), which concludes the proof of the Step 1.
Proof of Step 2. From (23) and the fact that t0 > 2k0, we have that

ψ(2k0 + 1) ≤ β(2k0 + 2)√
(2k0 + 2)2 + (β2 − 1)(t0 + 1)2

<
β(2k0 + 2)√

(2k0 + 2)2 + (β2 − 1)(2k0 + 1)2
,

so that

c =
1

1− β2 + ψ(2k0 + 1)2
≥

1 + (β2 − 1)
(

2k0 + 1
2k0 + 2

)2

1− (β2 − 1)2
(

2k0 + 1
2k0 + 2

)2

> 1 + (β2 − 1)
(

2k0 + 1
2k0 + 2

)2

≥ 1 +
9
16

(β2 − 1) = c0(β) .

Moreover, it can be easily checked that the function

γ 7→ log


1 +

√
1 + (γ − 1)e−2/(k0+1)

√
γ + 1


 , γ > 1

is strictly monotone decreasing, while the function

t 7→ (β2 − 1)t− β
√

(2k0 + 2)2 + (t + 1)2(β2 − 1), t ∈ (2k0, 2k0 + 1)
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is strictly monotone increasing. Hence we have that

f(k0, t0, c) > f(k0, 2k0, c0(β)) = 2k0β
2 − β

√
(2k0 + 2)2 + (2k0 + 1)2(β2 − 1)

+ 1 + β2 − (k0 + 1) log


1 +

√
1 + (c0 − 1)e−2/(k0+1)

√
c0 + 1


 ,

where c0 = c0(β) is defined as in (20).
In addition, the functions

k 7→ 2kβ2 − β
√

(2k + 2)2 + (2k + 1)2(β2 − 1) ,

k 7→ (k + 1) log


1 +

√
1 + (c0 − 1)e−2/(k+1)

√
c0 + 1


 ,

are strictly monotone increasing for k ≥ 1. Hence we get

f(k0, t0, c) > 1 + 3β2 − β
√

16 + 9(β2 − 1)− 2 log

(
1 +

√
1 + (c0 − 1)e−1

√
c0 + 1

)
.

Finally

log

(
1 +

√
1 + (c0 − 1)e−1

√
c0 + 1

)
≤

√
1 + (c0 − 1)e−1 −√c0√

c0 + 1

=
√

c0

√
1 + (1− e−1)1−c0

c0
− 1

√
c0 + 1

≤ 1
2
(1− e−1)

1−√c0√
c0

,

so that the proof of Step 2 is complete.
Proof of Step 3. We have that

g′(b) = 6b− 7 + 18b2

√
7 + 9b2

+
36(1− e−1)b
(7 + 9b2)3/2

,

and, for 1 < b ≤ √
3/2,

d

db

(
6b− 7 + 18b2

√
7 + 9b2

)
= 6− 27b

7 + 6b2

(7 + 9b2)3/2
= 6− 9

3b√
7 + 9b2

7 + 6b2

7 + 9b2

≥ 6− 9
3
√

3√
41

13
16

> 0 ,

and
d

db

(
b

(7 + 9b2)3/2

)
= −16

18b2 − 7
(7 + 9b2)3/2

< 0, b > 1 .

Then we get

g′(b) > 6− 25
4

+
72
√

3
413/2

(1− e−1) > 0, ∀1 < b ≤
√

3/2 .

Hence g(b) > g(1) = 0 for all 1 < b ≤ √
3/2, and Step 3 is proved. ¤

Now we focus our attention to the study of the sequence l(2k, β), k ∈ N. Given k ∈ N,
we set δ(k, β) = l(2k + 2, β)− l(2k, β), that is

(25) δ(k, β) =
k + 2√
1− τ2

+
β2 (k + 1)√

β2 − τ2
− k + 1√

1− σ2
− β2 k√

β2 − σ2
− 2 ,
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where τ = τ(k, β) := σ̂(2k + 2, β) and σ = σ(k, β) := σ̂(2k, β) are implicitly defined by

(k + 2) τ√
1− τ2

+
(k + 1) τ√

β2 − τ2
= 1 ,(26)

(k + 1) σ√
1− σ2

+
k σ√

β2 − σ2
= 1 .(27)

By the monotonicity of the function σ̂(·, β) (see inequality (14)) it follows that τ < σ.

Remark 3.6. While the sign of l(t, β) gives a comparison between the optical lengths of
the Snell path S(O, (t+1, 1)) and the “light path” [[O, (1, 1), (1 + t, 1)]], the sign of δ(k, β)
gives a comparison between the optical lengths of S(O, (2k+3, 1)) and of S(O, (2k+1, 1))∪
[[(2k + 1, 1), (2k + 3, 1)]].

Remark 3.7. Given β > 1, consider the function l̃ : [0, +∞) → R, affine on each interval
[2k, 2k + 2] and such that l̃(2k) = l(2k, β), k ∈ N. Then the derivative of l̃(t), for t ∈
(2k, 2k + 2), is given by δ(k, β)/2.

Since δ(k, β) = Lβ(S(O, (2k + 3, 1))) − Lβ(S(O, (2k + 1, 1)) − 2, and it is clear that
Lβ(S(O, (2k + 3, 1))) − Lβ(S(O, (2k + 1, 1)) ∼ β + 1 for k → +∞, one expects that
δ(k, β) ∼ β − 1. A more precise result is the following.

Theorem 3.8. Let β > 1 be fixed. Then (δ(k, β))k is a strictly monotone increasing
sequence and

(28) δ(k, β) = (β − 1)− β

2(β + 1)
1
k2

+ O

(
1
k3

)
, k → +∞ .

Proof. We can define τ , σ, and δ respectively through (26), (27) and (25) as smooth
functions of k ∈ R, k ≥ 0. Differentiating δ w.r.t. k, we get

δk(k, β) =
1√

1− τ2
+

(k + 2)τkτ

(1− τ2)3/2
+

β2

√
β2 − τ2

+
(k + 1)β2τkτ

(β2 − τ2)3/2

− 1√
1− σ2

− (k + 1)σkσ

(1− σ2)3/2
− β2

√
β2 − σ2

− kβ2σkσ

(β2 − σ2)3/2
.

On the other hand, differentiating the constraints (26) and (27) we obtain the identities

(k + 2)τk

(1− τ2)3/2
+

(k + 1)β2τk

(β2 − τ2)3/2
= − τ√

1− τ2
− τ√

β2 − τ2
,(29)

(k + 1)σk

(1− σ2)3/2
+

kβ2σk

(β2 − σ2)3/2
= − σ√

1− σ2
− σ√

β2 − σ2
.(30)

Hence, being τ < σ, we get

δk(k, β) =
√

1− τ2 −
√

1− σ2 +
√

β2 − τ2 −
√

β2 − σ2 > 0 .

In order to determine the behavior of δ(k, β) for k large, notice that, setting ε = 1/k
and σ̃(ε) = σ(1/ε, β), (27) becomes

(1 + ε)σ̃√
1− σ̃2

+
σ̃√

β2 − σ̃2
= ε ,
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that is σ̃ is implicitly defined by

f(σ̃)− ε = 0 , f(t) =

t√
1− t2

+
t√

β2 − t2

1− t√
1− t2

.

One has f(0) = 0, f ′(0) =
β + 1

β
, f ′′(0) = 2

β + 1
β

, so that

σ̃(0) = 0, σ̃′(0) =
β

β + 1
, σ̃′′(0) = −2

β2

(β + 1)2
,

and hence

(31) σ̃(ε) =
β

β + 1
ε− β2

(β + 1)2
ε2 + O(ε3) ε → 0+ ,

that is

(32) σ(k, β) =
β

β + 1
1
k
− β2

(β + 1)2
1
k2

+ O

(
1
k3

)
,

and

(33)

τ(k, β) = σ(k + 1, β) = σ̃

(
1

k + 1

)
= σ̃

(
1
k
− 1

k2
+ O

( 1
k3

))

=
β

β + 1
1
k
−

(
β

β + 1
+

β2

(β + 1)2

)
1
k2

+ O

(
1
k3

)
.

Finally we have

δ(k, β) = (k + 2)
(

1 +
1
2
τ2

)
+ β(k + 1)

(
1 +

τ2

2β2

)
− (k + 1)

(
1 +

1
2
σ2

)

− βk

(
1 +

σ2

2β2

)
− 2 + O

(
1
k3

)
= (β − 1)− β

2(β + 1)
1
k2

+ O

(
1
k3

)
,

completing the proof. ¤

Definition 3.9. Given β > 1, we shall denote by kc(β) the integer number defined by

(34) kc(β) = min{k ∈ N : δ(k, β) > 0} .

By the very definition, we have that l(2kc(β), β) ≤ l(2k, β) for every k ∈ N (see also
Remark 3.7). Moreover, by Lemma 3.4 and Theorem 3.5, the absolute minimum of l(·, β)
is attained at a point t = 2k, k ∈ N. Hence l(2kc(β), β) (i.e., the normalized length of the
Snell path joining the origin with the right-top vertex of the (2kc+1)–th square) minimizes
the normalized length l(·, β) among all the paths remaining in a single horizontal strip.

Now we want to study kc(β), β > 1. As a preliminary step we investigate the behavior
of δ(k, ·) for a given k.

Lemma 3.10. Let k ∈ N be fixed. Then the function β 7→ δ(k, β) is strictly increasing in
[1, +∞). Moreover δ(k, 1) < 0 and δ(k,

√
2) > 0.
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Proof. Differentiating δ w.r.t. β, we get

δβ(k, β) =
(k + 2)ττβ

(1− τ2)3/2
+ (k + 1)β

β2 − 2τ2

(β2 − τ2)3/2
+ (k + 1)

β2ττβ

(β2 − τ2)3/2

− (k + 1)σσβ

(1− σ2)3/2
− kβ

β2 − 2σ2

(β2 − σ2)3/2
− k

β2σσβ

(β2 − σ2)3/2
.

(35)

Differentiating (26) and (27) w.r.t. β, we obtain

(k + 2)ττβ

(1− τ2)3/2
+ (k + 1)

β2ττβ

(β2 − τ2)3/2
= (k + 1)

τ2β

(β2 − τ2)3/2
(36)

(k + 1)σσβ

(1− σ2)3/2
+ k

β2σσβ

(β2 − σ2)3/2
= k

τ2β

(β2 − σ2)3/2
.(37)

Substituting (36) and (37) into (35), we conclude that

δβ(k, β) =
(k + 1)β√
β2 − τ2

− kβ√
β2 − σ2

.

We have to show that

(38)
(k + 1)β√
β2 − τ2

− kβ√
β2 − σ2

> 0, ∀k ∈ N.

For every κ ∈ R, let us denote by s(κ) the unique function implicitly defined by

(39)
(κ + 1) s√

1− s2
+

κ s√
β2 − s2

= 1

so that s(k) = σ, s(k + 1) = τ . Since inequality (38) clearly holds true for k = 0, it is
enough to show that

d

dκ


 κ√

β2 − s(κ)2


 =

β2 − s2 + κssκ

(β2 − s2)3/2
> 0 ∀κ ∈ R, κ ≥ 1.

Differentiating (39) w.r.t. κ (see also (29)), we get

sκ(κ) = −s

1√
1− s2

+
1√

β2 − s2

κ + 1
(1− s2)3/2

+
κβ2

(β2 − s2)3/2

.

Moreover, using again (39), we have

1√
1− s2

+
1√

β2 − s2
=

1
κs
− 1

κ
√

1− s2
<

1
κs

,

so that

β2 − s2 + κssκ = β2 − s2 − κs2

1√
1− s2

+
1√

β2 − s2

κ + 1
(1− s2)3/2

+
κβ2

(β2 − s2)3/2

>
β2 − s2

κβ2

(
κβ2 − s

√
β2 − s2

)
> 0 ,



LIMITS OF CHESSBOARD STRUCTURES 15

where the last inequality can be easily checked recalling that 0 < s < 1, while β, κ ≥ 1.
Hence we conclude that inequality (38) holds true, which implies that the function δ(k, β)
is strictly increasing w.r.t. β.

Taking into account that, by (27), σ(0,
√

2) =
√

2/2, we easily get that δ(0,
√

2) > 0, so
that, by Theorem 3.8, δ(k,

√
2) > 0.

In order to prove that δ(k, 1) < 0, we note that, from (26) and (27), we get

τ(k, 1) =
1√

1 + (2k + 3)2
, σ(k, 1) =

1√
1 + (2k + 1)2

,

so that
δ(k, 1) =

√
1 + (2k + 3)2 −

√
1 + (2k + 1)2 − 2 < 0 ,

concluding the proof. ¤
Remark 3.11. As an easy consequence of Lemma 3.10 we obtain that kc(β) is a nonin-
creasing function of β.

Thanks to Lemma 3.10, the following definition makes sense.

Definition 3.12. For every k ∈ N we shall denote by βc
k the unique number in (1,

√
2)

such that δ(k, βc
k) = 0.

By Theorem 3.8 we have that

δ(j, βc
k) < 0, ∀ j < k, δ(j, βc

k) > 0, ∀ j > k,

hence

(40) l(2k, βc
k) = l(2k + 2, βc

k) < l(2j, βc
k) ∀ j ∈ N \ {k, k + 1} .

In particular we have that

(41) l(2k + 2, βc
k) = l(2k, βc

k) ≤ l(0, βc
k) = 0 ,

where we have taken into account that l(0, β) = 0, for every β ≥ 1.

Lemma 3.13. The sequence (βc
k)k∈N is strictly decreasing and limk→+∞ βc

k = 1.

Proof. Given k ∈ N, by the monotonicity of δ w.r.t. k stated in Theorem 3.8 we have

δ(k, βc
k+1) < δ(k + 1, βc

k+1) = 0 ,

where the last equality follows from the very definition of βc
k+1. Again, the definition of

βc
k and the monotonicity of δ w.r.t. β stated in Lemma 3.10 imply that βc

k+1 < βc
k.

In order to prove the last part of the thesis, given k ∈ N, let us define the functions

fk(s, β) :=
(k + 1)√
1− s2

+
β2 k√
β2 − s2

− 2k −
√

2 ,

gk(s, β) :=
(k + 1) s√

1− s2
+

k s√
β2 − s2

− 1 ,

hk(s, β) := fk(s, β)− s gk(s, β) = (k + 1)
√

1− s2 + k
√

β2 − s2 − 2k −
√

2 + s ,

(42)

where s ∈ [0, 1) and β > 1. Since σ̂(2k, β) is the unique solution of gk(s, β) = 0, we
have that hk(σ̂(2k, β), β) = fk(σ̂(2k, β), β) = l(2k, β). Moreover hk

s(s, β) = −gk(s, β) and
gk
s (s, β) > 0, so that hk(·, β) is a strictly concave function in [0,1] which attains its absolute

maximum at s = σ̂(2k, β). Hence

l(2k, β) = hk(σ̂(2k, β), β) = max
s∈[0,1)

hk(s, β) > hk(0, β) = (β − 1)k + 1−
√

2 , ∀β > 1 .
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Then, from (41), we have

0 ≥ l(2k + 2, βc
k) > (βc

k − 1)(k + 1) + 1−
√

2

so that

(43) 1 < βc
k < 1 +

√
2− 1

k + 1
and the conclusion follows. ¤

The first values (βc
k) (up to the fifth digit) are listed in the following table.

k 0 1 2 3 4 5 6 7
βc

k 1.24084 1.06413 1.02820 1.01577 1.01006 1.00698 1.00512 1.00392

By Lemma 3.4(v), for β ≥ √
3/2 the Snell path S(O, (t, 1)), with t ∈ (0, 1) is never a

geodesic. This property will be crucial for the results in Section 5. The following result
gives the position of

√
3/2 ' 1.22474 w.r.t. the critical values βc

k.

Lemma 3.14. βc
1 <

√
3/2 < βc

0.

Proof. From (43) we have

βc
1 < 1 +

√
2− 1
2

<

√
3
2
, βc

0 <
√

2 .

In order to prove the inequality
√

3/2 < βc
0, let f1, g1, h1 be the functions defined in (42)

for k = 1, and let σ1 ∈ (0, 1) be the unique solution of g1(s, βc
0) = 0. Since

0 = δ(0, βc
0) = l(2, βc

0) = f1(σ1, β
c
0) ,

we have that h1(σ1, β
c
0) = 0. Moreover

h1
β(s, β) =

β√
β2 − s2

> 0 .

Hence the inequality
√

3/2 < βc
0 can be obtained showing that

(44) h1

(
s,

√
3
2

)
= 2

√
1− s2 +

√
3
2
− s2 − 2−

√
2 + s < 0 , ∀s ∈ (0, 1).

The inequality (44) easily follows observing that

2
√

1− s2 +
2
3
s ≤ 2

3

√
10,

√
3
2
− s2 +

1
3
s ≤

√
5
3
, ∀s ∈ (0, 1) ,

so that

h1

(
s,

√
3
2

)
≤ 2

3

√
10 +

√
5
3
− 2−

√
2 < 0, ∀s ∈ (0, 1) ,

which completes the proof. ¤
We summarize the previous analysis in the following result, which is depicted in Fig-

ures 4–7.

Corollary 3.15. For every β > 1

(45) min
s≥0

l(s, β) = min
k∈N

l(2k, β) < l(t, β) ∀ t ∈
⋃

k∈N
(2k, 2k + 2).

Moreover the following hold.
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Figure 4. Plot of l(t, β), β = 1.26 (β > βc
0)
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Figure 5. Plot of l(t, β), β = 1.23 (
√

3/2 < β < βc
0)
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Figure 6. Plot of l(t, β), β = 1.2 (βc
1 < β <

√
3/2)

(i) kc(β) = 0 for every β > βc
0, and kc(β) = k + 1 for every β ∈ (βc

k+1, β
c
k], k ∈ N;

(ii) if β > βc
0, then 0 = l(0, β) < l(t, β) for every t > 0;

(iii) if β ∈ (βc
k+1, β

c
k), k ∈ N, then l(2k + 2, β) < l(t, β) for all t ∈ [0, +∞) \ {2k + 2} ;

(iv) l(2k, βc
k) = l(2k + 2, βc

k) < l(t, βc
k) for every k ∈ N, and t ∈ [0,+∞) \ {2k, 2k + 2};

(v) if β ≥ √
3/2, then l(t, β) > 0 for t ∈ (0, 1].

(vi) for every β > 1, l(2kc(β), β) < l(t, β) for every t > 2kc(β).

Proof. Formula (45) summarizes the results in Lemma 3.4 and Theorem 3.5.
Let us now prove (i). By Lemma 3.10 and Theorem 3.8 we have

δ(j, β) ≤ δ(k, β) ≤ δ(k, βc
k) = 0 , ∀j ∈ N, j ≤ k β ≤ βc

k,(46)

δ(j, β) ≥ δ(k + 1, β) > δ(k + 1, βc
k+1) = 0 , ∀j ∈ N, j ≥ k + 1, β > βc

k+1 ,(47)
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Figure 7. Plot of l(t, β), β = 1.009 (βc
5 < β < βc

4)

and we have the strict inequality in (46) if β 6= βc
k. Hence, recalling the definition of kc(β)

given in (34), we conclude that (i) holds.
Moreover, since for every n, m ∈ N, n < m, we have

l(2m,β) = l(2n, β) +
m−1∑

j=n

δ(j, β) ,

as a consequence of (46) and (47), for every k ∈ N we get

0 = l(0, β) < l(2j, β), ∀j ∈ N, j 6= 0, β > βc
0(48)

l(2k + 2, β) < l(2j, β), ∀j ∈ N, j 6= k + 1, β ∈ (βc
k+1, β

c
k)(49)

l(2k, βc
k) = l(2k + 2, βc

k) < l(2j, βc
k), ∀j ∈ N, j 6= k, k + 1, .(50)

Hence (ii), (iii), and (iv) follow from (45). Finally (v) follows from Lemma 3.4(v), whereas
(vi) is a direct consequence of (i)–(iv). ¤

Up to now we have described the behavior of the normalized length of Snell paths
starting from a light vertex and remaining in a horizontal strip. The following result deals
with the normalized length of any Snell path remaining in a horizontal strip.

Lemma 3.16. Given x ∈ R, τ ≥ 0, r ∈ Z, let S(A,B) be the Snell path joining A = (x, r)
to B = (x + τ, r + 1). Then

(51) Lβ(S(A,B))− τ + 1−
√

2 ≥ l(2kc(β), β) .

Moreover
i) if β 6= βc

k for every k ∈ N, then the equality in (51) holds if and only if τ =
2kc(β) + 1, and x = 2n, n ∈ Z;

ii) if β = βc
k for some k ∈ N, then the equality in (51) holds if and only if τ ∈

{2kc(β)− 1, 2kc(β) + 1}, and x = 2n, n ∈ Z.

Proof. By Remark 2.2 we have that

(52) Lβ(S(A,B)) ≥ Lβ(S(0, C)) , C = (τ, 1) ,

since S(0, C) crosses a quantity of dark material not greater then the one crossed by any
other Snell path with thickness τ . On the other hand, if τ ∈ [0, 1), then

Lβ(S(O, C)) =
√

1 + τ2 > τ − 1 +
√

2 ,

so that, by (52),

Lβ(S(A,B))− τ + 1−
√

2 > 0 ≥ l(2kc(β) + 2, β) .
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Moreover, we stress that the equality in (51) never occurs when τ ∈ [0, 1). If τ ≥ 1, then

Lβ(S(0, C)) = l(τ, β) + τ +
√

2 ,

so that

(53) Lβ(S(A,B))− τ + 1−
√

2 ≥ l(τ, β) ≥ l(2kc(β), β) .

It remains to discuss the occurrence of the equality in (53) for τ ≥ 1.
If β 6= βc

k, k ∈ N, then l(·, β) has its strict absolute minimum point at t = 2kc(β), so
that l(τ − 1, β) = l(2kc(β), β) if and only if τ = 2kc(β) + 1.

Moreover, for τ = 2kc(β) + 1, the equality Lβ(S(A,B)) = Lβ(S(0, C)) holds if and
only if x = 2n, n ∈ Z. Namely, if px denotes the thickness of light material crossed by
S(A,B), then px ≤ kc(β) + 1 = p(2kc(β) + 1) (since the total thickness is 2kc(β) + 1), and
px = kc(β) + 1 if and only if A is a light vertex (i.e. x = 2n, n ∈ Z).

If β = βc
k for some k ∈ N, then the conclusion in (ii) follows from (53) and the fact that

the absolute minimum of l(·, βc
k) is attained both for t = 2kc(β)−1, and t = 2kc(β)+1. ¤

We conclude this section by stating some properties, which will be useful in the second
part of Section 4, of the following generalization of the normalized length introduced in
(16). Let q(t), t ≥ 0, be the function defined in (12). For 0 < h ≤ 1, let p(t, h) = t+h−q(t).
Given β > 1, let σ̃(t, β, h) be the unique solution of the implicit equation

(54)
p(t, h) σ̃√

1− σ̃2
+

q(t) σ̃√
β2 − σ̃2

− h = 0 ,

and let us define the function

(55) l̃(t, β, h) =
p(t, h)√

1− σ̃(t, β, h)2
+

β2 q(t)√
β2 − σ̃(t, β, h)2

− t− h
√

2 .

The function l̃ is the normalized length of a Snell path starting from the point (−h,−h)
and ending in (t, 0). It is straightforward that σ̃(t, β, 1) and l̃(t, β, 1) coincide with the
functions σ̂(t, β) and l(t, β) defined in (13) and (16) respectively. The function t 7→ l̃(t, β, h)
has the same qualitative properties of l̃(·, β, 1) studied at the beginning of this Section.
More precisely the derivative

(56) l̃t(t, β, h) =

{√
1− σ̃2(t, β, h)− 1, if t ∈ IL,√
β2 − σ̃2(t, β, h)− 1, if t ∈ ID,

is a monotone increasing function both in the set IL and in the set ID (see Lemma 2.1).
Concerning the derivative l̃h w.r.t. h, we have the following result.

Lemma 3.17. The function h 7→ l̃(t, β, h) is strictly convex and monotone decreasing in
(0, 1] for every t > 0, β > 1, and

(57) l̃h(t, β, h) =
√

1− σ̃2(t, β, h) + σ̃(t, β, h)−
√

2.

Proof. Since ph(t, h) = 1 we have that

(58) l̃h(t, β, h) =
1√

1− σ̃2
+

pσ̃σ̃h

(1− σ̃2)3/2
+

qβ2σ̃σ̃h

(β2 − σ̃2)3/2
−
√

2 .

Differentiating (54) w.r.t. h, we get

(59)
p σ̃h

(1− σ̃2)3/2
+

β2 q σ̃h

(β2 − σ̃2)3/2
= 1− σ̃√

1− σ̃2
.
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A A

Figure 8.

Substituting (59) in (58), we obtain (57). It is straightforward to check that the function
σ̃ 7→ √

1− σ̃2 + σ̃ is strictly increasing in (0, 1/
√

2). Therefore, since t > 0 implies
σ̃ < 1/

√
2, it follows that l̃h(t, β, h) < 0, for h ∈ (0, 1). Moreover, by (59) it follows that

σ̃h > 0, so that the function h 7→ σ̃(t, β, h) is strictly increasing in (0, 1) for every t > 0
and β > 1. Hence, l̃h is strictly increasing for h ∈ (0, 1), which implies that l̃(t, β, h) is
strictly convex w.r.t. h. ¤

4. General properties of the geodesics in the chessboard structure

Up to now we have investigated the properties of a geodesic joining two points on the
sides of one horizontal strip in the chessboard structure. In this section we will study the
properties of a geodesic starting from the origin O, crossing an arbitrary large number of
horizontal strips, and ending in a light vertex (2n+ j, j), n, j ∈ N. If n = 0 or j = 0 , then
the unique geodesic from the origin to the point (2n + j, j) is the segment joining the two
points. Hence we shall further assume that j, n ≥ 1.

Throughout this section we shall assume that

(60) Γ is a geodesic from the origin to the point (2n + j, j), n, j ∈ N, n, j ≥ 1.

The basic properties of Γ are listed in the following two propositions.

Proposition 4.1. Let Γ be as in (60). Then the following properties hold.
(i) Let H be a closed half plane such that ∂H is either the line x = k, or y = k, or

a light diagonal Dk, for some k ∈ Z. Let Γ̃ ⊆ Γ be a path, with endpoints Ã, B̃,
such that Γ̃ ⊆ H and Ã, B̃ ∈ ∂H. Then Γ̃ = [[Ã, B̃]].

(ii) Let A = (xA, yA) ∈ Γ and let Γ−, Γ+ ⊆ Γ be the two paths joining O to A and A
to (2n + j, j) respectively. Then the following bounds hold:

– if A ∈ Z× Z then Γ− ⊆ [0, xA]× [0, yA] and Γ+ ⊆ [xA, 2n + j]× [yA, j];
– if in addition A is a light vertex, then

Γ− ⊆ {(x, y) ∈ R2 : 0 ≤ y ≤ yA, y ≤ x ≤ y − yA + xA},
Γ+ ⊆ {(x, y) ∈ R2 : yA ≤ y ≤ j, y − yA + xA ≤ x ≤ y + 2n}

(see Figure 8).
(iii) Let Q be the interior of a light or a dark square, and assume that Γ∩Q 6= ∅. Then

Γ ∩ Q is a segment. As a consequence, Γ = ∪N
i=1[[Pi−1, Pi]], where P0 = (0, 0),

PN = (2n + j, j), Pi 6= Pk for i 6= k, and Pi belongs to the boundary of a square
for every i = 0, . . . , N .
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(iv) Let θi denote the oriented angle between the horizontal axis and [[Pi−1, Pi]], i =
1, . . . , N . Then θi ∈ [0, π/2]. Moreover, if either Pi−1 or Pi is a light vertex, then
θi ∈ [0, π/4].

Proof. Property (i) is a straightforward consequence of the local minimality of Γ and the
fact that a segment [[Ã, B̃]] contained in the lines x = k, or y = k, or Dk, for some k ∈ Z
is the unique geodesic from Ã to B̃.

In order to prove (ii), we first observe that

Γ ⊆ W .= {(x, y) ∈ R2 : 0 ≤ y ≤ j, y ≤ x ≤ 2n + y} .

Namely, if this is not the case, there exists an open half plane H such that H ∩W = ∅,
H ∩ Γ 6= ∅, and ∂H is one of the lines y = 0, y = j, D0, Dn, a contradiction with (i).
Then, if A ∈ Γ ⊆ W has the stated requirements, then the bounds in (ii) can be obtained
reasoning as above with half planes with boundary given by a line of the type x = xA, or
y = yA, or D(xA−yA)/2.

Property (iii) is a necessary condition for minimality, see, e.g., [1, Section IV].
In order to prove (iv), we notice that, by (ii), θi ∈ [0, π/2] whenever either Pi−1 or

Pi is in Z × Z, and θi ∈ [0, π/4] if either Pi−1 or Pi is a light vertex. In particular θ1,
θN ∈ [0, π/4]. Hence we have only to show that if θi−1 ∈ [0, π/2] and Pi−1 6∈ Z× Z, then
θi ∈ [0, π/2]. This follows from the fact that Pi−1 is in the interior of a side of a square,
so that the Snell’s law (9) holds. ¤
Remark 4.2. Since aβ = 1 on the boundary of the squares, then Proposition 4.1(iii) can
be improved observing that the intersection of Γ with the closure of a light square is a
segment.

In what follows we will be interested in the intersections Γ ∩Dk, k = 1, . . . , n.

Proposition 4.3. Let Γ be as in (60), and let Pi, i = 0, . . . , N be as in Proposition
4.1(iii). Then the following properties hold.

(i) For every k = 0, . . . , n there exist 0 ≤ ηk ≤ ζk ≤ j such that Γ ∩Dk = [[Ak, Bk]],
Ak = (2k + ηk, ηk), Bk = (2k + ζk, ζk). Moreover A0 = (0, 0) = P0, Bn =
(2n + j, j) = PN , and ζk ≤ ηk+1 for every k = 0, . . . , n− 1.

(ii) If Ak 6= Bk then ηk and ζk are integers (that is Ak and Bk are light vertices).
(iii) Given k = 1, . . . , n, let i = 1, . . . N be such that Ak ∈ ]]Pi−1, Pi]]. Then 0 ≤ θi <

π/4. If in addition Ak is not a light vertex, then θi 6= 0. The same properties hold
if Bk ∈ [[Pi−1, Pi[[.

Proof. It is clear that Γ ∩Dk 6= ∅ for every k = 1, . . . , n. Moreover, by Proposition 4.1(i)
and Remark 4.2, Γ ∩ Dk is either a single point, or a segment joining two light vertices.
The inequality ζk ≤ ηk+1, k = 0, . . . , n− 1 and property (ii) then follow from Proposition
4.1(iv).

Let us now prove that (iii) holds. By Proposition 4.1(iv), we know that θi ∈ [0, π/2].
Moreover, if Ak is a light vertex, then by Proposition 4.1(ii) with A = Ak we get θi ∈
[0, π/4],. Finally, it has to be θi 6= π/4 otherwise [[Pi−1, Ak]] ⊆ Γ ∩ Dk, in contradiction
with the definition of Ak.

Assume now that Ak belongs to the interior of a light square. Then, by (ii), Γ ∩Dk =
{Ak}, so that θi < π/4. Finally θi 6= 0, otherwise Γ has to be an horizontal segment, due
to Snell’s Law (9). ¤
Definition 4.4. Given k = 0, . . . , n, we say that Γ cuts the light diagonal Dk if the points
Ak and Bk, defined in Proposition 4.3, coincide and belong to the interior of a light square.
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A A  = A

B B B B

0

0

1

1

Figure 9. Construction of Γ̃, kc(β) = 1.

For every r = 1, . . . , j, we shall denote by Γr the curve

(61) Γr = Γ ∩ {r − 1 < y < r} .

By Proposition 4.1(i), the intersection A := Γr ∩ {y = r − 1} is a single point, as well as
for B := Γr ∩ {y = r}. The curve Γr is a Snell path joining the two points A and B, and
lying in a single horizontal strip.

Remark 4.5. In what follows we shall assume, without loss of generality, that Γ1 is a
Snell path starting from the origin. Namely, if this is not the case, Γ1 = S(C0, C1)
where C0 = (x0, 0) and C1 = (x1, 1), 0 < x0 < x1. Let us denote by p1, q1 respectively
the thickness of the light zone and of the dark zone crossed by Γ1 , and by p2, q2 the
analogous quantities for the Snell path S(O, C2), C2 = (x1 − x2, 1). We have p1 + q1 =
p2 + q2, and p2 ≤ p1, so that, by Remark 2.2, Lβ(Γ1) ≥ Lβ(S(O, C2)). Hence the curve
S(O,C2) ∪ [C2, C1] ∪ (Γ ∩ {y ≥ 1}) is a geodesic.

The following result is another fairly general property of the geodesics based on the
behavior of the function l(t, β) studied in the previous section.

Proposition 4.6. Let β > 1 be given, and let kc(β) be as in Definition 3.9 (see also
Corollary 3.15(i)). For every r = 1, . . . , j the curve Γr defined in (61) intersects at most
kc(β) light diagonals.

Proof. Set, as above, A = Γr ∩ {y = r − 1} = (xA, r − 1) and B = Γr ∩ {y = r} = (xB, r)
respectively the starting and the ending point of the Snell path Γr.

Assume by contradiction that Γr intersects more than kc(β) light diagonals, so that
t0 := xB − xA − 1 > 2kc(β).

Let k ∈ N be the smallest integer such that 2k + r − 1 ≥ xA, and let m ∈ N be the
largest integer such that 2m + r ≤ xB. Set A0 := (2n + r− 1, r− 1), B0 := (2m + r, r). It
is clear that A0 and B0 lie respectively on the first and the last light diagonal intersected
by Γr (see Figure 9), so that, by assumption, m− n ≥ kc(β).

Let us denote by ∆A = 2k + r− 1− xA and ∆B = xB − 2m− r. It is not restrictive to
assume that ∆A ≤ ∆B. The points A1 = (α, r − 1) and B1 = (α′, r) defined by

(T1) A1 = A0, B1 = (2m + r + ∆A + ∆B, r), if either 0 < ∆A ≤ ∆B ≤ 1, or 0 < ∆A ≤
1, 1 < ∆B ≤ 2, ∆A + ∆B < 2;

(T2) A1 = (2k + r − 1 − ∆A − ∆B, r − 1), B1 = B0, if either 1 ≤ ∆A ≤ ∆B ≤ 2, or
0 < ∆A ≤ 1, 1 < ∆B ≤ 2, ∆A + ∆B ≥ 2,

are such that α′ − α− 1 = t0 > 2m− 2k, and either A1 or B1 is a light vertex. Moreover,
from a direct inspection we can check that the thickness of the dark zone from A1 to B1

is not greater that the one from A to B, so that by Remark 2.2 we conclude that

(62) Lβ(S(A1, B1)) ≤ Lβ(S(A,B)) .

Let us consider the case (T1), so that A1 = A0, and let B′ = (2k + 2kc(β) + r, r).
The assumption m − k ≥ kc(β) implies that B′ lies on the left of B0 (possibly the two
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points coincide). Let us consider the following new paths: Γ′ = S(A1, B
′) ∪ [[B′, B1]], and

Γ1 = S(A1, B1). Since 2kc(β) < t0, from Corollary 3.15(vi) we deduce that

Lβ(Γ′) = l(2kc(β), β) + t0 +
√

2 < l(t0, β) + t0 +
√

2 = Lβ(Γ1) .

Finally, setting Γ̃ = [[A,A1]] ∪ S(A1, B
′) ∪ [[B′, B]] and noticing that the segments [[A,A1]]

and [[B, B1]] have the same length, we have that

Lβ(Γ̃) = Lβ(Γ′) < Lβ(Γ1) ≤ Lβ(Γr),

where the last inequality follows from (62).
The analysis of the case (T2) can be carried out in a similar way, with obvious modifi-

cations. ¤

5. Geodesics of the chessboard structure (β ≥ √
3/2)

In this section we shall restrict our analysis to the case β ≥ √
3/2, and we shall provide a

complete description of the geodesics joining two light vertices in the chessboard structure.
The case β <

√
3/2 seems to be harder to characterize, as we shall show by an example

(see Example 5.6 below).
The next theorem states that, for β > βc

0, any geodesic Γ joining the origin with the
point (2n + j, j) is a finite union of segments, connecting light vertices, and lying on light
diagonals or on horizontal lines.

Theorem 5.1. Let Γ be a geodesic as in (60). If β > βc
0, then the points Ak, Bk are

light vertices for every k = 0, . . . , n, and [[Bk−1, Ak]] is an horizontal segment for every
k = 1, . . . , n.

Proof. By Corollary 3.15(i) we have that kc(β) = 0, so that, by Proposition 4.6, Γ never
cuts a light diagonal. Hence the points Ak, Bk defined in Proposition 4.3(i) are vertices
of light squares, for every k = 0, . . . , n. Given r = 1, . . . , n, let Br−1 be the exit point
from Dr−1 and Ar be the access point to Dr, and let i, i′ = 1, . . . N be such that Br−1 ∈
[[Pi−1, Pi[[, and Ar ∈ ]]Pi′−1, Pi′ ]]. We have that θi = θi′ = 0, that is both [[Pi−1, Pi]]
and [[Pi′−1, Pi′ ]] lie on the horizontal sides of the squares. Indeed, by Proposition 4.3(iii),
θi′ , θi ∈ [0, π/4), and, if either θi or θi′ belong to (0, π/4) , then Γ should contain a Snell
path starting from a vertex of a light square and lying in a horizontal strip, a contradiction
with Corollary (3.15)(ii) and the local optimality of Γ.

Then θi = θi′ = 0, and, by Remark 4.2, there exists two points A, B such that the
segments [[Br−1, B]] and [[A,Ar]] are horizontal, with length greater than or equal to 1, and
they are contained in Γ. In order to complete the proof we have to show that [[B, A]] is
a horizontal segment. Assume by contradiction that this is not the case, that is B 6= A′,
where A′ is the intersection of the line containing [[A,Ar]] with Dr−1. In this case the length
of the polygonal line [[Br−1, A

′, Ar]] is less than the length of any curve joining Br−1 with
Ar and containing [[Br−1, B]] and [[A,Ar]], in contradiction with the local minimality of
Γ. ¤

Definition 5.2. An S3–path is a Snell path joining the point (2m + k, k) to the point
(2m + k + 3, k + 1) for some m, k ∈ N. We shall denote its normalized length by

λ3 = l(2, β) =
2√

1− σ2
3

+
β2

√
β2 − σ2

3

− 2−
√

2,
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where σ3 = σ̂(2, β) is implicitly defined by
2σ3√
1− σ2

3

+
σ3√

β2 − σ2
3

− 1 = 0.

The optical length of an S3–path will be denoted by Λ3 = λ3 + 2 +
√

2.

Remark 5.3. It is straightforward to check that
√

10 < Λ3 < β
√

10, and, by the very
definition of βc

0, Λ3 = 2 +
√

2 when β = βc
0. Moreover, 1/

√
10 < σ3 < β/

√
10.

The S3–paths will play a fundamental rôle in the analysis of the geodesics for
√

3/2 ≤
β < βc

0 (see Theorem 5.4 below). Namely for β in this range the S3–paths have the minimal
normalized length among all the Snell paths starting from a light vertex (2m + k, k) and
reaching a point on the line y = k + 1 (see Corollary 3.15).

Theorem 5.4. Let Γ be a geodesic as in (60). If
√

3/2 ≤ β < βc
0, then the points Ak, Bk

are light vertices for every k = 0, . . . , n. Moreover Bk−1 is connected to Ak either by an
horizontal segment or by an S3–path for every k = 1, . . . , n.

Proof. By Remark 4.5 we can assume, without loss of generality, that A0 = B0 = (0, 0).
Let us define

(63) i = min{r ∈ {1, . . . , n}; Ar is a light vertex} .

Notice that the index i in (63) is well defined, since as a consequence of Proposition 4.3(i)
and (ii) at least An is a light vertex. Moreover, if i ≥ 2, then Γ cuts every light diagonal
Dk, k = 1, . . . , i−1, that is, the points Ak and Bk coincide and they are not light vertices.

Let us denote by Γ′ the portion of Γ joining A0 = B0 = (0, 0) to Ai. We are going to
prove that

i = 1, and

Γ′ is either an horizontal segment or an S3–path.
(64)

Once these properties are proved, then B1 is a light vertex and, repeating the procedure
n times, we reach the conclusion.

Let m ∈ N be such that Ai = (2i + m,m). If m = 0, then B0 is connected to Ai by an
horizontal segment, so that i = 1 and (64) holds. If m = 1, then by Corollary 3.15(ii) and
the local minimality of Γ, we conclude that i = 1 and Γ′ is and S3–path. It remains to
prove that the case m ≥ 2 cannot happen.

For every k = 0, . . . , i let rk = 1, . . . , m be such that Ak = (2k + ηk, ηk) ∈ Γrk
, where

Γr is the Snell path defined in (61). Let us denote by Ck = (xk, rk − 1) and C ′
k = (x′k, rk)

respectively the starting and the ending point of Γrk
, let δk = x′k − xk be the thickness of

Γrk
, and define

t−k = 2k + rk − 1− xk, t+k = x′k − 2k − rk, hk = ηk − bηkc ,

so that δk = t−k + t+k + 1 (see Figure 10).
For k = 0, we have that r0 = 1, C0 = B0 = (0, 0) and C ′

0 = (δ0, 1). By construction we
have δ0 > 1. We claim that 2 < δ0 < 3. Namely, by Corollary 3.15(v) and (iii), we have
{
Lβ(Γ1) = l(δ0, β) +

√
2 + δ0 − 1 >

√
2 + δ0 − 1 = Lβ([[O, (1, 1), (δ0, 1)]]) , if δ0 ∈ (1, 2],

Lβ(Γ1) > l(2, β) +
√

2 + δ0 − 1 ≥ Lβ (S(0, (3, 1)) ∪ [[(3, 1), (δ0, 1)]]) , if δ0 > 3 ,

hence, by the local minimality of Γ1, we cannot have neither 1 < δ0 ≤ 2 nor δ0 > 3. For
k = i the same arguments show that 2 < δi < 3. Hence, from Proposition 4.6, we have
that 1 = r0 < r1 < · · · < ri = m.
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Finally, by Lemma 3.17,

l̃(t−k , β, hk) > l̃(t−k , β, 1), l̃(t+k , β, 1− hk) > l̃(t+k , β, 1), k = 1, . . . , i− 1, (i ≥ 2)

where l̃ is the function defined in (55). Moreover, being Γ a geodesic, we have l̃(t−k , β, hk) <

0 and l̃(t+k , β, 1 − hk) < 0, so that by Corollary 3.15(v), we have t−k , t+k > 1. On the
other hand, from Corollary 3.15 and Proposition 4.6, we cannot have t−k ≥ 2 or t+k ≥ 2,
otherwise Γrk

would intersect more than one light diagonal. In conclusion, we have that
t−k , t+k ∈ (1, 2), so that δk ∈ (3, 5), k = 1, . . . , i− 1 (i ≥ 2).

Let us define

∆ =
i∑

k=0

δk .

By construction and from the estimates above we have

∆ ≤ 2i + m, m ≥ i + 1, 3i + 1 < ∆ < 5i + 1.

It is straightforward to show that

Lβ

(
Γ′ \

i⋃

k=0

Γrk

)
≥ Lβ([[(∆, i + 1), (2i + m, m)]]),

so that

Lβ(Γ′) ≥
i∑

k=0

Lβ(Γrk
) +

√
(2i + m−∆)2 + (m− i− 1)2.

Lβ(Γrk
) can be estimated using the function l̃. For k = 0 and k = i we have that

Lβ(Γr0) = l̃(δ0 − 1, β, 1) + δ0 − 1 +
√

2,

Lβ(Γri) = l̃(δi − 1, β, 1) + δi − 1 +
√

2 ,
(65)

while, for k = 1, . . . , i− 1, (i ≥ 2)

(66) Lβ(Γrk
) = l̃(t−k , β, hk) + l̃(t+k , β, 1− hk) + δk − 1 +

√
2 .

From Lemma 3.4(iii) and Lemma 3.17 we have that

l̃(t, β, h) > l̃h(t, β, 1)(h− 1) + l̃t(2, β, 1)(t− 2) + λ3

for every (t, h) ∈ (1, 2)×[0, 1]. (We recall that λ3 = l̃(2, β, 1), see Definition 5.2). Moreover,
from (56) and (57) we have that

l̃t(2, β, 1) =
√

1− σ2
3 − 1, l̃h(t, β, 1) =

√
1− σ̃2(t, β, 1) + σ̃(t, β, 1)−

√
2 .

where σ3 = σ̃(2, β, 1), see Definition 5.2. Since t 7→ σ̃(t, β, 1) is a decreasing function for
t ≥ 0, and the map s 7→ √

1− s2 +s−√2 is increasing for 0 ≤ s ≤ 1/
√

2, we finally obtain

(67) l̃(t, β, h) > λ3 +
(√

1− σ2
3 − 1

)
(t− 2) +

(√
1− σ2

3 + σ3 −
√

2
)

(h− 1)
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for every (t, h) ∈ (1, 2)× [0, 1]. From (65), (66) and (67) we obtain

Lβ(Γr0) > λ3 +
(√

1− σ2
3 − 1

)
(δ0 − 3) + δ0 − 1 +

√
2,

Lβ(Γri) > λ3 +
(√

1− σ2
3 − 1

)
(δi − 3) + δi − 1 +

√
2,

Lβ(Γrk
) > 2λ3 +

(√
1− σ2

3 − 1
)

(δk − 5)−
√

1− σ2
3 − σ3 + δk − 1 + 2

√
2,

(68)

(k = 1, . . . , i− 1, i ≥ 2), so that
i∑

k=0

Lβ(Γrk
) > ∆

√
1− σ2

3 + σ3 +
(

2
√

2 + 4− 6
√

1− σ2
3 − σ3 + 2λ3

)
i

and

Lβ(Γ′) > ∆
√

1− σ2
3 + σ3 +

(
2
√

2 + 4− 6
√

1− σ2
3 − σ3 + 2λ3

)
i

+
√

(2i + m−∆)2 + (m− i− 1)2 .

(69)

Let us now consider the path Γ′′ starting from the origin, obtained by the concatenation
of i S3-paths and the segment connecting the point (3i, i) to Ai = (2i + m,m). Since this
segment connects two points on the light diagonal Di, its length is (m− i)

√
2, so that

Lβ(Γ′′) = iΛ3 + (m− i)
√

2 = i(λ3 + 2 +
√

2) + (m− i)
√

2.

We are going to show that Lβ(Γ′′) < Lβ(Γ′), in contradiction with the local minimality of
Γ′. We have that

Lβ(Γ′)− Lβ(Γ′′) >

(
2 +

√
2− 3

√
1− σ2

3 − σ3 + λ3

)
i−

(√
2−

√
1− σ2

3 − σ3

)

+
√

µ2
1 + µ2

2 − µ1

√
1− σ2

3 − µ2

(√
2−

√
1− σ2

3

)(70)

where
µ1 = 2i + m−∆ ≥ 0, µ2 = m− i− 1 ≥ 0.

Since 3i + 1 < ∆ and m ≥ i + 1 we have that

(71) 0 ≤ µ1 < µ2.

Moreover

(72)
√

µ2
1 + µ2

2 − µ1

√
1− σ2

3 − µ2

(√
2−

√
1− σ2

3

)
= µ2 ϕ

(
µ1

µ2

)
,

where

ϕ(s) =
√

1 + s2 − s
√

1− σ2
3 −

(√
2−

√
1− σ2

3

)
.

Since 0 < σ3 < 1/
√

2, we have that 1/
√

2 <
√

1− σ2
3 < 1. It can be easily checked that

ϕ′(s) < 0 for every s ∈ [0, 1], hence

(73) 0 = ϕ(1) < ϕ(s), ∀s ∈ [0, 1).

From (70), (71), (72) and (73) we thus get

Lβ(Γ′)− Lβ(Γ′′) >

(
2 +

√
2− 3

√
1− σ2

3 − σ3 + λ3

)
i−

(√
2−

√
1− σ2

3 − σ3

)
.(74)
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We claim that

2 +
√

2− 3
√

1− σ2
3 − σ3 + λ3 >

√
2−

√
1− σ2

3 − σ3 > 0 .(75)

The second inequality in (75) easily follows from the fact that 0 < σ3 < 1/
√

2. Concerning
the first one, by the very definition of λ3, and since b 7→ b2/

√
b2 − σ2

3 is an increasing
function in [1,+∞), we have that

(
2 +

√
2− 3

√
1− σ2

3 − σ3 + λ3

)
−

(√
2−

√
1− σ2

3 − σ3

)

= −2
√

1− σ2
3 +

2√
1− σ2

3

+
β2

√
β2 − σ2

3

−
√

2

≥ −2
√

1− σ2
3 +

2√
1− σ2

3

+
3/2√

3/2− σ2
3

−
√

2 =: ψ(σ3).

It can be checked that ψ is strictly increasing in (0, 1). Since, by Remark 5.3, σ3 > 1/
√

10,
we have that

ψ(σ3) > ψ

(
1√
10

)
=
√

10
15

+
3
√

10
2
√

14
−
√

2 > 0 ,

and (75) is proved.
Since i ≥ 1, it is straightforward to check that (74) and (75) imply that Lβ(Γ′) −

Lβ(Γ′′) > 0, in contradiction with the local minimality of Γ′. ¤
Theorem 5.5. Let Γ be a geodesic from the origin to a light vertex ξ = (x, y), with
0 ≤ y ≤ x.

(i) If β ≥ βc
0, then Lβ(Γ) = x + (

√
2− 1)y.

(ii) If
√

3/2 ≤ β ≤ βc
0, then

Lβ(Γ) =





x + (Λ3 − 3)y, if 0 ≤ y ≤ x/3,

Λ3 −
√

2
2

x +
3
√

2− Λ3

2
y, if x/3 ≤ y ≤ x ,

where Λ3 = Λ3(β) is the length of an S3–path, introduced in Definition 5.2.

Proof. (i) For β > βc
0 it is a straightforward consequence of Theorem 5.1.

(ii) Let us consider the case
√

3/2 ≤ β < βc
0. From Theorem 5.4 we know that Γ is the

concatenation of S3–paths and segments joining light vertices, lying on light diagonals or
on horizontal lines. Hence we have that

Lβ(Γ) = t Λ3 + r + d
√

2,

where t is the number of S3–paths, r is the number of unit horizontal segments, and d
is the number of diagonals of light squares. It is clear that the three numbers t, r, d ∈ N
must satisfy the constraints

3t + r + d = x, t + d = y ,

so that
Lβ(Γ) = (Λ3 − 2−

√
2)t + x + (

√
2− 1)y .

Since Λ3 < 2 +
√

2, L is minimized by choosing the largest admissible value of t, which is
y if y ≤ x/3, and (x− y)/2 if y ≥ x/3. (We remark that (x− y)/2 is an integer number,
since the point P = (x, y) is a light vertex.) In conclusion, if y ≤ x/3 we choose t = y,
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d = 0 and r = x− 3y, whereas if y ≥ x/3 we choose t = (x− y)/2, d = (3y − x)/2, r = 0,
obtaining (ii).

Finally, if β = βc
0, it is straightforward to check that the lengths of geodesics can be

computed indifferently as in (i) or in (ii). We remark that, in this case, these two formulas
give the same result, since Λ3 = 2 +

√
2. ¤

One may wonder if the previous characterization of the geodesics for
√

3/2 ≤ β < βc
0

remains valid for βc
1 < β < βc

0. The following example shows that this is not the case.

Example 5.6. Let Γ = [[(0, 0), (1, 1)]]∪S((1, 1), (4, 2)). By Theorem 5.5, if
√

3/2 ≤ β < βc
0,

then Γ is a geodesic joining the origin to the point ξ = (4, 2). Given t ∈ [0, 1], let us
consider the curve

Γ(t) = S((0, 0), (1 + t, 1)) ∪ S((1 + t, 1), (4, 2)).

We have that
L(t) := Lβ(Γ(t)) = l(t, β) + l(2− t, β) .

Moreover, for t = 0 we have Γ(0) = Γ, L(0) = Λ3 +
√

2, and

L′(0) = lim
t→0+

L(t)− L(0)
t

= l+t (0, β)− l−t (2, β)

=
√

β2 − 1
2
−

√
1− σ2

3 .

(76)

We recall that, for a given β > 1, σ3 is the unique zero in (0, 1) of the function

g(σ) =
2σ√

1− σ2
+

σ√
β2 − σ2

− 1 .

Moreover, g is a strictly monotone increasing function in (0, 1), with g(0) = −1 and
g(s) → +∞ as s → 1−. For β ≤ √

3/2, let us compute

ψ(β) = g

(√
3
2
− β2

)
= 2

√
3− 2β2

2β2 − 1
+

√
3− 2β2

4β2 − 3
− 1 .

Since
ψ′(β) = − 2β√

3− 2β2

(
3

(4β2 − 3)3/2
+

4
(2β2 − 1)3/2

)
< 0,

the map ψ is strictly monotone decreasing in [1,
√

3/2], with ψ(1) = 1 and ψ
(√

3/2
)

= −1.

The unique zero of ψ in (1,
√

3/2) is β̃ ' 1.17868, and β̃ > βc
1 ' 1.06413. Hence, for

1 < β < β̃, we have that σ3 <
√

3/2− β2 and, by (76), L′(0) < 0. In conclusion, if
1 < β < β̃, for t > 0 small enough we have that L(t) < L(0), and Γ is not a geodesic.

6. The homogenized metric

As a direct consequence of Theorem 5.5, we obtain the complete description of the
homogenized metric Φβ for β ≥ √

3/2. In the general case we discuss the regularity of the
homogenized metric.

In order to make some usefull reductions, we need two remarks on the distance dε
β(0, ξ)

defined in (6).

Remark 6.1. Since |ξ − η| ≤ dε
β(η, ξ) ≤ β|ξ − η|, it can be easily seen that

(77) Φβ(ξ) = lim
ε→0+

dε
β(ηε, ξε) , ∀ ξ ∈ R2, ∀ξε → ξ , ∀ηε → 0 .



LIMITS OF CHESSBOARD STRUCTURES 29

Figure 11. The homogenized unit ball for β ≥ βc
0 (left) and

√
3/2 ≤ β <

βc
0 (right)

Remark 6.2. For every ε > 0 let ηε = ( ε
2 , ε

2). From (77) we have that

Φβ(ξ) = lim
ε→0+

dε
β(ηε, ξ + ηε) , ∀ξ ∈ R2 .

Since the map ξ 7→ dε
β(ηε, ξ+ηε) is symmetric w.r.t. the coordinated axis and the diagonals

passing through the origin, it is clear that Φβ has the same symmetries.

In what follows, given (x, y) ∈ R2 we denote

M = max{|x|, |y|}, m = min{|x|, |y|}.
Theorem 6.3. For every (x, y) ∈ R2 the following hold.

(i) If β ≥ βc
0, then Φβ(x, y) = M + (

√
2− 1)m.

(ii) If
√

3/2 ≤ β ≤ βc
0, then

Φβ(x, y) =





M + (Λ3 − 3)m, if 3m ≤ M,

Λ3 −
√

2
2

M +
3
√

2− Λ3

2
m, if 3m ≥ M ,

where Λ3 = Λ3(β) is the length of an S3–path, introduced in Definition 5.2.

Proof. By Remark 6.2 it is enough to consider the case 0 ≤ y ≤ x, so that M = x and
m = y. Let ξ = (x, y) and, for ε > 0, let us define

j =
⌊
y

ε

⌋
, n =

⌊
x− jε

2ε

⌋
, ξε = (xε, yε) = ((2n + j)ε, jε).

Then
|y − yε| < ε, |x− xε| < 2ε,

so that |ξ − ξε| < ε
√

5. Moreover dε
β(0, ξε) is explicitly computed in Theorem 5.5. Since

ξε → ξ, by (77), the conclusion follows. ¤
In the general case we have the following result.

Theorem 6.4. Let β > 1 be given, and let kc(β) be the number defined in Definition 3.9.
Then Φβ(x, y) = M + (l(2kc(β), β) +

√
2 − 1)m for every (x, y) ∈ R2 belonging to one of

the cones {(2kc(β) + 1)|y| ≤ |x|} or {(2kc(β) + 1)|x| ≤ |y|}.
Proof. From Remark 6.2 it is enough to consider the case 0 ≤ (2kc(β)+1)y ≤ x. Moreover,
we can assume that y > 0, the case y = 0 being trivial. Since the homogenized metric
depends continuously on β, it is not restrictive to assume β 6= βc

k, in such a way that

l(2kc(β), β) < l(t, β) , ∀ t ≥ 0, t 6= 2kc(β)
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(see Corollary 3.15(iii)). For every 0 < ε < y, let ξε = (xε, yε) be the nearest light vertex
to ξ = (x, y) below the line x = (2kc(β) + 1)y. Then ξε = ((2n + j)ε, jε) for some j ≥ 1
and n ≥ kc(β)j, and ξε → ξ as ε tends to 0.

We claim that

(78) dε
β(0, ξε) = xε + (l(2kc(β), β) +

√
2− 1)yε , ∀ 0 < ε < y ,

so that the result will follows from (77). In order to prove the claim, after a scaling, we
have to depict a geodesic Γ joining the origin to the point (2n + j, j) in the standard
chessboard structure. Let us define the class S of all Snell paths joining the light vertices
(2m+ r−1, r−1) and (2m+2kc(β)+ r, r), m, r ∈ Z. We are going to show that Γ has to
be the concatenation of j Snell paths in S and of horizontal segments. As a consequence,
since the length of any path in S equals to l(2kc(β), β) + 2kc(β) +

√
2, whereas the total

length of the horizontal segments is 2(n− kc(β)j), we obtain that (78) holds.
Let us define the paths Γ1, . . . , Γj as in (61). For every r = 1, . . . , j let us denote by

(xr, r − 1) and (x′r, r) the endpoints of Γr, and let τr = x′r − xr. Thanks to Lemma 3.16,
we have that

Lβ(Γr) ≥ l(2kc(β), β) + τr − 1 +
√

2 ,

for every r = 1, . . . , j. Then we get

Lβ(Γ) =
j∑

r=1

Lβ(Γr) + 2n + j −
j∑

r=1

τr ≥ 2n + j + (l(2kc(β), β) +
√

2− 1)j

and again by Lemma 3.16 the equality holds if and only if τr = 2kc(β) and Γr ∈ S for
every r = 1, . . . , j. ¤

Corollary 6.5. For every β > 1 the unit ball of the homogenized metric is not strictly
convex, and its boundary is not differentiable.

Remark 6.6. The presence of faces in the optical ball corresponds to nonuniqueness of the
geodesics. More precisely, if F is a face of positive length, and C = {λη; η ∈ F, λ ≥ 0} is
the corresponding cone, then for every ξ ∈ C, a function u ∈ AC([0, 1],R2) with u(0) = 0,
u(1) = ξ, parameterizes a geodesic if and only if u′(t) ∈ C for a.e. t ∈ [0, 1].

Namely, there exists p ∈ R2 such that Φβ(η) = 〈p, η〉 for every η ∈ C, and Φβ(η) > 〈p, η〉
for every η ∈ R2 \ C. Hence, if u′(t) ∈ C for a.e. t ∈ [0, 1], then we get

Lhom
β (u) =

∫ 1

0
Φβ(u′(t)) dt =

∫ 1

0
〈p, u′(t)〉 dt = Φβ(ξ),

whereas Lhom
β (u) > Φβ(ξ) whenever {t ∈ [0, 1]; u′(t) 6∈ C} has positive measure.

As a final remark, let us consider the chessboard structure corresponding to the upper
semicontinuous function

(79) ãβ(ξ) =

{
β if ξ ∈ ([0, 1]× [1, 2]) ∪ ([1, 2]× [0, 1])
1 otherwise

which differs from the standard chessboard structure defined in (1) by the fact that ã = β
instead of 1 on the sides of the squares.

In this way we obtain a new family of length functionals L̃ε
β. In this case the existence

of a geodesic joining the origin with a point ξ ∈ R2 is not guaranteed. For example, if
ξ = (ε, 0), we have L̃ε

β(u) > ε for every u ∈ AC([0, 1],R2) such that u(0) = 0 and u(1) = ξ.
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On the other hand, we can construct a minimizing sequence (un)n such that L̃ε
β(un) → ε

for n → +∞, defining

un(t) =

{
(εt, 2t/n), if t ∈ [0, 1/2],
(εt, 2(1− t)/n), if t ∈ [1/2, 1] .

Nevertheless, the Γ-limit with respect to the L1-topology of the functionals (L̃ε
β) coincides

with the Γ-limit Lhom
β of the functionals (Lε

β). Namely, the liminf inequality is certainly
satisfied since L̃ε

β ≥ Lε
β. On the other hand, given u ∈ AC([0, 1],R2) and a recovering

sequence (uε) for (Lε
β), we can construct a recovering sequence (ũε) for (L̃ε

β) in the following
way: for a given ε, we obtain ũε modifying uε in the region where uε(t) belongs to the
set S of the sides of squares, in such a way that Lε

β(ũε) < Lε
β(uε) + ε, and the set

{t ∈ [0, 1]; ũε ∈ S} has vanishing Lebesgue measure.
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