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Abstract. The aim of this paper is to study the minimal perimeter problem

for sets containing a fixed set E in R2 in a very general setting, and to give

the explicit solution.
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Introduction

It is well known that if E is a sufficiently smooth bounded open set in the
plane, the convex hull co(E) of E is the bounded connected open set of minimal
perimeter containing E. In this paper we study the same kind of minimization
problem in a much more general framework by minimizing the perimeter in the
class of indecomposable sets containing a fixed measurable set E.

To this aim, we recall that a set of finite perimeter E ⊂ RN is said to be
decomposable if there exists a partition of E in two measurable sets A, B with
strictly positive measure such that

P (E) = P (A) + P (B),

where P (·) denotes the perimeter of a measurable set. Therefore, the notion of
indecomposable set, i.e. not decomposable set, clearly extends the topological notion
of connectedness. Besides, it can be easily shown that if Ω ⊂ RN is a connected
open set of finite perimeter then Ω is indecomposable.

In the sequel, given a measurable set E ⊂ RN , we shall denote by Eλ, λ in [0, 1],
the set of all points where the density of E is equal to λ. Moreover, we say that a
property holds modulo Hk if it holds apart from a set of Hk-measure zero, where
Hk denotes the k-dimensional Hausdorff measure.

With this notation our main result reads as follows.

Theorem 1. Let E ⊂ R2 be a bounded measurable set. The problem

(1) inf{P (F ) : F ⊃ E (mod H2), F indecomposable and bounded}

has the unique solution F0 = co(E1).

Notice that the statement of Theorem 1 reproduces exactly what is known in the
smooth case provided we take as a representative of the measurable set E the set
E1 of its points of density 1, which coincides H2-a.e. with E.

In the particular case when E is an indecomposable set the result above can be
improved by showing that co(E1) is the unique minimizer of the perimeter also in the
larger class of all bounded sets of finite perimeter containing E almost everywhere.
Moreover, it can be also proved that co(E1) coincides with the convex envelope of a
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connected open set of finite perimeter essentially obtained by removing all “holes”
from the set E (for a precise statement see Theorem 6).

A quick comment about the proofs. The precise analysis of the structure of sets
of finite perimeter in the plane carried on by Ambrosio-Caselles-Masnou-Morel in
[1] permits to give much simpler proofs of our results than one could have expected
in such a general framework.

1. Sets of finite perimeter

Given a measurable set E ⊂ RN and a point x ∈ RN , we recall that the density
of E at x is defined as

D(E, x) := lim
r→0

|B(x, r) ∩ E|
|B(x, r)|

.

The set E1 = {x ∈ RN : D(E, x) = 1} is called the essential interior of E.
Similarly, E0 is the essential exterior of E and ∂ME = RN \ (E1 ∪ E0) is the
essential boundary of E.

We say that a set E is of finite perimeter if HN−1(∂ME) is finite. Its perimeter
P (E) is then given by

P (E) := HN−1(∂ME).

Notice that this definition of perimeter is equivalent to the distributional one (see
Definition 3.35 and Theorem 3.61 in [2] together with Theorem 4.5.11 in [4]).

By definition, the essential boundary of E contains the points where the density
of E is equal to 1/2. However, (see Theorem 3.61 in [2]) if E is a set of finite
perimeter, then

(2) HN−1(∂ME \ E1/2) = 0.

The following result is proved in [1] (Theorem 1).

Theorem 2. Let E be a set of finite perimeter in RN . Then there exists a unique
finite or countable family of pairwise disjoint indecomposable sets {Ei}i∈I such that
|Ei| > 0, for every i ∈ I, and

P (E) =
∑

i

P (Ei).

Moreover, if F ⊂ E is an indecomposable set then F is contained (mod HN ) in
some set Ei.

2. Sets of finite perimeter in the plane

Let us turn to sets of finite perimeter in the plane.
We recall that Γ is a Jordan curve if Γ = γ([a, b]), for some a < b in R, and

some continuous, one-to-one on [a, b), map γ such that γ(a) = γ(b). According to
the Jordan curve theorem, Γ splits R2 \ Γ in two open components, a bounded one
int(Γ) and an unbounded one ext(Γ), both having common boundary Γ.

Next result is proved in [1] (see Corollary 1). It states that a bounded indecom-
posable set in the plane essentially coincides with the interior of a Jordan curve
minus a finite or countable number of holes.

Theorem 3. Let E be an indecomposable bounded set of R2. Then, there exists
a unique decomposition (mod H1) of ∂ME into a finite or countable number of
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rectifiable Jordan curves C+, C−i , i ∈ I, such that int(C−i ) ⊂ int(C+), the int(C−i )
are pairwise disjoint,

E=int(C+) \
⋃
i

int(C−i ) (mod H2) and P (E) = H1(C+) +
∑

i

H1(C−i ).

Lemma 4. Let E ⊂ R2 be an indecomposable bounded set. If E is not equivalent
(mod H2) to a convex open set, then there exists a bounded set F ⊃ E (mod H2)
such that

P (F ) < P (E).

Proof. By Theorem 3,

E=int(C+) \
⋃
i

int(C−i ) and P (E) = H1(C+) +
∑

i

H1(C−k ).

Define G := int(C+). If there exists i such that H1(C−i ) > 0, then P (G) < P (E).
We can therefore suppose E = int(C+).

Suppose that G is not convex. We claim that there exist a, b ∈ C+ such that the
segment (a, b) is contained in ext(C+).

In fact, since G is not convex, there exist two points x, y in G such that the
segment [x, y] is not contained in G. Then, either there is a point z ∈ [x, y]∩ext(C+)
and in this case the claim immediately follows, or the segment [x, y] is all contained
in G and then, by slightly tilting the segment [x, y], one reduces to the previous
case.

Let us now denote by γ : [0, 1] → R2 a parametrization of C+. Without loss of
generality, we may assume that γ(0) = γ(1) = a, γ(1/2) = b. Set Γ1 := γ((0, 1/2)),
Γ2 := γ((1/2, 1)). Clearly Γ1∪[a, b],Γ2∪[a, b] are Jordan curves, thus we may define

A1 := int(Γ1 ∪ [a, b]), A2 := int(Γ2 ∪ [a, b]).

We claim that

(3) either A1 ∩ Γ2 6= ∅ or A2 ∩ Γ1 6= ∅.
Let us argue by contradiction. If (3) does not hold, let us set

A := A1 ∪A2 ∪ (a, b).

We show that A is a bounded connected open set. Fix x ∈ A. If x belongs to
A1 or A2, then it is obvious that x belongs to the interior of A. Therefore, let us
consider the case when x belongs to the open segment (a, b). In this case, there
exists a ball B centered in x and not intersecting Γ1 ∪ Γ2 ∪ {a, b}. Denote by B+

and B− the two opens half balls in which B is divided by (a, b). Since x ∈ ∂A1,
there exists a point y1 ∈ A1 ∩ B \ (a, b). To fix the ideas, let us assume y1 ∈ B+.
Similarly there exists y2 ∈ A2∩B \ (a, b). If also y2 belongs to B+ then, by a simple
connectedness argument, B+ ⊂ A1∩A2. Thus A1∩A2 6= ∅ and A1 6= A2 (since they
have different boundaries). Therefore, either A1 \ A2 6= ∅ or A2 \ A1 6= ∅. Assume
the former is true. Then there exist x1 ∈ A1 \A2 and x2 ∈ A1 ∩A2 Moreover, since
we are assuming that A1∩∂A2 = ∅, x1 ∈ A1∩ext(Γ2∪ [a, b]). Since A1 is connected,
we can find an arc x̂1x2 ⊂ A1 with extreme points x1, x2. Then, x̂1x2 ∩ Γ2 6= ∅
which is impossible since we are assuming A1∩Γ2 = ∅. This shows that if B+ ⊂ A1

necessarily B− ⊂ A2, hence B ⊂ A, thus completely proving that A is an open set.
To show that A is connected, let us fix two points x1, x2 ∈ A. If x1, x2 ∈ A1 ∪

(a, b), clearly there exists an arc connecting the two points contained in A1 ∪ (a, b).
Similarly for the case x1, x2 ∈ A2 ∪ (a, b). Finally, if x1 ∈ A1 and x2 ∈ A2, we can
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fix a point x ∈ (a, b) and connect first x1 to x by an arc contained in A1 and then
x2 to x by an arc contained in A2. Therefore, in all possible case, there is an arc
connecting x1 to x2 contained in A.

Let us finally prove that ∂A = C+. Then, from this equality, it will immediately
follow that A = G and thus that (a, b) ⊂ G which is impossible. This contradiction
will prove (3). Let us first take x ∈ ∂A. Then we can find a sequence {xn}n∈N con-
verging to x and contained either in A1 or in A2 or in the segment (a, b). Therefore,
x necessarily belongs to Γ1∪Γ2∪ [a, b]. On the other hand x 6∈ (a, b) hence x ∈ C+,
thus showing that ∂A ⊂ C+. To prove the opposite inclusion, take a point x in
Γ1 ∪ {a, b} (the case Γ2 ∪ {a, b} is similar). Then, there exists a sequence {xn}n∈N
contained in A1 and converging to x. Thus x ∈ A1 \A ⊂ A \A = ∂A.

Having proved (3), let us assume, without loss of generality, that there exists
x ∈ A1 ∩ Γ2, hence there exists a point y ∈ A1 ∩G. Again, by connectedness, this
implies that

G ⊂ int(Γ1 ∪ [a, b]).

Thus, defining F := int(Γ1 ∪ [a, b]), we obtain that

P (E) = H1(C+) = H1(Γ1) +H1(C+ \ Γ1)

> H1(Γ1) +H1([a, b]) = H1(Γ1 ∪ [a, b]) = P (F ),

as we stated. �

Proposition 5. Let E ⊂ R2 be an indecomposable bounded set. The problem

(4) inf{P (F ) : F ⊃ E (mod H2), F bounded}

has the unique solution F0 = co(E1).

Proof. Let B a ball such that E ⊂⊂ B and consider the problem

(5) inf{P (F ) : F ⊃ E (mod H2), F ⊂ B}.

The assertion will easily follow by proving that co(E1) is the unique minimizer for
(5). Let {Fn}n∈N be a minimizing sequence for problem (5). Since the measures of
Fn are equibounded, by Theorem 3.39 in [2], passing possibly to a subsequence, we
may assume that

χFn converges a.e. to χF ,

where F is a set of finite perimeter such that F ⊃ E (mod H2). By the lower
semicontinuity of perimeter, F is minimal.

Denoting by {Ei}i∈I the decomposition of F in indecomposable sets provided by
Theorem 2, there exists i such that

Ei ⊃ E (mod H2)

and thus by the minimality of F , Ei = F (mod H2), hence, F is indecomposable.
By Lemma 4, F is also convex.

If F were not equivalent to co(E1), the intersection F ∩co(E1) would be a convex
set containing E (mod H2) with measure strictly smaller than the measure of F
and therefore, by Lemma 2.4 in [3], we would have P (F ∩ co(E1)) < P (F ). This
contradiction proves that F = co(E1). �

Let us now prove Theorem 1.
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Figure 1

Proof of Theorem 1. As before, given any ball B such that E ⊂⊂ B, it is enough
to show that co(E1) is the unique minimizer of problem

(6) inf{P (F ) : F ⊃ E (mod H2), F indecomposable and F ⊂ B}.
Let us consider a minimizing sequence {Fn}n∈N for problem (6). By Proposition

5, we may assume that each Fn is convex and that the sequence χFn
converges

almost everywhere. Setting

F := {x ∈ R2 : χFn
(x) → 1},

clearly F is a convex set and the same argument used in the proof of Proposition 5
shows that co(E1) = F . �

Let us now show that, if E is indecomposable, co(E1) coincides (in the usual
pointwise sense) with the convex envelope of int(C+).

Theorem 6. Let E be an indecomposable bounded set of R2 such that

E = int(C+) \
⋃
i

int(C−i ) (mod H2),

where C+, C−i are as in Theorem 3. Then,

co(E1) = co(int(C+)).

Proof. Notice that E1 ⊂ co(int(C+)), hence, co(E1) ⊂ co(int(C+)). In fact, if
x ∈ E1 \ int(C+), there exists a ball B centered in x such that

|B ∩ int(C+)| > 1
2
|B|.

Assuming without loss of generality that x = 0 and denoting by r the radius of B,

|B ∩ int(C+)| =
∫ π

0

dθ

∫ r

0

ρ[χint(C+)(θ, ρ) + χint(C+)(θ + π, ρ)]dρ >
πr2

2
.

Therefore there exists θ ∈ (0, π) such that∫ r

0

ρ[χint(C+)(θ, ρ) + χint(C+)(θ + π, ρ)]dρ > r2/2.

Similarly, there exists a value of ρ > 0 such that

χint(C+)(θ, ρ) + χint(C+)(θ + π, ρ) > 1.

This proves that there exists at least one diameter of the ball containing a point
y1 ∈ int(C+) on one side with respect to x and a point y2 ∈ int(C+) on the other
side. Thus x ∈ [y1, y2] ⊂ co(int(C+)).
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Denote by F the closure of co(E1). We claim that

(7) |int(C−i ) \ F | = 0, for every i ∈ I.

Indeed, if this is false for some i, since int(C−i ) \ F is an open set, there exists a
closed square Q ⊂ int(C−i )\F with sides parallel to the coordinate axes and length
l. Let us denote by S+ and S− the two open strips shown in Figure 1.

Since the square Q is contained in int(C+), all the half lines r+ parallel to r+
1 ,

r+
2 and contained in S+ intersect C+ in at least one point. Therefore, we can easily

conclude that H1(C+ ∩ S+) ≥ l. Since C+ ⊂ ∂ME (mod H1) and E has density
1/2 at H1-a.e. point of ∂ME, we may conclude that |E1 ∩ S+| > 0. Similarly, one
proves that |E1∩S−| > 0 and thus, there exists a point in Q∩F . This contradiction
proves (7).

Therefore, we may conclude that F ⊃ int(C+) (mod H2), hence, since int(C+) is
open and F is closed, the inclusion F ⊃ int(C+) is also true in the usual pointwise
sense. Thus F contains co(int(C+)) and we have

co(E1) ⊂ co(int(C+)) ⊂ co(E1).

Since co(int(C+)) is open, we conlude that co(E1) = co(int(C+)). �
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