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Abstract

In this paper we introduce the notion of middle point linear operators. We prove a fixed
point result for middle point linear operators in L1. We then present some examples and, as
an application, we derive a Markov-Kakutani type fixed point result for commuting family of
α-nonexpansive and middle point linear operators in L1.

1 Introduction

Furi and Vignoli [11] proved that any α-nonexpansive map T : K → K on a nonempty, bounded,
closed, convex subset K of a Banach space X satisfies

inf
x∈K

‖T (x)− x‖ = 0,

where α is the Kuratowski measure of non compactness on X. It is of great importance to obtain
the existence of fixed points for such mappings in many applications such as eigenvalue problems
as well as boundary value problems, including approximation theory, variational inequalities,
and complementarity problems. Such results are used in applied mathematics, engineering, and
economics.
In this paper we give optimal sufficient conditions for T to have a fixed point on K in case that
X = L1(µ), where µ is a σ-finite measure, and as a minor application, in case that X is a reflexive
Banach space.
The study of fixed point theory has been pursued by many authors and many results are known
in literature. In order to have an overview of the problem, we present a brief survey of most
relevant fixed point theorems. Darbo [7] showed that any α-contraction T : K → K has at
least one fixed point on every nonempty, bounded, closed, convex subset K of a Banach space.
Later, Sadovskĭı [15] extended the Darbo’s result for α-condensing mappings. Belluce and Kirk [3]
obtained fixed point results for nonlinear mappings T , defined on a convex and weakly compact
subset K of a Banach space, for which V := I − T satisfies∥∥∥∥V

(
x + y

2

)∥∥∥∥ ≤ 1
2

(
‖V (x)‖+ ‖V (y)‖

)
, for any x, y ∈ K. (1.1)

Lennard [13] proved that any nonexpansive maps T : K → K has at least one fixed point on
every nonempty, ‖ · ‖L1-bounded, ρ-compact, convex subset of L1(µ), where ρ is the metric of the
convergence locally in measure. For other results we refer to [14, 10, 17, 12, 8, 16].
The purpose of this paper is two-fold:
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• to introduce the notion of middle point linear operator, which extends the notion of convexity
in the sense of (1.1);

• to show that any continuous operator T : (K, ρ) → (K, ρ) has at least one fixed point in K,
whenever K is a nonempty, ‖ · ‖L1-bounded, ρ-closed and convex subset of L1(µ) and T is
middle point linear and α-nonexpansive.

The class of middle point linear operators, which are defined in Definition 3.1, comprises not only
convex operators in the sense of (1.1) but also affine operators. However, as shown in Example 3.1,
middle point linear operators are not necessarily affine. We provide a characterization of middle
point linear operators and present some useful properties, such as the stability under pointwise
convergence, the convexity of the set of fixed points and the fact that it suffices to test middle
point linearity on a dense subsets of the domain.
The fixed point theorem, which is the main result of the paper, is stated in Theorem 4.3. The idea
is to prove, exploiting a result of Bukhvalov [6], that the functional f : x 7→ ‖T (x)− x‖L1 attains
its minimum value on every nonempty, ‖ · ‖L1-bounded, ρ-closed and convex subset of L1(µ) (see
Lemma 4.2); the conclusion simply follows as a consequence of Furi-Vignoli’s Theorem [11].
Using a slightly different argument, it is also possible (see Remark 4.1) to prove a fixed point
theorem for middle point linear operators defined on a convex and weakly compact subset of an
arbitrary Banach space, generalizing some previuos results of Belluce and Kirk [3, Theorem 4.1,
Theorem 4.2]. In particular, this implies that any α-nonexpansive and middle point linear operator
T : K → K has at least one fixed point on every nonempty, bounded, closed and convex subset
K of a reflexive Banach space.
We remark that Theorem 4.3 is optimal as Example 4.1 shows: the assumption of middle point
linearity on T cannot be avoided, even when K is assumed to be weakly compact. We also present
several examples, namely, Examples 4.2–4.4, which show that Theorem 4.3 applies in situation
where neither Sadovskĭı’s Theorem nor Lennard’s Theorem do.
A first application of Theorem 4.3 leads to a fixed point result for uniform limits of middle
point linear operators (see Proposition 4.1). As second application of Theorem 4.3, we derive
a generalization of Markov-Kakutani Theorem (see [12, 9]); more precisely, we show that any
commuting family F of α-nonexpansive and middle point linear operators has a common fixed
point on K, whenever T : (K, ρ) → (K, ρ) is continuous for any T ∈ F and K is a nonempty,
‖ · ‖L1-bounded, ρ-closed, convex subset of L1(µ) (see Theorem 4.4).
The paper is organized as follows. In Section 2 we give a review of basic notions and we fix
notations. In Section 3 we introduce and characterise middle point operators, and present some
useful properties. In Section 4 we show all the above mentioned fixed point results for middle
point linear operators in L1(µ) (and in Banach spaces) and we present the examples.

2 Preliminaries

Let (Ω,Σ, µ) be a σ-finite measure space, and let (Ωm)∞m=1 be a µ-partition of Ω with µ(Ωm) < +∞.

We denote by M(µ) the collection of all equivalence classes of functions x : Ω →
∼
R which are µ-

measurable and finite almost everywhere, modulus the µ-a.e. equivalence. M(µ) can be endowed
with the metric

ρ(x, y) :=
∞∑

m=1

1
2m

1
µ(Ωm)

∫
Ωm

|x− y|
1 + |x− y|

dµ, x, y ∈ M(µ).

It is well known that the metric ρ is translation-invariant and induces the topology of convergence
locally in measure. If µ(Ω) < +∞, then the topology of the convergence locally in measure on
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M(µ) is equivalent to the topology of the convergence in measure which is induced by the metric

ρ(x, y) :=
∫

Ω

|x− y|
1 + |x− y|

dµ. (2.1)

Throughout the paper, the symbol ‖ · ‖ will denote either the norm of a generic normed space
or the norm of L1(µ). Since L1(µ) will be endowed with the norm topology and the topology
induced by ρ, we will say that a subset of L1(µ) is bounded (respectively, closed and complete) if
it is ‖ · ‖L1-bounded (respectively, ‖ · ‖L1-closed and ‖ · ‖L1-complete). We denote by X1 the closed
unit ball of L1(µ).

Remark 2.1. Remember that
(
M(µ), ρ

)
is a Frèchet space. If µ is finite,

(
M(µ), ρ

)
is exactly

the metric completion of the metric linear space
(
L1(µ), ρ

)
. We recall also that, any subset A of

L1(µ) is closed (and hence complete) whenever A is ρ-closed.

Given a metric space X and a bounded set A ⊂ X, we denote by α(A) the Kuratowski measures
of non compactness of A, i.e.

α(A) := inf{ε > 0 : A can be covered by finitely many sets of diameter 6 ε}.

For the properties and examples, we refer to [2] or [16].
A map T : X → X on a normed space (X, ‖ · ‖) is called

nonexpansive if ‖T (x)− T (y)‖ ≤ ‖x− y‖ for every x, y ∈ X;

α-nonexpansive if it is continuous and α
(
T (A)

)
≤ α(A) for every A ⊂ X;

In the sequel we shall simply write nonexpansive for maps in L1(µ) that are ‖ · ‖L1-nonexpansive.

3 Middle point linear operators

We introduce a new class of operators in normed spaces.

Definition 3.1. Let X1 be the closed unit ball of a normed space X and K be a convex subset
of X (also K = X). A continuous operator T : K → X is said middle point linear if for every
positive number r > 0 the following property holds:

T

(
x + y

2

)
∈ x + y

2
+rX1, whenever x, y ∈ K, T (x) ∈ x + rX1 and T (y) ∈ y + rX1. (3.1)

Remark 3.1. Any affine operator T : X → X on a normed space X, i.e. any map such that

T (ax + (1− a)y) = aT (x) + (1− a)T (y), for any x, y ∈ X and a ∈ [0, 1],

is middle point linear.

However, as it is shown in the following example, middle point operators need not to be affine.

Example 3.1. Let ϕ : [0,+∞) → [0, 1] be a non-increasing continuous function. Define the
operator T : X → X as

T (x) := ϕ
(
‖x‖

)
x, (3.2)

for all x ∈ X. The operator T is middle point linear. Indeed, fix r > 0 and choose x, y ∈ X such
that

‖x− T (x)‖ =
[
1− ϕ

(
‖x‖

)]
‖x‖ 6 r and ‖y − T (y)‖ =

[
1− ϕ

(
‖y‖

)]
‖y‖ 6 r.
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Without loss of generality, we can assume that ‖x‖ 6 ‖y‖. This implies that
∥∥∥∥x + y

2

∥∥∥∥ 6 ‖y‖ and,

by the monotonicity of ϕ, ϕ(‖y‖) 6 ϕ
(
‖x + y‖/2

)
. Then∥∥∥∥x + y

2
− T

(
x + y

2

)∥∥∥∥ =
[
1− ϕ

(
‖x + y‖/2

)] ∥∥∥∥x + y

2

∥∥∥∥ ≤ [
1− ϕ

(
‖y‖

)]
‖y‖ 6 r,

that is T

(
x + y

2

)
∈ x + y

2
+ rX1.

Remark 3.2. It is rather natural to compare this new definition with the usual convexity in
the real line, namely, in case that X = R.
There exist convex middle point linear mappings, as x 7→ exp(x) for any x ∈ [0,∞). However,
convex functions are not necessarily middle point linear; for instance, the map h : [0, 1] → [0, 1],
defined by h(x) := x2 for all x ∈ [0, 1], is not middle point linear since |h(0) − 0| ≤ r and
|h(1)− 1| ≤ r for all r < 1/8, while |h(1/2)− 1/2| = 1/4 > r. Anyway, we observe that the map
h is middle point linear on [1,+∞).

Remark 3.3. Condition (1.1) implies (3.1), but the converse is not true. For instance, the
operator T : X1 → X1, defined as in (3.2) with ϕ(r) =: (1− r)2, r ∈ [0, 1], is middle point linear
but (1.1) is not satisfied, since the map r 7→ (1− ϕ(r))r is not convex in [0, 1]. Another example
is given by the map S(x) := x− 1 + e−x2

for any x ∈ [−M,M ] with M large enough.

It is easy to prove that if T is middle point linear then property (3.1) holds for every convex
combination of x and y, namely the following statement holds.

Proposition 3.1. Let X be a normed space and T : X → X be a middle point linear operator.
For each r > 0, if x, y ∈ X are such that T (x) ∈ x + rX1 and T (y) ∈ y + rX1, then

T
(
λx + (1− λ)y

)
∈ λx + (1− λ)y + rX1,

for each λ ∈ [0, 1].

Proof. The proof is based on a standard procedure. First, we prove the statement for every
dyadic rational in (0, 1) and then, by the continuity of T , for every number λ ∈ (0, 1).

2

The following characterization of middle point linear operators is a direct consequence of the
Definition 3.1 and Proposition 3.1.

Proposition 3.2. Let X be a normed space and T : X → X be a continuous operator. Then
T is middle point linear if and only if the functional f : X → R defined as f(x) := ‖T (x)− x‖ is
quasi-convex, i.e. the set {x ∈ X : f(x) 6 r} is convex in X for any r > 0.

Remark 3.4. The class of affine operators enjoys closedness under convex combination as well
as under usual map composition. In general, this is not true for middle point linear operators.
To see this, let X = R and S, T : R → R be defined by S(x) := x−2x2 and T (x) := x+2x4. From
Proposition 3.2, S and T are middle point linear since both the mappings x 7→ |S(x) − x| = 2x2

and x 7→ |T (x) − x| = 2x4 are convex. However, R := 1
2(T + S) is not middle point linear, since

‖R(x)− x‖ = |x4 − x2| is not quasi-convex.
Consider now the operator U : R → R, defined by U(x) := x−x3. Clearly, U is middle point linear
since ‖U(x)−x‖ = |x3| is quasi-convex, but U2 is not since ‖U2(x)−x‖ = |x3(x6−3x4 +3x2−2)|
fails to be quasi-convex.
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Pointwise convergence respects middle point linearity, namely the following result can easily be
checked.

Proposition 3.3. Let Tn : X → X be a sequence of middle pont linear operators, and let
T : X → X be its pointwise limit (i.e. lim

n→+∞
‖Tn(x)− T (x)‖ = 0 for every x ∈ X). Then T is

middle point linear.

It is also interesting to note that it suffices to test property (3.1) on dense subsets of X as the
following proposition shows.

Proposition 3.4. Let T : X → X be a continuous operator and D be a dense subset of X. If
(3.1) holds for any pair x, y ∈ D, then T is middle point linear on X.

Proof. Let r > 0 be fixed, and let x, y ∈ X be such that T (x) ∈ x + rX1 and T (y) ∈ y + rX1.
Fix ε > 0, and let δ(ε) be determined by the continuity of T in x and y; choose xδ, yδ ∈ D such
that

‖x− xδ‖ ≤ δ and ‖y − yδ‖ ≤ δ.

Then
‖T (x)− T (xδ)‖ ≤ ε and ‖T (y)− T (yδ)‖ ≤ ε.

Since ‖xδ − T (xδ)‖ ≤ ‖xδ − x‖ + ‖x − T (x)‖ + ‖T (x) − T (xδ)‖ ≤ r + δ + ε, and analogously
‖yδ − T (yδ)‖ ≤ r + δ + ε there follows∥∥∥∥xδ + yδ

2
− T

(
xδ + yδ

2

)∥∥∥∥ 6 r + δ + ε,

whence, letting first δ and then ε go to 0, we reach the conclusion. 2

4 Fixed points for middle point linear operators in L1(µ)

From now on, (Ω,Σ, µ) will be a σ-finite measure space. In this section we present fixed point
theorems for middle point operators in L1(µ). For convenience of the reader, we first recall the
following result of Bukhvalov, called optimization without compactness.

Theorem 4.1. [6] Let (Cn)n be a family of bounded, ρ-closed and convex sets having the finite
intersection property. Then the intersection

⋂
n Cn is nonempty.

We now prove, using Theorem 4.1, the following lemma, which generalizes a result still due to
Bukhvalov [6].

Lemma 4.1. Let K be a nonempty, bounded ρ-closed, convex subset of L1(µ). Then any quasi-
convex functional f : K → R which is lower bounded and lower semi-continuous with respect to ρ,
attains its minimum value on K.

Proof. Let a := inf
x∈K

f(x) and (xn)n be a minimizing sequence in K such that f(xn) is decreasing

and converges to a. Then
a 6 f(xn+1) < f(xn),

for all n. Consider the sub-level sets of f defined as

Fn := {x ∈ K | f(x) 6 f(xn)}.
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Assume, without loss of generality, that f(xn) > a for every n. Thus each Fn is nonempty and the
sequence (Fn)n is decreasing. Hence, the intersection of finitely many Fn is nonempty. In view
of the lower semi-continuity of f , each Fn is ρ-closed, and in view of the quasi-convexity, convex.

Since Fn ⊂ K, each Fn is also bounded. Then, by 4.1,
∞⋂

n=1

Fn is nonempty, i.e there is a point

ξ ∈ K such that f(ξ) 6 f(xn) for every n, whence f(ξ) = a. 2

Using Lemma 4.1, we obtain the following minimum property for middle point operators in L1.

Lemma 4.2. Let K be a nonempty, bounded, ρ-closed, convex subset of L1(µ).
If T : (K, ρ) → (K, ρ) is a continuous, middle point linear operator, then the real-valued functional
f(x) := ‖T (x)− x‖ attains its minimum value on K.

Proof. Clearly, the functional f is lower bounded by 0 and ρ-lower semicontinuous since T is
ρ-continuous and also the norm ‖ · ‖L1 : K → [0,∞[ is ρ-lower semicontinuous. By Proposition 3.2,
it is quasi-convex. The conclusion then follows from Lemma 4.1. 2

We need now the following result due to Furi and Vignoli.

Theorem 4.2. [11] Let X be a Banach space, α the Kuratowski measure of non compactness
on X and K a nonempty, bounded, closed, convex subset of X. If T : K → K is α-nonexpansive
then infx∈K ‖T (x)− x‖ = 0.

From Lemma 4.2 and Theorem 4.2 we obtain the following fixed point theorem in L1, which is
the main result of our paper.

Theorem 4.3. Let K be a nonempty, bounded, ρ-closed, convex subset of L1(µ).
If T : (K, ρ) → (K, ρ) is a continuous, α-nonexpansive, middle point linear operator, then T has
at least one fixed point in K.

Remark 4.1. Using a slightly different argument, it is possible to obtain the following fixed
point results for middle point operators in Banach spaces.

(BS) If K is a nonempty, weakly compact and convex subset of a Banach space and T : K → K
is a middle point linear operator satisfying infx∈K ‖Tx− x‖ = 0 then T has a fixed point in
K.

(RBS) Any α-nonexpansive and middle point linear operator T : K → K on a nonempty, bounded,
closed, convex subset K of a reflexive Banach space has at least one fixed point in K.

Since any bounded, closed, convex subset of a reflexive Banach space is weakly compact (see [4,
Corollary III.19]), we obtain (RBS) as consequence of (BS) and Theorem 4.2.
Now, to prove (BS), let us pick ξ ∈ K such that c0 = ‖T (ξ)− ξ‖ < +∞. The set

C := {x ∈ K : ‖T (x)− x‖ ≤ c0}

is weakly compact since it is a closed and convex subset of a weakly compact set. Furthermore, the
functional f(x) := ‖T (x)−x‖ < +∞. is quasi-convex and continuous. This implies that f is lower
semicontinuous with respect to the weak topology, since for every c ∈ R the set f−1

(
(c,+∞)

)
is

weakly open. Thus, f attains its minimum value on C: there exists a point x0 ∈ C such that
f(x0) ≤ f(x) for any x ∈ C. Clearly, f(x0) ≤ f(x) for any x ∈ K, that is x0 is a fixed point under
T .
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We underline that both results (BS) and (RBS) generalize some previous results of Belluce and
Kirk [3, Theorem 4.1, Theorem 4.2] which obtained fixed point results for nonlinear mappings T
in Banach spaces for which V := I − T satisfies (1.1). Recall that condition (1.1) is stronger than
(3.1) (see Remark 3.3).
According to the results in [6], one can presume that ρ-closedness of bounded convex sets in L1(µ)
is a sufficient surrogate to compactness. The next example shows that the assumption that T is
middle point linear cannot be avoided, even when K is assumed to be weakly compact.

Example 4.1. In [1] Alspach has given the following example of fixed-point free map. Let
Ω = [0, 1] with the usual Lebesgue measure µ, and let

K := {x ∈ L1(µ), 0 ≤ x ≤ 2, ‖x‖ = 1}.

Then K is convex, closed (actually weakly compact) and ρ-closed, since in K we have dominated
convergence. Consider the operator T : K → K defined by

T (x)(t) :=


2x(2t) ∧ 2 when 0 ≤ t ≤ 1

2
[2x(2t− 1)− 2] ∨ 0 when

1
2

< t ≤ 1.
(4.1)

Then, according to [1], T is an isometry (therefore it is non-expansive and norm continuous) but
it has no fixed point. Again, since in K every convergence is dominated, T is also continuous as
a self map of (K, ρ).
According to Theorem 4.3, T cannot be middle point linear. Indeed for the maps

x(t) :=


3
2

when 0 ≤ t ≤ 1
2

1
2

when
1
2

< t ≤ 1

and y := 21[ 3
8
, 1
2 ]∪[ 5

8
,1],

where 1A is the characteristic function of the set A, one finds ‖x− T (x)‖ = ‖y − T (y)‖ =
1
2
, while

ξ0 :=
x + y

2
=

3
4
1[0, 3

4 ]
+

7
4
1( 3

4
, 1
2 ]

+
1
4
1( 1

2
, 5
4 ]

+
5
4
1( 5

4
,1]

satisfies ‖T (ξ0)− ξ0‖ =
47
64

>
1
2
.

Remark 4.2. In [10] the two authors established that an α-Lipschitz map T : Q → Q with
constant k ≥ 1 defined on a bounded and convex subset Q of a normed space has the property
that

η(T ) := inf
x∈Q

‖x− T (x)‖ ≤
(

1− 1
k

)
χ0(K),

where χ0(K) is the infimum of all δ > 0 such that K admits a finite dimensional δ approximation
of the identity. Example 4.1 shows that, in general, the above infimum is not a minimum: indeed,
T as in (4.1) is an isometry, and hence α-Lipschitz with constant k = 1. It follows that η(T ) = 0,
but there exists no point x0 of K satisfying

‖x0 − T (x0)‖ ≤ ‖x− T (x)‖

for every x ∈ K, since T is a fixed-point free map on K.
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The following result concerns approximation of the fixed points of T .

Proposition 4.1. Assume µ is a finite measure. Let K be a nonempty, bounded, ρ-closed,
convex subset of L1(µ), and let Tn : (K, ρ) → (K, ρ) be a sequence of continuous, middle point
linear, α-nonexpansive operator, uniformly norm-converging to some T (namely, ‖Tn(x)−T (x)‖ →
0 uniformly in K). Then T has a fixed point.

Proof. By Theorem 4.3, we know that each Tn has at least one fixed point xn ∈ K. By
Theorem 1.4 in [6], there exist an increasing sequence of integers n1 < n2 < . . . < nk < . . ., an
x0 ∈ L1(µ) and a sequence (λn)n ⊂ [0, 1] such that

nj∑
i=nj−1

λi = 1, and ξj :=
nj∑

i=nj−1

λixi
ρ→ x0.

Then, from the ρ-continuity of each Tn, Tn(ξj)
ρ→ Tn(x0). Since Tn(xn) = xn for every n ∈ N, and

(Tn)n converges uniformly to T in K we deduce that ‖T (xn) − xn‖ ≤ ε for n suitably large. By
Proposition 3.3, T is middle point linear, and hence ‖T (ξj)− ξj‖ ≤ ε for j suitably large, in force
of Proposition 3.1.
Now we find

ρ(T (x0), x0) ≤ ρ(T (x0), T (ξj)) + ρ(T (ξj), ξj) + ρ(ξj , x0) ≤
ρ(T (x0), Tn(x0)) + ρ(Tn(x0), Tn(ξj)) + ρ(Tn(ξj), T (ξj)) + ‖T (ξj)− ξj‖+ ρ(ξj , x0) ≤

‖T (x0)− Tn(x0)‖+ ρ(Tn(x0), Tn(ξj)) + ‖Tn(ξj)− T (ξj)‖+ ‖T (ξj)− ξj‖+ ρ(ξj , x0) < ε

for n and j suitably large. Therefore T (x0) = x0. 2

Note that, under the above assumptions, T is middle point linear, by Proposition 3.3 and contin-
uous also with respect to the ρ-continuity, but we do not know if T is α-non expansive; therefore
we cannot apply directly Theorem 4.3

We give now some applications of Theorem 4.3 in (L1[0, 1], µ) where µ denotes now the Lebesgue
measure. The following examples show also that Theorem 4.3 applies in situation where neither
Sadovskĭı’s Fixed Point Theorem [15] nor Lennard’s Fixed Point Theorem [13] do: in fact in
Sadovskĭı’s Theorem, T is required to be α-condensing, while in Lennard’s Theorem, K needs to
be ρ-compact and T nonexpansive.

Example 4.2. Let T : X1 → X1 be defined as in (3.2) for all x ∈ X1, where ϕ : [0, 1] → [0, 1]
is a non-increasing continuous mapping such that ϕ(0) = 1. The operator T is well defined and
from Example 3.1 middle point linear.
Clearly, T : (X1, ‖ · ‖) → (X1, ‖ · ‖) is continuous since

‖T (x)− T (x0)‖ = ‖ϕ(‖x‖)x− ϕ(‖x0‖)x0‖ ≤ ϕ(‖x‖)‖x− x0‖+ |ϕ(‖x‖)− ϕ(‖x0‖)| ‖x0‖

Moreover, T is α-nonexpansive. In fact, if B ⊂ X1, then

α(T (B)) 6 α
(
co{B, 0}

)
= α

(
B ∪ {0}

)
= max{α(B), α({0})} = α(B),

since T (x) = ϕ
(
‖x‖

)
x +

(
1− ϕ

(
‖x‖

))
0 ∈ co{B, 0} for every x ∈ B.

To show that T : (X1, ρ) → (X1, ρ) is continuous, fix x0 ∈ X1 and a sequence (xn)n of points
of X1 converging locally in measure to x0, i.e. lim

n→+∞
ρ(xn, x0) = 0. Then, since ρ is translation

invariant and ρ(cx, 0) ≤ ρ(x, 0) for every x ∈ L1(µ) and c ∈ [−1, 1], we have

ρ(T (xn), T (x0)) ≤ ρ
(
ϕ(‖xn‖)(xn − x0), 0

)
+ ρ

(
[ϕ(‖xn‖)− ϕ(‖x0‖)]x0, 0

)
≤ ρ

(
xn − x0, 0

)
+ ρ

(
[ϕ(‖xn‖)− ϕ(‖x0‖)]x0, 0

)
. (4.2)
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The second summand in (4.2) tends to 0 since ϕ is continuous and lim
n→+∞

ρ(cnx, 0) = 0 for every

x ∈ L1(µ) and every sequence (cn)n of real numbers with lim
n→+∞

cn = 0. Hence, the conclusion

follows.
Therefore, by Theorem 4.3, T has a fixed point in X1. Notice that T (0) = 0 and T (r ∂X1) =
ϕ(r)r ∂X1 for every r ∈ [0, 1]. Note also that both Sadovskĭı’s Theorem and Lennard’s Theorem
cannot be applied, since T is neither α-condensing nor nonexpansive and X1 is not ρ-compact.

Example 4.3. Let T : L1[0, 1] → L1[0, 1] be defined as

T (x)(t) :=
1
2

x

(
t

2

)
, t ∈ [0, 1].

The operator T is linear and hence middle point linear. Since

‖T (x)‖ =
∫ 1

0

1
2

∣∣∣∣x(
t

2

)∣∣∣∣ dµ(t) =
∫ 1/2

0
|x(s)| dµ(s) 6 ‖x‖, ∀x ∈ L1[0, 1],

T : (K, ‖ · ‖) → (K, ‖ · ‖) is continuous and nonexpansive (and hence α-nonexpansive) on X1.
Moreover, since for all x0, x ∈ X1

ρ(T (x), T (x0)) =
∫ 1

0

|x(t/2)− x0(t/2)|
2 + |x(t/2)− x0(t/2)|

dλ(t) 6
∫ 1

0

|x(t/2)− x0(t/2)|
1 + |x(t/2)− x0(t/2)|

dλ(t) =

= 2
∫ 1/2

0

|x(s)− x0(s)|
1 + |x(s)− x0(s)|

dλ(s) 6 2 ρ(x, x0),

T : (X1, ρ) → (X1, ρ) is Lipschitz-continuous on X1.
Therefore, from Theorem 4.3, T has a fixed point in X1. In particular, T (0) = 0. Notice that we
cannot apply Lennard’s Theorem since X1 is not ρ-compact and that it is not easy to understand
whether T is α-condensing.

Example 4.4. Consider the multiplication operator Mf : L1[0, 1] → L1[0, 1] defined for all
x ∈ L1[0, 1] as

Mf (x)(t) := f(t) · x(t), for all t ∈ [0, 1],

where f ∈ L∞([0, 1] × [0, 1]) with ‖f‖∞ ≤ 1. The operator Mf is linear, bounded with ‖Mf‖ =
‖f‖∞ (hence Mf : (K, ‖ · ‖) → (K, ‖ · ‖) continuous), and Mf is nonexpansive.
Moreover, Mf : (L1[0, 1], ρ) → (L1[0, 1], ρ) is Lipschitz-continuous; indeed, for all x, y ∈ L1[0, 1]

ρ(Mf (x),Mf (y)) =
∫ 1

0

|f(t)| |x− y|
1 + |f(t)| |x− y|

dλ 6 ρ(‖f‖∞(x− y), 0) 6

6 max{1, ‖f‖∞} ρ(x− y, 0) ≤ ρ(x, y).

It is clear that Mf maps X1 into X1 (in general, rX1 into rX1). Therefore, by Theorem 4.3, Mf

has at least one fixed point on X1. Notice that we cannot apply Lennard’s Theorem since X1 is
not ρ-compact and that T is not necessarily α-condensing (it depends on the choice of f).

In the literature one finds several results concerning common fixed point theorems for families of
self maps (see, for instance Chapter 9 in [12]). All these results however require some form of
compactness for the domain of the family.
As an application of Theorem 4.3 we shall derive a common fixed point theorem without com-
pactness, that generalizes Markov-Kakutani Fixed Point Theorem (see [12, Theorem 9.1.4] or [9,
§V.10 Theorem 6]).
To this aim, we first need the following geometrical property for fixed points of middle point linear
operators.
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Proposition 4.2. Let X be a normed space and T : X → X be a middle point linear operator.
If T as two different fixed points x and y then any convex combination of x and y is a fixed point
under T .

Proof. Since T (x) = x and T (y) = y, T (x) ∈ x + rX1 and T (y) ∈ y + rX1 for any r > 0. Thus,
by Proposition 3.1,

‖T
(
αx + (1− α)y

)
− αx + (1− α)y

∥∥ ≤ r

for any r > 0 and any α ∈ [0, 1], that gives the conclusion. 2

Theorem 4.4. Let K be a nonempty, bounded, ρ-closed, convex subset of L1(µ) and F be a
commuting family of α-nonexpansive, middle point linear operators such that T : (K, ρ) → (K, ρ)
is continuous for any T ∈ F . Then F has a common fixed point, i.e., there exists a point ξ ∈ K
such that T (ξ) = ξ for all T ∈ F .

Proof. For any T ∈ F , define F (T ) to be the set of fixed points of T . From Theorem 4.3 and
Proposizion 4.2, F (T ) is non-empty, ρ-closed and convex.
Moreover, for any T, S ∈ F and x0 ∈ F (T ), we have

T [S(x0)] = S[T (x0)] = S(x0),

that is, S(x0) is a fixed point under T . Therefore, S(F (T )) ⊂ F (T ). Consider now the restriction
S : F (T ) → F (T ) of S. From Theorem 4.3, S has a fixed point on F (T ). In other words, S and
T have a common fixed point. This argument can be repeated for every finite subfamily of F .
Thus, the family {F (T ), T ∈ F} satisfies the Finite Intersection Property, and hence, by Theo-
rem 4.1, there is a point η ∈

⋂
T∈F

F (T ). 2

A similar argument had been used in [3] in the framework of symmetric spaces. Since L1(µ) is
not a symmetric space, Theorem 4.4 cannot be derived from there.
On the other side, by means of Remark 4.1, one can derive a slight extension of Markov-Kakutani
Theorem in the framework of reflexive Banach spaces, since linear maps are middle point linear
as well.

References

[1] D. E. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981), no.
3, 423–424.

[2] J. Banas, K. Goebel, Measures of noncompacteness in Banach spaces, Lecture Notes in Pure
and Applied Mathematics 60, New York, 1980.

[3] L. P. Belluce, W. A. Kirk, Some fixed point theorems in metric and Banach spaces, Canad.
Math. Bull. 12 (1969) 481-491.
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