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Abstract. In Rn equipped with the Euclidean metric, the distance from the origin is
smooth and infinite harmonic everywhere except the origin. Using geodesics, we find a
geometric characterization for when the distance from the origin in an arbitrary Carnot-
Carathéodory space is a viscosity infinite harmonic function at a point outside the origin.
We show that at points in the Heisenberg group and Grushin plane where this condition
fails, the distance from the origin is not a viscosity infinite harmonic subsolution. In
addition, the distance function is not a viscosity infinite harmonic supersolution at the
origin.

1. Introduction

In the Euclidean setting, the distance from the origin is (smoothly) infinite harmonic
away from the origin. Such a result can not be obtained in Carnot-Carathéodory spaces
because the distance function is not necessarily smooth off the origin [10, 15, 16]. We
examine the infinite Laplace equation from the viewpoint of viscosity solutions. We show
that the distance from the origin does not even satisfy the infinite Laplace equation in
the viscosity sense at all points. Using geodesics, we find a geometric characterization for
when the distance from the origin is indeed a viscosity solution. The Heisenberg group
and Grushin plane will be examined in more detail, showing that when this condition
fails at a point, the distance need not be a viscosity solution. At the origin, the distance
function is a viscosity infinite harmonic subsolution to the infinite Laplace equation, but
not a viscosity infinite harmonic supersolution.

We divide the paper up as follows: Section 2 discusses Carnot-Carathéodory spaces
while Section 3 concerns viscosity infinite harmonic functions and their key properties.
Section 4 is the main section, presenting the infinite Laplace material discussed above.

2. Carnot-Carathéodory spaces

In this section, we will briefly discuss the spaces under consideration. We first note
that a general Carnot-Carathéodory space is a manifold of topological dimension n. The
tangent space is generated by linearly independent vector fields X1, X2, . . . , Xm, with
m ≤ n, that satisfy Hörmander’s condition. That is, the vector fields and their Lie
brackets span the tangent space at each point. The length of a curve is defined by fixing
an inner product so that the Xi are orthonormal. By Chow’s Theorem [2] any two points
can be joined by a curve whose tangent vector lies in span{Xi}m

i=1. The natural distance
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between points x and y, denoted d(x, y), is the infimum of lengths of such curves joining x
and y and so Carnot-Carathéodory spaces are length spaces. [?] The horizontal gradient
of a smooth function u is given by

Xu = (X1u,X2u, . . . , Xmu)

and the symmetrized second order horizontal derivative matrix (X2u)⋆ has entries

(X2u)⋆
ij =

1

2

(

XiuXju+XjuXiu
)

for i, j = 1, 2, . . . , m. Using these derivatives, the main operator we consider is the infinite
Laplace operator, defined by

∆∞u = 〈(X2u)⋆ Xu,Xu〉 =
m

∑

i,j=1

XiuXjuXiXju.

We consider three main types of Carnot-Carathéodory spaces: Carnot groups, Grushin-
type spaces and Riemannian vector fields. Carnot groups, denoted G, are Carnot-
Carathéodory spaces with a non-abelian algebraic group law. The tangent space is a
stratified nilpotent Lie algebra, denoted g, with decomposition

g = V1 ⊕ V2 ⊕ · · · ⊕ Vk

for appropriate vector spaces that satisfy the Lie bracket relation [V1, Vj] = V1+j . The
natural number k is called the step of the group. The exponential map is used to define
natural dilations δr for r > 0 on G via the dilations on g, also denoted δr, given by
δr(Vi) = riVi.

The Heisenberg algebra h can be identified with R
3 in coordinates (x1, x2, x3) spanned

by a basis consisting of vector fields X1, X2, and X3 given by

X1 =
∂

∂x1
− x2

2

∂

∂x3
, X2 =

∂

∂x2
+
x1

2

∂

∂x3
, and X3 =

∂

∂x3
.

By taking Lie brackets, it is easy to see that X3 = [X1, X2] and hence k = 2 with V1 =
span{X1, X2}, V2 = span{X3} and δr(x1, x2, x3) = (rx1, rx2, r

2x3). The corresponding
Lie group is the Heisenberg group, denoted H. It has a smooth gauge bi-Lipschitz
equivalent to the Carnot-Carathéodory distance given by

g(x, 0) =

(

(x2
1 + x2

2)
2 + 16x2

3

)
1

4

.

For further details concerning Carnot groups and the Heisenberg group see [2], [3], [12],
and the references therein.

The second class of spaces under consideration, Grushin-type spaces, lack an algebraic
group structure. Their tangent space is constructed by considering Rn with coordinates
(x1, x2, . . . , xn) and the vector fields

Xi = ρi(x1, x2, . . . , xi−1)
∂

∂xi
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for i = 2, 3, . . . , n where ρi is a (possibly constant, but not identically zero) polynomial.
We decree that ρ1 ≡ 1 so that

X1 =
∂

∂x1

.

Points in the Grushin-type space are also denoted (x1, x2, . . . , xn). Global dilations do
not, in general, exist. A special Grushin-type space under consideration is the Grushin
plane, denoted G, which has n = 2 and ρ2 = x1. For further results on Grushin-type
spaces, see [2], [4], [5] and the references therein.

Note that when m = n and the vectors vanish nowhere, we are in the Riemannian
case. See [1] and [6] for further discussion.

3. Viscosity infinite harmonic functions and comparison with cones

As discussed above, our main equation under consideration is the infinite Laplace
equation given by

−∆∞u = 0.

We now define appropriate weak solutions to this equation. Namely,

Definition 1. An infinite harmonic function u is a continuous function that is a viscosity
solution to the infinite Laplace equation. That is, u satisfies the following:

SUB For any point x0 and function φ with XiXjφ continuous for all i, j such that
u(x0) = φ(x0) and u(x) ≤ φ(x) near x0, we have −∆∞φ(x0) ≤ 0 (u is a viscosity
infinite harmonic subsolution).

SUPER For any point x0 and function ψ with XiXjψ continuous for all i, j such that
u(x0) = ψ(x0) and u(x) ≥ ψ(x) near x0, we have −∆∞ψ(x0) ≥ 0 (u is a viscosity
infinite harmonic supersolution).

It is an open problem if infinite harmonic functions are uniquely determined by their
boundary values in general Carnot-Carathéodory spaces. The uniqueness theorems in
Carnot groups, Grushin-type spaces and Riemannian vector fields motivated our focus on
these spaces. Jensen in Rn [13], Wang in Carnot groups [18], and Bieske in the Heisenberg
group [3], Grushin-type spaces [5] and Riemannian case [6] proved the following theorem.

Theorem A. Let Ω be a bounded domain and let θ : ∂Ω → R be a continuous function.
Then the Dirichlet problem

(3.1)

{−∆∞ u = 0 on Ω

u = θ on ∂Ω

has a unique viscosity solution u.

There are two kinds of cones when using the Carnot-Carathéodory distance function.
The first kind are called infinite harmonic cones and are defined using viscosity solutions
of the infinite Laplacian. That is,

Definition 2. Let a, b ∈ R. Given a point x and an open set U , we define the function
D : ∂(U \ {x}) → R by

D(y) = a + b d(x, y).
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The infinite harmonic cone based on (U, x) is the unique viscosity infinite harmonic

function ωa,b
U,x in U \ {x} such that

ωa,b
U,x = D on ∂(U \ {x}).

The second kind are called metric cones and are defined by extending the function
D in the definition above to all of U . In Euclidean space these two definitions coincide.
However, we will show below that in Carnot groups, Grushin-type spaces and Riemannian
vector fields, these definitions may produce different cones when b > 0.

The first use of these cones is to define the comparison with cones property. Namely,

Definition 3. Let U be an open set, and let u : U → R. Then u enjoys comparison with
infinite harmonic cones from above in U if for every open V ⊂ U and a, b ∈ R for which

u(y) ≤ ωa,b
U,x(y)

holds on ∂(V \ {x}), then we have

u(y) ≤ ωa,b
U,x(y)

in V . A similar definition holds for when the function u enjoys comparison with infinite
harmonic cones from below in U . The function u enjoys comparison with infinite har-
monic cones in U exactly when it enjoys comparison with infinite harmonic cones from
above and below.

The function u enjoys comparison with metric cones from above in U if for every open
V ⊂ U and a, b ∈ R with b ≥ 0 for which

u(y) ≤ D+(y)
def
= a + b d(x, y)

holds on ∂(V \ {x}), then we have

u(y) ≤ D+(y)

in V . The function u enjoys comparison with metric cones from below in U if for every
open V ⊂ U and a, b ∈ R with b ≥ 0 for which

u(y) ≥ D−(y)
def
= a− b d(x, y)

holds on ∂(V \ {x}), then we have

u(y) ≥ D−(y)

in V . The function u enjoys comparison with metric cones in U exactly when it enjoys
comparison with metric cones from above and below.

The uniqueness of infinite harmonic functions yields the following result: In spaces
where a comparison principle for infinite harmonic functions holds, a viscosity infinite
harmonic supersolution in U enjoys comparison with infinite harmonic cones from below
in U . Similarly, a viscosity infinite harmonic subsolution enjoys comparison with infinite
harmonic cones from above in U and an infinite harmonic function enjoys comparison
with infinite harmonic cones in U .

Before discussing comparison with metric cones, we recall the definition of a Lipschitz
function and an absolute minimizing Lipschitz extension (AMLE) on a metric space.
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Definition 4. Let (X, d) be a metric space and let Y be a proper subset of X. An
L-Lipschitz function F : Y → R is a function with

(3.2) Lip(F, Y )
def
= sup

x,y∈Y

x 6=y

|F (x) − F (y)|
d(x, y)

≤ L <∞.

We say that u : X → R is an AMLE of F on X exactly when

(i) Lip(u,X) = Lip(F, Y ).
(ii) for any open set U ⊂⊂ X, we have

Lip(u, U) = Lip(u, ∂U).

Champion and De Pascale [7] proved the following theorem in length spaces. Recall
that a length space is a metric space, such as a Carnot-Carathéodory space, in which the
distance between two points is the infimum of the lengths of paths connecting the points.

Theorem B. Let (X, d) be a length space and Y proper open subset of X, then u : Y → R

is an AMLE if and only if u satisfies comparison with metric cones.

In addition, the tug-of-war games approach in [17] gives the following theorem.

Theorem C. Let (X, d) be a length space and Y a proper subset of X. For any given
Lipschitz function F : Y → R, there exists a unique AMLE of F on X.

Because both types of cones are used to characterize different mathematical concepts,
it is natural to attempt to establish a relationship between metric cones and infinite
harmonic cones. We first need to recall a result of Monti and Serra-Cassano [16].

Theorem D. Given a point x in a Carnot group, Grushin-type space or Riemannian
vector fields, for almost every y, we have

‖Xd(x, y) ‖ ≤ 1.

Using this result, we then have the following proposition.

Proposition 3.1. ([5, 6]) Given a pair (U, x) and a, b ∈ R, the cone ωa,b
U,x satisfies

ωa,b
U,x(y) ≤ a + |b| d(x, y)
ωa,b

U,x(y) ≥ a− |b| d(x, y)
for y ∈ U .

We then have the following corollary.

Corollary 3.2. A function that enjoys comparison with infinite harmonic cones from
above enjoys comparison with metric cones from above. A function that enjoys compar-
ison with infinite harmonic cones from below enjoys comparison with metric cones from
below. Thus, infinite harmonic functions enjoy comparison with metric cones.

Combining the results in this section, we have the following lemma.

Lemma 3.3. Let X be a Carnot group, Grushin-type space or Riemannian vector fields,
let Y be a bounded domain in X and let F : ∂Y → R be a Lipschitz function. The
function u is the unique AMLE of F into Y if and only if u is infinite harmonic in Y
and u = F on ∂Y .
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Proof. Let u be the unique AMLE. If v is the unique infinite harmonic function on Y with
boundary data F , v enjoys comparison with infinite harmonic cones and thus comparison
with metric cones. By uniqueness of AMLE’s, v must equal u. �

4. The distance function and the infinite Laplacian

In the previous section, we showed that the infinite harmonic functions enjoy compar-
ison with metric cones. The interesting question is whether the distance function itself
is infinite harmonic off the origin, as in Euclidean space. The answer to this question
depends on the geometry of the space.

We begin with two geometric definitions concerning points in a domain U .

Definition 5. Let U be a bounded domain, and x an arbitrary point.

1. A point y ∈ U is geodesically accessible from the point x if

y ∈ Λ =
⋃

z∈∂U

Γxz

where Γxz is the union of all geodesics from x to z.
2. A point y ∈ U that is not geodesically accessible is geodesically inaccessible

from the point x. That is, y /∈ Λ.
3. A point y ∈ U is boundary near to the point x if there exists z ∈ ∂U so that

d(x, y) < d(x, z).

4. A point y ∈ U that is not boundary near is boundary far from the point x.
That is, for all z ∈ ∂U , we have

d(x, y) ≥ d(x, z).

We first note that because geodesics need not be unique, the set Λ actually includes
all geodesics between points x and z. Points that are geodesically accessible from x lie
on some geodesic from x to the boundary point z. Additionally, it is clear that geodesi-
cally accessible implies boundary near, or equivalently, boundary far implies geodesically
inaccessible. We next note through the following examples that, unlike the Euclidean
case, interior points need not be geodesically accessible.

Example 6. Boundary far points. Constant boundary data with b > 0. Con-
sider the Riemann sphere with the spherical metric so that the geodesics are arcs of great
circles. Let the domain U be the southern hemisphere and fix the point x as the north
pole. Then, on the boundary of U , a+ b d(x, y) equals a fixed constant D for all a, b ∈ R.
Having constant boundary data, the corresponding infinite harmonic cone is the constant
D. Clearly, we have D < a+ b d(x, y) in U and D = a + b d(x, y) on ∂U . We note that
the interior points are both boundary far and geodesically inaccessible.

Example 7. Boundary near does not imply geodesically accessible. Let x be
the origin in the Heisenberg group H or the Grushin plane G and consider the ball of
radius R centered at the origin, denoted BR(0). All points in BR(0) are boundary near.
However, not all points are geodesically accessible. In particular, the points in AR are
geodesically inaccessible. See the figure below for the Heisenberg case. The same picture
applies for the Grushin case.



C-C DISTANCE AND THE INFINITE LAPLACIAN 7

BR(0) AR

z

(x, y)

Figure 1. Heisenberg ball: set of points geodesically inaccessible from the origin.

We next fix a, b ∈ R with b ≥ 0, a bounded domain U and a point x. Write ωD for

the infinite harmonic cone in U with boundary data D(y)
def
= a+ b d(x, y) on ∂(U \ {x}).

We begin by considering cones with constant boundary data. In the case when b = 0,
we have ωD(y) = D(y) = a for all points y in U . In the case when b > 0, we have the
following proposition motivated by Example 6.

Proposition 4.1. Let D(y) be defined as above. If D(y) is constant with b > 0 then
x 6∈ U .

Proof. Suppose x ∈ U . Then x ∈ ∂(U \ {x}) and D(x) = a. Thus, D(y) = a for all
y ∈ ∂(U \ {x}). Choose x 6= z ∈ ∂(U \ {x}). Then

a = D(z) = a+ b d(x, z)

and since b > 0 we arrive at a contradiction. �

Because the boundary data is constant, the uniqueness of the infinite harmonic cones
produces the constant infinite harmonic cone ωD. We have the following theorem.

Theorem 4.2. Let U be a bounded domain in a Carnot-Carathéodory space where infinite
harmonic functions are unique, i.e., Theorem A holds. Let a, b ∈ R with b > 0. Define
D(y) = a + b d(x, y) as above. Suppose D(z) = K for z ∈ ∂(U \ {x}) = ∂U for some
constant K. Let ωD be the (constant) infinite harmonic cone with boundary data K.
Then the point y ∈ U is boundary far from x exactly when ωD(y) < D(y).

Proof. Suppose that y is boundary far from x. Because y is an interior point to U \ {x},
there is an r > 0 so that the ball B(y, r) ⊂⊂ (U \ {x}). Let γ be a geodesic from x to y.
Then, there is a point x̂ ∈ (B(y, r) \ {y}) ∩ γ with the property

d(x, y) = d(x, x̂) + d(x̂, y).

Using this property, we see that D(y) > D(x̂). We then have

ωD(y) = K = ωD(x̂) ≤ D(x̂) < D(y).

We note that the penultimate inequality is a consequence of Proposition 3.1.
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Suppose next that ωD(y) < D(y). Then by Proposition 3.1, we have

K = ωD(y) < D(y).

That is, for any z ∈ ∂(U \ {x}),
a + b d(x, z) < a+ b d(x, y).

Because b > 0, we conclude that y is boundary far from x. �

The case of non-constant cones is more involved. We have the following one-sided
result that parallels the constant case.

Theorem 4.3. Let U, x, a, b be as in Theorem 4.2. Suppose that D(z) is non-constant
on ∂(U \ {x}) and let ωD be the (non-constant) infinite harmonic cone with boundary
data D(z). Then we have the implications

y is boundary far from x⇒
ωD(y) < D(y) ⇒ y is geodesically inaccessible from x.

Proof. We first observe that as a non-constant (continuous) infinite harmonic function
on a compact set, we have that ωD achieves its maximum on U . By the strong maximum
principle, which follows from the Harnack inequality [14], this maximum can occur only
on the boundary.

Now assume that y is boundary far. Suppose ωD(y) = D(y). Because y is boundary
far and b > 0, for all z ∈ ∂(U \ {x}) we have D(y) ≥ D(z). That is,

ωD(y) ≥ ωD(z)

for all z ∈ ∂(U \ {x}). This contradicts the fact that the maximum of ωD occurs only on
the boundary. We conclude that ωD(y) < D(y).

Next, let ωD(y) < D(y) at a point y ∈ U that is geodesically accessible from x. Let
γ be the geodesic from x to a point z ∈ ∂U that passes through y. Note that z 6= x.
Because ωD(z) = D(z) we have

ωD(z) − ωD(y) > D(z) −D(y) = b

(

d(x, z) − d(x, y)

)

.

Because y lies on γ, we have

ωD(z) − ωD(y) > b d(y, z)

so that Lip ωD > b.
However, ωD(·) is the AMLE of D(·) and Lip D ≤ b. By the definition of AMLE

(Definition 4),

b < Lip ωD ≤ Lip D ≤ b.

We arrive at a contradiction and conclude that y must be geodesically inaccessable from
x. �

Unlike the constant cone case, the converse implications can not both be true, as
this would imply that all geodesically inaccessible points are boundary far, which is not
necessarily the case as Example 7 shows. We addresses the first reverse implication by
modifying Example 7.
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Lemma 4.4. Let x be the north pole of the Riemann sphere and let U be the northern
and eastern hemispheres. Let a, b ∈ R with b > 0. Then there exists a point y ∈ U that is
boundary near with ωD(y) < D(y). Thus, ωD(y) < D(y) does not necessarily imply that
y is boundary far.

Proof. Suppose that y is boundary near implies ωD(y) = D(y). Fix a point y ∈ U
such that y lies on the equator and in the eastern hemisphere. Then y is boundary far
from x. Choose a sequence {yn}n∈N of points in U from the southern hemisphere that
are boundary near to x and converge to the point y. By our assumption, we have
ωD(yn) = D(yn). By continuity of the cone functions, this implies ωD(y) = D(y).
However, y is boundary far, and so Theorem 4.3, which showed that ωD(y) < D(y),
is contradicted. �

We recall the following definition.

Definition 8. Given a geodesic space (X, d), let γ : [0, 1] → X be a minimizing geodesic
from x ∈ X to y ∈ X such that γ(0) = x and γ(1) = y. Then γ is extendable if there
is some ε > 0 so that the curve γ̂ : [0, 1 + ε] → X is a minimizing geodesic from x to
γ̂(1 + ε) and γ̂|[0,1] = γ.

We note some important examples and non-examples of extendable geodesics.

Example 9. Let (X, d) be the Riemann sphere with the spherical metric. Geodesics
from the north pole to the south pole are not extendable. Geodesics from the north pole
to any other point are extendable. (Cf. Example 6.)

Example 10. Let (X, d) be the Heisenberg group H. Then geodesics from the origin to
all points off the x3-axis are extendable, while geodesics terminating on the x3-axis are
not extendable [2].

Example 11. Let (X, d) be the Grushin plane G. Geodesics from the origin ending at
the x2-axis are not extendable, while those ending off the x2-axis are extendable [2].

We now relate points at which a geodesic is extendable to geodesically accessible points.

Proposition 4.5. Fix a point x in a Carnot-Carathéodory space. Let y be an arbitrary
point. Then there exists a bounded domain U with y ∈ U so that y is geodesically
accessible from x if and only if there exists some geodesic γ from x to y that is extendable.

Proof. Fix the point x. First, let U be a bounded domain so that y is geodesically
accessible from x. By definition, there is a geodesic from x to a point z ∈ ∂(U \ {x})
that meets y. The restriction is also a geodesic from x to y and is extendable to z.

Next, let γ be an extendable geodesic from x to y with extension γ̂. Let B(y, r) be the
open ball centered at y with radius r << 1 so that there exists a point z ∈ γ̂ ∩ ∂B(y, r).
Let U be a bounded domain containing y and having z ∈ ∂(U \ {x}). Then y lies on a
geodesic from x to z and is therefore geodesically accessible from x. �

Theorem 4.3 leads to the following corollary.

Corollary 4.6. Let x be a point in a Carnot-Carathéodory space where infinite harmonic
functions are unique, i.e., Theorem A holds. Then the metric cones are infinite harmonic
at points y where a geodesic from x to y is extendable. In particular, if x is the origin
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of the Heisenberg group H then the metric cones are infinite harmonic everywhere except
possibly the x3-axis and if x is the origin of the Grushin plane G then the metric cones
are infinite harmonic everywhere except possibly the x2-axis.

Proof. Let y be a point where a geodesic from x to y is extendable. By Proposition 4.5,
there is a domain U so that y ∈ U is geodesically accessible from x. By Theorem 4.3,
ωD(y) = D(y). �

Our next goal is to remove the word “possibly” from the above two specific examples.
We have the following theorem.

Theorem 4.7. Let x0 ∈ H be a point of the form (0, 0, x0
3) with x0

3 6= 0 or x0 ∈ G a point
of the form (0, x0

2) with x0
2 6= 0. Then there is a function φ with XiXjφ continuous for all

i, j such that φ(x0) = d(x0, 0) and d(x, 0) < φ(x) near x0 but −∆∞φ(x0) > 0. Thus, the
distance from the origin is not a viscosity infinite harmonic subsolution at these points.

Proof. We begin with the Grushin plane G and recall the Grushin vector fields are X1 =
∂

∂x1

and X2 = x1
∂

∂x2

. Let x0 = (0, x0
2) with x0

2 6= 0 and let x = (x1, x2) be near x0. Note
that the vector X2 is the zero vector at x0. Let φ : G → R be the function

φ(x) = φ(x1, x2) =
√
π(x4

1 + 4x2
2)

1

4 +
1

2
x1 − 2x2

1 + (x2 − x0
2)

4.

Then φ is smooth near x0 with X1φ(x0) = 1
2

and X1X1φ(x0) = −4. We therefore have

−∆∞φ(x0) = −〈(D2φ(x0))
⋆Xφ(x0),Xφ(x0)〉 = −X1X1φ(x0)(X1φ(x0))

2 = 1 > 0.

Thus, if φ(x) > d(x, 0) near x0, then d(x, 0) is not a viscosity infinite harmonic subsolution
at x0 and is therefore not an infinite harmonic function at x0. (Condition SUB would
not hold.)

Note that the explicit geodesic formulas in [2] give φ(x0) =
√

2π|x0
2| = d(x0, 0), and so

we only need to show that d(x, 0) < φ(x) near x0. If x is of the form (0, x2), then

d(x, 0) =
√

2π|x2| ≤
√

2π|x2| + (x2 − x0
2)

4 = φ(x)

with equality occurring only when x = x0. At other points, we can see via a computer
algebraic program that φ(x) − d(x, 0) > 0 in a neighborhood of x0.

Similarly, in the Heisenberg group, we let x0 = (0, 0, x0
3) with x0

3 6= 0 and let φ : H → R

be the function

φ(x) = φ(x1, x2, x3) =
√
π((x2

1 + x2
2)

2 + 16x2
3)

1

4 +
1

2
(x1 + x2) − 2(x2

1 + x2
2) + (x3 − x0

3)
4.

Then φ is smooth near x0 with X1φ(x0) = X2φ(x0) = 1
2

and

(D2φ(x0))
⋆ =

(

−4 0
0 −4

)

so that, as above,

−∆∞φ(x0) = −〈(D2φ(x0))
⋆Xφ(x0),Xφ(x0)〉 =

(

2 × 1

2

)

+
(

2 × 1

2

)

= 2 > 0.
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We again note that using [2], φ(x0) = 2
√

π|x0
3| = d(x0, 0) and so we only need to show

that d(x, 0) < φ(x) near x0. For points x of the form (0, 0, x3), we have

d(x, 0) = 2
√

π|x3| ≤ 2
√

π|x3| + (x3 − x0
3)

4 = φ(x)

with equality only when x3 = x0
3. At other points, we proceed as in the Grushin plane

case. �

Having shown that the distance function is not a viscosity infinite harmonic subsolution
at these points, it is natural to ask if it is a viscosity infinite harmonic supersolution there.
We answer in the affirmative with the following theorem and corollary.

Theorem 4.8. Let x0 ∈ H be a point of the form (0, 0, x0
3) with x0

3 6= 0. Let x = (x1, x2).
For real numbers η1, η2, η3 and a 2 × 2 symmetric matrix X, consider the following in-
equalities based on the Taylor series [3]:

d(x, 0) ≥ d(x0, 0) + x1η1 + x2η2 + o(d(x, x0)) as x→ x0.(4.1)

d(x, 0) ≥ d(x0, 0) + x1η1 + x2η2 + (x3 − x0
3)η3

+
1

2
〈Xx, x〉 + o(d2(x, x0)) as x→ x0.(4.2)

If η1, η2, η3 and X satisfy these inequalities, then η1 = η2 = 0.
Similarly, let x0 ∈ G be a point of the form (0, x0

2) with x0
2 6= 0. For real numbers

ν1, ν2, ν3, consider the following inequalities: based on the Taylor series [4]:

d(x, 0) ≥ d(x0, 0) + x1ν1 + o(d(x, x0)) as x→ x0.(4.3)

d(x, 0) ≥ d(x0, 0) + x1ν1 + 2(x2 − x0
2)ν2

+
1

2
(x1)

2ν3 + o(d2(x, x0)) as x→ x0.(4.4)

If ν1, ν2 and ν3 satisfy these inequalities, then ν1 = 0.

Proof. We shall prove only the Heisenberg case, the Grushin case is similar and omitted.
If Equation (4.1) holds, it will hold for the points x = (x1, 0, x

0
3) as they approach x0.

Using the fact that x ∈ B(0, d(x0, 0)) [2], we then have

0 ≥ d(x, 0) − d(x0, 0) ≥ x1η1 + o(|x1|) as x→ x0.

Dividing by |x1|, we obtain
0 ≥ sgn(x1)η1 + o(1).

If η1 is strictly negative, then choosing x1 < 0 produces a contradiction and if η1 is
strictly positive, then choosing x1 > 0 also produces a contradiction. We conclude that
η1 = 0. Similarly, η2 = 0. If η1, η2, η3 and X satisfy Equation (4.2) then η1 and η2 satisfy
Equation (4.1). �

The following corollary gives the desired result.

Corollary 4.9. Let x0 ∈ H be a point of the form (0, 0, x0
3) with x0

3 6= 0 or x0 ∈ G a
point of the form (0, x0

2) with x0
2 6= 0. Then the distance from the origin is a viscosity

infinite harmonic supersolution to the infinite Laplace equation at these points.
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Proof. We only prove the Heisenberg case, the Grushin case is similar and omitted. If
Condition SUPER is vacuous, we are done. If a function ψ satisfies the hypotheses of
Condition SUPER, then by setting X1ψ(x0) = η1, X2ψ(x0) = η2, X3ψ(x0) = η3 and
(X2ψ(x0))

⋆ = X, we have a solution to Equation (4.2)[3]. By the Theorem, X1ψ(x0) =
X2ψ(x0) = 0 and so

−∆∞ψ(x0) = 0 ≥ 0.

Condition SUPER holds and thus the distance is a viscosity infinite harmonic superso-
lution. �

We now consider the distance function at the origin. We recall from Section 2 that a
Carnot-Carathéodory space is defined as an n-dimensional manifold whose tangent space
is generated by m vectors. We also recall that for a vector v, v is the projection of v onto
the space V1. We then begin with the following theorem.

Theorem 4.10. Given a Carnot-Carathéodory space, let the point x have coordinates
(x1, x2, . . . , xn). Recall that x = (x1, x2, . . . , xm). For real numbers η1, η2, . . . , ηm+m2

and
a m×m symmetric matrix X, consider the following inequalities:

d(x, 0) ≤
m

∑

i=1

xiηi + o(d(x, 0)) as x→ 0.(4.5)

d(x, 0) ≤
m+m2
∑

i=1

xiηi +
1

2
〈Xx, x〉 + o(d2(x, 0)) as x→ 0.(4.6)

Then these inequalities hold for no choice of η1, η2, . . . , ηm+m2
or X.

Proof. Suppose Equation (4.5) held for some η1, η2, . . . , ηm and for all points x near the
origin. In particular, it would hold for x = (x1, 0, . . . , 0), so that Equation (4.5) becomes

|x1| ≤ x1η1 + o(|x1|).
Dividing by |x1| we have

1 ≤ (sgn x1)η1 + o(1).

For x1 > 0 and letting x1 → 0+, we see that 1 ≤ η1. For x1 < 0 and letting x1 → 0−, we
see that 1 ≤ −η1. We then have

1 ≤ η1 ≤ −1

and conclude no such η1 can exist. If there are values η1, η2, . . . , ηm+m2
and X that satisfy

Equation (4.6) then η1, η2, . . . , ηm satisfy Equation (4.5). �

The inability to satisfy these equations produces the following corollary.

Corollary 4.11. In any Carnot-Carathéodory space, the distance from the origin is a
viscosity infinite harmonic subsolution to the infinite Laplace equation at the origin.

Proof. Let φ be a function meeting the requirements of Definition 1. Then,
X1φ(0), X2φ(0), . . .Xmφ(0) and (D2φ(0))⋆ would satisfy Equation (4.6) [3, 4]. Thus,
Condition SUB is vacuous. �

We now will show that the distance from the origin need not be a viscosity infinite
harmonic supersolution at the origin.
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Theorem 4.12. In the Heisenberg group H and Grushin plane G, the distance from the
origin is not a viscosity infinite harmonic supersolution to the infinite Laplace equation
at the origin.

Proof. Consider the function h : H → R given by

h(x) = h(x1, x2, x3) =
1

2
(x1 + x2) + 2(x2

1 + x2
2) + x4

3

and the function w : G → R given by

w(x) = w(x1, x2) =
1

2
x1 + 2x2

1 + x4
2.

We consider first the Grushin case. First, we have w(0) = 0 = d(0, 0) and we can compute
X1w(0) = 1

2
and X1X1w(0) = 4. Thus, as in Theorem 4.7, we have −∆∞w(0) = −1 < 0.

We only need to show that d(x, 0) ≥ w(x) near the origin. Any point x of the form (0, x2),

we have d(x, 0) =
√

2π|x2| and w(x) = x4
2. Thus for small x2, we have d(x, 0) > w(x).

For other points, a graph of w(x) versus d(x, 0) shows that d(x, 0) > w(x) with equality
only at the origin.

The Heisenberg case is similar. We have h(0) = 0 = d(0, 0) and

−∆∞h(0) = −
(

2 × 1

2

)

+
(

2 × 1

2

)

= −2 < 0.

We note that when a point x is of the form (0, 0, x3), we have d(x, 0) =
√

4π|x3| while
h(x) = x4

3 and so for x3 near 0, we have h(x) < d(x, 0). As in the Grushin case, it is easy
to see that h(x) < w(x) near the origin. �

In summary, the Carnot-Carathéodory distance is an infinite harmonic function in the
Heisenberg group and Grushin plane only at points where the geodesic is extendable. At
points away from the origin where the geodesics are not extendable, the distance function
is a viscosity infinite harmonic supersolution, but not a viscosity infinite harmonic sub-
solution. At the origin, the opposite is true; the distance function is a viscosity infinite
harmonic subsolution, but not a viscosity infinite harmonic supersolution. This situation
can be better visualized in the Heisenberg group H and Grushin plane G through the
following pictures.
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Figure 2. Carnot-Carathéodory distance from the origin in H.
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