
BACH-FLAT GRADIENT STEADY RICCI SOLITONS

HUAI-DONG CAO, GIOVANNI CATINO, QIANG CHEN, CARLO MANTEGAZZA,
AND LORENZO MAZZIERI

Abstract. In this paper we prove that any n-dimensional (n ≥ 4) complete Bach-flat
gradient steady Ricci soliton with positive Ricci curvature is isometric to the Bryant soliton.
We also show that a three-dimensional gradient steady Ricci soliton with divergence-free Bach
tensor is either flat or isometric to the Bryant soliton. In particular, these results improve the
corresponding classification theorems for complete locally conformally flat gradient steady
Ricci solitons in [8, 10].

1. The results

A complete Riemannian metric gij on a smooth manifold Mn is called a gradient Ricci
soliton if there exists a smooth function f on Mn such that the Ricci tensor Rij of the metric
gij satisfies the equation

Rij +∇i∇jf = ρ gij
for some constant ρ. For ρ = 0 the Ricci soliton is steady, for ρ > 0 it is shrinking and for
ρ < 0 expanding. The function f is called a potential function of the gradient Ricci soliton.
Clearly, when f is a constant a gradient Ricci soliton is simply a Einstein manifold. Thus
Ricci solitons are natural extensions of Einstein metrics. Gradient Ricci solitons play an
important role in Hamilton’s Ricci flow as they correspond to self-similar solutions, and often
arise as singularity models. Therefore it is important to classify gradient Ricci solitons or
understand their geometry.

In this paper we shall focus our attention on gradient steady Ricci solitons (Mn, gij , f),
which are possible Type II singularity models in the Ricci flow, satisfying the steady soliton
equation

Rij +∇i∇jf = 0. (1.1)

It is now well-known that compact gradient steady solitons must be Ricci flat. In dimension
n = 2, Hamilton [14] discovered the first example of a complete noncompact gradient steady
soliton, defined on R2 and called the cigar soliton, where the metric is given explicitly by

ds2 =
dx2 + dy2

1 + x2 + y2
.

The cigar soliton has positive curvature and is asymptotic to a cylinder of finite circumference
at infinity. Furthermore, Hamilton [14] showed that the only complete steady soliton on a
two-dimensional manifold with bounded (scalar) curvature R which assumes its maximum
at an origin is, up to scaling, the cigar soliton. For n ≥ 3, Robert Bryant proved that
there exists, up to scaling, a unique complete rotationally symmetric gradient Ricci soliton
on Rn (see, e.g., Chow et al. [13] for details). The Bryant soliton has positive sectional
curvature, linear curvature decay, and volume growth of geodesic balls of radius r on the
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order of r(n+1)/2. In the Kähler case, the first author [5] constructed a complete gradient
steady Kähler-Ricci soliton on Cm, for m ≥ 2, with positive sectional curvature and U(m)
symmetry. For additional examples, we refer the readers to the survey paper [6] by the first
author and the references therein.

A well-known conjecture of Perelman [16], concerning gradient steady Ricci solitons, states
that in dimension n = 3 the Bryant soliton is the only complete noncompact (κ-noncollapsed)
gradient steady soliton with positive curvature. Despite some recent important progresses, it
remains a big challenge to prove this conjecture of Perelman 1. For n ≥ 4, such a uniqueness
result is not expected to hold, and it is desirable to find geometrically interesting conditions
under which the uniqueness would hold. In [8], the first and third author proved that a
complete noncompact n-dimensional (n ≥ 3) locally conformally flat gradient steady Ricci
soliton with positive sectional curvature is isometric to the Bryant soliton. Moreover, they
showed that a complete noncompact n-dimensional locally conformally flat gradient steady
Ricci soliton is either flat or isometric to the Bryant soliton. The same results for n ≥ 4
were proved independently by the second and fourth author [10] by using different method.
More recently, Brendle [3] (see also Proposition 5.2 below) showed that for an 3-dimensional
gradient steady soliton (M3, gij , f) if the scalar curvature R is positive and tends to zero at
infinity, and that (M3, gij , f) is asymptotic to the Bryant soliton in some suitable sense, then
(M3, gij , f) is locally conformally flat, hence isometric to the Bryant soliton. When n = 4, X.
Chen and Y. Wang [12] have proved that any 4-dimensional complete half-conformally flat
gradient steady Ricci soliton is either Ricci flat, or locally conformally flat (hence isometric
to the Bryant Soliton by [8] and [10]).

In this paper, motivated by the very recent work [7] on Bach-flat shrinking Ricci solitons, we
study complete Bach-flat steady Ricci solitons. A well-known fact is that if a n-dimensional
manifold (n ≥ 4) is either Einstein or locally conformally flat, then it is Bach-flat. In addition,
in dimension n = 4, if a 4-manifold is half-conformally flat or locally conformal to an Einstein
4-manifold, then it is also Bach-flat.

Let us recall that on any n-dimensional manifold (Mn, gij) (n ≥ 4) the Bach tensor,
introduced by R. Bach [1] in early 1920s’ to study conformal relativity, is defined by

Bij =
1

n− 3
∇k∇lWikjl +

1

n− 2
RklW i

k
j
l. (1.2)

Here Wikjl is the Weyl tensor. In terms of the Cotton tensor

Cijk = ∇iRjk −∇jRik −
1

2(n− 1)
(gjk∇iR− gik∇jR) ,

we also have

Bij =
1

n− 2
(∇kCkij +RklW i

k
j
l) . (1.3)

Our first main result concerns the classification of Bach-flat gradient steady Ricci solitons:

Theorem 1.1. For n ≥ 4, let (Mn, gij , f) be a complete gradient steady Ricci soliton with
positive Ricci curvature such that the scalar curvature R attains its maximum at some interior
point. If in addition (Mn, gij , f) is Bach-flat, then it is isometric to the Bryant soliton up to
a scaling factor.

1Added in the proof: most recently S. Brendle [4] has proved this conjecture.
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In dimension three we can prove a stronger result. To describe it, note that when n = 3,
while the expression of Bij in (1.2) is not well defined, the expression in (1.3) makes perfect
sense, so we can use it to define the Bach tensor in 3-D as

Bij = ∇kCkij . (1.4)

Theorem 1.2. Let (M3, gij , f) be a three-dimensional complete gradient Ricci solitons with
divergence-free Bach tensor (i.e., divB = 0). Then (M3, g, f) is either Einstein or locally
conformally flat.

Using the 3-D classification of locally conformally flat gradient steady Ricci solitons (see [8]),
we have:

Corollary 1.3. A complete three-dimensional gradient steady Ricci soliton (M3, gij , f) with
divergence-free Bach tensor is either flat or isometric to the Bryant soliton (up to a scaling
factor).

Remark 1.4. The assumption of Bach-flat or divergence-free Bach is, at least a priori, weaker
than that of locally conformally flat. Thus, Corollary 1.3 could be very helpful in proving
Perelman’s conjecture stated before.

Finally, in Section 5, we present some applications and discuss Bach-flat gradient expanding
solitons.
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were visiting the Mathematical Sciences Center of Tsinghua University in Beijing. They
would like to thank the Center for their hospitality and support. The research of the first
author was partially supported by NSF grant DMS-0909581.
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2. Background material

In this section, we recall some background material needed in the proof of our main theo-
rems.

Recall that on any n-dimensional Riemannian manifold (Mn, gij) (n ≥ 3), the Weyl curva-
ture tensor is given by

Wijkl =Rijkl −
1

n− 2
(gikRjl − gilRjk − gjkRil + gjlRik)

+
R

(n− 1)(n− 2)
(gikgjl − gilgjk),

and the Cotton tensor by

Cijk = ∇iRjk −∇jRik −
1

2(n− 1)
(gjk∇iR− gik∇jR).

In terms of the Schouten tensor

Aij = Rij −
R

2(n− 1)
gij , (2.1)
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we have

Wijkl = Rijkl −
1

n− 2
(gikAjl − gilAjk − gjkAil + gjlAik), (2.2)

and

Cijk = ∇iAjk −∇jAik. (2.3)

It is well known that, for n = 3, Wijkl vanishes identically, while Cijk = 0 if and only if
(M3, gij) is locally conformally flat; for n ≥ 4, Wijkl = 0 if and only if (Mn, gij) is locally
conformally flat. Moreover, for n ≥ 4, the Cotton tensor Cijk is, up to a constant factor, the
divergence of the Weyl tensor:

Cijk = −n− 2

n− 3
∇lWijkl. (2.4)

We remark that Cijk is skew-symmetric in the first two indices and trace-free in any two
indices:

Cijk = −Cjik and gijCijk = gikCijk = 0 . (2.5)

Moreover, for n ≥ 4, the Bach tensor is defined by

Bij =
1

n− 3
∇k∇lWikjl +

1

n− 2
RklW i

k
j
l.

By (2.4), we have an equivalent expression of the Bach tensor:

Bij =
1

n− 2
(∇kCkij +RklW i

k
j
l). (2.6)

Next we recall some basic facts about complete gradient steady Ricci solitons satisfying Eq.
(1.1) .

Lemma 2.1. (Hamilton [15]) Let (Mn, gij , f) be a complete gradient steady Ricci soliton
satisfying Eq. (1.1). Then we have

∇iR = 2Rij∇jf, (2.7)

and

R+ |∇f |2 = C0

for some constant C0. Here R denotes the scalar curvature.

Lemma 2.2. Let (Mn, gij , f) be a complete gradient steady soliton. Then it has nonnegative
scalar curvature R ≥ 0.

Lemma 2.2 is a special case of a more general result of B.-L. Chen [11] which states that
R ≥ 0 for any ancient solution to the Ricci flow.

Note that, by Lemma 2.2, the constant C0 in Lemma 2.1 must be positive for any non-
trivial gradient steady soliton. Hence, by scaling the metric g, we can normalize it to be one
so that

R+ |∇f |2 = 1. (2.8)

Lemma 2.3. (Cao-Chen [8]) Let (Mn, gij , f) be a complete noncompact gradient steady
soliton with positive Ricci curvature Rc > 0. Assume the scalar curvature R attains its
maximum at some origin O. Then, there exist some constants 0 < c1 ≤ 1 and c2 > 0 such
that the potential function f satisfies the estimates

c1r(x)− c2 ≤ −f(x) ≤ r(x) + |f(O)|, (2.9)
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where r(x) = d(O, x) is the distance function from O. In particular, f is a strictly concave
exhaustion function achieving its maximum at the only critical point O, and the underlying
manifold Mn is diffeomorphic to Rn.

Finally, in the spirit of [7], we recall the covariant 3-tensor Dijk,

Dijk =
1

n− 2
(Rjk∇if −Rik∇jf) +

1

2(n− 1)(n− 2)
(gjk∇iR− gik∇jR)

+
R

(n− 1)(n− 2)
(gik∇jf − gjk∇if) ,

which was first introduced in [8] and played the key role in classifying locally conformally
flat gradient steady Ricci solitons [8] and Bach-flat gradient shrinking Ricci solitons [7]. Note
that, Dijk has the same symmetry properties as the Cotton tensor:

Dijk = −Djik and gijDijk = gikDijk = 0 . (2.10)

Lemma 2.4. (Cao-Chen [8, 7]) Let (Mn, gij , f) (n ≥ 3) be a complete gradient steady
soliton. Then Dijk is related to the Cotton tensor Cijk and the Weyl tensor Wijkl by

Dijk = Cijk +Wijkl∇lf . (2.11)

On the other hand, for any gradient Ricci soliton, it turns out that the Bach tensor Bij
can be expressed in terms of Dijk and the Cotton tensor Cijk (for the proof see [7]):

Bij = − 1

n− 2
(∇kDikj +

n− 3

n− 2
Cjli∇lf) . (2.12)

Moreover, we recall that the norm of Dijk is linked to the geometry of level surfaces of the
potential function f by the following:

Lemma 2.5. (Cao-Chen [8, 7]) Let (Mn, gij , f) (n ≥ 3) be an n-dimensional gradient
steady Ricci soliton. Then, at any point p ∈Mn where ∇f(p) 6= 0, we have

|Dijk|2 =
2|∇f |4

(n− 2)2
|hab −

H

n− 1
gab|2 +

1

2(n− 1)(n− 2)
|∇aR|2 (2.13)

where hab and H are the second fundamental form and the mean curvature of the level surface
Σ = {f = f(p)}, and gab is the induced metric on Σ.

Thus, the vanishing of Dijk implies the umbilicity of the level surfaces of the potential
function as well as the constancy of the scalar curvature on them (see also Proposition 3.2
below). For further details on the tensor Dijk we refer the interested reader to [7, Section 3] .

3. Proof of Theorem 1.1

As in [7], the first step in proving Theorem 1.1 is to show that, for noncompact steady
gradient Ricci solitons with positive Ricci curvature, the Bach-flatness implies the vanishing
of the 3-tensor Dijk.

Lemma 3.1. Let (Mn, gij , f) (n ≥ 3) be a complete Bach-flat gradient steady Ricci soliton
with positive Ricci curvature such that the scalar curvature R attains its maximum at some
interior point. Then, Dijk = 0.
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Proof. Since (Mn, gij , f) (n ≥ 4) has positive Ricci curvature and that the scalar curvature R
attains its maximum at some interior point O, by Lemma 2.3, there exist constants c1, c2 > 0
such that

f(x) ≤ −c1r(x) + c2 , (3.1)

where r(x) is the distance to the origin O. Moreover, since Rij > 0, from the well-known
Bishop volume comparison theorem we know that (Mn, gij , f) has at most Euclidean volume
growth, i.e., there exists a positive constant C > 0, such that

V ol(Bs(O)) ≤ C sn , (3.2)

for any geodesic ball Bs(O). By the definition of Dijk and using the identities (2.12), (2.10)
and (2.5), it follows from the same argument as in [7] that∫
Bs(O)

Bij∇if∇jfef dVg = − 1

n− 2

∫
Bs(O)

∇kDikj∇if∇jfef dVg

= −1

2

∫
Bs(O)

|Dijk|2ef dVg −
1

n− 2

∫
∂Bs(O)

Dikj∇if∇jfefνk dσ ,

where ν denotes the outward unit normal to ∂Bs(O). Again, from the definition of Dijk, it
is easy to check that, for sufficiently large s, we have∣∣ ∫

∂Bs(O)
Dikj∇if∇jfefνk dσ

∣∣ ≤ C

∫
∂Bs(O)

(|Rij |+ |R|)|∇f |3ef dσ

≤ 2C

∫
∂Bs(O)

ef dσ ,

where we have used identity (2.8) and the fact that |Rij | ≤ R (since g has positive Ricci
curvature). By letting s→ +∞ and using (3.1)-(3.2), we obtain

0 =

∫
M
Bij∇if∇jfef dVg = −1

2

∫
M
|Dijk|2ef dVg ,

implying Dijk = 0.
�

By Lemma 2.5, the vanishing of the tensor Dijk implies many rigidity properties about the
geometry of the level surfaces of the potential function f :

Proposition 3.2 (Proposition 3.2 in [7]). Let (Mn, g, f) (n ≥ 3) be any complete gradient
Ricci soliton with Dijk = 0, and let c be a regular value of f and Σc = {f = c} be the level
surface of f . Set e1 = ∇f/|∇f | and pick any orthonormal frame e2, · · · , en tangent to the
level surface Σc, Then:

(a) |∇f |2 and the scalar curvature R of (Mn, gij , f) are constant on Σc;

(b) R1a = 0 for any a ≥ 2, hence e1 = ∇f/|∇f | is an eigenvector of Rc;

(c) the second fundamental form hab of Σc is of the form hab = H
n−1gab;

(d) the mean curvature H is constant on Σc;

(e) on Σc, the Ricci tensor of (Mn, gij , f) either has a unique eigenvalue λ, or has two
distinct eigenvalues λ and µ of multiplicity 1 and n − 1 respectively. In either case, e1 =
∇f/|∇f | is an eigenvector of λ. Both λ and µ are constant on Σc.
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Now we are in the position to complete the proof of Theorem 1.1:

Proof of Theorem 1.1. Let (Mn, g, f), n ≥ 4, be a complete Bach-flat gradient steady Ricci
solitons with positive Ricci curvature such that the scalar curvature R attains its maximum
at some interior point O ∈ M . Then, by Lemma 2.3 we know that f is proper, strictly
concave, has a unique critical point at O, and that Mn is diffeomorphic to Rn. On the other
hand, by Lemma 3.1, we have that Dijk = 0. Therefore for n = 4, from [7, Theorem 1.4] and
the assumption of positive Ricci curvature, we conclude that (M4, gij , f) is isometric to the
Bryant soliton up to a scaling factor.

From now on let us consider n ≥ 5. First of all, on M \ {O}, the soliton metric gij can be
expressed as

ds2 =
1

|∇f |2
df2 + gab(f, θ)dθ

adθb,

where (θ2, · · · , θn) is any local coordinates system on the lever surface Σ = {f = f(p)} at
p ∈ M \ {O}. Note that, since Dijk = 0, |∇f |2 depends only on f by Proposition 3.2 (a).
Hence, by a suitable change of variable, we can further express gij as

ds2 = dr2 + gab(r, θ)dθ
adθb , 0 < r <∞ .

Here r(x) is the distance function from O. We remark that, by Lemma 2.3, |f |(x) is propor-
tional to r(x).

Claim 1: For r > 0, the induced metric ḡΣr = gab(r, θ)dθ
adθb on each level surface Σr is

Einstein.

Indeed, we have the following more general fact:

Lemma 3.3. Let (Mn, g, f) (n ≥ 4) be a complete gradient Ricci soliton with Dijk = 0. Then
each regular level surface Σ, with the induced metric ḡΣ, is an Einstein manifold.

Proof. Let {e1, e2, · · · , en} be any orthonormal frame, with e1 = ∇f/|∇f | and e2, · · · , en
tangent to Σ. Then, by the Gauss equation and Proposition 3.2 (c), the sectional curvatures
of (Σ, gab) are given by

RΣ
abab = Rabab + haahbb − h2

ab = Rabab +
H2

(n− 1)2
.

Thus, the Ricci curvatures of (Σ, gab) are

RΣ
aa = Raa −R1a1a +

H2

n− 1
.

On the other hand, by Theorem 5.2 (b) in [7], we know that W1a1a = 0. Thus,

R1a1a =
1

n− 2
(Raa +R11)− R

(n− 1)(n− 2)

=−Raa +
R

n− 1
.

Hence, it follows that

RΣ
aa = 2Raa +

H2 −R
n− 1

.
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But, by Proposition 3.2, R,H and µ = Raa are constant along Σ. This proves that (Σ, gab)
has constant Ricci curvature.

�

Claim 2: On M \ {O}, the metric g takes the form of a warped product metric:

ds2 = dr2 + w(r)2ḡE , r ∈ (0,+∞) , (3.3)

where w is some nonnegative smooth function on Mn vanishing only at O, and ḡE = ḡΣ1 is
the Einstein metric defined on the level surface Σ1.

Indeed, by identity (4.6) in [7] and Propositon 3.2, we have

∂

∂r
gab = −2hab = φ(r)gab ,

where φ(r) = −2H(r)/(n− 1). Thus, it follows easily that

gab(r, θ) = eΦ(r)gab(1, θ),

where

Φ(r) =

∫ r

1
φ(r) dr.

This proves Claim 2.

By scaling, we can assume that

RicḡE = (n− 2)k ḡE , with k = −1, 0, 1. (3.4)

We shall see below that in fact k = 1, as we expected.

Claim 3: We have

lim
r→0

w(r)

r
= 1 .

Clearly, w(r) → 0 as r → 0. On the other hand, on M \ {O}, the Ricci tensor and the
scalar curvature of the metric g in (3.3) take the form (see [2, Proposition 9.106])

Ricg = −(n− 1)
w′′

w
dr ⊗ dr +

(
(n− 2)(k − (w′)2)− ww′′

)
ḡE ,

and

Rg = −2(n− 1)
w′′

w
+

(n− 1)(n− 2)

w2

(
k − (w′)2

)
respectively. Here we have used the Claim 1 and the normalization (3.4).

From the expression of the Ricci tensor above and the fact that |Rc| ≤ 1 on Mn, it is im-
mediate to see that w′′/w must be bounded as r → 0. Hence, from the above scalar curvature
expression, it is easy to deduce the claim. In particular, we can conclude that the Einstein
constant k = 1 for the metric ḡE .

Claim 4: ḡE is equal to the standard round metric ḡSn−1 on the unit sphere Sn−1.

This essentially follows from the previous claims and the elementary fact that infinitesimally
the metric g is approximately Euclidean near O. In fact, the standard expansion of the metric
g around O, written in any normal coordinates (x1, · · · , xn), gives
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g = (δij + σij(x)) dxi ⊗ dxj

= gRn + σij dx
i ⊗ dxj ,

where σij = O(|x|2). To pass to polar coordinates, we write xi = rφi(θ1, . . . , θn−1)), with r ∈
(0,+∞) and (θ1, . . . , θn−1) being local coordinates on Sn−1. Notice that |φ1|2 + · · ·+ |φn|2 = 1
and |x| = r. Thus, one has

g = (1 + σijφ
iφj)dr ⊗ dr + r σij

∂φi

∂θα
φjdr ⊗ dθα + r σij

∂φj

∂θα
φidθα ⊗ dr +

+
(
r2ḡS

n−1

αβ + r2σij
∂φi

∂θα
∂φj

∂θβ
)
dθα ⊗ dθβ ,

with σij = O(r2). Comparing with (3.3), we see that σijφ
j = 0 and

w2(r)ḡE = r2ḡSn−1 + r2σij
∂φi

∂θα
∂φj

∂θβ
dθα ⊗ dθβ , r ∈ (0,+∞) .

Now using the fact that σij = O(r2) and Claim 3, and taking the limit as r → 0, we obtain

ḡE = ḡSn−1 .

Therefore, on M \ {O}, we have

ds2 = dr2 + w(r)2ḡSn−1 , r ∈ (0,+∞) ,

proving that the soliton metric g is rotationally symmetric. Therefore, it follows that (Mn, g, f)
is the Bryant soliton, because we know that Mn is diffeomorphic to Rn and the Bryant soliton
is the only non-flat rotationally symmetric gradient steady soliton on Rn up to scaling. This
completes the proof of Theorem 1.1.

�

4. Proof of Theorem 1.2

In the special case n = 3, we can show that divergence-free Bach tensor implies the van-
ishing of the Cotton tensor for all gradient Ricci solitons by a pointwise argument, which
allows us to remove the assumptions on the positivity of the Ricci curvature and the scalar
curvature achieving its interior maximum.

Proof of Theorem 1.2. Let (M3, g, f) be a three-dimensional complete gradient Ricci soliton
with divergence-free Bach tensor. We recall that in dimension three we have defined the Bach
tensor as

Bij = ∇kCkij . (4.1)

We claim that
∇jBij = −CijkRjk . (4.2)

Indeed, in terms of the Schouten tensor

Aij = Rij −
R

4
gij ,

and the Cotton tensor
Cijk = ∇iAjk −∇jAik ,

we have
Bij = ∇k(∇kAij −∇iAkj) .
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Hence

∇iBij =∇i∇k(∇kAij −∇iAkj)
=(∇i∇k −∇k∇i)∇kAij
=−Ril∇lAij +Rkl∇kAlj +Rikjl∇kAil
=Rikjl∇kAil .

On the other hand, since the Weyl tensor W = 0 in dimension three, (2.2) becomes

Rijkl = gikAjl − gilAjk − gjkAil + gjlAik .

Therefore,

∇iBij = (AjkgilClki +AikCkji) = −RkiCjki ,
proving the claim.

Now assume (M3, g, f) is any three-dimensional gradient Ricci soliton. Recall that, for
n = 3, we have

Cijk =Dijk

=Rjk∇if −Rik∇jf +
1

4
(gjk∇iR− gik∇jR)− R

2
(gjk∇if − gik∇jf) .

Thus, using (4.2) and (2.5), we get

div(B) · ∇f = −CijkRjk∇if = −1

2
|Cijk|2.

Therefore, div(B) = 0 implies the Cotton tensor Cijk = 0, which is equivalent to that
(M3, g, f) is locally conformally flat.

�
Consequently, by combining Theorem 1.2 and the classification theorem in [8] for three-

dimensional complete locally conformally flat gradient steady Ricci solitons, we have

Corollary 4.1. Let (M3, g, f) be a complete gradient steady Ricci soliton with divergence-free
Bach tensor, then it is either flat or isometric to the Bryant soliton.

Remark 4.2. For n ≥ 4, it is known among experts that the divergence of the Bach tensor is
given by

∇jBij =
n− 4

(n− 2)2
CijkRjk .

5. Further remarks

It was proved in [7, Theorem 1.4] that any 4-dimensional complete gradient steady Ricci
soliton with Dijk = 0 is either Ricci flat, or locally conformally flat but non-flat (hence
isometric to the Bryant soliton by [8] and [10]). In the proof of Theorem 1.1, we have actually
shown the following

Proposition 5.1. Let (Mn, gij , f), n ≥ 4, be a complete gradient steady Ricci soliton with
Dijk = 0. If, in addition, the Ricci curvature is positive and the scalar curvature R attains
its maximum at some interior point, then (Mn, gij , f) is isometric to the Bryant soliton up
to a scaling factor.
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On the other hand, Brendle [3] proved the following result2 :

Proposition 5.2 (Brendle [3]). Let (Mn, g, f) (n ≥ 3) be a n-dimensional gradient steady
Ricci soliton. Suppose that the scalar curvature R of (Mn, g) is positive and approaches zero
at infinity. Denote by ψ : (0, 1)→ R the smooth function such that the vector field

X =: ∇R+ ψ(R)∇f = 0

on the Bryant soliton, and define u : (0, 1)→ R by

u(s) = logψ(s) +
1

n− 1

∫ s

1/2
(
n

1− t
− n− 1− (n− 3)t

(1− t)ψ(t)
)dt.

Moreover, assume that there exists an exhaustion of Mn by bounded domains Ωl such that

lim
l→∞

∫
∂Ωl

eu(R) < ∇R+ ψ(R)∇f, ν >= 0. (5.1)

Then X = 0 and Dijk = 0. In particular, for n = 3, (M3, g, f) is isometric to the Bryant
soliton.

As an immediate consequence of Proposition 5.1 and Proposition 5.2, we obtain

Corollary 5.3. Let (Mn, gij , f) (n ≥ 4) be a complete gradient steady Ricci soliton with
positive Ricci curvature such that the scalar curvature R approaches zero at infinity. Moreover,
assume that condition (5.1) in Proposition 5.2 is satisfied for some exhaustion of Mn by
bounded domains Ωl. Then (Mn, g, f) is isometric to the Bryant soliton.

Remark 5.4. By Lemma 2.3, f is an exhaustion function on Mn.

Finally, the techniques used in the proof of Theorem 1.1 can be easily adapted to the case
of complete gradient expanding Ricci solitons with nonnegative Ricci curvature which are
solutions of the equation

Rij +∇i∇jf = −1
2 gij . (5.2)

We also normalize the potential function f , up to an additive constant, by

R+ |∇f |2 + f = 0, (5.3)

which is a well-known identity for expanding Ricci solitons (see [15]).
The need ingredient is the following lemma, which should be known to experts in the field:

Lemma 5.5. Let (Mn, gij , f) (n ≥ 3) be a complete noncompact gradient expanding soliton
with nonnegative Ricci curvature Rc ≥ 0. Then, there exist some constants c1 > 0 and c2 > 0
such that the potential function f satisfies the estimates

1

4

(
r(x)− c1

)2 − c2 ≤ −f(x) ≤ 1

4

(
r(x) + 2

√
−f(O)

)2
, (5.4)

where r(x) is the distance function from any fixed base point in Mn. In particular, f is a
strictly concave exhaustion function achieving its maximum at some interior point O, which
we take as the base point, and the underlying manifold Mn is diffeomorphic to Rn.

2Although Brendle only stated this result for n = 3 in [3], the same argument, as shown by him in the
preprint arXiv:1010.3684v1, works for all dimensions n ≥ 4.
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Proof. The upper bound follows from (5.3) and the assumption of R ≥ 0 which together
imply |∇(−f)|2 ≤ (−f). The lower bound is an easy consequence of the second variation of
arc length argument as in, e.g., [9, p.179], applied to the equation

∇i∇j(−f) = Rij +
1

2
gij ≥

1

2
gij .

Moreover, since |∇(−f)| ≤
√
−f ≤ 1

2r(x) +
√
−f(O), −f is clearly proper and hence an

exhaustion function. Therefore Mn is diffeomorphic to Rn.
�

Remark 5.6. Clearly, in Lemma 5.5 and the results below, we can replace the assumption of
nonnegative Ricci curvature Rc ≥ 0 by Rc ≥ −(1

2 − ε)g for any small ε > 0. Of course, the
normalizing of f and the coefficients in (5.4) has to be adjusted accordingly.

Taking advantage of this growth estimates on the potential function f , it is immediate to
deduce the analogous of Lemma 3.1 for expanding solitons, namely

Lemma 5.7. Let (Mn, gij , f) (n ≥ 3) be a complete Bach-flat gradient expanding Ricci soliton
with nonnegative Ricci curvature. Then, Dijk = 0.

Having this at hand, it is sufficient to follow the proof of Theorem 1.1 in Section 3 to obtain
the rotational symmetry. More precisely, we have

Theorem 5.8. For n ≥ 4, let (Mn, gij , f) be a complete Bach-flat gradient expanding Ricci
soliton with nonnegative Ricci curvature, then it is rotationally symmetric.

For n = 3, by using Theorem 1.2, we have

Theorem 5.9. Let (M3, gij , f) be a three-dimensional complete expanding gradient Ricci
solitons with divergence-free Bach tensor and nonnegative Ricci curvature. Then (M3, g, f)
is rotationally symmetric.

For a discussion of the expanding Ricci solitons which are rotationally symmetric, see [13,
Chapter 1, Section 5], where the authors provide the existence of solutions with positive Ricci
curvature (analogous to the Bryant soliton).
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