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Abstract

We discuss the problem of the regularity in time of the map t 7→ Tt ∈ Lp(Rd,Rd;σ) where
Tt is a transport map (optimal or not) from a reference measure σ to a measure µt which
lies along an absolutely continuous curve t 7→ µt in the space (Pp(Rd),Wp). We prove that
in most cases such a map is no more than 1

p -Hölder continuous.

1 Introduction

Starting from the pioneering work of Otto [10], much is known today about the Riemannain
structure of the Wasserstein space (P2(Rd),W2). One of the basic facts of the theory is that for
any probability measure σ with bounded second moment, there is a well defined ‘exponential
map’ from L2(Rd,Rd;σ) to P2(Rd) given by:

v 7→ (Id+ v)#σ,

where Id is the identity map and (Id+ v)#σ the push forward of σ through Id+ v. The trivial
inequality

W2

(
(Id+ v)#σ, (Id+ w)#σ

)
≤

√∫
|v(x)− w(x)|2dσ(x),

may be interpeted as the confirmation of the formal fact that (P2(Rd),W2) has non-negative
curvature, since the exponential map is non expansive. If the measure σ is absolutely continuous
(this condition may be weakened, see for instance [2] or [12] for more general results), the
exponential map has a natural right inverse: the function which associates to each µ ∈P2(Rd),
the vector field Tµσ − Id, where Tµσ is the optimal transport map from σ to µ. The existence of
such map is given by the celebrated theorem of Brenier ([3]).

A natural question which arises is then: which kind of regularity should we expect from the
map µ 7→ Tµσ ?
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A well known result in this direction is that, under the assumption σ � Ld which guarantees
existence and uniqueness of the optimal transport map, from the so called ‘stability of optimality’
it follows that the function Pp(Rd) 3 µ 7→ Tµσ ∈ Lp(Rd,Rd;σ) is continuous.

It is then natural to ask whether there is more regularity or not. A typical question is the
following: given an absolutely continuous curve t 7→ µt ∈ P2(Rd), which regularity does the
map t 7→ Tµt

σ ∈ L2(Rd,Rd;σ) have?
This question has been investigated by several authors, among which Loeper and Ambrosio.

Loeper published a work on the subject ([9]) where he obtained a result of the following kind:
he assumed µt = (X(t, ·))#σ, with σ = Ld|U for some open set U , and X(t, x) : [0, 1]× U → Rd

with both X and ∂tX L∞ in space and time, and he derived that the optimal transport maps
Tt from σ to µt satisfies “t 7→ Tt is of bounded variation in L2(Rd,Rd, σ)”.

The results of Ambrosio are unpublished. With his permission, we report here his result,
which shows that when p = 2, under certain conditions on σ and (µt) (similar to those of
Caffarelli’s regularity theory for the solutions of the Monge Ampere equation), the map t 7→
Tµt
σ ∈ L2(Rd,Rd;σ) is 1

2−Hölder continuous.
The main result of this paper is that in the case p = 2, 1

2−Hölder regularity is the most we
can expect.

Actually, we prove much more: for every 1 < p < ∞, and any geodesic of the kind t 7→
µt := ((1 − t)Id + tS)#µ0 ∈ Pp(Rd) for some optimal map S, and any family of maps Tt (not
necessarly optimal) satisfying (Tt)#σ = µt and

T1 6= S ◦ T0,

the map t 7→ Tt ∈ Lp(Rd,Rd;σ) is at most 1
p−Hölder continuous.

2 Preliminaries

For a given 1 < p < ∞, we will denote by Pp(Rd) the set of probability measures on Rd with
bounded p moment, that is:

Pp(Rd) :=
{
µ ∈P(Rd) :

∫
|x|pdµ(x) <∞

}
.

We endow Pp(Rd) with the distance Wp defined as

Wp(µ, ν) := inf p

√∫
|x− y|pdγ,

where the infimum is taken among all admissible plans γ ∈P(Rd×Rd) satisfying π1
#γ = µ and

π2
#γ = ν, where π1, π2 are the projection onto the first and second coordinate respectively. A

plan which realizes the minimum is called optimal.
The following theorem is a well known generalization of Brenier’s theorem to the case of

general exponent p. It is not stated in his maximum generality, and the conclusion may be
strenghtened by a characterization of the optimal map: for a detailed discussion of the topic
and for the proof see [2] or [12].
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Theorem 2.1 (Existence and uniqueness of optimal transport map) Let µ, ν ∈
Pp(Rd) and assume that µ is absolutely continuous w.r.t. the Lebesgue measure. Then there
exists a unique optimal plan γ from µ to ν, and this plan is induced by a map, i.e.: there exists
(a unique) T ∈ Lp(Rd,Rd;µ) such that γ = (Id, T )#µ, where Id is the identity map.

There is a well known characterization of geodesics in Pp(Rd); we recall the basics facts we
will need in the following statement (see e.g. [2] or [12] for a proof).

Theorem 2.2 (Geodesics in (Pp(Rd),Wp)) Let (µt) ⊂Pp(Rd) be a geodesic on [0, 1]. Then:

i) there exists an optimal transport plan γ from µ0 to µ1 such that for any t ∈ [0, 1] it holds

µt =
(
(1− t)π1 + tπ2

)
#

γ,

ii) for any t ∈ (0, 1), s ∈ [0, 1] there exists only one optimal plan from µt to µs and such plan
is induced by a Lipschitz map,

iii) for any ε > 0 there exists Cε ∈ R such that for any t ∈ [ε, 1 − ε], s ∈ [0, 1] the Lipschitz
constant of the optimal transport map from µt to µs is less than Cε.

3 1
2−Hölder regularity is achievable

Here we report a proof, suggested to us by Ambrosio, that under appropriate hypothesis the
1
2−Hölder regularity of t 7→ Tµt

σ ∈ L2(Rd,Rd;σ) is achievable when (µt) is an absolutely continu-
ous curve in P2(Rd). The hypothesis we put on the measures involved ar far from being optimal:
it is not the purpose here to look for maximum generality, but just to show that 1

2−Hölder con-
tinuity of the optimal transport map is achievable. In particular, the regularity result due to
Caffarelli, which is the key ingredient of the proof, is not recalled here in its maximum generality.

Theorem 3.1 (Caffarelli’s regularity result) Let µ, σ ∈ P2(Rd). Assume that
supp(µ), supp(σ) (i.e. the smallest closed sets on which µ and σ are concentrated) are both
C2 and uniformly convex. Also assume that both µ and σ are absolutely continuous with C0,α

densities on their supports, for some α ∈ (0, 1), satisfying

0 < c ≤
∥∥∥∥ dσdLd

∥∥∥∥
∞
≤ C,

0 < c ≤
∥∥∥∥ dµdLd

∥∥∥∥
∞
≤ C.

Then the optimal transport map from µ to σ is the gradient of a C2,α function on supp(µ).

Corollary 3.2 (Uniform convexity of the optimal transport map) With the same hy-
pothesis of the previous theorem, let ϕ ∈ C2,α(supp(µ)) be the smooth function whose gradient
is the optimal transport map from µ to σ. Then ϕ is strictly uniformly convex.
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Proof. From the bound on the densities of µ and σ and the well known formula

dσ

dLd
(
∇ϕ(x)

)
| det(∇2ϕ(x))| = dµ

dLd
(x),

we get
c

C
≤ |det(∇2ϕ(x))|, ∀x ∈ supp(µ).

By the Brenier’s theorem, we know that ϕ is convex, thus the modulus in the above expression
can be dropped. Also, by Caffarelli’s regularity result we know that

sup
x∈supp(µ)

‖∇2ϕ(x)‖op <∞.

From this uniform upper bound on the eigenvalues of ∇2ϕ(x) plus the uniform lower bound on
det(∇2ϕ(x)) obtained before, we get the strict uniform convexity. �

Proposition 3.3 Let µ, σ be as in theorem 3.1, ϕ ∈ C2,α(supp(µ)) be the smooth function
whose gradient is the optimal transport map from µ to σ, let λ > 0 be the modulus of uniform
convexity of ϕ (i.e. λ is the supremum of λ′ such that x 7→ ϕ(x)− λ′|x|2

2 is convex on supp(µ))
and T := (∇ϕ)−1. Then for every transport map S from σ to µ it holds

‖S − T‖2σ ≤
2
λ

(
‖S − Id‖2σ − ‖T − Id‖2σ

)
.

Proof. We have

0 =
∫
ϕ(y)dµ(y)−

∫
ϕ(y)dµ(y) =

∫
ϕ(S(x))− ϕ(T (x))dσ(x)

≥
∫
〈∇ϕ(T (x)), S(x)− T (x)〉dσ(x) +

λ

2
‖S − T‖2σ.

Now observe that ∇ϕ(T (x)) = x for every x ∈ supp(σ), thus it holds∫
〈∇ϕ(T (x)), S(x)− T (x)〉dσ(x) =

∫
〈x, S(x)− T (x)〉dσ(x) = −1

2
‖S − Id‖2σ +

1
2
‖T − Id‖2σ.

�

Corollary 3.4 (1
2-Hölder regularity) Let σ ∈P2(Rd) and (µt) ⊂P2(Rd) a Lipschitz curve

of absolutely continuous measures. Assume that σ and µ := µ0 satisfy the assuptions of Caf-
farelli’s theorem 3.1 and let, for every t ∈ [0, 1], Tt be the optimal transport map from σ to µt.
Then t 7→ Tt ∈ L2(Rd,Rd;σ) satisfies

lim
t→0+

‖Tt − T0‖σ√
t

<∞.
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Proof. Let L be the Lipschitz cosntant of the curve t 7→ µt ∈P2(Rd). Apply Brenier’s theorem
to get the existence of optimal transport maps St from µt to µ0. The map St ◦ Tt maps σ into
µ0, thus applying proposition 3.3 we get

‖St ◦ Tt − T0‖2σ ≤ C
(
‖St ◦ Tt − Id‖2σ − ‖T0 − Id‖2σ

)
, (3.1)

for every t ∈ [0, 1] and some constant C independent on t.
Now observe that

‖St ◦ Tt − Id‖σ ≤ ‖St ◦ Tt − Tt‖σ + ‖Tt − Id‖σ = ‖St − Id‖µt +W2(µt, σ)
≤ 2W2(µ0, µt) +W2(µ0, σ) ≤ 2Lt+W2(µ0, σ),

and similarly

‖St ◦ Tt − T0‖σ ≥ ‖Tt − T0‖σ − ‖St ◦ Tt − Tt‖σ ≥ ‖Tt − T0‖σ − Lt.

Using this two inequality in (3.1) and recalling that ‖T0 − Id‖σ = W2(µ0, σ) we get the thesis.
�

4 The basic idea of the result

Before turning to our main result on 1
p -Hölder regularity, we discuss a simple example in dimen-

sion 2 and for p = 2, that shows the main idea of our argument.
Let A := (−2, 1), B := (2, 1), C := (0,−2) and O := (0, 0). Since the strict inequality

|A−O|2 + |O − C|2 = 5 + 4 < 13 + 0 = |A− C|2 + |O −O|2

holds, where | · | is the euclidean norm, we have that for r > 0 small enough it holds

|A−O′|2 + |O − C ′|2 < |A− C ′|2 + |O −O′|2, ∀O′ ∈ Br(O), C ′ ∈ Br(C). (4.1)

Fix such an r and define the measures

µ0 :=1
2 (δA + δO) ,

µ1 :=1
2 (δB + δO) ,

σ :=(2πr2)−1
(
L2
|Br(O)∪Br(C)

)
.

Inequality (4.1) implies that the optimal transport map T0 from σ to µ0 satisfies T0(Br(O)) =
{A} and T0(Br(C)) = {O}. Symmetrically, for the optimal transport map T1 from σ to µ1 it
holds T1(Br(O)) = {B} and T1(Br(C)) = {O}.

Now observe that since

|A−O|2 + |O −B|2 = 5 + 5 < 16 + 0 = |A−B|2 + |O −O|2,

there is a unique optimal plan between µ0 and µ1 and this plan is induced by the map S, seen
from µ0, given by S(A) = O and S(O) = B. Observe that it holds S(T0(Br(O))) 6= T1(Br(O)).
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Figure 1: Position of the masses

Let µt := ((1 − t)Id + tS)#µ0 and Tt be the optimal transport map from σ to µt. Let
Dt := (1− t)A and Et := tB, so that supp(µt) = {Dt, Et}.

Here it comes the main idea of the example. We claim that the map t→ Tt ∈ L2(R2,R2;σ)
is not Cα for α > 1/2: we will argue by contradiction. Suppose that for some α > 1/2 the map
is Cα, let χ be the characteristic function of Br(0) (i.e. χ(Br(0)) = {1} and χ(R2\Br(0)) = {0})
and observe that from the inequality∫

|Tt − Ts|2χdσ ≤
∫
|Tt − Ts|2dσ,

we get that ‘any regularity of t 7→ Tt seen as curve in L2(R2,R2;σ) is inherited by the curve t 7→ Tt
seen as curve with values in L2(R2,R2, 2χσ)’ (the factor 2 stands just for the renormalization
of the mass). In particular the map t 7→ Tt ∈ L2(R2,R2; 2χσ) is Cα, too. Therefore defining the
measures

νt := (Tt)#(2χσ),

and using the inequality

W 2(νt, νs) ≤
∫
|Tt − Ts|2d(2χσ),

we get that the curve t 7→ νt ∈ (P2(Rd),W2) is Cα. The contradiction comes from the fact that
the mass of ν0 lies entirely on D0, while the mass of ν1 is on E1. To make the contradiction
evident, define the function f : [0, 1]→ [0, 1] as f(t) := νt(Dt) and observe that it holds f(0) = 1
and f(1) = 0. Now we want to evaluate the distance W (νt, νs): roughly speaking, the best way
to move the mass from νt to νs is to move as much mass as poissible from Dt to Ds, as much
mass as possible from Et to Es and then ‘to adjust the rest’. More precisely, it can be easily
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checked that the optimal transport plan between νt and νs is given by

min{f(t), f(s)}δ(Dt,Ds) + min{1− f(t), 1− f(s)}δ(Et,Es)

+ (f(t)− f(s))+δ(Dt,Es) + (f(s)− f(t))+δ(Et,Ds),

as its support is either {(Dt, Ds), (Et, Es), (Dt, Es)} or {(Dt, Ds), (Et, Es), (Et, Ds)} (depending
on whether f(t) ≥ f(s) or viceversa, respectively) and both of these sets are cyclically monotone.
Therefore we get

W 2
2 (νt, νs) = min{f(t), f(s)}|Dt −Ds|2 + min{1− f(t), 1− f(s)}|Et − Es|2

+ (f(t)− f(s))+|Dt − Es|2 + (f(s)− f(t))+|Et −Ds|2.

Considering only the last two terms of the expression on the right, and choosing |s − t| < 1/2
we get the bound

W2(νt, νs) ≥
√

5
2

√
f(t)− f(s).

From the fact that t 7→ νt ∈ (P2(Rd),W2) is Cα we get√
f(t)− f(s) ≤ c|t− s|α, ∀t, s s.t. |s− t| < 1/2,

for some constant c. The contradiction follows: indeed the above inequality and the fact that
α > 1/2 implies that f is constant on [0, 1], while we know that f(0) = 1 and f(1) = 0.

5 The main result

Lemma 5.1 Let σ, µ ∈ Pp(Rd) and T, S be two Borel transport maps from σ to µ. Assume
that T 6= S in L2

σ. Then there exists a Borel set E such that σ(E) > 0 and d(T (E), S(E)) > 0.

Proof. Since T 6= S in L2
σ we know that there exists c > 0 such that the Borel set

A :=
{
x ∈ Rd : |T (x)− S(x)| > c

}
,

satisfies σ(A) > 0. Let r := σ(A)
4 and find x0 ∈ Rd such that the ball Br(x0) satisfies

σ
({
x ∈ A : T (x) ∈ Br(x0)

})
> 0,

(such a ball must exist, since a countable family of balls of radius r covers Rd). We claim that
the Borel set

E :=
{
x ∈ A : T (x) ∈ Br(x0)

}
,

satisfies the thesis. We know that σ(E) > 0, so we only have to prove that infx,y∈E |T (x) −
S(y)| > 0. This follows from

|T (x)− S(y)| > |T (y)− S(y)| − |T (x)− T (y)| > r − 2
r

4
=
r

2
.

�
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Theorem 5.2 Let (µt) ⊂ Pp(Rd) be a geodesic induced by a Lipshitz map S with Lipschitz
inverse1, σ ∈ Pp(Rd) and, for any t ∈ [0, 1], Tt ∈ Lpσ a transport map from σ to µt. Assume
that T1 6= S ◦ T0. Then the map t 7→ Tt ∈ Lpσ has at most 1

p -Hölder regularity.

Proof. Use lemma 5.1 to obtain the existence of a Borel set E such that σ(E) > 0 such that
d(S(T0(E)), T1(E)) > 0. Since S has Lipschitz inverse, it also holds d(T0(E), S−1(T1(E))) > 0.
Define the measures

σ :=
1

σ(E)
σ|E ,

νt := (Tt)#σ,

the sets A0 := T0(E), B0 := S−1(T1(E)) and

At :=
(
(1− t)Id+ tS

)
(A0),

Bt :=
(
(1− t)Id+ tS

)
(B0),

so that ν0 is concentrated on A0 and ν1 on B1 and νt is concentrated on At ∪ Bt for any
t ∈ (0, 1). From the choice of E, we know that d(A0, B0) > 0 and d(A1, B1) > 0; therefore, since
S is Lipshitz, we get that d := inft d(At, Bt) > 0. By continuity, for every t, there exists δt > 0
such that d(At, Bs) > d/2 and d(As, Bt) > d/2 for any s ∈ [t− δt, t+ δt].

Define f(t) := σ(T−1
t (At)); observe that f(0) = 1, f(1) = 0. We claim that

Wp(νt, νs) ≥
d

2
(|f(s)− f(t)|)

1
p , ∀s ∈ [t− δt, t+ δt] (5.1)

for some constant c > 0.
To prove this, assume f(s) ≤ f(t) (the other inequality is similar) and let γst be an optimal

transfer plan from νt to νs. From

f(t) = νt(At) = γst (At ×Bs) + γst (At ×As)
≤ γst (At ×Bs) + γst (At ×As) + γst (Bt ×As) = γst (At ×Bs) + νs(As)

we get γst (At × Bs) ≥ f(t) − f(s). Arguing symmetrically for the case f(t) < f(s) we can
conclude that

γst (At ×Bs ∪As ×Bt) ≥ |f(s)− f(t)|.

Therefore if s ∈ [t− δt, t+ δt] it holds

W p
p (νt, νs) =

∫
|x− y|pdγst (x, y) ≥

∫
At×Bs∪As×Bt

|x− y|pdγst (x, y) ≥
(
d

2

)p
|f(s)− f(t)|,

which is equation (5.1).
1by theorem 2.2, such a geodesic may be obtained by restriciton starting from any geodesic
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To conclude the proof, we will argue by contradiction. Assume that t 7→ Tt ∈ L2
σ is α−Hölder

continuous for some α > p−1. Coupling the inequality

Wp(νt, νs) ≤
(∫
|Tt − Ts|pdσ

) 1
p

≤ 1

(σ(E))
1
p

(∫
|Tt − Ts|pdσ

) 1
p

≤ C|s− t|α,

with (5.1), we get

d

2
(|f(s)− f(t)|)

1
p ≤ C|s− t|α, s ∈ [t− δt, t+ δt],

which may be written as

|f(s)− f(t)|
|s− t|

≤ 2C
d
|s− t|αp−1, s ∈ [t− δt, t+ δt].

Since we assumed α > p−1, this equation implies that f is constant. This is absurdum, as we
know that f(0) = 1 and f(1) = 0. �

We conclude with some comments on this result.

Remark 5.3 (Independence on the geometry) It is immediate to verify that the validity
of theorem 5.2 does not rely on the fact that we are working on Rd, rather than on a generic
Riemannian manifold. A similar result holds when the geodesic (µt) is contained on Pc(M),
i.e. on the set of probability measures with compact support on a Riemannian manifold M .

The only thing we should take care of, is the meaning of Hölder regularity for the transport
map, as in this setting the transport maps do not belong anymore to an Hilbert space. The
natural generalization is to define the set Trµ of all transport maps from µ ∈P2(M) as

Trµ :=
{
T : M →M : T is Borel and

∫
d2(x, T (x))dµ(x) <∞

}
,

d being the Riemannian distance on M , to identify two maps in this set if they coincide µ−a.e.
and to endow this space with the distance D defined as

D2(T, S) :=
∫

d2(T (x), S(x)) dµ(x).

Then the space (Trµ, D) is a metric space, and it makes sense to say that a map t 7→ Tt ∈ Trµ
is Hölder continuous.

It is known that theorem 2.2 is true also in this setting, thus it can be easily checked that
the proof of theorem 5.2 can be generalized up to this level.

Remark 5.4 (Not only geodesics) The only step of the proof in which we used the fact that
(µt) was (the restriction of) a geodesic, was the one in which we said that the optimal transport
maps from µt to µs are uniformly Lipschitz. This was needed to be sure that the distance
between the sets At, Bt was bounded from below by a positive constant.
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The result can therefore be generalized to the class of curves (µt) for which it exists a family
of transport maps {Sst }t,s∈[0,1] uniformly Lipschitz, satisfying (Sst )#µt = µs and Sst ◦Ssr = Str for
any t, r, s ∈ [0, 1]. In this case the hypothesis reads as

T1 6= S1
0 ◦ T0,

and following step by step the proof it is simple to check that the conclusion still holds. (In [1]
and [8] it is proved that the family of curves having this kind of Lipschitz property is dense in
the class of absolutely continuous curves w.r.t. the uniform convergence).
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