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Abstract. We study a 1-capacitary type problem in R
2: given a set E, we

minimize the perimeter (in the sense of De Giorgi) among all the sets containing
E (modulo H1) and satisfying an indecomposability constraint (according to
the definition by [1]). By suitably choosing the representant of the relevant set
E, we show that a convexification process characterizes the minimizers.

As a consequence of our result we determine the 1-capacity of (a suitable
representant of) sets with finite perimeter in the plane.

1. Introduction. Capacities provide a powerful analytical tool to deal with fine
properties of spaces of weakly differentiable functions.

In particular, 1-capacity, which is defined for any set E ⊂ R
N as

C1(E) := inf{Per(D) : D LN -measurable, LN (D) < +∞,HN−1(E \ D+) = 0},

arises in the theory of the spaces of functions of bounded variation : Poincaré
type inequalities and imbeddings theorems being prominent examples ([9, Section
5.12 and 5.13]). We defer the precise definitions of the quantities appearing in the
formula above to Section 2, here we only mention that Per(·) denotes the perimeter
in the sense of De Giorgi.

Recently capacitary Brunn-Minkowski and dual Brunn-Minkowski inequalities
have been investigated, and find application in convex geometry [8].

As it turns out from the very definition, 1-capacity is related to minimal surface
problems with obstacle conditions; the theory developed by [4] (see also [3]) shows
that it is well suited to deal also with “thin” obstacles, that is to consider sets E
with negligible Lebesgue measure, though of positive (N −1)-dimensional Hausdorff
measure.

In this paper we study a variant of the 1-capacitary problem in the plane by
imposing the additional constraint of indecomposability to the class of competitors.

Roughly speaking a set of finite perimeter D is indecomposable if it cannot be
partitioned into non trivial components whose perimeters also partition that of D.
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This notion is the analogue of topological connectedness in this measure theoretical
framework (see subsection 2.4 for further comments and details).

Without the attempt to be precise the problem we are going to investigate can
be described as follows: given a set E ⊂ R

2, find the set with minimal perimeter
(if any exists) among the “connected” sets in the plane “containing” E. Depending
on the regularity of the set E different interpretations can be given to the words
“connected” and “containing”. In the classical framework, i.e. when E is a suffi-
ciently regular bounded open set, it is well known that the the convex hull of E is
the bounded, topologically connected open set of minimal perimeter containing E.

This framework is however not satisfying, indeed it does not allow to consider
objects with non regular geometries such as cusps and spikes. These issues can be
solved working in the more general functional setting of sets with finite perime-
ter paying the price of giving a measure theoretic interpretation to the notion of
connectedness (indecomposability) and of set inclusion.

An attempt in this direction has been done in [5], under the additional constraint
of boundedness for competitors, where the minimum of the problem

µ(E) := inf{Per(D) : D indecomposable and bounded, L2(E \ D) = 0}

is characterized. However, the set function µ(E) is not completely satisfactory, too.
Indeed, since the set inclusion in the definition of µ(·) is taken up to L2-negligible
sets, if the set E has a spike (modeled for example as a regular curve) a competitor
D is not affected by its presence.

In this note we propose a more accurate model, where the set inclusion is con-
sidered up to H1-measure zero. More precisely, we study the variational problem

γ(E) := inf{Per(D) : D indecomposable, L2(D) < +∞, H1(E \ D+) = 0}.

Given these limitations for the competitors, it turns out that, in the two dimensional
setting, the convexification is the right geometric tool to solve the problem: γ(E) is
computed by calculating the perimeter of the convex hull of a suitable set related to
E. Indeed, being γ(·) equal for sets which coincide up to H1 negligible variations,
some care is needed in selecting the set to be convexified. More precisely, in Theo-
rem 3.2, our main result, we show that upon taking the set of points with positive
one-dimensional upper density for E, denoted by E1,+ in what follows, the equality
γ(E) = Per(co(E1,+)) holds true, with co(·) denoting the closure of the convex hull.
Actually, a more detailed statement which characterizes also all the minimizers of
the problem and further properties of the set function γ(·) is established.

Building upon these results we are able to determine the 1-capacity of sets with
finite perimeter in the plane satisfying a mild regularity assumption which essen-
tially guarantees the existence of a minimizer for the related variational problem
(see Corollaries 4 and 5). Again, the problem is reduced to the computation of
the perimeters of the convex hulls of suitable representants of the indecomposable
components of the given set. Let us remark that the regularity condition referred
to above is not restrictive, since on one hand sets with finite perimeter are specified
L2 a.e., and on the other C1(·) is affected by H1 non-negligible changes of the set
under examination. Then the choice of a suitable representant for the relevant set
is required.

Finally, we remark that our results not only recover those by [5] (in particular
see Corollary 3), but also enlarge the stage to the case of thin sets, i.e. sets E such
that L2(E) = 0, though satisfying H1(E) > 0.
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The plan of the paper is as follows. In Section 2 we settle down the notations and
list the required prerequisites needed for our analysis. In particular, subsection 2.2
is devoted to a detailed description of the representants of L2 equivalence classes of
sets in order to justify the subsequent choices. Section 3 contains the main result
of the paper, its relation with other variational problems is discussed in Section 4.

2. Notations and preliminaries.

2.1. Basic notations and definitions. In the ensuing sections the (topological)
closure, boundary and interior of a set E ⊆ R

n will be denoted by E, ∂E and
◦

E, respectively. The ball centered in x and with radius r > 0 with respect to
the euclidean distance is denoted by Br(x). The symbol △ denotes the symmetric
difference between sets.

In the sequel for every set E ⊆ R
2 we denote by co(E) the closure of the convex

envelope of E, or equivalently

co(E) = {λx + (1 − λ)y |x, y ∈ E, λ ∈ [0, 1]}.

Standard notations are used for Lebesgue and Hausdorff measures. In particular,
given two sets E, F ⊆ R

N with LN (E \ F ) = 0 we will also write E ⊆ F mod LN .
Analogously, E = F mod LN stands for LN (E△F ) = 0.

2.2. Representants of equivalence classes of sets. In order to state our main
result we set some preliminary definitions.

For any Borel set E ⊆ R
2 we introduce the sets of points with 2-dimensional and

1-dimensional positive upper density, defined respectively by

E+ :=

{
x ∈ R

2 : lim sup
r→0+

L2(E ∩ Br(x))

r2
> 0

}
(1)

and

E1,+ :=

{
x ∈ R

2 : lim sup
r→0+

H1(E ∩ Br(x))

r
> 0

}
. (2)

It is well known that the set E+ represents the measure theoretic closure of E in a
suitable sense (see [9]). In the last section of the paper we will also deal with the
measure theoretic interior of the set E, defined as

E1 :=

{
x ∈ R

2 : lim
r→0+

L2(E ∩ Br(x))

πr2
= 1

}
.

All the sets E1, E+ and E1,+ are Borel sets, and E1 ⊆ E+ ⊆ E1,+ with possibly
strict inequality holding (see figure 1).

In the following we collect some further results on the sets E1, E+ and E1,+ that
will be useful in the rest of the paper.

By Lebesgue differentiation theorem it follows that L2(E△E+) = 0, and the
direct implication in the following equivalence

E+ ⊆ F+ ⇐⇒ L2(E \ F ) = 0. (3)

Instead, the opposite implication follows directly from the very definition of E+

in (1). It is evident from (3) that E+ depends on the set E only through the
L2-equivalence class. In particular, we infer that (E+)+ = E+.

Clearly the same arguments used above imply L2(E△E1) = 0 and (3) replacing
E+, F+ with E1, F 1, respectively.
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Figure 1. Computation of E+ and E1,+ for a generic Borel set E

Similarly, the very definition of E1,+ in (2) yields that

H1(E \ F ) = 0 =⇒ E1,+ ⊆ F 1,+, (4)

while simple examples show that the opposite implication is false. In particular the
set E1,+ is affected by H1-positive variations of the Borel set E.

In addition, in Lemma 3.3 we will prove that H1(E \E1,+) = 0 for any Borel set
E. The previous property is a consequence of the standard estimates for densities
of positive Radon measures (see for instance [2, Theorem 2.56] and the subsequent
formulas (2.42) and (2.43) therein), which actually settle the case H1 E σ-finite.
The statement below is restricted to the case of interest in this paper.

Lemma 2.1. For any Borel set E ⊂ R
2 with H1(E) < +∞ the estimates

1

2
≤ lim sup

r→0

H1(E ∩ Br(x))

2r
≤ 1

hold for H1 a.e. x ∈ E.

Instead, simple examples show that in general H1(E1,+ \ E) > 0 (see also figure
1 above).

Despite of all these facts the sets E1, E+ and (E+)1,+ have all the same (topo-
logical) closure. More precisely, the following result holds.

Lemma 2.2. For any Borel set E it holds E1 = E+ = (E+)1,+.
In particular, co(E1) = co(E+) = co((E+)1,+).

Proof. To establish the result it is enough to prove that E1 ∩ Br(x0) 6= ∅ for any
point x0 ∈ (E+)1,+ and for any radius r > 0 since E1 ⊆ E+ ⊆ (E+)1,+. For, by
the very definition of (E+)1,+ we have H1(E+ ∩ Br(x0)) > 0 for any r > 0, and
thus E+ ∩ Br(x0) 6= ∅. To conclude, observe that E1 ∩ Br(x) 6= ∅ for any x ∈ E+

and r > 0 since by Lebesgue differentiation theorem L2(E+ \ E1) = 0.

2.3. Functional capacity of degree 1. We briefly recall here the notion and some
properties of 1-capacity also called functional capacity of degree 1. This notion dates
back to Federer and Ziemer [7] and different minimization problems characterize it
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(see [7] and [3] for a deeper insight). Here we prefer to express it simply in terms
of the perimeter of the sets “containing” E in a suitable sense, namely

C1(E) := inf{Per(D) : D is L2-measurable, L2(D) < +∞,H1(E \ D+) = 0}. (5)

In formula (5) above Per(·) denotes the perimeter of the relevant set. Sets with finite
perimeter in the sense of De Giorgi will be object of our analysis. For the definition
and their theory we refer to the book [2] (see also [9]). In particular, detailed
references will be indicated for all the properties employed in the sequel. We limit
ourselves to recall that the set ∂∗D denotes the essential (or measure theoretical)
boundary of D defined by R

2 \ (D1 ∪ (R2 \ D)1). In addition, by De Giorgi’s and
Federer’s theorems (see [2, Theorem 3.59 and 3.61]), we have Per(D) = H1(∂∗D) .

As shown in [7] the set function C1(·) turns out to be a strongly subadditive
outer measure and a Choquet capacity. In the next proposition we recall only those
properties needed in the ensuing sections.

Proposition 1. C1(·) is a monotone increasing set function. In addition, the
following properties hold

(i) C1(·) is positively 1-homogeneous, i.e. C1(rE) = rC1(E) for any set E ⊆ R
2

and r > 0;
(ii) for any Borel set E ⊆ R

2

C1(E) = 0 ⇐⇒ H1(E) = 0. (6)

(iii) C1(·) is continuous on increasing sequences of sets, i.e.

En ր E =⇒ lim
n→∞

C1(En) = C1(E).

The existence of extremals for the capacitary problem above fails for many sets
E with C1(E) < +∞, e.g. if E is a line segment. This phenomenon can occur only
if H1(E \ E+) > 0 as stated in the next proposition which enlights the role of E+

in this setting (for the proof see [6, Proposition 2.6]).

Proposition 2. For every L2-measurable set E ⊂ R
2 with C1(E) < +∞ it holds

(i) C1(E
+) ≤ C1(E);

(ii) problem (5) for E+ has always solution and

C1(E
+) = min{Per(D) : D is L2-measurable, L2(D) < +∞, L2(E \ D) = 0}. (7)

Moreover, if H1(E \ E+) = 0 then C1(E
+) = C1(E) and problem (5) for E has

solution.

Take note that the relaxed form of the 1-capacitary problem has been determined
in [4], in connection with minimal surfaces problems with obstacle (see also [3] for
further extensions to non-parametric problems).

Remark 1. For any bounded set E it is easy to prove that C1(E) < +∞. Moreover,
if E is contained in the interior of a bounded convex set C, one can restrict the class
of competing sets in the capacitary problem for E to those contained in C (see [6,
Remark 2.8]).

We give the proof for the sake of the readers’ convenience. By using the formula-
tion (5), given a test set D, note that the set D ∩C has finite perimeter and, being

E ⊂
◦

C and C+ = C, it holds H1(E \ (D ∩ C)+) = H1(E \ D+) = 0. If ΠC denotes
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the projection on the convex set C, then H1(ΠC(D∩(R2 \C))) ≤ Per(D∩(R2 \C)).
Hence, we have

Per(D ∩ C) ≤ H1(ΠC(D\
◦

C)) + H1(∂∗D∩
◦

C)

≤ Per(D\
◦

C) + H1(∂∗D∩
◦

C)

≤ Per(D).

2.4. Indecomposable sets in R
2. Let us recall the notion of indecomposable sets

according to [1].
A set of finite perimeter E ⊂ R

N is said to be decomposable if there exists a
partition of E in two LN -measurable sets A, B with strictly positive measure such
that

Per(E) = Per(A) + Per(B).

Accordingly, a set of finite perimeter is said to be indecomposable if the previous
property does not hold for any pair A, B. Notice that the properties of being
decomposable or indecomposable depend only on the LN -equivalence class of the
relevant set.

These notions have been introduced in [1] to treat two dimensional problems in
Image Processing in order to extend the topological notion of connectedness (see
[1, Remark 4] and the references therein for further extensions and comparisons in
the setting of normal integer currents).

Before stating the main result of this subsection we recall that Γ is called (the
image of) a Jordan curve if it is image of a simple closed curve, i.e. if Γ = ϕ([a, b])
for some a, b ∈ R and some continuous function ϕ , one-to-one on [a, b) such that
ϕ(a) = ϕ(b). According to the Jordan curve theorem, Γ splits R

2 \ Γ in two
open connected components, a bounded and an unbounded one, having common
boundary Γ. These components will be denoted respectively int(Γ) and ext(Γ).
According to [1, Lemma 4] if Γ is rectifiable it holds that

H1(Γ) = Per(int(Γ)) = Per(ext(Γ)) (8)

Next we summarize some results proved in [1, Theorem 1, Corollary 1] which
provide a decomposition property for sets of finite perimeter into “indecomposable
components”. Moreover, a bounded indecomposable set in the plane essentially
coincides with the interior of a rectifiable Jordan curve minus a finite or countable
number of holes.

Theorem 2.3. Let E be a set of finite perimeter in R
N , then we have:

(i) there exists a unique finite or countable family of pairwise disjoint indecom-
posable sets Ei, i ∈ I ⊆ N, with LN (Ei) > 0 such that

E =
⋃

i∈I

Ei (mod LN) and Per(E) =
∑

i∈I

Per(Ei).

Moreover the sets Ei are maximal indecomposable components in the sense
that for any indecomposable set F ⊆ E (mod LN ) we have that F is contained
(mod LN ) in some Ei;

(ii) if N = 2 and E is a bounded indecomposable set, then there exists a unique
decomposition (mod H1) of its reduced boundary into a finite or countable
number of rectifiable Jordan curves C0, Ci, i ∈ I ⊆ N, such that int(Ci) ⊂
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int(C0), the int(Ci) are pairwise disjoint,

E = int(C0) \
⋃

i∈I

int(Ci) (mod L2) and Per(E) = H1(C0) +
∑

i∈I

H1(Ci).

Remark 2. Let us point out that the statement of [1, Theorem 1] requires the
stronger assumption F ⊆ E to show that the sets Ei are maximal indecomposable.
Nevertheless, a careful inspection of the (last part of the) proof shows that the
pointwise inclusion is not needed and the weaker requirement LN (F \E) = 0 suffices
since only estimates on N -dimensional densities are involved in that argument.

3. Main result. In this section we introduce a constrained minimum problem and
provide a complete characterization of its minimizers. Let E be a Borel set in R

2,
then define

γ(E) := inf{Per(D) : D indecomposable, L2(D) < +∞, H1(E \ D+) = 0}, (9)

where we adopt the standard convention that the infimum of the empty set is +∞.
Clearly for any set E we have C1(E) ≤ γ(E) with possibly strict inequality

holding. Consider for instance E = B1(x1) ∪ B1(x2) with |x1 − x2| > π, then
C1(E) ≤ 4π < γ(E) = 2π+2|x1−x2|. The latter equality follows from Theorem 3.2
below, while the first inequality by considering E itself as a competitor for the
capacitary problem. Actually, as a consequence of Corollary 5 in the last section it
holds C1(E) = 4π.

Remark 3. A sufficient condition for γ(E) and C1(E) to be equal is the convexity of
the set E. More precisely, under this hypothesis, the minimizer or the minimizing
sequence for the capacitary problem is attained in the class of indecomposable
competitors.

To prove this fact consider first the case in which E is a singleton or a seg-
ment (possibly infinite). Then C1(E) equals zero or 2H1(E), respectively, being an
optimizing sequence obtained in both cases by tubular neighbourhoods of E with
infinitesimal radii (see [4, Chapter IV, Theorem 4.10], [3, Proposition 4.6]).

Assume now that
◦

E 6= ∅. If E is unbounded then it contains at least an half
line thus, by a simple monotonicity argument, we easily get γ(E) = C1(E) = +∞.
Otherwise, since E+ = E, by (3) any competitor D for C1(E) satisfies also D+ ⊇

E. In particular ∂∗D ⊆ R
2\

◦

E. Arguing as in Remark 1, a standard projection
argument implies that Per(D) ≥ H1(ΠE(∂∗D)) = Per(E), being ΠE the projection
on E. As the set E is admissible for C1(E) we get C1(E) = Per(E), i.e. E is an
indecomposable minimizer and γ(E) = C1(E).

Remark 4. Note that the set function γ(·) inherits many properties of the capacity
C1(·) such as monotonicity, sub-additivity and positive 1-homogeneity. In particu-
lar, as a consequence of the next Theorem 3.2, the analogous of (6) holds true, i.e.
γ(E) = 0 ⇐⇒ H1(E) = 0 for any Borel set E ⊆ R

2.

As one may expect, thanks to the indecomposability constraint and the two
dimensional setting, the value of γ(E) can be obtained through a convexification
argument of a suitable representant (in a measure theoretical sense) of the given
set E.

Before stating the main result of the paper we need the following definition.

Definition 3.1. Given a Borel set E in R
2 we say that E is H1-essentially bounded

if there exists a bounded Borel set F ⊆ E such that H1(E \ F ) = 0.
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Clearly, this is equivalent to the condition H1(E \Br(x)) = 0 for some r > 0 and
x ∈ R

2.

Theorem 3.2. For any Borel set E ⊂ R
2 we have

γ(E) = γ(E1,+) = γ(co(E1,+)) = C1(co(E
1,+)). (10)

Moreover the following properties hold:

(i) γ(E) = 0 ⇐⇒ H1(E) = 0;
(ii) γ(E) = +∞ ⇐⇒ E is not H1-essentially bounded;
(iii) If γ(E) < +∞, a minimizer D of (9) (if any exists) satisfies D+ = co(E1,+);
(iv) If 0 < γ(E) < +∞, the minimum problem defining γ(E) has a solution if and

only if co(E1,+) has positive L2 measure, being co(E1,+) itself a minimizer.

The proof of Theorem 3.2 will be a consequence of several intermediate results.
As a first step we show that H1 almost every point of a Borel set has positive

1-dimensional upper density. Before giving the proof let us point out that the
conclusion of Lemma 3.3 below holds more generally in arbitrary dimension N and
for an arbitrary k-dimensional density, 0 ≤ k < N . We confined ourselves to the
case of interest in this paper only for the sake of simplicity.

Lemma 3.3. Let E be a Borel set in R
2, then H1(E \ E1,+) = 0.

Proof. First note that by (2) we have that

E \ E1,+ =

{
x ∈ E : lim

r→0

H1(E ∩ Br(x))

r
= 0

}
.

Then, by monotonicity, it turns out that any point x ∈ E \ E1,+ has zero 1-
dimensional density in E \ E1,+ itself, i.e. for every x ∈ E \ E1,+

lim
r→0

H1
(
(E \ E1,+) ∩ Br(x)

)

r
= 0. (11)

In particular, for every x ∈ E \ E1,+ there exists r(x) > 0 such that

H1
(
(E \ E1,+) ∩ Br(x)

)
≤ r , ∀ 0 < r ≤ r(x).

Consider the family of sets F := {(E \ E1,+) ∩ Br(x)(x)}x∈E\E1,+ , and observe

that F is an open cover of E \ E1,+ in the induced topology. Since the latter has
a countable base, E \ E1,+ turns out to be a Lindelöf space, i.e. every open cover
has a countable subcover. Then,

E \ E1,+ =
⋃

k∈N

(
(E \ E1,+) ∩ Brk

(xk)
)
, (12)

for some sequence (xk) ⊆ E \ E1,+. Furthermore, by construction

H1
(
(E \ E1,+) ∩ Brk

(xk)
)
≤ rk. (13)

In turn, the latter two properties imply that the measure H1 (E \ E1,+) is σ-finite.
We are now in a position to apply the usual estimates for 1-dimensional densities

of positive Radon measures (see Lemma 2.1) and deduce from (11)

H1
(
(E \ E1,+) ∩ Brk

(xk)
)

= 0

for all k ∈ N. Equality (12) then gives the conclusion.
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In the next lemmata we show that any competitor for γ(E) can be modified
into a competitor for γ(co(E1,+)). Furthemore, this can be done by decreasing the
perimeter provided indecomposability is assumed.

Lemma 3.4. Let D be a L2-measurable set in R
2 such that H1(E \D+) = 0, then

co(D+) ⊇ co(E1,+).

Proof. Let H be a closed half-plane in R
2 containing D+. Since, by Hahn-Banach

Theorem, co(D+) =
⋂

H∈S H where S := {H : H closed half-plane with H ⊇ D+},
it is enough to prove that H ⊇ E1,+. Arguing by contradiction assume there exists
x0 ∈ E1,+ \H . As H is closed we can find a radius r̄ > 0 such that H ∩Br(x0) = ∅
for any r ≤ r̄. A straightforward computation shows that for any r ≤ r̄

H1(E ∩ Br(x0)) = H1
(
(E ∩ Br(x0)) \ H

)

≤ H1
(
(E ∩ Br(x0)) \ D+

)

≤ H1(E \ D+) = 0.

This yields immediately that x0 6∈ E1,+, contradicting the assert.

Lemma 3.5. Let D be a bounded indecomposable set in R
2, then

Per(co(D+)) ≤ Per(D).

In addition, equality Per(co(D+)) = Per(D) holds if and only if D+ = co(D+).

Proof. By the indecomposability hypothesis and by using Theorem 2.3 we can find
an at most countable family of rectifiable Jordan curves C0, Ci, i ∈ I ⊆ N, such
that int(Ci) ⊂ int(C0), the int(Ci) are pairwise disjoint,

D+=

(
int(C0) \

⋃

i∈I

int(Ci)

)+

(14)

and
Per(D) = H1(C0) +

∑

i∈I

H1(Ci). (15)

Let us define D̃ := (int(C0))
+
, then, by locality of the perimeter functional and

using (8), we infer that Per(D̃) = H1(C0); hence, by (15) we have

Per(D̃) ≤ Per(D). (16)

Moreover, from (3) and (14), we infer that

co(D+) ⊆ co(D̃)

and, by monotonicity of the perimeter with respect to the inclusion on convex sets,
we deduce that

Per(co(D+)) ≤ Per(co(D̃)). (17)

Next we observe that, being ∂D̃ = C0 a rectifiable Jordan curve we have (see
Proposition 3 in the Appendix)

Per(co(D̃)) ≤ Per(D̃), (18)

which, together with (16) and (17) implies the first part of the result.
If equality Per(co(D+)) = Per(D) holds true, inequalities (16)-(18) yield that

Per(co(D+)) = Per(co(D̃)) = Per(D̃) = Per(D+). The last equality, together with

(15) and Theorem 2.3, implies D̃ = D+. Finally, since the perimeter functional
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is strictly decreasing under convexification of sets whose boundary is a rectifiable
Jordan curve (by Proposition 3), we infer that D̃ = co(D̃) = co(D+), and so the
claim follows.

We are now ready to prove our main result.

proof of Theorem 3.2. Equality γ(co(E1,+)) = C1(co(E
1,+)) follows from Remark 3,

thus we limit ourselves to prove that

γ(E) = γ(E1,+) = γ(co(E1,+)). (19)

Let D be any competitor for γ(E1,+). Using the sub-additivity of the one di-
mensional Hausdorff measure H1 and Lemma 3.3 we have

H1(E \ D+) ≤ H1(E \ E1,+) + H1(E1,+ \ D+) = 0.

Hence D is a competitor also for γ(E), and thus γ(E) ≤ γ(E1,+). The latter
estimate together with the monotonicity of γ as a set function gives the following
chain of inequalities

γ(E) ≤ γ(E1,+) ≤ γ(co(E1,+)).

To conclude the proof of (19) it remains to show that γ(co(E1,+)) ≤ γ(E).
Note that if H1(E) = 0 the equality is trivially proved by considering the emp-

tyset as a minimizer for γ(E) and taking into account that E1,+ = ∅.
Thus we assume in what follows that H1(E) > 0. We will prove the assert first

in the case that E is H1-essentially bounded. Take note that if F is a bounded
Borel set contained in E and such that H1(E \ F ) = 0 clearly γ(F ) = γ(E). Thus,
in the sequel we assume E to be bounded for the sake of simplicity. Furthermore,
under this hypothesis on E, by taking into account Remark 1, we can restrict the
class of competitor to the bounded ones.

Let D be a bounded indecomposable set such that H1(E \ D+) = 0; then by
Lemma 3.4 we have co(E1,+) ⊆ co(D+), and thus in particular

H1
(
co(E1,+) \ co(D+)

)
= 0.

Moreover, Lemma 3.5 implies that Per(co(D+)) ≤ Per(D). Thus, for any com-
petitor D for γ(E) we can find a competitor co(D+) for γ(co(E1,+)) decreasing
the perimeter value. Passing to the infimum we get the desired inequality. This
concludes the proof of (19) in case the set E is H1-essentially bounded.

It remains to deal with the case in which E does not satisfy this extra condition.
As H1(E) > 0, by Lemma 3.3 we can find a point x0 ∈ E ∩ E1,+. Rephrasing

the fact the E is not H1-essentially bounded, there exists an increasing sequence of
radii rn diverging to +∞ such that

H1
(
E ∩ (Brn+1

(x0) \ Brn
(x0))

)
> 0.

Thus, by taking into account Lemma 3.3, for every n ∈ N we can find a point

xn ∈
(
E ∩ (Brn+1

(x0) \ Brn
(x0))

)1,+
.

Using the monotonicity of γ and the fact that we have established (10) for
bounded sets we infer the estimate

γ(E) ≥ γ
(
E ∩ Brn+1

(x0)
)

= C1

(
co((E ∩ Brn+1

(x0))
1,+
)
.

Since for any n ∈ N the points x0 and xn belong to the set
(
E ∩ Brn+1

(x0)
)1,+

,

the set co
(
E ∩Brn+1

(x0)
)1,+

contains the segment joining x0 and xn. Denoted the
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latter by [x0, xn], the monotonicity of C1(·) and Remark 3 yield

γ(E) ≥ C1

(
[x0, xn]

)
≥ 2rn.

In conclusion, by letting n → +∞ we obtain

γ(E) = γ(co(E1,+)) = +∞.

The previous analysis also characterizes the minimizers of the problem if γ(E) <
+∞ and then proves (iii). Indeed, suppose that D is an indecomposable set with
L2(D) < +∞ satisfying γ(E) = Per(D) < +∞. If γ(E) > 0 then L2(D) > 0,
and by the argument employed above we deduce that the set D is H1-essentially
bounded. In addition, the previous analysis also entails that the set co(D+) is a
minimizer for γ(E) and γ(co(E1,+)) with Per(co(D+)) = Per(D). Then the last
part of the statement of Lemma 3.5 yields that D+ = co(D+), and a standard
projection argument between convex sets implies Per(co(D+)) ≥ Per(co(E1,+))
with strict inequality if co(D+) strictly contains co(E1,+).

On the other hand, if D is such that γ(E) = Per(D) = 0 and L2(D) < +∞,
the isoperimetric inequality [2, Theorem 3.46] entails L2(D) = 0, and then D+ =
co(D+) = ∅.

It remains to show the validity of (i), (ii) and (iv). As respect to (i), let E be such
that γ(E) = 0. By applying (10) we deduce that C1(co(E1,+)) = 0. Taking into
account (6) we then infer H1(co(E1,+)) = 0, that in turn implies H1(E1,+) = 0.
By Lemma 3.3 the same holds for the set E. The converse inequality is trivial.

To prove (ii) notice that if E is H1-essentially bounded there exists a bounded
Borel set F such that γ(E) = γ(F ). Since F is contained in a suitable ball Br(x)
then

γ(E) = γ(F ) ≤ γ(Br(x)) = C1(Br(x)) = 2πr.

This proves that if γ(E) = +∞ then E is not H1-essentially bounded; the converse
implication has been already proved by the arguments developed above to get the
validity of (10).

We are left with proving (iv). Let E be a Borel set with 0 < γ(E) < +∞. If
L2(co(E1,+)) > 0, a minimizer for γ(E) is given by co(E1,+) itself as shown above.
Otherwise, co(E1,+) is contained in a line segment. Assume by contradiction that
there exists a minimizer D for γ(E). Then L2(D) > 0, and co(D+) is a minimizer for
γ(co(E1,+)) with L2(co(D+)) > 0. By a projection argument on the line containing
E1,+ we get at once the contradiction Per(co(D+)) > 2H1(co(E1,+)) = γ(co(E1,+))
(for the last equality see Remark 3).

To conclude the section we notice that as a consequence of the properties stated
in Theorem 3.2 we can establish the following result.

Corollary 1. E+ is bounded for any indecomposable set E ⊆ R
2 of finite measure.

Proof. By taking the set E itself as a competitor we get γ(E) ≤ Per(E) < +∞.
On the other hand, arguing by contradiction, if E+ was unbounded then E would
not be H1-essentially bounded, and thus γ(E) = +∞ as stated in point (ii) of
Theorem 3.2.
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4. Further results. This section is devoted to prove some consequences that can
be deduced from our main result and to show its links with some other variational
problems.

The first straightforward consequence of Theorem 3.2 is the following.

Corollary 2. For any L2-measurable set E ⊂ R
2 we have

γ(E+) = γ(co(E+)). (20)

Proof. Taking into account that, by Lemma 2.2, co((E+)1,+) = co(E+), the result
follows by applying Theorem 3.2 to the Borel set E+.

Using the previous corollary and our main result we recover [5, Theorem 1].

Corollary 3. Let E ⊂ R
2 be a bounded L2-measurable set with L2(E) > 0. The

problem

µ(E) := inf{Per(D) : D indecomposable, L2(D) < +∞ , L2(E \ D+) = 0}

has the unique solution co(E1) (mod L2).

Proof. Take first note that L2(E△F ) = 0 implies µ(E) = µ(F ), in particular
µ(E) = µ(E+). Thus we may assume E to be a Borel set without loss of generality.

We claim that µ(E) = γ(E+). Given this for granted, the conclusion follows as
γ(E+) = γ (co(E+)) by Corollary 2 and co(E+) = co(E1) by Lemma 2.2. More-
over, by Theorem 3.2 the minimizer of the minimum problem defining γ(E+) is
determined up to L2-negligible sets by co(E+).

We are left with proving µ(E) = γ(E+). To this aim let D be a competitor for
µ(E), then E+ ⊆ (D+)+ = D+ by (3). Hence, D is admissible for γ(E+), and thus
γ(E+) ≤ µ(E).

On the other hand, L2(E+ \ D+) = 0 for any competitor D for γ(E+) since
H1(E+ \ D+) = 0. Therefore, D is admissible for µ(E) and thus µ(E) ≤ γ(E+).
The claim then follows.

As a further byproduct of Theorem 3.2 and the analysis in [1] we characterize
the minimizers of capacitary problems for indecomposable sets in the plane H1

almost all contained in their measure theoretic closure E+. Recall that otherwise
minimizers for the capacitary problem might not exist.

Corollary 4. Let E ⊂ R
2 be an indecomposable set such that L2(E) > 0 and

H1(E \ E+) = 0. Then
C1(E) = Per(co(E+)).

In particular, the unique minimizer (mod L2) is co(E+).

Proof. Take note that µ(E) = µ(E+) = Per(co(E+)) by Corollary 3, and in ad-
dition that C1(E) = C1(E

+) because of the assumption H1(E \ E+) = 0 (see
Proposition 2). Thus, to conclude it suffices to show equality C1(E

+) = µ(E+).
Since C1(E

+) ≤ µ(E+) by the very definitions, we are left with proving µ(E+) ≤
C1(E

+).
Let D be a competing set for C1(E

+), then by Theorem 2.3 there exists an

indecomposable set D̃ with Per(D̃) ≤ Per(D) such that L2(E+ \ D̃) = 0. Hence,
for any admissible set D for C1(E

+) we have µ(E+) ≤ Per(D), by passing to the
infimum on such sets we conclude.

Finally, uniqueness mod L2 is a consequence of Corollary 3.
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The previous result can be further extended. It reduces the calculation of the
capacity of a set of finite perimeter E satisfying H1(E \ E+) = 0, to the minimal
perimeter configuration among the convex hulls of all the subsets of the family of
its indecomposable components.

Corollary 5. Let E ⊂ R
2 be a set with finite perimeter with L2(E) > 0 and

H1(E \ E+) = 0. Denote by {Ei}i∈I, I ⊆ N, the family of its indecomposable
components. Then, if #I = k ∈ N setting

βk(E) := min

{
s∑

r=1

Per
(
co
(
∪j∈Ir

E+
j

))
: {1, . . . , k} = ⊔s

r=1Ir

}

we have
C1(E) = βk(E). (21)

Otherwise, if I = N we have

C1(E) = lim
k→+∞

βk(∪i≤kEi). (22)

Proof. Let us first prove identity (21). As noticed in Corollary 4 we have C1(E) =
C1(E

+). In addition, it is easy to check from the very definitions equality βk(E) =
βk(E+), and also that

C1(E
+) ≤ βk(E+).

Hence, we may suppose without loss of generality C1(E
+) < +∞.

We argue by induction on k, the first step k = 1 being established by Corollary 4.
Then assume k ≥ 2, fix ε > 0 and let D be a competitor for the capacitary problem
related to E+ such that Per(D) ≤ C1(E

+) + ε. Either D is indecomposable or not.
In the former case, Corollaries 2 and 4 yield βk(E+) ≤ µ(E+) = γ(E+) ≤ Per(D)
and thus βk(E+) ≤ C1(E

+) + ε. In the latter case, there exist at least two inde-
composable components of E, Ei1 and Ei2 contained (mod L2) into two different
indecomposable components of D, Dj1 and Dj2 (see item (i) in Theorem 2.3). Fur-
thermore, since Per(D) = Per(Dj1)+Per(∪j 6=j1Dj) and E+ = ∪k

i=1E
+
i , Corollary 4

and the inductive assumption yield

βk(E+) ≤ µ(E+
i1

) + βk−1(∪i6=i1Ei)

= µ(E+
i1

) + C1(∪i6=i1Ei)

≤ Per(D) ≤ C1(E
+) + ε.

The conclusion then follows at once as ε ↓ 0+.
Finally, we establish (22). Being E+ = ∪i∈NE+

i and by taking into account that
C1(·) is a continuous set function on increasing sequences of sets (sse item (iii) in
Proposition 1) we have

C1(E
+) = lim

k→+∞
C1(∪i≤kE+

i ) = lim
k→+∞

βk(∪i≤kEi).

5. Appendix. Here we recall a well known property of the perimeter functional.
The proof of the statement is presented for the reader’s convenience since we have
not found any explicit reference in literature. In the following, given a simple closed
curve Γ ⊂ R

2, we will denote by L (Γ) its length and we will refer to a polygonal
inscribed in Γ as a closed polygonal with vertices lying on Γ. Moreover, we will
tacitly consider all the simple curves oriented in the counterclockwise sense and use
the notation ≺ for the order.
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Figure 2. Monotonicity of perimeter under convexification.

Proposition 3. Let Γ be a rectifiable Jordan curve, then

Per
(
co(int(Γ))

)
≤ Per

(
int(Γ)

)
. (23)

Moreover the inequality is strict whenever int(Γ) is not convex.

Proof. We first observe that, by (8) and by the regularity of convex sets, Per(int(Γ))
and Per(co(int(Γ))) are nothing but the length of Γ and of ∂

(
co(int(Γ))

)
respectively.

Then the inequality (23) will follow once we have proved that for any polygonal, Θ,
inscribed in ∂(co(int(Γ))), one can find a polygonal, Θ′, inscribed in Γ with

L (Θ) ≤ L (Θ′). (24)

With this aim in mind, let {xi}k
i=1 be the vertices of Θ ordered in a counterclockwise

sense. If for some i ∈ {1, . . . , k}, xi /∈ Γ, then xi can be written as a convex
combination of extreme points of co(int(Γ)), then lying in Γ (see figure 2.a), i.e.
there exist λ ∈ (0, 1), yi, zi ∈ Γ such that

xi = λyi + (1 − λ)zi.

The polygonal Θi with vertices {x1, . . . , xi−1, yi, zi, xi+1, . . . , xk}, since it contains
the point xi, by triangular inequality, clearly satisfies

L (Θi) > L (Θ).

We can proceed inductively. If Θi is not inscribed in Γ, using the previous argument,

by adding at most k − 1 vertices we end up with a polygonal Θ̃ inscribed in Γ
satisfying (24). Thus, (23) is established.

Suppose now that int(Γ) is not convex, then ∂
(
co(int(Γ))

)
contains at least one

segment with end points x, y, say [x, y],with [x, y]∩Γ = {x, y} (see figure 2.b). Hence
we may restrict the class of competitor in the definition of the length of ∂

(
co(int(Γ))

)

to the class Pxy of the polygonal inscribed in ∂
(
co(int(Γ))

)
containing [x, y], i.e.

L
(
∂
(
co(int(Γ))

))
= sup

Θ∈Pxy

L (Θ).

Let now z ∈ Γ with x ≺ z ≺ y, since we have

0 < h = |x − z| + |y − z| − |x − y|,

adding the vertex z we can modify any polygonal Θ in Pxy in a new polygonal, Θz,
with

L (Θz) ≥ L (Θ) + h
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Applying again the previous inductive construction we can therefore construct a

polygonal Θ̃ inscribed in Γ such that

L (Θ̃) ≥ L (Θ) + h,

that gives the claim by the arbitrariness of Θ ∈ Pxy.
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