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Via A. Ferrata 1 - 27100 Pavia - Italy

email: matteo.negri@unipv.it

Abstract. On the base of many experimental results, e.g. [18], [19], [21], [12], the object of our
analysis is a rate-dependent model for the propagation of a crack in brittle materials. Our goal is a
mathematical study of the evolution equation in the geometries of the ’Single Edge Notch Tension’
(SENT) and of the ’Compact Tension’ (ASTM-CT). Besides existence and uniqueness, emphasis is
placed on the regularity of the evolution making reference to the ’velocity gap’. The transition to
the quasi-static regime of Griffith’s model is obtained by time rescaling, proving convergence of the
rescaled evolutions and of their energies. Further, the discontinuities of the quasi-static propagation are
characterized in terms of unstable branches of evolution in real time frame. The results are illustrated
by a couple of numerical examples in the above mentioned geometries.
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1 Introduction

For almost one century Griffith’s criterion [11] has played a prominent role in the mechanics
of brittle materials. It provides a convenient approximation of the physical behaviour in real
life applications and a good framework for analytical studies and computer simulations. On
the other hand, models based solely on Griffith’s criterion should cover only the quasi-static
evolution of a brittle crack (along a straight path). Outside this relatively small field many
other aspects should be taken into account to improve the predictability of the model. Our
effort, pointing in the direction of dynamic fracture [10], consists in the use of a rate-dependent
dissipation, as suggested by many experimental investigations (e.g. [18], [19], [21] and [12]),
which represents on the macro-scale the effect of micro-cracking.

Specifically, our intention is to give a mathematical study of the experimental results cited
above, considering in particular the geometries of the ’Single Edge Notch Tension’ (SENT) and
of the ’Compact Tension’ (ASTM-CT) as presented in [12]. In a broad perspective, the results
of this work should serve as a base toward the analysis of a fully dynamical model. At this
point, it is important to make a remark on the mathematical tools: the ones employed in this
work are based essentially on functional analysis (e.g. Sobolev and BV spaces [8], [1]), ordinary
differential equations (ODE) and partially on differential inclusions [3]. Some readers more
familiar with other mathematical tools in fracture mechanics [20] may wonder if our technical
approach is really worth. To our credit let us mention that existence, uniqueness, regularity of
the evolutions are among the targets of this investigation, even if the task may not be trivial,
whereas the use of Sobolev functions allows to set the problem in a finite domains and thus
to consider boundary effects. Further, the application of these tools has been unquestionably
fruitful for quasi-static evolutions, especially in the last decade; the interested reader can find
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in [4] and [15] a comprehensive overview with a complete list of references. On the contrary,
rate-dependent models are still at an early stage of developments; to our knowledge the only
example is [14], a work that deserves some attention since it provides an argument in favor
of the phenomenological rate-dependent dissipation by means of a relaxation result, where a
microscopic pattern of micro-crack appears.

Let us present the content of this work and its main features, skipping as much as possible
on the technical details. After the geometrical setting and the physical assumptions, contained
in Section 2, the evolution law for the crack tip, written in terms of an ODE, is the object of
Section 3: existence and uniqueness of a C1 evolution are proved, accompanied with the energy
balance, an equivalent incremental variational approach and some considerations about stable
and unstable points. Section 4 considers a larger class of dissipation potential, closer to those
employed in the physical literature. In this setting the evolution law is to be written in terms
of a differential inclusions (rather than a differential equation) and the evolution in general is
not of class C1; notably, this loss of regularity results in a discontinuity (the velocity gap) in
the speed of the tip which may occur at incipient crack propagation. In Section 5 the rate-
independent quasi-static model of Griffith is derived from the rate-dependent model by means
of a natural time rescaling. It turns out that a strong loss of regularity occurs: the quasi-static
evolutions are only BV functions and the evolution law itself takes a completely different form,
in terms of Kuhn-Tucker conditions (in the sense of measures). In particular, the quasi-static
propagation may have discontinuity points which physically represent instantaneous abrupt
propagations of the crack while mathematically they are characterized in terms of unstable
[10] or catastrophic evolutions [5]. Further, rescaling the energy balance it turns out that
the amount of energy dissipated in the discontinuity points corresponds exactly to the energy
dissipated in the truly dynamic part of dissipation (i.e. by micro-cracking). A brief remark
about the variational approach concludes the section. Finally, Section 6 contains a couple of
numerical simulations in the SENT and ASTM-CT geometries while Appendix A contains a
useful result on the regularity of the energy release rate.

2 Preliminaries and basic assumptions

Let us start to describe the experimental tests reported in [12] (cf. Figure 2) which are the
prototype examples for our setting. Since it is not restrictive a two dimensional framework
will be employed from the beginning. For a gallery of other standard experimental procedures
in fracture mechanics the reader is referred to [2], while for the experimental results about
rate dependence in brittle fracture let us mention also [18], [19] and [21].

In the Single Edge Notch Tension (SENT) the specimen is a rectangle (usually with sizes
h≪ L) having an initial side crack of length l0 along the horizontal middle line. On the upper
and lower edges it is imposed a uniform vertical displacement. As the boundary displacement
increases (in time) the material deforms and then the crack starts running along a straight
path. Being the boundary condition uniform the crack tip runs at almost uniform speed until
the specimen is splitted.

For the Compact Tension (ASTM-CT) the specimen is similar but the loading is quite
different. A uniform time dependent displacement is imposed on a couple of symmetric holes,
placed in the vicinity of the initial crack. In practice, the effect is a localization of the load
around the tip of the initial crack. Indeed, increasing slowly the load, the crack starts to
propagate along the middle line but it arrests before reaching the other side of the specimen.
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Figure 1: Standard specimen geometries used in [12]: SENT and ASTM-CT.

Keeping in mind the previous examples and other standard experimental tests in fracture
mechanics [2], let us state our general assumptions. The reference uncracked configuration is
represented by a Lipschitz domain Ω in R2. The crack path (known a priori) is a straight
line segment in Ω identified, by length parametrization, with the interval [0, L]. Assume that
the path disconnects the domain and that the admissible cracks are simply the line segments
Kl of length l, identified with the interval [0, l]. Note that in this way an extremum of Kl is
always on the boundary while the other (the crack tip) is the interior. The initial crack is
denoted by Kl0 .

Consider a time frame [0, T ] and a subset ∂DΩ of the boundary ∂Ω. On ∂DΩ it is imposed
a Dirichlet boundary condition for the displacement u having the form u(t, ·) = α(t)ĝ(·),
where ĝ ∈ H1/2(∂DΩ,R2) represents the ’geometry’ of the boundary condition while α ∈
W 1,∞(0, T ) is a scalar (dimensionless) quantity that represents a control parameter. On the
rest of boundary, denoted by ∂NΩ, and on the lips of the fracture it is imposed the homogeneous
Neumann condition σ(t, ·)n̂ = 0.

Remark 2.1 As the reader could check, it is not hard to consider a more general setting
where the crack path (known a priori) is a C1 simple curve; the case of multiple cracks should
need some more care because of possible interactions between the branches.

2.1 Elastic energy and energy release rate

Employing the classical context of linear elastic fracture mechanics, let us consider the static
equilibrium problem with boundary conditions u = ĝ on ∂DΩ. The elastic energy, as a function
of crack length l and displacement u, is given by

Ê(l, u) =

∫

Ω\Kl

W e(ε) dx ,

where the energy density is simply W e(ε) = µ|ε| + (λ/2)tr(ε), being ε the symmetrized
gradient, µ and λ the Lamè coefficients. For l fixed, the equilibrium configuration is given by
the (unique) minimizer ul ∈ H1(Ω \Kl,R

2); the corresponding elastic energy is denoted by

Ê(l) = min
{
Ê(l, u) for u = ĝ on ∂DΩ

}
= E(l, ul) .

As usual in fracture mechanics, the key role in the evolution will be played by the variations
of Ê , more precisely by the energy release rate

Ĝ(l) = − Ê ′(l) .
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For sake of simplicity the energy release rate is not defined in L, which corresponds to the
case in which the domain is splitted. Let us summarize the properties of Ê and Ĝ in the next
Proposition, a proof is given is the Appendix.

Proposition 2.2 The energy Ê is non-increasing and of class C1 in (0, L). Consequently Ĝ
is non-negative and continuous in (0, L).

By linearity of the elasticity problem it is immediate to check that E(t, l) = α2(t) Ê(l) and
G(t, l) = α2(t) Ĝ(l).

Remark 2.3 Notice that, given l and u the elastic energy E can be computed explicitly. On
the contrary, given l the energy Ê and is no longer explicit, since its computation requires a
minimization operator. Obviously, the energy release rate Ĝ is not explicit as well. In some
cases approximate formulas are available but they seem not suitable for our general framework.
Therefore, in the analysis of the evolution the only piece of information on G to be used are the
abstract properties contained in Proposition 2.2 (in particular the continuity); in the explicit
examples of section §6 it is employed a numerical computations of G.

2.2 Dissipated energy and dissipation potential

Let us start again from the experimental results of [12]. Consider the SENT geometry. De-
pending on the length of the initial notch the fracture starts to propagates at different times
and then runs with different velocities. (This behaviour is due to the fact that the energy re-
lease rate increases rapidly for short initial cracks, see for instance the numerical computations
of Section 6). Consequently, knowing the amount of elastic energy released in the propagation
it is possible to measure, by a simple balance, the amount of energy dissipated by the crack.

According to Griffith’s theory the energy dissipated by the fracture is proportional to the
length of the fracture. In other terms, the dissipated energy per unit of crack length should
be constant. Actually, the careful experimental results mentioned above reveled a strong
dependence on the speed of the crack. This is clearly visible in Figure 2 where the spots
represent dissipated energy per unit of crack length versus crack speed while the horizontal
line corresponds to the constant value predicted by Griffith. Different spots correspond to
different propagation velocities, i.e. to experiments with different initial notches.

Of course, it may be argued that this rate dependence is due to dynamical effects occur-
ring at high speeds; this objection has been extensively discussed and refused in the physical
literature since the values predicted by the dynamic energy release rate [10] are not consistent
with the experimental data. According to the evidence of the experimental results this phe-
nomenon is essentially due to the microstructure of the fracture set. Some nice pictures of the
microscopic pattern of the crack (see e.g. [12]) show clearly that surface roughness and micro
branching increases significantly at high crack velocities. Hence, besides the energy dissipated
in the macroscopic crack a considerable amount of energy is dissipated at a subscale level.

A multiscale approach should be the right theoretical solution, however it seems not fea-
sible since the model should be able to resolve very complex patterns. A phenomenological
description in the macroscopic setting seems to be an easier and effective way to describe this
phenomenon.

From the mathematical point of view the dissipated energy per unit of crack length is well
represented by a monotone graph φ. Let Gc > 0 be the material toughness. Assume that
φ(0) = (−∞, Gc] and that φ : (0,+∞) → [Gc,+∞] is a convex non-decreasing function such
that limℓ̇ց0 φ(ℓ̇) = Gc and limℓ̇→+∞ φ(ℓ̇) = +∞. A couple of typical choices are contained in
the next Example.
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Figure 2: Rate dependence in Homalite-100: energy released by the crack per unit of ’length’
(J/m) vs (averaged) crack speed (courtesy of [12]).

Example 2.4 Figure 2 and [12] suggest a function of the form

φ(ℓ̇) =





(−∞, Gc] ℓ̇ = 0

Gc ℓ̇ ∈ [0, ℓ̇c]

Gc +
(
(ℓ̇− ℓ̇c)/(ℓ̇m − ℓ̇)

)p
ℓ̇ ∈ [ℓ̇c, ℓ̇m]

+∞ ℓ̇ > ℓ̇m ,

where 0 < ℓ̇c < ℓ̇m and p > 1. This is the case of a brittle material in which micro-cracks,
and possibly other velocity dependent phenomena, occurs when the propagation velocities are
higher than ℓ̇c; these sub-scale dissipation mechanisms limit the maximum speed of the tip
which cannot exceed ℓ̇m. Note that in general ℓ̇m does not coincide with the Rayleigh speed as
in the dynamic theory of fracture [10].

A much simpler choice, without thresholds, is given by

φ(ℓ̇) =

{
(−∞, Gc] ℓ̇ = 0

Gc + ℓ̇p ℓ̇ > 0 .

As it will be explained in Section 3 and 4 the analytical properties of the evolution obtained
in the first and second case are different. In particular the first allows for the velocity gap.

We remark that Griffith model, which applies to the quasi-static case, corresponds to a
non-decreasing function of the form

φqs(ℓ̇) =

{
(−∞, Gc] ℓ̇ = 0

Gc ℓ̇ > 0 .

Note in particular that it does not satisfy the condition limℓ̇→+∞ φqs(ℓ̇) = +∞. The resulting
evolution is qualitatively very different from those obtained with a diverging φ; its behaviour
has been studied [16] and in [15], here it is recovered as a limiting case in the quasi-static
evolution of Section 5. Note also, in view of Section 5, that both the functions φ of Example
2.4 can be written in the form φ = φqs + φdyn where φqs (defined above) accounts for the
macroscopic dissipation while φdyn > 0 for the microscopic rate dependent dissipation.

Let us define the dissipation potential (dimensionally the energy dissipated per unit of
time). It is given formally by D(ℓ̇) = φ(ℓ̇)ℓ̇. More precisely

D(ℓ̇) =

{
+∞ for ℓ̇ < 0

φ(ℓ̇)ℓ̇ for ℓ̇ ≥ 0.
(1)
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Note that D : R → [0,+∞] is convex and that D(0) = 0.
In our picture the energy dissipated by the fracture in time interval (0, t) depends on the

whole trajectory ℓ and is given by

K(t, ℓ) =

∫ t

0
D(ℓ̇(s)) ds . (2)

Note in K the dependence on evolution ℓ and not on value ℓ(t).
Finally, note that Griffith’s dissipation corresponds to the one-homogeneous potential

Dqs(ℓ̇) =

{
+∞ ℓ̇ < 0

Gcℓ̇ ℓ̇ > 0

and thus to Kqs(t, ℓ) = Gc(ℓ(t) − l0).
As observed for φ, it is convenient to represent D also as D(ℓ̇) = Dqs(ℓ̇) + Ddyn(ℓ̇) where

Dqs(ℓ̇) = Gcℓ̇ and hence Ddyn(ℓ̇) > 0. Accordingly we may write K(t, ℓ) = Kqs(t, ℓ)+Kdyn(t, ℓ).
We remark once more that Dqs will account for the macroscopic crack while Ddyn will account
(phenomenologically) for the microscopic effects.

In conclusion, the free energy of the system at time t is given by

F(t, ℓ) = E(t, ℓ(t)) + K(t, ℓ) . (3)

Clearly, for the energy to be finite it is necessary that K(t, ℓ) is finite, i.e. that ℓ̇ ≥ 0 for
a.e. time (which renders the irreversibility of the crack).

2.3 Crack propagation law

A mathematically convenient and concise way of writing the evolution law is by means of the
(doubly non-linear) differential inclusion

{
φ(ℓ̇(t)) ∋ G(t, ℓ(t))
ℓ(0) = l0 .

(4)

Let us spend few words to understand the meaning of (4). First of all, note that the differential
inclusion is dimensionally like a balance of forces, since φ and G here are measured in [N ]; in
particular G is the driving force of the crack and φ is a sort of viscosity. To strengthen this
interpretation it is convenient to re-write (4) taking into account the fact that φ(0) = (−∞, Gc]:





G(t, ℓ(t)) ≤ Gc ℓ̇(t) = 0

G(t, ℓ(t)) = φ(ℓ̇(t)) ℓ̇(t) > 0
ℓ(0) = l0 ,

that is formally like a Coulomb dry friction for the external force G(t, ℓ(t)). More simply, (4)
combines the activation condition and the flow rule:

ℓ̇(t) = 0 ⇒ G(t, ℓ(t)) ≤ Gc , ℓ̇(t) > 0 ⇒ G(t, ℓ(t)) = φ(ℓ̇(t)) .

In the next two sections are contained the existence, uniqueness and regularity results of
the evolution defined by (4). For sake clarity the case in which φ is strictly increasing (in its
proper domain) is considered in Section 3 while the case in which φ is only non-decreasing is
considered in Section 4; the corresponding solutions are indeed qualitatively different.
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3 Evolution

This section deals with the case in which φ is strictly increasing (in its proper domain).
Let φ−1 : R → R be its inverse, then φ−1 is continuous, non-decreasing and non-negative,
in particular φ−1 = 0 in (−∞, Gc] while φ−1 is positive, strictly increasing and concave in
(Gc,+∞). Note that by definition the range of φ−1 is the proper domain of φ.

Example 3.1 Consider φ from Example 2.4, then

φ−1(G) =

{
0 if G ∈ (−∞, Gc]

(G−Gc)
1/p otherwise.

See Figure 3.

0 ℓ̇
0

Gc

φ

0 Gc G
0

φ−1

Figure 3: The dissipation potential φ of Example 3.1 and its inverse φ−1.

In this case the differential inclusion (4) takes a simpler form, it is indeed equivalent to
the ODE {

ℓ̇(t) = φ−1
(
G(t, ℓ(t))

)

ℓ(0) = l0 .
(5)

Note that in general the right hand side of (5) is not uniformly Lipschitz continuous with
respect to ℓ; this is indeed the case of Example 3.1.

Let us denote by t0 the initiation time and by T the failure time, i.e.

t0 = sup{t : ℓ(t) = l0} , T = sup{t : ℓ(t) < L} . (6)

By definition, the Cauchy problem (5) makes sense in [0, T ), as Ĝ(L) is not defined.

Theorem 3.2 Let φ be strictly increasing, then there exists an evolution ℓ of class C1 in
[0, T ). If α is strictly increasing then the solution ℓ is unique.

Proof. By the continuity of G and φ−1 there exists a solution in a small right neightborhood
of 0; moreover φ−1 is non-negative, therefore ℓ is non decreasing. It follows that there exists
a solution in the maximal interval (0, T ). The C1 regularity is obvious.

Consider a strictly increasing control α. Assume by contradiction that there exist solutions
ℓ1 6= ℓ2. By continuity we can assume that there exist tc such that ℓ1(tc) = ℓ2(tc) = ℓc and
ℓ1 < ℓ2 in (tc, tc + δ).

First, let us see that G(tc, ℓc) = Gc. We argue by contradiction. If G(tc, ℓc) < Gc then
by continuity G(t, l) < Gc in a neighborhood Uc of (tc, ℓc). Hence, the solutions of the ODE
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satisfy ℓ̇i = 0 in a neighborhood of tc. This is a contradiction, since ℓ1 6= ℓ2. Similarly, if
G(tc, ℓc) > Gc then G(t, l) ≥ Ḡ > Gc in a neighborhood Uc. As φ−1 is locally Lipschitz in
(Ḡ,+∞) (being φ−1 concave) by a standard result on ODE we get a unique solution, which
is again a contradiction.

Second, let us show that ℓi (i = 1, 2) are invertible in (tc, tc + δ). The solutions ℓi are
non-decreasing. If ℓi is constant (say ℓi(t) = ℓ̄) in an interval (ta, tb) ⊂ (tc, tc + δ) then
ℓ̇i = 0, hence G(t, ℓi(t)) ≤ Gc. As α is strictly increasing we get G(t, ℓ̄) < G(tb, ℓ̄) ≤ Gc for
t < tb. Hence ℓ̄(t) ≡ ℓ̄ solves the ODE in (0, tb). As G(t, ℓ̄) < Gc in (0, tb) and φ−1 is locally
Lipschitz in (−∞, Gc) then the solution is unique, which contradicts our assumptions. Note
that {t : ℓ̇i(t) = 0} is closed with empty interior (being ℓi continuous and strictly increasing).
It follows (by contradiction) that G(t, ℓi(t)) ≥ Gc in [tc, tc + δ].

Third, let us define τ(s) = ℓ−1
1 ◦ ℓ2(s). Hence ℓ1(τ(s)) = ℓ2(s). As ℓi are indcreasing,

τ itself is increasing. Moreover, by ℓ1(tc) = ℓ2(tc) we get τ(tc) = tc and by ℓ1 < ℓ2 we get
τ(s) > s.

Moreover, being α strictly increasing and τ(s) > s we have

Gc ≤ G(s, ℓ2(s)) = α2(s) Ĝ(ℓ2(s)) < α2(τ(s)) Ĝ(ℓ1(τ(s))) = G(τ(s), ℓ1(τ(s)) .

Hence G(τ, ℓ1(τ)) > Gc, and ℓ̇1(τ) > 0. As a consequence τ is of class C1.
By the monotonicity of φ−1 and the previous inequality (for τ = τ(s)) we can write

ℓ̇1(τ) = φ−1
(
G(τ, ℓ1(τ))

)
> φ−1

(
G(s, ℓ2(s))

)
= ℓ̇2(s) .

Hence
ℓ̇2(s) = ℓ̇1(τ(s))τ

′(s) < ℓ̇1(τ(s)) .

As ℓ̇1 > 0 it follows that τ ′ < 1. This inequality is a contradiction with τ(s) > s.

Proposition 3.3 Let ℓ be a solution of (5). The following energy balance, in differential
form, holds true:

dE(t, ℓ(t)) = Pext(t, ℓ(t)) dt−D(ℓ̇(t)) dt (7)

where Pext is the power of external forces, namely

Pext(t, ℓ(t)) =

∫

∂DΩ
ġ(t, x) · σℓ(t)(t, x)n̂ dx

and σℓ(t) is the stress tensor for the equilibrium configuration uℓ(t).

Proof. By the chain rule and by (5)

dE(t, ℓ) =
[
Pext(t, ℓ(t)) −G(t, ℓ(t))ℓ̇(t)

]
dt

=
[
Pext(t, ℓ(t)) − φ(ℓ̇(t))ℓ̇(t)

]
dt = Pext(t, ℓ(t)) dt−D(ℓ̇(t)) dt .

The above energy balance in time interval (t1, t2) reads

E(t2, ℓ(t2)) = E(t1, ℓ(t1)) +

∫ t2

t1

Pe(s, ℓ(s)) ds−
∫ t2

t1

D(ℓ̇(s)) ds . (8)

As already mentioned, the two integrals on the right hand side are the work of external forces
and the dissipated energy (respectively).
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3.1 Stable and unstable points

Let us define the sets of stable, unstable and critical points. A length l < L is stable at time
t if there exists η > 0 such that G(t, z) < Gc for l < z < l + η, otherwise it is called unstable.
A length l is critical at time t if G(t, l) = Gc. Clearly, by continuity of the energy release rate
if G(t, l) < Gc then (t, l) is stable, if G(t, l) > Gc then (t, l) is unstable. Moreover, again by
continuity, G(t, l) ≤ Gc in the stable points while G(t, l) ≥ Gc in the unstable ones. Critical
points are either stable or unstable. The sets of stable, critical and unstable points at time t
are denoted respectively by S(t), C(t) and U(t). Note that if ℓ is a solution of (5) then by the
properties of φ−1 we deduce easily that

ℓ(t) ∈ S(t) ⇒ ℓ̇(t) = 0 . (9)

Equivalently if ℓ̇(t) > 0 then ℓ(t) ∈ U(t), while the reverse of (9) is false, since it may happen
that ℓ̇(t) = 0 if ℓ ∈ U(t) ∩ C(t).

3.2 Examples

For the sake of completeness, we give also a couple of counter example to uniqueness.

Example 3.4 Let Ĝ(l) = l, Gc = l0 and let

φ(ℓ̇) =

{
(−∞, Gc] if ℓ̇ = 0

Gc + ℓ̇2 if ℓ̇ > 0 ,
φ−1(G) =

{
0 if G ∈ (−∞, Gc]

|G−Gc|1/2 otherwise.

Assume that α is non decreasing and of class C1 in (0,+∞), with α(0) = 0, 0 < α(t) < 1 for
t ∈ (0, t0), α(t) = 1 for t ≥ t0. Then it is easy to check that in (0, t0) the unique solution is
ℓ(t) = l0. Therefore (5) reduces to

{
ℓ̇(t) = |G(t, ℓ(t)) −Gc|1/2

ℓ(t0) = l0 .

Besides ℓ(t) ≡ l0, there are infinitely many solutions of the form

ℓ(t) = l0 + |t− t′|2+/4

where | · |+ denotes the positive part and t′ ≥ t0.

Example 3.5 Let us give also an example of non-uniqueness with crack arrest in finite time.
Let l0 < l∗ < L and

Ĝ(l) =





l if l ≤ l∗

2l∗ − l if l∗ < l ≤ 2l∗

0 if l ≥ 2l∗ .

Let Gc, φ and α as in the previous example. Let t∗ be defined by l0 + (t∗ − t0)
2/4 = l∗ and let

ta = 2t∗ − t0. Then, it is easy to check that besides ℓ(t) ≡ l0 the function

ℓ(t) =





l0 if t ≤ t0
l0 + (t− t0)

2/4 if t0 < t ≤ t∗

(2l∗ − l0) − (t− ta)
2/4 if t∗ < t ≤ ta

(2l∗ − l0) if t > ta

is a C1 solution of (5) in [0,+∞). Clearly, the crack arrests at time ta.
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0 t0 t′ t
0

l0

ℓ

ℓ

0 t0
0

l0

ℓ

t∗ ta

l∗

2l∗−l0

ℓ

Figure 4: Evolutions ℓ of Example 3.4 and 3.5 (bold), loci of stationary points (dashed).

3.3 Variational approach

In this section we show that the evolution ℓ which solves (5) can be derived from a variational
approach by means of incremental problems.

Given φ let ψ : R → [0,+∞] be a dissipation potential such that ψ(ℓ̇) = +∞ if ℓ̇ < 0,
ψ(0) = 0 and ∂ψ(ℓ̇) = φ(ℓ̇) if ℓ̇ ≥ 0 (in particular ∂ψ(0) = (−∞, Gc]). Obviously, ψ is
convex, being φ non-decreasing. We remark that ψ is dimensionally a power but it is not the
dissipation D. Let ∆tk be a positive infinitesimal sequence of time increment. Given k, n ∈ N

let tkn = n∆tk be a (uniform) discretization of the time interval. Let ℓk0 = l0 and define by
induction

ℓkn+1 ∈ argmin
{

∆tkψ
(
(l − ℓkn)/∆tk

)
+ E(tkn+1, l) : l ∈ [l0, L]

}
. (10)

Note that, being ψ(ℓ̇) = +∞ for ℓ̇ < 0, the above minimization problem would be equivalent
with l ∈ [ℓkn, L]. Let ℓk be the piecewise affine interpolation of the values ℓkn defined above. For
every k the function ℓk : [0,+∞) → [l0, L] are continuous and non-decreasing. Therefore, by
Helly’s Theorem there exists a subsequence (not relabelled) converging pointwise to a (limit)
non-decreasing function ℓ. Let us see that ℓ is continuous and that it is a solution of the (5).
For simplicity choose T ′ such that ℓ(T ′) < L and consider the time interval [0, T ′]. It is not
restrictive to assume that ℓk(T ′) < L (this is clearly true for k ≫ 1).

Before proceeding, let us see the variational properties of ℓk. Note that the derivative,
with respect to l of the incremental energy (10) is (by definition of ψ and G)

φ
(
(l − ℓkn)/∆tk

)
−G(tkn+1, l) .

If ℓkn+1 = ℓkn minimality gives

(−∞, Gc] −G(tkn+1, ℓ
k
n+1) ∋ 0 ⇔ G(tkn+1, ℓ

k
n+1) ≤ Gc .

It follows that for t ∈ (tkn, t
k
n+1) we have ℓ̇k(t) = 0 and

ℓ̇k(t) = φ−1
(
G(tkn+1, ℓ

k
n+1)

)
. (11)

Similarly, if ℓkn+1 > ℓkn minimality gives

φ
(
(ℓkn+1 − ℓkn)/∆tk

)
−G(tkn+1, ℓ

k
n+1) = 0 ,

hence (11) holds true in general. From (11) follows the uniform Lipschitz continuity of the
sequence (of functions) ℓk. Indeed, the control α is bounded in [0, T ′] and the energy release
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rate Ĝ is bounded in [l0, ℓ(T
′)] (as ℓ(T ′) < L), hence G(tkn+1, ℓ

k
n+1) = α2(tkn+1) Ĝ(ℓkn+1) is

bounded independently of k and n. It follows that the velocities ℓ̇k are bounded, independently
of k. As a consequence, by Ascoli-Arzelà Theorem ℓk converges uniformly (up to subsequences)
to a continuous function ℓ.

It remains to see that ℓ satysfies (5). Given s ∈ [0, T ′] let ns = [s/∆tk] + 1 (where [·]
denotes the integer part) so that tkns−1 ≤ s < tkns

. By (11) we can write

ℓk(t) = l0 +

∫ t

0
φ−1

(
G
(
tkns
, ℓkns

))
ds .

Let us take the limit as ∆tk ց 0. Obviously ℓk(t) → ℓ(t). Let us check that

∫ t

0
φ−1

(
G
(
tkns
, ℓkns

))
ds −→

∫ t

0
φ−1

(
G(s, ℓ(s))

)
ds .

Note that the integrand is uniformly bounded, therefore by dominated convergence and con-
tinuity of φ−1 ◦G it is sufficient to see that

(
tkns
, ℓkns

)
−→ (s, ℓ(s)) for every s ∈ [0, T ′].

As |tkns
− s| ≤ ∆tk (by definition of ns) it is clear that tkns

→ s. Moreover, ℓkns
= ℓk(tkns

), thus

|ℓk(tkns
) − ℓ(s)| ≤ |ℓk(tkns

) − ℓ(tkns
)| + |ℓ(tkns

) − ℓ(s)| .

This concludes the proof by the uniform convergence of ℓk to ℓ and by the continuity of ℓ.

4 Velocity gap

Figure 5: A velocity gap for Homalite-100 (courtesy of [12]).

In this section we consider the case of a non-decreasing dissipation potential φ such that
φ(ℓ̇) = Gc in [0, ℓ̇c], with 0 < ℓ̇c < +∞, and φ(ℓ̇) > Gc in (ℓ̇c,+∞).
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Example 4.1 For 0 < ℓ̇c < ℓ̇m and p > 1 consider the function

φ(ℓ̇) =





(−∞, Gc] if ℓ̇ = 0

Gc if 0 < ℓ̇ < ℓ̇c
Gc + (ℓ̇ − ℓ̇c)

p/(ℓ̇m − ℓ̇)p if ℓ̇c < ℓ̇m.

In this case the inverse of φ is given by the maximal monotone graph

φ−1(G) =





0 if G ∈ (−∞, Gc]

[0, ℓ̇c] G = Gc(
ℓ̇c + ℓ̇m(G−Gc)

1/p
)
/
(
(G−Gc)

1/p + 1
)

otherwise.

Alternatively, a simpler model can be used, without the upper bound ℓ̇m; this is for instance
the case of a dissipation potential of the form

φ(ℓ̇) =





(−∞, Gc] if ℓ̇ = 0

Gc if 0 < ℓ̇ < ℓ̇c
Gc + (ℓ̇ − ℓ̇c)

p if ℓ̇c < ℓ̇,

with inverse

φ−1(G) =





0 if G ∈ (−∞, Gc]

[0, ℓ̇c] G = Gc

ℓ̇c + (G−Gc)
1/p otherwise.

0 ℓ̇c ℓ̇m ℓ̇
0

Gc

φ

0

ℓ̇c

ℓ̇m

φ−1

0 Gc G

0 ℓ̇c ℓ̇
0

Gc

φ

0

ℓ̇c

φ−1

0 Gc G

Figure 6: The dissipation potentials φ and their inverses φ−1 of Example 4.1.

Unlike what stated in the previous section, when the dissipation potential φ is just non-
decreasing the evolution is continuous but in general it is not of class C1 (an explicit example
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is given hereafter). This loss of regularity is a remarkable feature in connection with the
’velocity gap’. Let us briefly explain this behaviour: experimental measurements on brittle
materials seem to indicate that in many cases the velocity of the crack at the initiation time is
strictly positive; to be more precise, the velocity ℓ̇ has a jump (or gap) at t0 since ℓ̇−(t0) = 0
while ℓ̇+(t0) > 0 (e.g. H-100 in Figure 5). From the physical point of view it is questionable
wether this behaviour should be accepted or not. For instance, Hauch & Marder [12] provided
also a set of very fine measures of ℓ̇ around t0 to show that the velocity changes continuously
in time; rightfully they concluded that the velocity gap is an apparent feature due to fact that
the velocity changes very rapidly and thus its graph looks like a jump if it is seen at a large
time scale. Our result may provide a further element in the understanding of the ’velocity
gap’ or (equivalently) a selection criterion for φ. In fact, considering the velocity gap as an
artificial effect leads to rule out the non-decreasing cases (such as those of Example 4.1) since
the evolution could exhibit a velocity gap, i.e. a discontinuity in the velocity at the initiation
time.

Example 4.2 Let l0 = 1, Gc = 1 and

Ĝ(l) =
4(
√
l − 1)2 + 1√

l
.

Let α(t) =
√
t and

φ(ℓ̇) =





(−∞, 1] if ℓ̇ = 0

1 if 0 < ℓ̇ < 2

1 + (ℓ̇ − 2)2 if 2 ≤ ℓ̇.

Under these assumptions it is not difficult to check that the function ℓ(t) = 1 + |t2 − 1|+
satisfies the differential inequality (4) for every t 6= t0 = 1. Note that ℓ̇(t) = 0 for t ∈ (0, t0)
and ℓ̇(t) = 2t for t > t0 while ℓ is not differentiable in the initiation time. In particular, the
crack starts the propagation with a finite speed ℓ̇+(t0) > 0 and hence the evolution exhibits a
velocity gap.

Note that if the evolution is not of class C1 it is necessary to give a suitable meaning to
(5), as ℓ may be non-differentiable in every point of [0, T ). Following the standard theory of
differential inclusions (e.g. [3]) we say that ℓ is a solution if it is absolutely continuous (i.e. in
W 1,1) and if {

ℓ̇(t) ∈ φ−1
(
G(t, ℓ(t))

)
for a.e. t ∈ [0, T )

ℓ(0) = l0 .
(12)

We recall (e.g. [3, Lemma 1 on page 99]) that ℓ solves (12) if and only if there exists a
measurable selection of φ−1

(
G(t, ℓ(t))

)
in such a way that for every t1 < t2

ℓ(t2) ∈ ℓ(t1) +

∫ t2

t1

φ−1
(
G(s, ℓ(s))

)
ds .

Comparing with (9), if ℓ is a solution of (12) then





ℓ̇(t) = 0 if ℓ(t) ∈ S(t)

ℓ̇(t) ∈ [0, ℓ̇c] if ℓ(t) ∈ C(t)

ℓ̇(t) > ℓ̇c if ℓ(t) ∈ U(t).

(13)

Now, let us state the existence result.
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Theorem 4.3 Let φ be non-decreasing then there exists an (absolutely continuous) evolution
ℓ in [0, T ).

Proof. Under the above assumptions, our problem (12) fits into the framework of [3, Theorem
3 on page 98] which ensures existence.

We conclude the section with an Example to show that in some cases there exists a C1

evolution and hence there is no velocity gap.

Example 4.4 Assume that Ĝ(ℓ) = 2l0 − ℓ for ℓ ≥ l0. Let Gc = l0, α strictly increasing with
α(t) = (t− t0)

2 + 1 for t > t0. Let φ be as in Example 4.1. Let

ℓ(t) =

{
l0 if t ≤ t0

2l0 − l0/
(
(t− t0)

2 + 1
)2

if t > t0.

Clearly ℓ is of class C1. Let us see that ℓ is a solution of (12) (at least for t ≈ t0). For t ≤ t0
we have α(t) < 1 and G(t, l0) < l0 = Gc, hence ℓ(t) = l0 is the unique solution. Moreover,
being Gc = l0, it is easy to check that G(t, ℓ(t)) = Gc for t > t0. Moreover ℓ̇(t) < ℓ̇c for t ≈ t0,
hence (12) is satisfied.

5 Quasi-static evolution by time rescaling

The goal of this section is to obtain a quasi-static evolution by means of a suitable time
rescaling. For simplicity, let us restrict ourselves to the case of φ strictly increasing.

Given a control α let us consider for 0 < ε≪ 1 the slow control αε(t) = α(εt). Intuitively,
as the Dirichlet boundary conditions u = αε(t)ĝ change slowly in time the fracture is expected
to evolve slowly and thus the rate dependence of the dissipation should became negligible. Let
us be more precise. Denoting by Gε(t, l) = α2

ε(t) Ĝ(l) our ’slow evolution’ will be the solution
of the Cauchy problem {

ℓ̇ε(t) = φ−1
(
Gε(t, ℓε(t))

)

ℓε(0) = ℓ0 .
(14)

Notice that the initiation times of the evolution ℓε are of the form t0/ε; hence the limit of the
slow evolutions as εց 0 is identically equal to l0. In order to recover some information about
the evolutions ℓε for small values of ε it is therefore necessary to rescale the time variable. Let
us employ the change of variables τ = εt. Note that τ is not the real time variable, which is
instead denoted by t. Denote by lε(τ) = ℓε(τ/ε) the rescaled slow evolutions. By the chain
rule l̇ε(τ) = ℓ̇ε(τ/ε)/ε. Moreover with the change of variable t = τ/ε the energy release rate
Gε can be written as

Gε(τ/ε, l) = α2
ε(τ/ε) Ĝ(l) = α2(τ) Ĝ(l) = G(τ, l) .

Thus, from (14) it follows that lε solves
{
εl̇ε(τ) = φ−1

(
G(τ, lε(τ))

)

lε(0) = l0 .
(15)

Clearly by Theorem 3.2 there exists a solution lε of class C1 in a maximal interval (0, Tε) and
lε is unique if α is strictly increasing. In the sequel we will study the properties of the rescaled
slow evolutions lε and of their quasi-static limit. Some facts about the evolution ℓε in the real
time variable will be recovered later, in Section 5.5.
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Example 5.1 Note that that (15) can be written equivalently as

{
l̇ε(τ) = φ−1

ε

(
G(τ, lε(τ))

)

lε(0) = l0

where φ−1
ε = φ−1/ε. In this form (15) corresponds to a rescaled rate of dissipated energy

φε(ℓ̇) = φ(εℓ̇). Since φε → φqs (15) provides also a vanishing viscosity approach to the quasi-
static evolution (note that φqs doesn’t fit in the framework of differential inclusions [3]). For
instance, even if this is not a good interpolation of the experimental data, consider

φ(ℓ̇) =

{
(−∞, Gc] for ℓ̇ = 0

ℓ̇ otherwise.

Then

φ−1(G) = |G−Gc|+ =

{
0 if G ≤ Gc

G−Gc otherwise,

where | · |+ stands for the positive part. Then (15) reads

{
εl̇ε(τ) = |G(τ, lε(τ)) −Gc|+
lε(0) = l0 ,

as in the viscosity approach proposed in [22].

5.1 Convergence of the evolutions

5.1.1 Heuristic limit

Before studying in detail the convergence of the rescaled slow evolution ℓε let us try to un-
derstand what happens in a simplified situation. Let τ ∈ (0,+∞) such that lε(τ) → l(τ) and
l̇ε(τ) → l̇(τ) then

G(τ, lε(τ)) → G(τ, l(τ)) and φ(εl̇ε(τ)) → φ(0) = (−∞, Gc] .

Hence the differential inclusion φ(εl̇ε(τ)) ∋ G(τ, lε(τ)), which defines the evolution, in the
limit takes the form

(−∞, Gc] ∋ G(τ, l(τ)) ⇔ G(τ, l(τ)) ≤ Gc ,

that is Griffith’s equilibrium for the quasi-static evolution. In the sequel the reader will see
that in general the above assumption about the convergence of the velocities l̇ε is not fullfilled
for every τ ∈ (0,+∞) and a more general framework is needed. Moreover, the equilibrium
inequality G(τ, l(τ)) ≤ Gc gives scan information about the limit evolution l. A rigorous
analysis of the convergence of the evolutions lε requires some more effort and is the subject of
the next subsection.

5.1.2 Precise limit

Consider the function lε to be defined in the whole (0,+∞) setting lε(τ) = L for τ ≥ Tε, where
Tε is the failure time for lε. Then {lε} is a family of bounded monotone functions; thus by
Helly’s theorem there exists a subsequence of lε converging pointwise to a limit non-decreasing
function l. In general such a limit depends on the subsequence and is not unique. Moreover



dyn2qs: April 21, 2009 16

it may happen that l is not continuous, even if the lε are of class C1; this is indeed the case
in many situations, e.g. if the crack is close to the boundary ∂Ω (an numerical example with
this feature is presented in Section 6). In general l is non-decreasing and bounded, hence it
belongs to BVloc(0,+∞), and (in general) its set of jumps S(l) is not empty (for the properties
of function with bounded variation the reader is referred to [1]). From a mechanical point of
view it may seem absurd that an evolution is discontinuous in time, in our context it means
that a crack increment appears suddenly. As we will see, the discontinuities in the quasi-static
evolution represent (in the quasi-static time scale) a fast regime of propagation (in the real time
frame) governed by dynamics, i.e. by rate-dependent effects. A rigorous explanation is given
in the next sections, more details can be found in [16] and [15]. In other terms, discontinuities
represent what is called in the mechanical vocabulary an unstable or catastrophic propagation
(the reader interested in fracture can find a clear exposition in [10] and a couple of interesting
examples in [5] while a general mathematical results is provided in [23]).

For later convenience we introduce the left and right-continuous representatives of l, defined
respectively by

l−(t) = lim
s→t−

l(s) , l+(t) = lim
s→t+

l(s) .

Some usefull properties of l± are listed in the next Lemma; its elementary proof, based just
on the monotonicity of l, is omitted.

Lemma 5.2 Let l± be the right and left-continuous representatives of l. Then

1. l± are non-decreasing,

2. l− is left-continuous and l+ is right-continuous,

3. l− ≤ ℓ ≤ l+ and l± = l a.e. in (0,∞),

4. S(l−) = S(l+) = S(l),

5. l+(t) = lims→t+ l
−(s) and l−(t) = lims→t− l

+(s).

Definition 5.3 Let l be a limit of the rescaled slow evolutions lε, l
± its right and left-

continuous representatives. A quasi-static evolution lqs is any function such that for every
τ ≥ 0 either lqs(τ) = l+qs(τ) or lqs(τ) = l−qs(τ).

Note that, by Lemma 5.2 all the quasi-static evolutions lqs coincide a.e. in (0,+∞). In
particular l± are quasi-static evolutions, according to Definition 5.3. Let us first supply some
properties of the functions lqs.

Lemma 5.4 Let lqs be defined as above, then

1. lqs belongs to BVloc(0,+∞)

2. lqs is monotonically non-decreasing,

3. S(l−) = S(l+) = S(lqs),

4. l− ≤ lqs ≤ l+ and lqs = l± everywhere in (0,∞),

Now, let us see the properties of lqs which make it a good notation of quasi-static evolution.
By definition lqs is defined in (0,+∞); let t0 and T be its initiation and failure time.
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Theorem 5.5 Let lqs be a quasi-static evolution in the sense of Definition 5.3. Then

G(τ, lqs(τ)) ≤ Gc in [0, T ) , (16)

G(τ, lqs(τ)) is continuous in [0, T ) , (17)(
G(τ, l−

G
(τ)) −Gc

)
dlqs(τ) = 0 in the sense of measures in [0, T ). (18)

For τ ∈ S(lqs)
G(τ, l−qs(τ)) = G(τ, l+qs(τ)) = Gc , (19)

(
G(τ, l) −Gc

)
≥ 0 for every l ∈ [l−qs(τ), l

+
qs(τ)]. (20)

Proof. Clearly, by pointwise convergence lqs(0) = l(0) = l0.
Let us prove (16). By (15) we can write

εlε(τ) = εl0 +

∫ τ

0
φ−1

(
G(s, lε(s))

)
ds .

Passing to the limit as εց 0 yields

0 =

∫ τ

0
φ−1

(
G(s, l(s))

)
ds ,

thus φ−1(G(s, l(s))) = 0 for a.e. s ∈ (0, τ) and thus G(s, l(s)) ≤ Gc for a.e. s ∈ [0, T ). By
the left-continuity of l− and the continuity of G we get G(s, l−(s)) ≤ Gc for every s ∈ (0, T ).
Similarly G(s, l+(s)) ≤ Gc, hence G(s, lqs(s)) ≤ Gc for every s ∈ (0, T ).

Let us prove (19). Let τ ∈ S(lqs) and assume by contradiction that G(τ, l+
G

(τ)) < Gc (the
other case is similar). Then by the continuity of G there exists a neighborhood U of (τ, l+

G
(τ))

(in the (s, l) space) where G(s, l) < Gc. By pointwise convergence, (s, lε(s)) is then contained
in U for ε ≪ 1 and s ∼ τ . Thus G(s, lε(s)) < Gc and l̇ε = 0. It follows that the functions lε
are constant and thus lqs is constant in U ; this contradicts τ ∈ S(lqs).

Let us prove (17). Consider, by monotonicity of lqs and continuity of G, the limits

lim
s→τ+

G(s, lqs(s)) = G(τ, l+qs(τ)) , lim
s→τ−

G(s, lqs(s)) = G(τ, l−qs(τ)) .

If τ 6∈ S(lqs) then l−qs = l+qs = lqs, hence G(s, lqs(s)) is continuous in τ . If τ ∈ S(lqs) then
l−qs(τ) 6= l+qs(τ) and by (19) G(τ, l±qs(τ)) = Gc. By Lemma 5.4, lqs = l± everywhere in (0,∞),
hence G(τ, lqs(τ)) = Gc, that proves the continuity in τ .

Let us prove (18). It is sufficient to consider the case G(τ, l−
G

(τ)) < Gc. By the continuity
of G there exists a neighborhood U of (τ, l−qs(τ)) where G(s, l) < Gc. Hence for ε ≪ 1 and
s ∼ τ the evolutions lε are constant in U it follows that lqs is constant, hence dlqs(τ) = 0.

It remains to prove (20). Let τ∗ ∈ S(lqs) and assume by contra that G(τ∗, l∗) < Gc for
some l∗ ∈ (l−qs, l

+
qs) (clearly the case l∗ = l±qs is ruled out by (19)). Again by the continuity of G,

there exists a neighborhood U = (τ∗−δ, τ∗+δ)×(l∗−η, l∗+η), with l−qs < l∗−η < l∗+η < l+qs,
where G(s, l) < Gc. Then for (ε small enough) lε(s

′) < l∗ − η for τ∗ − δ < s′ < τ∗ while
lε(s

′′) > l∗ + η for some τ∗ < s′′ < τ∗ + δ. This is impossible since lε, being continuous, should
cross the neighborhood U where G < Gc and hence l̇ε = 0 by (15).

Remark 5.6 As (18) holds true in the sense of measures and since dlqs is the sum of the

mutually singular measures dlaqs, dl
c
qs, dl

j
qs it follows that (18) holds true separately for each

of these measures. Hence
(
G(τ, l−

G
(τ)) −Gc

)
dljqs(τ) = 0 , in the sense of measures in [0, T ),
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and (
G(τ, lqs(τ)) −Gc

)
dlac

qs(τ) = 0 , in the sense of measures in [0, T ),

since by continuity lqs(τ) = l−qs(τ). In terms of the sets of stable, critical and unstable points
defined in Section 3.1, in this case (τ, lqs(τ)) ∈ S ∪ C for every time τ ; moreover from (20) it
follows that in the jump points for every l ∈ (l−qs(s), l

+
qs(s)) we have (s, l) ∈ C ∪ U .

The evolution defined here coincides with the one defined in [16], [22], [13]; for more detail
we refer the interested reader to [15]. Moreover, invoking Corollary 7.3 in [15], we deduce
easily the following uniqueness result.

Corollary 5.7 If α is a strictly increasing control then lqs is a.e. unique. In particular it does
not depend on the subsequence extracted by Helly’s theorem.

Remark 5.8 Let us make some remarks about the regularity of the evolutions. When φ
is increasing the evolution ℓ is of class C1 (Theorem 3.2) and it is defined for every time
t ∈ (0, T ) by the ordinary differential equation (5). When φ is non-decreasing ℓ is of class C0

(Theorem 4.3) and it is defined for a.e. time by the differential inclusion (12). Finally, when
φ is constant (i.e. in the quasi-static case) lqs is only of class BV and the evolution is defined
by a set of Kuhn-Tucker conditions in the sense of measures (Theorem 5.5). In synthesis, the
regularity of the evolution depends strongly on the rate of dissipated energy φ and even the
’equation of motion’ changes accordingly.

5.2 Stable and unstable points

It is very interesting to study the properties of the quasi-static evolution in terms of critical,
stable and unstable points. Indeed by (20) it easy to see that

l−
G

(τ) ∈ S(τ) ⇒ τ 6∈ S(lG) . (21)

In other terms, stable points are continuity points. In the same way, if τ ∈ S(lG) then
l−
G

(τ) ∈ U(τ). Hence discontinuity points are unstable points. As in the previous cases the
characterization is not complete since it depends on the control α whether all the unstable
points are discontinuity points.

5.3 Energy balance

Let us write the energy balance for the quasi-static evolution lqs. By the chain rule in BV it
follows that the total derivative of E(τ, lqs(τ)) is given by

dE(τ, lqs(t)) = Pext(τ, lqs(τ)) dτ −G(τ, lqs(τ)) dl
ac
qs(τ) +

∑

τ∈S(lqs)

JE(τ, lqs(τ))K δτ .

By Remark 5.6 we have
−G(τ, lqs(τ)) dl

ac
qs(τ) = −Gc dl

ac
qs(τ) .
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Moreover the jump of E in the discontinuity points of lqs is

JE(τ, lqs(τ))K = −
∫ l+qs(τ)

l−qs(τ)
G(τ, z) dz

= −Gc

(
l+qs(τ) − l−qs(τ)

)
−
∫ l+qs(τ)

l−qs(τ)
(G(τ, z) −Gc) dz

= −Gcdl
j
qs(τ) −

∫ l+qs(τ)

l−qs(τ)
(G(τ, z) −Gc) dz .

With the notation

Dqs(dlqs) = Gcdlqs , Dj(τ, lqs(τ)) =

∫ l+qs(τ)

l−qs(τ)
(G(τ, z) −Gc) dz

the total derivative becomes

dE(τ, lqs(τ)) = Pext(τ, lqs(τ)) dτ −Dqs(dlqs) −
∑

τ∈S(lqs)

Dj(τ, lqs(τ)) δτ . (22)

Note that both Dqs and Dj are non-negative measures, the first by the monotonicity of lqs

and the second by (18). In a time interval (τ1, τ2), with τi 6∈ S(lqs), the energy balance reads

E(τ2, lqs(τ2)) = E(τ1, lqs(τ1)) +

∫ τ2

τ1

Pe(τ, lqs(τ))dτ

−Gc

(
lqs(τ2) − lqs(τ1)

)
−

∑

τ∈(τ1,τ2)∩S(lqs)

Dj(τ, lqs(τ)) . (23)

It is interesting to remark that considering only the energy terms of Griffith’s theory the
energy balance would be given by the inequality

dE(τ, lqs(τ)) ≤ Pext(τ, lqs(τ)) dτ −Dqs(dlqs) ,

since Dj is positive. In some sense, when the evolution lqs is continuous the amount energy
supplied by the external forces is partly stored in the bulk and partly dissipated in the crack.
On the contrary, when the evolution has a discontinuity an extra source of dissipation appears,
as if converting elastic energy into fracture was energy consuming. It is therefore interesting
to investigate the physical origin of Dj . An answer is given in the next section in terms of
dynamic dissipation.

5.4 Convergence of the energy balance

Let us write the energy balance for the rescaled evolutions lε. By the chain rule and by (14)
we get

dE(τ, lε(τ)) = Pext(τ, lε(τ)) dτ −G(τ, lε(τ)) l̇ε(τ) dτ

= Pext(τ, lε(τ)) dτ − φ(εl̇ε(τ)) l̇ε(τ) dτ

= Pext(τ, lε(τ)) dτ −Dε(l̇ε(τ)) dτ ,
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where Dε(l̇) = D(εl̇)/ε. Hence, for every interval (τ1, τ2) we have

E(τ2, lε(τ2)) = E(τ1, lε(τ1)) +

∫ τ2

τ1

Pext(τ, lε(τ)) dτ −
∫ τ2

τ1

Dε(l̇ε(τ)) dτ .

For simplicity, assume that τi 6∈ S(lqs). Then by pointwise convergence

E(τi, lε(τi)) → E(τi, lqs(τi)) . (24)

Remembering that ul(τ, ·) = α(τ)ûl(·) and using the divergence theorem the power of external
forces can be written (for a generic l) as

Pext(τ, l) =

∫

∂DΩ
ġ(τ, x) · σl(τ, x)n̂ dx = α(τ)α̇(τ) Ê(ûl) .

Therefore, by Theorem A.1,

Pext(τ, lε(τ)) → Pext(τ, lqs(τ)) for a.e. τ ∈ (τ1, τ2).

By dominated convergence it follows that

∫ τ2

τ1

Pext(τ, lε(τ)) dτ →
∫ τ2

τ1

Pext(τ, lqs(τ)) dτ . (25)

Let us consider the dissipation. Note that Dε → Dqs pointwise. However in general

∫ τ2

τ1

Dε(l̇ε(τ)) dτ 6→
∫ τ2

τ1

Dqs(dlqs(τ)) = Gc

(
lqs(τ2) − lqs(τ1)

)
.

Let us be more precise, writing

Dε(l̇ε) = Dqs(εl̇ε)/ε+ Ddyn(εl̇ε)/ε .

By 1-homogeneity Dqs(εl̇ε)/ε = Gc l̇ε. Hence

∫ τ2

τ1

Dqs(εl̇(τ))/ε dτ = Gc

(
lε(τ2) − lε(τ1)

)
→ Gc

(
lqs(τ2) − lqs(τ1)

)
. (26)

It remains to consider the dynamic term of the dissipation which (in general) does not vanish
in the quasi-static limit. Indeed, invoking (23) together with (24)-(26) we get

∫ τ2

τ1

Ddyn(εl̇(τ))/ε dτ →
∑

τ∈(τ1,τ2)∩S(lqs)

Dj(τ, lqs(τ)) . (27)

Thus, the energy Dj dissipated in the jump accounts (in the quasi-static time frame) for the
amount of energy dissipated by Ddyn (in the real time frame).

Remark 5.9 In a more mathematical fashion, the above convergence result for the ener-
gies can be restated in terms of measures, saying that Ddyn(εl̇(τ))/ε dτ converges weakly ∗ to∑Dj(τ, lqs(τ)) δτ . Alternatively, this convergence can be seen also in the sense of graphs [7]
or by means of Cartesian currents [15]. A similar result has been obtained also in [17] in a
different context.
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5.5 Back to the real time variable

As observed at the beginning of Section 5 in the real time frame it is not usefull to consider the
pointwise limit of the slow evolutions ℓε since ℓε(t) → l0 for every t ∈ [0,+∞). A better way
is to consider rescaled times. Given τ let tε = τ/ε. Then ℓε(tε) = ℓε(τ/ε) = lε(τ) → lqs(τ) for
a.e. τ . Let us try to draw some conclusions about velocities in the rescaled times tε = τ/ε.
By (14)

ℓ̇ε(tε) = εl̇ε(τ) = φ−1
(
G(τ, lε(τ))

)
.

At this point, it is better to distinguish between continuity and discontinuity points.
Let τc 6∈ S(lqs) then lε(τc) → lqs(τc) and G(τc, lqs(τc)) ≤ Gc by (16). It follows that the

evolution ℓε become slower and slower (as εց 0) since

ℓ̇ε(tε) → φ−1
(
G(τc, lqs(τc))

)
= 0 .

On the contrary, if τs ∈ S(lqs) the evolution ℓε behaves (for ε small) as if the system was
autonomous. Let us try to explain this statement. Let τ−ε = sup{τ : lε(τ) = l−qs(τs)} and
τ+
ε = inf{τ : lε(τ) = l+qs(τs)}. Clearly τ±ε → τ . Let t±ε = τ±ε /ε. Then by (14)

ℓε(t
+
ε ) = ℓε(t

−
ε ) +

∫ t+ε

t−ε

φ−1
(
α(εt) Ĝ(ℓε(t))

)
dt .

Using the change of variable s = t − t−ε let εt = ε(t−ε + s) = τ−ε + εs and let δε = t+ε − t−ε =
(τ+

ε − τ−ε )/ε. Introducing the notation λε(s) = ℓε(t
−
ε + s) the previous equation becomes

λε(δε) = λε(0) +

∫ δε

0
φ−1

(
α(τ−ε + εs) Ĝ(λε(s))

)
ds .

Clearly λε(δε) = ℓε(t
+
ε ) = l+qs(τs) and λε(0) = ℓε(t

−
ε ) = l−qs(τs) (by definition of t±ε ). Up to

subsequences δε → δ ∈ (0,+∞] (note that in general it may happen that δ = +∞, corre-
sponding to an infinite transition time). By Helly’s theorem λε → λqs (up to subsequences);
the evolution λqs represents the evolution lqs in the real time frame. Then by dominated
convergence we get

l+qs(τs) = l−qs(τs) +

∫ δ

0
φ−1

(
α(τ) Ĝ(λqs(s))

)
ds ,

namely the solution of the system

{
λ̇qs(s) = φ−1

(
G(τ, λG(s))

)
for s ∈ [0, δ)

λqs(0) = l−qs(τs) .

Note that λqs(δ) = l+qs(τs). In conclusion, the discontinuity points of the quasi-static evolution
lqs correspond to an evolution λqs that solves an autonomous equation of motion in the real
time frame. Loosely speaking, the functions λε (or equivalently ℓε) are much faster than α
and in the limit for ε ց 0 they converge to λqs that evolves with α constant. Equivalently,
the fracture propagates much faster than the boundary condition and in the limit it moves
without any change in the boundary condition.
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5.6 Variational approach

In the light of Section 3.3 it is reasonable to expect that the variational approach, applied
in the quasi-static framework, gives an equivalent construction of the evolution lqs. As a
matter of fact, in general this is not true. Let us be more precise. Let ψqs be the quasi-static
dissipation potential

ψqs(l̇) =

{
+∞ if l̇ < 0

Gc l̇ otherwise.

Note that ψqs is again convex but not strictly convex. Consider a positive, infinitesimal
sequence of time increment ∆τ (k). Then, let lk0 = l0 and define by induction

lkn+1 ∈ argmin
{

∆τkψqs
(
(l − lkn)/∆tk

)
+ E(τk

n+1, l) : l ∈ [lkn, L]
}
.

By the above definition this is equivalent to

lkn+1 ∈ argmin
{
Gc(l − lkn) + E(τk

n+1, l) : l ∈ [lkn, L]
}
. (28)

Denote by lk the piecewise affine (or piecewise constant) interpolation of the values lkn. Being lk

non-decreasing, Helly’s Theorem yields, up to a subsequence, a non-decreasing pointwise limit,
denoted by lvar. This is the approach suggested in [9]. As already shown in [16] in general
lvar 6= lqs. This is essentially due to the fact that jumps in lvar are related to multiple wells of
the incremental energy while jumps in lqs are related to unstable branches of the evolution.
The interested reader is referred to [4] and to the references therein for the literature on the
variational approach and to [15] for a detailed comparison of the evolutions.

6 A couple of explicit numerical examples

6.1 Single Edge Notch Tension

Assume that the virgin domain is a rectangle Ω = (−1, 1)×(0, 3) of glass with Lamè coefficient
µ = 0.5 and λ = 0.5. A Dirichlet boundary condition of the form u(t, x) = α(t)ĝ(x) is imposed
on the top and on the bottom face, i.e. on ∂DΩ = {−1, 1} × [0, 3]. Let ĝ(x1, 1) = (0, 0.1) (on
the upper face) and ĝ(x1,−1) = (0,−0.1) (on the lower face). The remaining part of the
boundary ∂NΩ is traction free. A crack is expected to run horizontally along the x-axis from
left to right.

First of all, the elastic energy Ê and the energy release rate Ĝ have been computed
numerically by a finite element code on a fine structured triangulation. The results are shown
in Figure 7. As expected the elastic energy decays almost linearly if the crack is far from the
boundary; accordingly the release rate has a significant variation if the crack is either short
(l ≈ 0) or very long (l ≈ L) and it is roughly constant in the middle.

Note that the values of Ê and Ĝ are defined only on the discrete set of lenghts, corre-
sponding to the finite element discretization of the domain. Then, the values of the energy
release rate Ĝ have been interpolated by continuous piecewise polynomial functions Ĝi (see
Figure 8) with a relative error approximately of 0.02, apart from a small left neighborhood of
L.

Fracture toughness is set to Gc = 0.06 and the dissipation function ... is given by

φ(ℓ̇) =

{
(−∞, Gc] ℓ̇ = 0

Gc + ℓ̇2 ℓ̇ > 0 .
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Figure 7: Numerical values of elastic energy Ê (left) and energy release rate Ĝ (right) versus
crack length l.
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Figure 8: Comparison between Ĝ and Ĝi (bold) in the range [0, 0.8]. A zoom for values in
the range [0.055, 0.0625] (right).

We consider an initial side crack of length 0.3 and the control α(t) =
√
t. The evolution is

described by the ode {
ℓ̇(t) = φ−1

(
t Ĝi(ℓ(t))

)

ℓ(0) = l0 .
(29)

The rescaled slow evolution are the solutions of
{
εl̇ε(τ) = φ−1

(
τ Ĝi(lε(τ))

)

lε(0) = l0 .
(30)

The numerical solutions have been obtained using the solver ode15s of Matlab for stiff
differential equations, since the right hand side in (30) is not Lipschitz continuous with respect
to l. Figure 9 shows lε for ε = 1.0, 0.6, 0.2. It is intuitively clear that lε converge to lG when
ε ց 0. From Figure 9 (left) it may seem that lqs has a discontinuity in the initiation time t0
and that l+qs(t0) = L. Actually, a closer look (right) in the time interval [0.96, 1.08] shows that
a lqs has a small jump in t0, it follows the equilibrium curve up to τ ≈ 1.075, then it jumps
again disconnecting the domain.
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Figure 9: Plot of the rescaled slow evolutions lε for ε = 1.0, 0.6, 0.2 (from right to left). As ε
becames smaller the plots move to the left (see the arrow). In the limit they converge to the
quasi-static evolution lqs (bold). A detail of lqs in the time frame [0.96, 1.08].

6.2 Compact Tension

In this section we present a numerical example obtained in the astm-ct geomerty (see Figure
2). As expected, freezing the boundary condition just after the intiation time t0 the crack
arrests in finite time both in the rate dependent and in the quasi-static case.

In detail, the uncracked domain is the square Ω = (0, 2) × (0, 2) of glass with the holes
B±, where B+ is the ball with centre (0.5, 1.5) and radius 0.25 and B− the symmetric one.
A uniform Dirichlet boundary condition of the form u(t, x) = α(t)ĝ is imposed in the holes.
Specifically ĝ = (0,±0.1) in B± and α(t) = min{t, 1.2}. Thank to the symmetry the initial
side crack of length 0.25 propagates along the middle line from left to tight.

As in the previous example, the energy release rate has been first computed numerically and
then interpolated by a continuous piecewise polynomial function. In the astm-ct geometry
the deformation is in some localized (since the boundary condition is imposed on the holes),
thus the energy release rate has a peak around 0.5, corresponding to the center of the holes.

The rescaled slow propagations, solutions of (30), have been computed again with the
solver ode15s of Matlab. The results, for ε = 1.0, 0.6, 0.2 are plotted in Figure 11. It is
evident that lε stops at different finite times when the crack length is approximately 0.76.
The solutions lε are of class C1 and converge to the discontinuous quasi-static propagation
lqs. In particular lqs has a jump at the intiation time t0, it runs along the equilibrium curve
and finally, when the control is frozen, it arrests.

A The energy release rate

This appendix deals with the regularity of the energy release rate Ĝ as a function l. The proof
of the main result (Theorem A.1) is quite simple and follows closely the path of reasoning
employed in [22]; it is reported in full length for sake of self consistency and since a standard
reference is seemingly missing in the literature.

Theorem A.1 The elastic energy Ê is of class C1 in (0, L) (hence Ĝ is of class C0).

Proof. For convenience the regularity is proved in (l′, L) where 0 < l′ < L′ < L; the complete
statement follows by arbitrarity of l′ and L′. Denote K = Kl′ .
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Figure 10: Plot of elastic energy Ê (left) and energy release rate (right) versus crack length l.
Graphs of Ĝ and Ĝi (below).
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Figure 11: Plot of the rescaled slow evolutions lε for ε = 1.0, 0.6, 0.2 (from right to left) and
the quasi-static limit lqs.

1. Let us write the elastic energy in a more convenient way. Let η ∈ C∞
0 (0, L) such that

0 ≤ η ≤ 1, η = 1 in a (sufficiently small) neighborhood of l′ and such that dη/dx > −1/(L′−l′)
in (0, L). Let µ ∈ C∞

0 (−1, 1) with 0 ≤ µ ≤ 1, µ = 1 in a (small) neighborhood of 0. Define
ρ(x, y) = η(x)µ(y); clearly ρ belongs to C∞

0 (Ω) and ρ = 1 in a (small) neighborhood of (0, l′).
Given l′ < l < L′ let us define the map ψl : Ω \K → Ω \Kl as

ψl(x, y) =
(
x+ (l − l′) ρ(x, y), y

)
= (x, y) + (l − l′) ρ(x, y) ê1 .
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By the properties of η and µ it is easy to check that ψl is a smooth invertible map of
Ω \K onto Ω \Kl such that ψl(x, y) = (x, y) in a (small) neighborhood of ∂Ω and such that
ψl(x, y) = (l − l′)ê1 in a (small) neighborhood of (0, l′). Note also that ρ does not depend on
l. Clearly,

Dψl(x, y) = I + (l − l′) ê1 ⊗∇ρ(x, y) .
For l′ < l < L′ and u ∈ H1(Ω \Kl,R

2) it is convenient to write the elastic energy

Ê(l, u) =

∫

Ω\Kl

W e(ε) =

∫

Ω\Kl

W
e(Du) ,

where the energy density W
e is given (in terms of the full displacement gradient Du) by

W
e(Du) = DuCDuT ,

where C is a fourth order symmetric tensor which depends only on the Lamé coefficients.
Consider µ ∈ C∞(Ω) with µ = 1 on ∂Ω and supp(ρ) ∩ supp(µ) = ∅. Let g̃ = ĝµ. Given

u ∈ H1(Ω \Kl,R
2) with u = ĝ on ∂DΩ consider w = u ◦ ψl. Obviously w ∈ H1(Ω \K,R2)

with w = ĝ = g̃ on ∂DΩ. In terms of w the elastic energy turns out to be

Ê(l, u) =

∫

Ω\K
DwClDw

T dx ,

where
Cl = Dψ−1

l CDψ−T
l |detDψl|

is a fourth order symmetric tensor smooth with respect to l. Note that by the properties of
ψl C = I (the identity tensor) in a neighborhood of ∂Ω and in particular in supp(g̃).

Now, let V denote the space {v ∈ H1(Ω \K)withv = 0on∂DΩ} and write w = v + g̃ for
v ∈ V . Then, for v = u ◦ ψ−1

l − g̃,

Ê(l, u) =

∫

Ω\K
DvClDv

T dx+ 2

∫

Ω\K
Dg̃ClDv

T dx+

∫

Ω\K
Dg̃ClDg̃

T dx

=

∫

Ω\K
DvClDv

T dx+ 2

∫

Ω\K
Dg̃ ·DvT dx+

∫

Ω\K
Dg̃ ·Dg̃T dx ,

where the last two terms follows from the fact that C = I in supp(g̃). For convenience let us
define the energy

Ẽ(l, v) =

∫

Ω\K
DvClDv

T dx+ 2

∫

Ω\K
Dg̃DvT dx for v ∈ V

and the semi-norms

|v|1 =

(∫

Ω\K
DvDvT dx

)1/2

, |v|1,l =

(∫

Ω\K
DvClDv

T dx

)1/2

.

As 0 < l′ ≤ l ≤ L′ < L it easy to check that theyare equivalent, in particular |v1| ≤ C|v|1,l for
a suitable choice of C independent of l. Then, by Korn’s inequality, e.g. [6, Theorem 6.3-4],

‖v‖1 ≤ C|v|1,l ,
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where ‖ · ‖1 denote the norm in H1(Ω \K,R2) while C is independent of l.
Let vl denote the unique minimizer of Ẽ(l, v) in V . Obviously, vl corresponds to the

minimizer ul of Ê(l, u) by the change of variable ul = vl ◦ ψ−1
l + g̃ ◦ ψ−1

l and is characterized
by the variational formulation, i.e. by

∫

Ω\K
DvClDφ

T dx =

∫

Ω\K
Dg̃DφT dx for every φ ∈ V . (31)

2. Let us prove that the map l 7→ vl form (0, L′) to V is continuous (with respect to
‖·‖1). Note that Cl+h → Cl uniformly, in particular for φ ∈ V Cl+hDφ→ ClDφ strongly in
L2(Ω\K,R2×2). For h≪ 1, ‖vl+h‖1 is uniformly bounded, hence (up to subsequences) vl+h ⇀
v∗ in H1(Ω\K,R2). Passing to the limit with respect to h in the variational formulation gives
v∗ = vl, indeed ∫

Ω\K
Dvl+h Cl+hDφ

T dx =

∫

Ω\K
Dg̃DφT dx

converges to ∫

Ω\K
Dv∗ ClDφ

T dx =

∫

Ω\K
Dg̃DφT dx .

Let us check that |vl+h|l+h → |vl|l. Using vl+h as test function in (31) gives

|vl+h|2l+h =

∫

Ω\K
Dg̃DvT

l+h =

∫

Ω\K
Dvl ClDv

T
l+h .

Passing to the limit we get
∫

Ω\K
Dg̃DvT

l =

∫

Ω\K
Dvl ClDv

T
l = |vl|2l .

Note that for every v ∈ V

|v|2l+h − |v|2l =

∫

Ω\K
Dv
(
Cl − Cl+h

)
Dv dx ≤ |Cl+h − Cl|∞|v|21 .

Hence, writing |vl+h|l − |vl|l = (|vl+h|l − |vl+h|l+h) + (|vl+h|l+h − |vl|l) it follows that |vl+h|l
converges to |vl|l.

3. Finally, let us see that l 7→ vl is of class C1. First we check the (weak) differentiability,
i.e. that (vl+h − vl)/h ⇀ v′l in H1(Ω \K,R2). Note that

∫

Ω\K
Dvl+h Cl+hDφ

T dx =

∫

Ω\K
Dvl ClDφ

T dx .

Hence
1

h

∫

Ω\K
(Dvl+h −Dvl)ClDφ

T dx =
1

h

∫

Ω\K
Dvl+h(Cl+h − Cl)Dφ

T dx

and then
1

h

∫

Ω\K
(Dvl+h −Dvl)ClDφ

T dx −→
∫

Ω\K
Dvl C

′
lDφ

T dx .

By Riesz representation Theorem, there exists v∗ ∈ H1(Ω \K,R2) such that
∫

Ω\K
Dv∗ ClDφ

T dx =

∫

Ω\K
Dv∗ C′

lDφ
T dx .
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By definition v∗ = v′l. In particular v′l solves

∫

Ω\K
Dv′l ClDφ

T dx =

∫

Ω\K

(
Dvl C

′
l

)
DφT dx .

Arguing as in the previous step and using the continuous (linear) dependence with respect to
Dvl C

′
l follows the continuous dependence of the derivative v′l.

Remark A.2 Note that the proof of Theorem A.1 does not require any knowledge of the
singularity of the displacement field around the crack tip.
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