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Abstract. This paper studies regularity of perimiter quasimin-
imizing sets in metric measure spaces with a doubling measure
and a Poincaré inequality. The main result shows that the mea-
sure theoretic boundary of a quasiminimizing set coincides with
the topological boundary. We also show that such a set has finite
Minkowski content and apply the regularity theory study rectifi-
ability issues related to quasiminimal sets in strong A∞-weighted
Euclidean case.

1. Introduction

It is now a well-known fact that Euclidean sets with (locally) mini-
mal surfaces have smooth boundary apart from a set of co-dimension
2. This result is due to De Giorgi, see [DG1] and [DG2]. The anal-
ogous result for Euclidean quasiminimal surfaces is due to David and
Semmes [DS1], who showed that bounded sets with quasiminimal bound-
ary surfaces are uniformly rectifiable and are locally John domains.

The paper [DS1] considered a double obstacle problem in construct-
ing quasiminimal surfaces in Euclidean spaces; A similar problem was
considered by Caffarelli and de la Llave in [CL], where the setting is
C2 Riemannian manifolds. In [CL, Theorem 1.1] it is shown that given
an Euclidean hyperplane (and the manifold is obtained by a perturba-
tion of the Euclidean metric in a C2-fashion) there is a quasiminimal
surface in the Riemannian metric that lies close to the hyperplane.
In [KKST2] a double obstacle problem similar to the one considered
by [DS1] was studied in the setting of doubling metric measure spaces
supporting a (1, 1)-Poincaré inequality. It is therefore natural to ask
what type of regularity properties do the minimizing sets have away
from the boundaries of the obstacles.

In this paper we study the regularity properties of quasiminimal sets
or, more precisely, quasiminimal boundary surfaces in the setting of
metric measure spaces with a doubling measure that supports a (1, 1)-
Poincaré inequality. We will show, by modifying De Giorgi’s technique
using a part of the argument of David and Semmes, that such a set
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is porous and satisfies a measure density property. In particular, this
implies that the measure theoretic boundary of a quasiminimizing set
coincides with the topological boundary. We also show that such a
set has finite Minkowski content. In the metric setting the classical
definition of rectifiability may not be as widely applicable. For instance,
in the setting of Heisenberg groups there are sets of finite perimeter that
are not rectifiable [Mag]. Hence the finiteness of the Minkowski content
is the best one can hope for in this generality. Since the problem studied
in [CL] is a minimization problem and comes with an associated PDE,
the techniques used there are essentially of PDE. The problem studied
in [DS1] is a quasiminimization problem, and hence we find some of the
methods used in this paper to be more easily adaptable to the general
metric measure space setting.

In the last two sections of this paper we apply the regularity theory
developed in the first part of the paper to study rectifiability issues
related to quasiminimal sets in strong A∞-weighted Euclidean setting.
Observe that when equipped with a strong A∞-weight, the Euclidean
space with Euclidean metric need not satisfy a 1-Poincaré inequality.
However, there is a natural metric induced by the strong A∞-weight,
and we show in Section 6 that the Euclidean space equipped with this
natural metric and weighted measure satisfy a 1-Poincaré inequality.
Hence we are able to use the theory developed in the first part to study
rectifiability issues of the boundary of quasiminimal sets in this modi-
fied Euclidean space. We consider this application in Section 7 of this
paper. It is known that every strong A∞-weight is not comparable to
the Jacobian of a Euclidean quasiconformal mapping; it is therefore
not possible to use (unweighted) Euclidean results about regularity of
sets with quasiminimal surfaces to study rectifiability issues of bound-
aries of such sets in the strong A∞-weighted setting. We were able to
apply the theory developed in the general metric setting in the first
five sections of this paper to successfully address rectifiability issues in
this weighted Euclidean setting.

For related results about isoperimetric sets in the Carnot group set-
ting we refer the interested reader to [LR], where they show that isoperi-
metric sets (which are necessarily a special class of sets of quasiminimal
boundary surfaces) are Ahlfors regular (which also now follows from
Corollary 5.3) and are porous. Regularity for Euclidean quasimini-
mizers that are asymptotically minimizers was studied by Rigot [R],
where it was shown that if the asymptotic minimality condition is suf-
ficiently controlled, then the quasiminimal surface is Hölder smooth in
big pieces. We point out that our results about the sets with quasi-
minimal boundary surfaces apply to every boundary point of the set
(of course, a modification of such a set on a measure zero subset would
still maintain quasiminimality while destroying the regularity at some
boundary point; to avoid this trivial modification we ensure, without
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loss of generality, that each point x of the boundary of the set E sat-
isfies µ(B(x, r) ∩ E) > 0 and µ(B(x, r) \ E) > 0 for all r > 0), and
hence our results are weaker than Hölder regularity of the boundary,
but are applicable to each boundary point. Hence it might well be
that the studies related to rectifiability and weak tangents of locally
minimal surfaces in the Carnot group setting would be more approach-
able using the regularity properties studied in this paper. It is a result
of Lu and Wheeden [LW] that Carnot groups are doubling and sat-
isfy a 1-Poincaré inequality, and hence the results of this paper apply
in the setting of Carnot groups (and indeed in more general Carnot-
Carathéodory spaces, which satisfy local versions of these conditions).
A nice survey about Poincaré inequalities and isoperimetric inequalities
in the setting of Carnot groups can also be found in [J] and [Hei].

It was shown in [AKL] that a subset E, of a Carnot group, with
locally finite perimeter has vertical weak tangents for ‖DχE‖-almost
every point. Combining this with our results (in particular, the con-
sequence that every boundary point of such a set is in the measure-
theoretic boundary), we see that HQ−1-a.e. boundary point of a set of
quasiminimal boundary surface in a Carnot group has a vertical weak
tangent (Q is the homogeneous dimension of the group). The method
of [AKL] uses the group structure; it would be interesting to know
whether such results hold for other Carnot-Carathéodory spaces such
as the Grushin spaces. Note that existence of weak tangents is weaker
than rectifiability. For a different notion of rectifiability in the Carnot
group setting see [Mag, Section 3].

2. Preliminaries

A Borel regular outer measure is doubling if there is a constant C > 0
such that for every ball B ⊂ X we have 0 < µ(B) <∞ with µ(2B) ≤
C µ(B). For such a measure µ, there is a lower mass bound exponent
Q > 0; that is, whenever x ∈ X, 0 < r ≤ R, and y ∈ B(x,R), we have

µ(B(y, r))

µ(B(x,R))
≥ 1

C

( r
R

)Q
.

Given a function f and a non-negative Borel measurable function
g on X, we say that g is an upper gradient of f if whenever γ is a
rectifiable curve in X (that is, a curve with finite length), we have

|f(y)− f(x)| ≤
∫
γ

g ds, (2.1)

where x and y denote end points of γ. Here the above inequality should
be interpreted to mean that

∫
γ
g ds =∞ whenever at least one of |f(x)|

and |f(y)| is infinite; see for example [HeiK]. The collection of all upper
gradients, together, play the role of the modulus of the weak derivative
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of a Sobolev function in the metric setting. We consider the norm

‖f‖N1,1(X) := ‖f‖L1(X) + inf
g
‖g‖L1(X)

with the infimum taken over all upper gradients g of f . The Newton-
Sobolev space considered in this paper is the space

N1,1(X) = {f : ‖f‖N1,1(X) <∞}/∼,

where the equivalence relation ∼ is given by f ∼ h if and only if

‖f − h‖N1,1(X) = 0.

We say that X supports a weak (1, 1)-Poincaré inequality if there
are constants C > 0 and λ ≥ 1 such that whenever f is a function on
X with upper gradient g and B is a ball in X, we have∫

B

|f − fB| dµ ≤ Crad(B)

∫
λB

g dµ.

A function f on X is said to be of bounded variation, and denoted
f ∈ BV (X), if f ∈ L1(X) and there is a sequence {fn}n of functions
fromN1,1(X) such that fn → f in L1(X) and lim supn ‖fn‖N1,1(X) <∞.
The BV norm of such a function f is given by

‖f‖BV (X) := inf
{fn}n

lim inf
n→∞

‖fn‖N1,1(X),

where the infimum is taken over all such convergent sequences. The
BV energy norm of f is given by

‖Df‖(X) := inf
{fn}n

lim inf
n→∞

[
‖fn‖N1,1(X) − ‖fn‖L1(X)

]
.

We say that a Borel set E ⊂ X is of finite perimeter if χE ∈ BV (X).
The perimeter measure of the set E is P (E,X) := ‖DχE‖(X). See [Mi2]
and [A] for more on BV functions and sets of finite perimeter in the
metric setting. We point out here that in the Euclidean case with
Lebesgue measure the above notion coincides with the classical defini-
tion of BV functions; see for example [EG]. It was shown by Miranda
in [Mi2] that if U is the collection of all open subsets of X, then the
map U 3 O 7→ ‖Df‖(O) extends to a Radon measure on X. The
coarea formula

‖Df‖(A) =

∫ ∞
−∞

P ({x ∈ X : f(x) > t}, A) dt

was also proven in [Mi2].
In this paper, we assume that µ is a doubling Borel measure with

lower mass bound exponent Q > 1 and that X is complete and supports
a (1, 1)-Poincaré inequality. Note that we can increase the value of Q
as we like, and so assuming Q > 1 is not a serious restriction, and is
assumed merely for book-keeping. We point out here that if X supports
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a weak (1, 1)-Poincaré inequality, then whenever f ∈ BV (X) and B is
a ball in X, we have∫

B

|f − fB| dµ ≤ C rad(B) ‖Df‖(λB).

When considering the function f = χE for set E ⊂ X, the above
inequality implies the relative isoperimetric inequality

min{µ(B ∩ E), µ(B \ E)} ≤ C rad(B)P (E, λB).

In this paper C will denote constants whose precise values are not
needed, and so the value of C might differ even within the same line.

It is well known that the Poincaré inequality implies a Sobolev-
Poincaré inequality if the measure is doubling. Indeed, by [HaKo] we
have (∫

B

|u− uB|t dµ
)1/t

≤ Crad(B)

∫
λB

gu dµ.

with t = Q/(Q − 1) for all u ∈ N1,1(X). By the definition of the
BV class, lower semicontinuity of the BV norm, and the Lebesgue
dominated convergence theorem, we obtain the Sobolev inequality(∫

B

|u− uB|t dµ
)1/t

≤ Crad(B)
‖Du‖(2λB)

µ(2λB)

for all u ∈ BV (X).

Lemma 2.2. Let u ∈ BV (X) and A = {x ∈ B : |u(x)| > 0}. If
µ(A) ≤ γµ(B) for some 0 < γ < 1, then(∫

B

|u|t dµ
)1/t

≤ C

1− γ1−1/t
rad(B)

‖Du‖(2λB)

µ(2λB)

with t = Q/(Q− 1).

Proof. By Minkowski’s inequality and the above-mentioned Sobolev
inequality, (∫

B

|u|t dµ
)1/t

≤
(∫
B

|u− uB|t dµ
)1/t

+ |uB|

≤ Crad(B)
‖Du‖(2λB)

µ(2λB)
+ |uB|.

(2.3)
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By the assumption on u and Hölder’s inequality,

|uB| ≤
∫
B

|u| dµ =
1

µ(B)

∫
A

|u| dµ

≤ 1

µ(B)

(∫
A

|u|t dµ
)1/t

µ(A)1−1/t

=
1

µ(B)

(∫
B

|u|t dµ
)1/t

µ(A)1−1/t

=
(µ(A)

µ(B)

)1−1/t(∫
B

|u|t dµ
)1/t

≤ γ1−1/t
(∫
B

|u|t dµ
)1/t

.

So by (2.3),

(1− γ1−1/t)
(∫
B

|u|t dµ
)1/t

≤ C rad(B)
‖Du‖(2λB)

µ(2λB)
,

from which the lemma follows. �

Corollary 2.4. If u ∈ BV (X) such that u = 0 in X \ B and X \ 2B
is non-empty, then(∫

B

|u|t dµ
)1/t

≤ Crad(B)
‖Du‖(B)

µ(B)
.

Proof. Since X\2B is non-empty, and because by the Poincaré inequal-
ity X is path-connected, it follows that there is a point y ∈ 2B \ B
such that d(y, x) = 3r/2 where B = B(x, r). Therefore by the doubling
property of the measure µ, we have

µ(2B \B) ≥ µ(B)/C ≥ µ(2B)/C2

for some constant C > 1. Because A = {z ∈ 2B : |u(z)| > 0} is a
subset of B, it follows that

µ(A)

µ(2B)
≤ µ(B)

µ(2B)
=
µ(2B)− µ(2B \B)

µ(2B)
≤ 1− C−2 < 1.

We can take γ = 1−C−2 in Lemma 2.2 to obtain the desired inequality.
�

3. Quasiminimizing surfaces and quasiminimizers

Definition 3.1. Let E ⊂ X be a Borel set of finite perimeter and
Ω ⊂ X be an open set. We say that E is a K-quasiminimal set, or has
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a K-quasiminimal boundary surface, in Ω if for all open U b Ω and for
all Borel sets F,G b U ,

P (E,U) ≤ K P ((E ∪ F ) \G,U).

We say that a function u ∈ BV (Ω) is a K-quasiminimizer if for all
ϕ ∈ BV (Ω) with support in U b Ω,

‖Du‖(U) ≤ K ‖D(u+ ϕ)‖(U).

Lemma 3.2. If E is a K-quasiminimal set in Ω, then u = χE|Ω is a
K-quasiminimizer in Ω.

Proof. Since E is of finite perimeter, it follows that u ∈ BV (Ω). Also, if
ϕ ∈ BV (Ω) with support in U b Ω, then for 0 < t < 1, when x ∈ X \U
we have (u+ ϕ)(x) > t if and only if x ∈ E, and consequently

P ({u+ ϕ > t}, U) ≥ K−1 P (E,U),

and so by the coarea formula,

‖Du‖(U) = P (E,U) =

∫ 1

0

P (E,U) dt

≤ K

∫ 1

0

P ({u+ ϕ > t}, U) dt

≤ K

∫
R
P ({u+ ϕ > t}, U) dt = K ‖D(u+ ϕ)‖(U),

which shows that u is a K-quasiminimizer. �

4. Density

The main result of this section is Theorem 4.2, where we prove a
uniform measure density estimate for quasiminimal sets. To prove the
main result, we need the following lemma. For a proof of this lemma,
we refer to [Gia, Lemma 5.1].

Lemma 4.1. Let R > 0 and f : (0, R]→ [0, 1) be a bounded function.
Suppose that there exist some α > 0, 0 ≤ θ < 1, and γ ≥ 0 such that
for all 0 < ρ < r ≤ R <∞ we have

f(ρ) ≤ γ(r − ρ)−α + θf(r).

Then there is a constant c = c(α, θ) so that for all 0 < ρ < r ≤ R,

f(ρ) ≤ cγ(r − ρ)−α.

The next result implies that every boundary point of a set of quasi-
minimal surface belongs to the measure theoretic boundary.
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Theorem 4.2. If E is a quasiminimal set in Ω, then by modifying E
on a set of measure zero if necessary, there exists γ0 > 0 such that for
all z ∈ Ω ∩ ∂E,

µ(B(x, r) ∩ E)

µ(B(x, r))
≥ γ0 and

µ(B(x, r) \ E)

µ(B(x, r))
≥ γ0

whenever 0 < r < diam(X)/3 such that B(x, 2r) ⊂ Ω. The density
constant γ0 depends solely on the doubling constant, the constants as-
sociated with the Poincaré inequality, and the quasiminimality constant
K.

Proof. We can modify E on a set of measure zero so that µ(B(x, r) ∩
E) > 0 for all x ∈ E and r > 0, and µ(B(x, r)\E) > 0 for all x ∈ X \E
and r > 0. This is done by removing points x ∈ E for which there is
a positive number rx such that µ(B(x, rx) ∩ E) = 0 (and in doing so,
note that we remove the ball B(x, rx) from E as well since all points
in this ball also satisfy this condition) and adding into E points y for
which there is a positive number ry such that µ(B(y, ry) \E) = 0 (and
in doing so, note that we include the ball B(y, ry) back into E). By
Lebesgue differentiation theorem, such a modification is done only on
a set of µ-measure zero. This implies that for all x ∈ ∂E and r > 0,
we have

µ(B(x, r) ∩ E) > 0 and µ(B(x, r) \ E) > 0.

By the relative isoperimetric inequality, we conclude that

P (E,B(x, r)) > 0.

Let u = χE, and for z ∈ Ω let R > 0 such that B(z, 2R) ⊂ Ω
with 0 < R < diam(X)/3. For 0 < r < R let η be a C/(R − r)–
Lipschitz continuous function such that η = 1 on B(z, r) and η = 0 on
X \B(z,R), with 0 ≤ η ≤ 1 on X. Set

v = u− ηu = (1− η)u.

Then v = u on X \B(z,R), and so by the quasiminimality property of
u and the product rule

‖Du‖(B(z, r)) ≤ ‖Du‖(B(z,R)) ≤ K‖Dv‖(B(z, R))

≤ K

(
‖Du‖(B(z, R) \B(z, r)) +

C

R− r

∫
B(z,R)

u dµ

)
.

Observe that η is a bounded Lipschitz function and so the product rule
is valid. By setting θ = K/(K + 1) < 1, we see that

‖Du‖(B(z, r)) ≤ θ‖Du‖(B(z, R)) +
C

R− r

∫
B(z,R)

u dµ.
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Hence by Lemma 4.1, there is a constant C > 0, which is independent
of z,R and E, such that

‖Du‖(B(z, r)) ≤ C

R− r

∫
B(z,R)

u dµ =
C

R− r
µ(E ∩B(z,R)).

For r = 3
4
R, from the above we get

‖Du‖(B(z, 3
4
R)) ≤ 2C

R
µ(B(z,R) ∩ E). (4.3)

Let ν be a 2C/R–Lipschitz function such that 0 ≤ ν ≤ 1 on X, ν = 1
on B(z, 1

2
R), and ν = 0 on X \B(z, 3

4
R). Setting ϕ = νu, the product

rule implies that

‖Dϕ‖(B(z, 3
4
R)) ≤ ‖Du‖(B(z, 3

4
R)) +

2C

R
µ(E ∩B(z, R)).

So by (4.3), we arrive at

‖Dϕ‖(B(z, 3
4
R)) ≤ 2C

R
µ(E ∩B(z, R)). (4.4)

Notice that ϕt = ϕ = χE in B(x,R/2) and therefore by Corollary 2.4
and (4.4), we obtain(

µ(B(z, R
2

) ∩ E)

µ(B(z, R
2

))

)1−1/Q

=
( ∫
B(z,

R
2

)

ϕt dµ
)1/t

≤CR
‖Dϕ‖(B(z, 3

4
R))

µ(B(z, 3
4
R))

≤C µ(B(z,R) ∩ E)

µ(B(z,R))
.

(4.5)

Applying the above argument also to X \ E, we see that(
µ(B(z, R

2
) \ E)

µ(B(z, R
2

))

)1−1/Q

≤ C
µ(B(z,R) \ E)

µ(B(z,R))
. (4.6)

Up to now we have been using an adaptation of a part of the De
Giorgi machinery. To complete the proof we adapt the proof of [DS1,
Lemma 3.30]. Recall that by our assumption, if x ∈ Ω∩ (E ∪ ∂E) and
r > 0 then µ(B(x, r)∩E) > 0. For x ∈ Ω∩ (E ∪ ∂E) and z ∈ B(x, R

4
),

by the doubling property of µ, we have

µ(B(z, R
2

) ∩ E)

µ(B(z, R
2

))
≤ Cd

µ(B(x,R) ∩ E)

µ(B(x,R))
. (4.7)

Let γ0 = 1/(CQCd) > 0, where C is as in (4.5). Suppose that

µ(B(x,R) ∩ E)

µ(B(x,R))
= γ < γ0.
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For positive integers j we set Bj = B(z,R/2j). Then by a repeated
application of (4.5), with t = Q/(Q− 1) > 1, we obtain

µ(Bj ∩ E)

µ(Bj)
≤
(
C
µ(Bj−1 ∩ E)

µ(Bj−1)

)Q/(Q−1)

≤ CQ/(Q−1)

(
C
µ(Bj−2 ∩ E)

µ(Bj−2)

)(Q/(Q−1))2

≤ Ct+t2+···+tj−1

(
µ(B1 ∩ E)

µ(B1)

)tj−1

≤ CQtj−1

(Cdγ)t
j−1

=
(
CQCdγ

)tj−1

,

where we also used (4.7). Since CQCdγ < 1, it follows that for all
z ∈ B(x,R/4),

lim inf
r→0

µ(B(z, r) ∩ E)

µ(B(z, r))
= 0,

and the Lebesgue differentiation theorem now implies that µ(B(x,R/4)∩
E) = 0, resulting in a contradiction. Consequently, we have

µ(B(x,R) ∩ E)

µ(B(x,R))
≥ γ0.

A similar argument for X \ E also gives

µ(B(x,R) \ E)

µ(B(x,R))
≥ γ0.

This completes the proof. �

5. Porosity

By a result of David and Semmes [DS1], sets with quasiminimal
surfaces in the complement of two disjoint cubes in the Euclidean space
are uniform domains whose complements are also uniform (and indeed,
are isoperimetric sets). Whether quasiminimal surfaces must enclose
uniform domains is still open in the general metric setting, but now
that we know such sets have each boundary point as a point of density
for both the set and its complement, we next show that these sets are
uniformly locally porous. For us, the porosity is a reasonable weakening
of the uniform domain condition.

By Theorem 4.2, without loss of generality we may assume that every
point x ∈ Ω ∩ ∂E has the property that

µ(B(x, r) ∩ E)

µ(B(x, r))
≥ γ0 and

µ(B(x, r) \ E)

µ(B(x, r))
≥ γ0

whenever 0 < r < diam(X)/3 such that B(x, 2r) ⊂ Ω,
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Lemma 5.1. Let E be a quasiminimal set in Ω and x ∈ Ω∩∂E. Then
there exist r0 and C > 0 such that

C−1 µ(B(x, r))

r
≤ P (E,B(x, r)) ≤ C

µ(B(x, r))

r
,

whenever 0 < r < r0 such that B(x, 2r) ⊂ Ω. The constant C is
independent of x and r.

Proof. The inequality on the left-hand side follows immediately from
the density property of both E and X \ E together with the relative
isoperimetric inequality, so it suffices to prove the inequality on the
right-hand side.

By the results in [KKST1, Lemma 6.2], we have that for all r > 0
there exists r < ρ < 2r (indeed, a positive 1-dimensional measure
amount of them) such that

P (B(x, ρ)) ≈ µ(B(x, ρ))

ρ

and we can also choose such ρ so that P (E, S(x, ρ)) = 0, where

S(x, ρ) = {z ∈ X : d(z, x) = ρ}
is the sphere centered at x with radius ρ. Fix ε > 0. Then B(x, r) ⊂
B(x, ρ) ⊂ B(x, ρ+ ε), and so by the quasiminimizer property of E we
have

P (E,B(x, r)) ≤ P (E,B(x, ρ+ ε)) ≤ K P (E ∪B(x, ρ), B(x, ρ+ ε))

≤ K [P (B(x, ρ), B(x, ρ+ ε)) + P (E,B(x, ρ+ ε) \B(x, ρ− ε))]
= K [P (B(x, ρ)) + P (E,B(x, ρ+ ε) \B(x, ρ− ε))] .

Since P (E, S(x, ρ)) = 0, we have that

lim
ε→0

P (E,B(x, ρ+ ε) \B(x, ρ− ε)) = 0.

It follows from the choice of ρ and the doubling property of µ that

P (E,B(x, r)) ≤ K P (B(x, ρ)) ≈ K
µ(B(x, ρ))

ρ
≈ CK

µ(B(x, r))

r
. �

Theorem 5.2. If E is a quasiminimal set in Ω, then E and X \E are
locally porous in Ω; that is, for every x ∈ Ω ∩ ∂E there exists rx > 0
and C ≥ 1 such that whenever 0 < r < rx, there are points y ∈ B(x, r)
and z ∈ B(x, r) such that

B(y, r/C) ⊂ E ∩ Ω and B(z, r/C) ⊂ X \ E.
The constant C is independent of x, r. Furthermore, rx depends on x
only so far as to have B(x, 10rx) ⊂ Ω.

Proof. Fix x ∈ Ω∩∂E. For r > 0 such that B(x, 4r) ⊂ Ω, let 0 < ρ ≤ r
such that for all y ∈ B(x, r) ∩ E the ball B(y, ρ) intersects X \ E.
Note that ρ = r would satisfy this requirement. If there is some ρ with
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r/20 < ρ < r/10 such that the above condition fails, then there is some
y ∈ B(x, r)∩E such that B(y, r/20) ⊂ E, and the porosity requirement
is satisfied at the scale r. If not, we can choose ρ < r/10 so that for
every y ∈ B(x, r) ∩ E, the set B(y, ρ) \ E is non-empty. In this case,
we can cover B(x, r) ∩ E by a family of balls {B(yi, 10ρ)}i, such that
the collection {B(yi, 2ρ)}i is pairwise disjoint. Then by the doubling
property of µ together with the density property of the previous section,

γ0 µ(B(x, r)) ≤ µ(B(x, r) ∩ E)

≤
∑
i

µ(B(yi, 10ρ)) ≤ C
∑
i

µ(B(yi, ρ)).

Note that by the density results of the previous section,

µ(B(yi, 2ρ) ∩ E) ≥ C µ(B(yi, 2ρ))

and

µ(B(yi, 2ρ) \ E) ≥ C µ(B(yi, 2ρ)).

Hence by the relative isoperimetric inequality,

P (E,B(yi, 2ρ)) ≥ 1

C

µ(B(yi, ρ))

ρ
.

By the pairwise disjointness property of the above family of balls and
the relative isoperimetric inequality combined with the density prop-
erty of the previous section and the choice of ρ, we have

P (E,B(x, 2r)) ≥
∑
i

P (E,B(yi, 2ρ))

≥
∑
i

1

C

µ(B(yi, ρ))

ρ
≥ 1

C

µ(B(x, r))

ρ
.

By Lemma 5.1, we now have

1

C

µ(B(x, r))

ρ
≤ C

µ(B(x, r))

r
,

and consequently ρ ≥ r/C. This means that there is a point y ∈
B(x, r)∩E such that B(y, r/2C) ⊂ E, thus proving the porosity of E.
Similar argument with X \E, which also is a quasiminimal set since E
is a quasiminimal set, gives the porosity of X \ E in Ω. �

The following corollary is a consequence of the porosity property
proved above. Note that in the Euclidean setting, if a set satisfies the
conclusion of the following corollary, then it is uniformly rectifiable; see
for example the discussion in [DS1]. Indeed, David and Semmes use
this fact together with the notion of tangent hyperplanes to prove that
E then has to be locally a John domain.

As a consequence of the following corollary together with the results
from [LT, Theorem 4.1], the Assouad dimension of ∂E is at most Q−1,
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and by [LT, Theorem 4.2], the Assouad dimension of ∂E is Q−1 if the
measure µ is Ahlfors Q-regular, that is,

µ(B) ≈ rad(B)Q.

In [LT] the supremum of all such possible α is called the Aikawa
co-dimension of ∂E. We also refer to [LT] for the definition of the
Minkowski content of codimension α. We denote δE(x) = dist(x,X\E).

Corollary 5.3. If E a quasiminimal set in domain Ω, then, then Ω ∩
∂E has finite Minkowski content of codimension α for 0 < α < 1, and∫

B(x0,r)∩E

1

δE(y)α
dµ(y) ≤ C

µ(B(x0, r))

rα

for all x0 ∈ ∂E and r > 0 such that B(x0, 10λr) ⊂ Ω. Furthermore, if
α ≥ 1 then ∫

B(x0,r)∩E

1

δE(y)α
dµ(y) =∞.

Proof. By the Cavalieri principle, we see that∫
B(x0,r)∩E

1

δE(y)α
dµ(y)

=

∫ ∞
0

µ
(
{y ∈ B(x0, r) ∩ E : δE(y)−α > t}

)
dt

≈
∫ ∞

0

µ ({y ∈ B(x0, r) ∩ E : δE(y) < s}) ds

s1+α

≈
∫ r

0

µ ({y ∈ B(x0, r) ∩ E : δE(y) < s}) ds

s1+α

+

∫ ∞
r

µ(E ∩B(x0, r))

s1+α
ds

≈
∫ r

0

µ(E+
s ∩B(x0, r))

s1+α
ds+ C

µ(B(x0, r))

rα
.

Here

E+
s =

⋃
x∈∂E

B(x, s) ∩ E.

To compute the measure of E+
s ∩B(x0, r), we can cover E+

s ∩B(x0, r)
by countably many balls 5λBj with radius 5λs, such that λBj are
pairwise disjoint. We also ensure that 5λBj has its center located in
B(x0, r) ∩ ∂E. Now we have by the relative isoperimetric inequality
and the porosity of E and Ω \ E that

µ(Bj) ≤ C sP (E, λBj).
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Thus by the doubling property of µ we conclude that

µ(E+
s ∩B(x0, r)) ≤

∑
j

µ(5λBj) ≤ C
∑
j

µ(Bj)

≤ Cs
∑
j

P (E, λBj) ≤ CsP (E,B(x0, 2λr)).

By Lemma 5.1, we know that

P (E,B(x0, 2λr)) ≈
µ(B(x0, r))

r
.

Hence we can conclude that∫ r

0

µ(E+
s ∩B(x0, r))

s1+α
ds ≤ C

µ(B(x0, r))

r

∫ r

0

ds

sα
,

and so ∫
B(x0,r)∩E

1

δE(y)α
dµ(y) ≤ C

µ(B(x0, r))

rα
.

To see the second part of the claim, we can use the fact that the balls
λBj are pairwise disjoint, together with Lemma 5.1 from which we get
that µ(Bj) ≈ s P (E, λBj), to obtain

µ(E+
s ∩B(x0, r)) ≥

1

C

∑
{j:5λBj⊂B(x0,r)}

µ(Bj) ≥
s

C
P (E,B(x0,

r
5λ

)),

from which we see that when α ≥ 1,∫
B(x0,r)∩E

1

δE(y)α
dµ(y) ≥ 1

C
P (E,B(x0,

1
5λ
r))

∫ r

0

ds

sα
=∞.

�

Remark 5.4. The above proof also indicates that

C−1 s P (E,B(x0,
1

5λ
r)) ≤ µ(E+

s ∩B(x0, r)) ≤ C sP (E,B(x0, 2λr))

whenever x0 ∈ ∂E and B(x0, 10λr) ⊂ Ω.

If E is a quasiminimal set, then by the density property of the pre-
vious section, we have E = int(E), and so we can replace E with its
interior int(E). So we may assume that E is open. From the density
property again, we can see that connected components of E are also
quasiminimal sets in Ω. So throughout the rest of the paper we will
assume that in addition E is a connected open set, that is, a domain,
of (uniformly locally) quasiminimal surface.

We say that a domain E is a BVl-extension domain (in the sense
of [BuMa] and [BaMo]) if there are constants C ≥ 1 and δ > 0 such
that whenever u ∈ BV (E) such that the diameter of the support of u
is smaller than δ, then there is a function Tu ∈ BV (X) such that

‖DTu‖(X) ≤ C ‖Du‖(E)

and Tu = u on E.
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Lemma 5.5. If E is a domain of (uniformly) locally quasiminimal
surface, then it is a BVl-extension domain.

Proof. Let the uniform quasiminimality constant be denoted K ≥ 1.
Let F ⊂ E be a set of finite perimeter in E with diam(F ) < δ. By
the criterion of BVl-extension domains found in [BuMa] and [BaMo],
to verify that E is a BVl-extension domain it suffices to prove that we

can extend every such F to a set F̂ such that

P (F̂ , X) ≤ (1 +K)P (F,E).

Indeed, via approximation of BV functions by Lipschitz functions and
by the coarea formula, it suffices to prove the above claim for relatively
closed (in E) and bounded subsets F of E. We will show that we can

choose F̂ = F .
To see this, note that

P (F,X) = P (F,E) + P (F, ∂E),

and so we need to show that

P (F, ∂E) ≤ K P (F,E).

Fix ε > 0. Let Ω be a relatively compact open subset of X such that
F b Ω. We can take Ω sufficiently small so that P (E,Ω \ F ) < ε.

Then by the local quasiminimality property of E, we see that

P (E,Ω) ≤ KP (E \ F,Ω). (5.6)

Since

P (E,Ω) = P (E,Ω \ F ) + P (E,F ) = P (E,Ω \ F ) + P (F, ∂E)

and

P (E \ F,Ω) = P (E,Ω \ F ) + P (E \ F, F ) = P (E,Ω \ F ) + P (F,E),

the estimate (5.6) implies that

P (F, ∂E) ≤ KP (F,E) + (K − 1)ε.

By letting ε→ 0, we obtain

P (F, ∂E) ≤ KP (F,E). �

Recall that a domain E is a local John domain if there exist constants
C, δ > 0 such that whenever x0 ∈ ∂E and 0 < r < δ, for all points
x ∈ B(x0, r) ∩ E there is a point y ∈ E ∩B(x0, Cr) with δE(y) ≥ r/C
and a curve γ ⊂ E, called a John curve, connecting x to y satisfying

`(γx,z) ≤ C δE(z)

for all z ∈ γ; here γx,z denotes a subcurve of γ with end points x
and z. We conclude this section with the following open question: if
E is a domain of locally quasiminimal surface, then is it true that E
is a local John domain? In the Euclidean setting this question was
answered in the affirmative by David and Semmes [DS1]. The crucial
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part of the proof of [DS1] is to show that the boundary of a set of
quasiminimal surface lies locally close to a hyperplane; in the setting
of metric measure spaces one does not have such a structure, and the
challenge is to construct an alternative approach.

6. Support of Poincaré inequality in (Rn, d, µ).

Let ω be a strong A∞-weight on Rn. Then we have that with the
measure µ on Rn defined by the density condition

dµ(x) = ω(x) dLn(x),

there is a metric d on Rn and a constant C ≥ 1 such that whenever
x, y ∈ Rn and Bx,y is the smallest Euclidean ball in Rn containing x

and y (that is, Bx,y = B(x+y
2
, |x−y|

2
)),

1

C
µ(Bx,y)

1/n ≤ d(x, y) ≤ Cµ(Bx,y)
1/n.

Since strong A∞-weights are A∞-weights, ω is a Muckenhoupt Ap-
weight for some p. It follows that µ is a doubling measure with respect
to the Euclidean metric. Hence, we have a constant C ≥ 1 such that
whenever x, y ∈ Rn,

1

C
µ(B(x, |x− y|)) ≤ d(x, y)n ≤ Cµ(B(x, |x− y|)). (6.1)

For the definition and properties of strong A∞-weights, we refer to
[DS2].

The metric space we consider here is (Rn, d, µ). Balls in this metric
are denoted with the superscript d in order to distinguish them from
the Euclidean balls. So

Bd(x, r) = {y ∈ Rn : d(x, y) < r},

while

B(x, r) = {y ∈ Rn : |x− y| < r}.
We note that the topology generated by the metric d is the same one
as the Euclidean topology.

In this section we show that when the measure µ on Rn is given by a
strong A∞-weight, then the space (Rn, d, µ) is an Ahlfors regular space
supporting a (1, 1)-Poincaré inequality. Note that not all strong A∞-
weights are A1-weights, and so in general the space (Rn, | · |, µ) need
not support a (1, 1)-Poincaré inequality. The next result states that
(Rn, d, µ) is Ahlfors n-regular.

Lemma 6.2. There is a constant C ≥ 1 such that whenever x ∈ Rn

and r > 0, we have

1

C
rn ≤ µ(Bd(x, r)) ≤ Crn.
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Proof. Let y ∈ ∂Bd(x, r) such that

|y − x| = sup{|x− z| : z ∈ ∂Bd(x, r)}.

Note that as B
d
(x, r) is compact, such y exists. Then Bd(x, r) ⊂

B(x, |x− y|), and so by (6.1), we have

µ(Bd(x, r)) ≤ µ(B(x, |x− y|)) ≤ Cd(x, y)n = Crn.

Next, let z ∈ ∂Bd(x, r) such that

|x− z| = inf{|x− z| : z ∈ ∂Bd(x, r)}.
Then B(x, |x− z|) ⊂ Bd(x, r), and so again by (6.1) we have

µ(Bd(x, r)) ≥ µ(B(x, |x− z|)) ≥ 1

C
d(x, z)n =

1

C
rn,

completing the proof. �

Lemma 6.3. There is a Borel set F ⊂ Rn with |F | = 0 such that when-
ever γ is a curve in Rn which is rectifiable with respect to the Euclidean
metric, it is rectifiable with respect to the metric d if

∫
γ
∞χF + ω1/n ds

is finite. In this case we also have that the length of γ with respect to
the metric d, denoted `d(γ), satisfies

`d(γ) ≈
∫
γ

ω1/n ds.

Proof. Fix x ∈ Rn. Then for y ∈ Rn, by (6.1) we have

d(x, y)

|x− y|
≈ µ(B(x, |x− y|))1/n

|x− y|

≈ 1

|B(x, |x− y|)|1/n

(∫
B(x,|x−y|)

ω(z) dz

)1/n

≈
(

1

|B(x, |x− y|)|

∫
B(x,|x−y|)

ω(z) dz

)1/n

.

Denote

ρ(x) = lim inf
y→x

d(x, y)

|x− y|
and ρ(x) = lim sup

y→x

d(x, y)

|x− y|
.

Since ω ∈ L1
loc(Rn) (the integrals being taken with respect to the

Lebesgue measure), we see by Lebesgue differentiation theorem that
for almost every x ∈ Rn,

ω(x)1/n = lim
y→x

(
1

|B(x, |x− y|)|

∫
B(x,|x−y|)

ω(z) dz

)1/n

≤ Cρ(x) ≤ Cρ(x)

≤ C2 lim
y→x

(
1

|B(x, |x− y|)|

∫
B(x,|x−y|)

ω(z) dz

)1/n

= C2ω(x)1/n.
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Let F be the set of all non-Lebesgue points of ω; then µ(F ) = |F | = 0.
Let γ be an Euclidean rectifiable curve with

∫
γ
∞χF + ω1/n ds < ∞.

Then H1(γ−1(γ ∩ F )) = 0, and in addition we have∫
γ

ρ ds ≤ `d(γ) ≤
∫
γ

ρ ds,

where `d(γ) is the length of γ in the metric d. It follows that∫
γ

ω1/n ds ≤ C`d(γ) ≤ C2

∫
γ

ω1/n ds. �

Lemma 6.4. If u is Lipschitz continuous with respect to the metric d,
then u ∈ W 1,n

loc (Rn).

Proof. Let h ∈ R, and let ej, j = 1, . . . , n denote the standard or-
thonormal basis for Rn. Since u is Lipschitz with respect to the metric
d, we see by (6.1) that

|u(x+ hej)− u(x)| ≤ Cd(x, x+ hej) ≤ Cµ(B(x, |h|))1/n.

Thus, for a ∈ Rn, R > 0 and |h| ≤ R, by Fubini’s theorem we see that∫
B(a,R)

|u(x+ hej)− u(x)|n dx ≤ C

∫
B(a,R)

µ(B(x, |h|)) dx

≤ C

∫
B(a,R)

∫
B(a,2R)

χB(x,|h|)(y) dµ(y) dx

= C

∫
Rn

∫
Rn

χB(a,R)(x)χB(x,|h|)(y) dµ(y) dx

= C

∫
Rn

∫
Rn

χB(a,R)(x)χB(y,|h|)(x) dx dµ(y)

≤ C|h|n
∫
B(a,2R)

dµ(y) = C|h|n µ(B(a, 2R)).

So whenever Ω b Rn is an open set and Ω′ b Ω, we can cover Ω′ by
a countable collection {Bi} of balls of radius R = dist(Ω′,Rn \ Ω)/2
centered at points in Ω′ and with bounded overlap of the balls {2Bi},
to obtain that∫

Ω′

|u(x+ hej)− u(x)|n

|h|n
dx ≤

∑
i

∫
Bi

|u(x+ hej)− u(x)|n

|h|n
dx

≤ C
∑
i

µ(2Bi) ≤ Cµ(Ω) <∞.

So by [GT, Lemma 7.24], we see that u ∈ W 1,n
loc (Rn). �

By Lemma 6.4 we know that if u is Lipschitz continuous with respect
to the metric d, then it has an Euclidean weak derivative ∇u, and that
|∇u| is a minimal 1-weak upper gradient (in the Euclidean metric) of
u.
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In order to prove that (Rn, d, µ) supports a (1, 1)-Poincaré inequality,
it suffices to prove the inequality for Lipschitz functions with respect
to d and their continuous upper gradients in the metric d; see for
example [Ke]. Let u be a Lipschitz function with continuous upper
gradient g in (Rn, d, µ).

Lemma 6.5. We have a constant C > 0, that is independent of g and
u, such that

|∇u(x)| ≤ Cω(x)1/ng(x)

for almost every x ∈ Rn.

Proof. As in the proof of Lemma 6.4, we let ej, j = 1, . . . , n, denote the
canonical orthonormal basis of Rn. For each j = 1, . . . , n, we consider
the collection Γj of all line segments parallel to the direction of ej.
From [V, Section 7.2, page 21], we know that whenever Γ ⊂ Γj satisfies
Mod1(Γ) = 0, we have ∣∣∣ ⋃

γ∈Γ

∪z∈γz
∣∣∣ = 0.

Let Γa denote the collection of all compact line segments in Γj
for which

∫
γ
∞χF + ω1/n ds = ∞ (with F as in Lemma 6.3). Since

by Hölder’s inequality we know that ω1/n ∈ L1
loc(Rn), it follows that

Mod1(Γa) = 0; see for example [KoMc].
Since u is Lipschitz continuous with respect to d and the topology

induced by d and the Euclidean topology coincide, we see that u is
continuous in the Euclidean space Rn. By Lemma 6.4 we also know
that u ∈ W 1,1

loc (Rn). It follows from the discussion in [V] that u is
absolutely continuous on Mod1-almost every compact Euclidean rec-
tifiable curve in Rn. Let Γb denote the collection of all line segments
γ in Γj along which (u, |∇u|) does not support the upper gradient in-
equality (2.1); that is, there is some sub-segment β of γ for which the
inequality (2.1) fails. Since |∇u| is a 1-weak upper gradient of u, it
follows that Mod1(Γb) = 0. Furthermore, let Γc denote the collection
of all segments γ ∈ Γj for which

∫
γ
|∇u| ds is infinite.

Because g is an upper gradient of u in the metric d, by Lemma 6.3
we know that whenever γ ∈ Γj \Γa, for all sub-segments β of γ we have

|u(xβ)− u(yβ)| ≤ C

∫
β

ω1/ng ds.

Here xβ and yβ denote the two end points of β. It follows that if
γ 6∈ Γb ∪ Γc as well, then for H1-almost every point x ∈ β,

|∂ju(x)| ≤ Cω1/n(x)g(x).

Note that Modp(Γa ∪ Γb ∪ Γc) = 0. Hence by the use of [V] again, we
see that for almost every x ∈ Rn we have

|∂ju(x)| ≤ Cω1/n(x)g(x).
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Now the conclusion follows by summing up over j = 1, . . . , n. �

We next compare Euclidean balls with balls in the metric d.

Lemma 6.6. There is a constant C > 0 such that whenever x ∈ Rn

and r > 0, there exist positive numbers λrx and τ rx such that

B(x, λrx r) ⊂ Bd(x, r) ⊂ B(x,Cλrx r) (6.7)

and

Bd(x, τ rx r) ⊂ B(x, r) ⊂ Bd(x,Cτ rx r). (6.8)

Proof. Since µ is a doubling measure on the Euclidean space Rn and
Rn is uniformly perfect, there is a constant Q1 > 0 such that whenever
0 < r < R,

µ(B(x, r))

µ(B(x,R))
≤ C

( r
R

)Q1

. (6.9)

Let zrx, y
r
x ∈ ∂Bd(x, r) such that for y ∈ ∂Bd(x, r) we have |x − zrx| ≤

|x− y| ≤ |x− yrx|. Then set

λrx =
|x− zrx|

r
.

We have

B(x, |x− zrx|) = B(x, λrx r) ⊂ Bd(x, r) ⊂ B(x, |x− yrx|).
Because of the upper mass bound (6.9), by the twice-repeated use
of (6.1),

1

C
≤ µ(B(x, |x− zrx|))
µ(B(x, |x− yrx|))

≤ C

(
|x− zrx|
|x− yrx|

)Q1

,

and so it follows that |x − yrx| ≤ C|x − zrx|, whence we obtain that
B(x, |x− yrx|) ⊂ B(x,C|x− zrx|), and this proves (6.7).

To prove (6.8), we consider wrx ∈ ∂B(x, r) such that d(x,wrx) ≤
d(x, y) whenever y ∈ ∂B(x, r), and set

τ rx =
d(x,wrx)

r
.

As in the previous argument, we consider also arx ∈ ∂B(x, r) such
that d(x, arx) ≥ d(x, y) for all y ∈ ∂B(x, r), and obtain by the use of
Lemma 6.2 that

µ(Bd(x, d(x,wrx)))

µ(Bd(x, d(x, arx)))
≈
(
d(x,wrx)

d(x, arx)

)n
,

and from (6.1) we also see that

µ(Bd(x, d(x,wrx))) ≈ d(x,wrx)
n ≈ µ(B(x, |x− wrx|)) = µ(B(x, r)).

A similar argument as above also shows that

µ(Bd(x, d(x, arx))) ≈ µ(B(x, r)).
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It follows that

(
d(x,wrx)

d(x, arx)

)n
≥ 1

C
,

that is, d(x, arx) ≤ C d(x,wrx). From this (6.8) follows. �

Now we are ready to prove the main result of this section.

Proposition 6.10. The metric measure space (Rn, d, µ) is an Ahlfors
n-regular space supporting a (1, 1)-Poincaré inequality.

Proof. As pointed out by [Ke], it suffices to prove the inequality for
functions u that are Lipschitz continuous on (Rn, d) with continuous
upper gradient g. By [DS2, Inequality (1.10)], we know that when
x ∈ Rn and r > 0,

∫
B(x,Cλrxr)

∫
B(x,Cλrxr)

|u(x)− u(y)| dµ(x) dµ(y)

≤ Cµ(B(x,Cλrx))
1/n

∫
B(x,2Cλrx r)

ω(x)−1/n |∇u(x)| dµ(x).

By the doubling property of µ on the Euclidean Rn, Lemma 6.5, and
Lemma 6.2, we see that

∫
B(x,Cλrx r)

∫
B(x,Cλrxr)

|u(x)− u(y)| dµ(x) dµ(y)

≤ Cµ(B(x,Cλrxr))
1/n

∫
B(x,2Cλrxr)

g(x) dµ(x)

≤ Cµ(B(x, λrxr))
1/n

∫
B(x,2Cλrxr)

g(x) dµ(x)

≤ Cµ(Bd(x, r))1/n

∫
B(x,2Cλrxr)

g(x) dµ(x)

≤ Cr

∫
B(x,2Cλrxr)

g(x) dµ(x).
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Hence,

inf
c∈R

∫
Bd(x,r)

|u− c| dµ ≤
∫
Bd(x,r)

|u− uB(x,Cλrxr)| dµ

≤
∫
B(x,Cλrxr)

|u− uB(x,Cλrxr)| dµ

≤ C

∫
B(x,Cλrxr)

|u− uB(x,Cλrxr)| dµ

≤ C

∫
B(x,Cλrx r)

∫
B(x,Cλrxr)

|u(x)− u(y)| dµ(x) dµ(y)

≤ Cr

∫
B(x,2Cλrxr)

g(x) dµ(x).

By Lemma 6.6 we have

B(x, 2Cλrxr) ⊂ Bd(x, 2C2τ 2Cλrxr
x λrxr).

Note that Bd(x, τ
2Cλrxr
x 2Cλrx r) is the largest metric ball centered at x

that fits inside the Euclidean ball B(x, 2Cλrxr). Let ρ > 0 such that
Bd(x, ρ) is the largest metric ball centered at x and contained in the
Euclidean ball B(x, λrxr), and let y1 ∈ ∂Bd(x, ρ) ∩ ∂B(x, λrxr), and

correspondingly let y2 ∈ ∂Bd(x, τ
2Cλrxr
x 2Cλrxr) ∩ ∂B(x, 2Cλrxr). Then

by (6.1),

ρ = d(x, y1) ≈ µ(B(x, λrxr))
1/n

and again by (6.1),

τ 2Cλrxr
x 2Cλrxr = d(x, y2) ≈ µ(B(x, 2Cλrxr))

1/n.

By the doubling property of µ in the Euclidean space Rn, we see that

µ(B(x, λrxr)) ≈ µ(B(x, 2Cλrxr)).

It follows that ρ ≈ τ
2Cλrxr
x 2Cλrxr. On the other hand, since Bd(x, ρ) is

the largest metric ball centered at x and fitting inside the Euclidean
ball B(x, λrxr), and by the construction of λrx from Lemma 6.6 we know
that B(x, λrxr) ⊂ Bd(x, r), we can conclude that ρ ≤ r. Hence

τ 2Cλrxr
x 2Cλrxr ≤ Cρ ≤ C2r.

Thus we have

B(x, 2Cλrxr) ⊂ Bd(x, 2C2τ 2Cλrxr
x λrxr) ⊂ Bd(x,C2r),

from which we conclude that

inf
c∈R

∫
Bd(x,r)

|u− c| dµ ≤ Cr

∫
B(x,2Cλrxr)

g(x) dµ(x)

≤ Cr

∫
Bd(x,C2r)

g dµ,
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which is equivalent to the (1, 1)-Poincaré inequality on (Rn, d, µ) be-
cause the constants C, C2 are independent of x, r, u, g. �

7. Rectifiability of quasiminimal surfaces in Euclidean
spaces with strong A∞ weights

In this section we apply the results from the earlier part of this paper
(from the first three sections) to the setting of weighted Euclidean
spaces where the weight ω is a strong A∞-weight.

If ω is an A1-weight, then the space (Rn, | · |, µ) is a doubling metric
measure space supporting a (1, 1)-Poincaré inequality. However, not
all strong A∞-weights are A1-weights, but as shown in the previous
section, the metric measure space (Rn, d, µ) is also an Ahlfors n-regular
space supporting a (1, 1)-Poincaré inequality. In this section we will
prove that a set E ⊂ Rn that has a locally quasiminimal boundary
surface in (Rn, d, µ) will have a rectifiable boundary. Here of course,
the notion of rectifiability is in terms of the Euclidean metric. As
in [Mat, page 204, Definition 15.3], we say that a set A ⊂ Rn is m-
rectifiable if there is a countable collection {fi} of Euclidean Lipschitz
maps fi : Rm → Rn such that Hm

Euc(A \
⋃
i fi(Rm)) = 0. In this

section, we consider the issue of whether the boundary ∂E of the set
with quasiminimal boundary surface in (Rn, d, µ) is (n− 1)-rectifiable
in the above sense (with respect to the Euclidean metric). We also
recall that a set K ⊂ Rn is purely m-unrectifiable if whenever A ⊂ Rn

is m-rectifiable, we have Hm
Euc(K ∩ A) = 0.

Let E ⊂ Ω ⊂ Rn be a set of finite perimeter with locally quasimin-
imal boundary surface with respect to the metric d and measure µ.
Then the results obtained in the previous sections of this note apply
to E. So we may assume that E = int(E).

Lemma 7.1. Let Λ > 0 and AΛ ⊂ ∂E be such that for all x ∈ AΛ we
have

lim sup
r→0+

µ(B(x, r))

rn
≥ Λ.

Then

Hn−1
Euc(AΛ) ≤ C

Λ(n−1)/n
P (E,Ω).

Note that in the above limes supremum condition, if we replace
B(x, r) with Bd(x, r), then by Lemma 6.2 we have AΛ to be empty
whenever Λ > C.

Proof. Fix δ > 0; then by the condition imposed on AΛ, for every
x ∈ AΛ we can find 0 < rx < δ/5 such that

µ(B(x, rx)) ≥ (Λ− δ)rnx .
Note also that if x ∈ AΛ and r > 0 such that

µ(B(x, r)) ≥ (Λ− δ)rn,
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then for any y ∈ ∂B(x, r) we have that

(Λ− δ)rn ≤ µ(B(x, r)) = µ(B(x, |x− y|)) ≤ Cd(x, y)n,

and so we have d(x, y) ≥ C−1/n (Λ− δ)1/n r. It follows that

Bd(x, (Λ−δ)1/n
C1/n r) ⊂ B(x, r).

The family Bd(x, (Λ−δ)1/n
5C1/n rx), x ∈ AΛ, forms a cover of AΛ, and hence

we can find a pairwise disjoint countable subfamily

{Bd(xi,
(Λ−δ)1/n

5C1/n ri)}i
such that

AΛ ⊂
⋃
i

Bd(xi,
(Λ−δ)1/n
C1/n ri).

Hence by Lemma 6.2 and the fact that the balls {B(xi, ri)}i therefore
also form a cover of AΛ by Euclidean balls,

Hn−1
Euc,δ(AΛ) ≤

∑
i

(ri)
n−1 =

∑
i

rni
ri

≤ C

Λ− δ
∑
i

µ(Bd(xi,
(Λ−δ)1/n
C1/n ri))

ri

≤ C

Λ− δ
∑
i

µ(Bd(xi,
(Λ−δ)1/n

5C1/n ri))

ri

≤ C

(Λ− δ)1− 1
n

∑
i

µ(Bd(xi,
(Λ−δ)1/n

5C1/n ri))

(Λ−δ)1/n
5C1/n ri

.

By Lemma 5.1, we now have

Hn−1
Euc,δ(AΛ) ≤ C

(Λ− δ)1− 1
n

∑
i

P
(
E,Bd(xi,

(Λ+δ)1/n

5C1/n ri)
)
.

Since the family {Bd(xi,
(Λ+δ)1/n

5C1/n ri)}i is pairwise disjoint, we see that

Hn−1
Euc,δ(AΛ) ≤ C

(Λ− δ)1− 1
n

P (E,Ω).

Letting δ → 0 completes the proof. �

Lemma 7.2. For Hn−1
Euc -almost every x ∈ ∂E we have

lim sup
r→0

µ(B(x, r))

rn
<∞.

Proof. By Lemma 7.1, we know that

Hn−1
Euc(AΛ) ≤ C Λ−(n−1)/nP (E,Ω).
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Since the set of all points x ∈ ∂E for which

lim sup
r→0

µ(B(x, r))

rn
=∞

is the set
⋂

Λ>0AΛ, we see that the claim of the lemma holds true. �

We set F0 to be the collection of all points x ∈ ∂E for which

lim sup
r→0+

µ(B(x, r))

rn
= 0.

Let Z =
⋂

Λ>0AΛ; from the above discussion we know that Hn−1
Euc(Z) is

zero.

Lemma 7.3. We have that F∞ =
⋃
k∈N(A1/k\Z) is σ-finite with respect

to the measure Hn−1
Euc , and

∂E = Z ∪ F0 ∪ F∞.

Proof. By Lemma 7.1, we know that Hn−1
Euc(A1/k) < ∞. Thus we see

that F∞ is σ-finite with respect to the measure Hn−1
Euc . �

Lemma 7.4. Either H(F0) = 0 or Hn−1
Euc(F0) =∞. Furthermore, with

Kε =

{
x ∈ ∂E : lim sup

r→0+

µ(B(x, r))

rn
< ε

}
,

we have

H (Kε) ≤ C ε(n−1)/nHn−1
Euc (Kε) .

Note that here H is the codimension 1 Hausdorff measure with
respect to the metric d and measure µ, while Hn−1

Euc is the (n − 1)-
dimensional Hausdorff measure with respect to the Lebesgue measure
and Euclidean metric.

Proof. Suppose H(F0) > 0. We will show that then Hn−1
Euc(F0) = ∞.

To this end, fix ε > 0. For each x ∈ F0 there is a positive number δx
such that whenever 0 < r < δx we have µ(B(x, r)) ≤ 2εrn. For each
j ∈ N let

Fj = {x ∈ F0 : δx ≥ 1/j}.
Note that for large j we have Fj non-empty since F0 =

⋃
j Fj is non-

empty. Furthermore, because H(F0) > 0 we have that H(Fj) > 0 for
sufficiently large j. Let 0 < δ < 1/j, and for each x ∈ Fj, whenever
r < δ, we have that µ(B(x, r)) ≤ 2εrn. For y ∈ ∂B(x, r), we see by
(6.1) that

2ε rn ≥ µ(B(x, r)) = µ(B(x, |x− y|)) ≥ 1

C
d(x, y)n.

It follows that d(x, y) ≤ Cε1/n r whenever y ∈ ∂B(x, r). Therefore
B(x, r) ⊂ Bd(x,Cε1/nr). Now we choose a countable cover of Fj by
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balls B(xi, ri) with ri < δ and

Hn−1
Euc(Fj) + δ ≥

∑
i

rn−1
i .

But then by Lemma 6.2 we have

Hn−1
Euc(Fj) + δ ≥ 1

Cε

∑
i

µ(Bd(xi, Cε
1/nri))

ri

≥ 1

Cε1−
1
n

∑
i

µ(Bd(xi, Cε
1/nri))

Cε1/nri

≥ 1

Cε1−
1
n

HCε1/nδ(Fj).

Now letting δ → 0, we can conclude that

Hn−1
Euc(F0) ≥ Hn−1

Euc(Fj) ≥
1

Cε1−
1
n

H(Fj).

Because E is of finite perimeter and E satisfies the density conditions
discussed in the previous sections, we know that H(F0) < ∞. Also,
if j1 > j2 then Fj1 ⊃ Fj2 . Therefore we have H(F0) = limjH(Fj).
Therefore

Hn−1
Euc(F0) ≥ 1

Cε(n−1)/n
H(F0),

and now the desired conclusion that Hn−1
Euc(F0) = ∞ follows by taking

ε → 0. The proof of the second claim of the lemma follows from an
argument similar to the first part of the proof above. �

Recall that

F0 :=

{
x ∈ ∂E : lim sup

r→0

µ(B(x,r))
rn

= 0

}
.

Theorem 7.5. With

D∞ :=

{
x ∈ ∂E : lim sup

r→0

Hn−1
Euc(∂E ∩B(x, r))

rn−1
=∞

}
,

the set ∂E\(F0 ∪D∞) is (n− 1)-rectifiable.

Proof. Suppose not. Then combining Lemma 7.1 with [Mat, page 205,
Theorem 15.6], we know that there is a purely (n− 1)-unrectifiable set
K ⊂ ∂E\(F0 ∪ D∞) with Hn−1

Euc(K) > 0. Since K ∩ D∞ is empty, it
follows that Hn−1

Euc(K ∩ B) is finite for balls B centered at points in K
and with sufficiently small radii. Thus there is a density point x0 of K
for the measure Hn−1

Euc . By Lemma 7.2 we can assume without loss of
generality that

Q := lim sup
r→0

µ(B(x0, r))

rn
<∞.
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Since x0 6∈ F0,

∞ > Q = lim sup
r→0

µ(B(x0, r))

rn
> 0.

Furthermore, because x0 6∈ D∞, we have

M = lim sup
r→0

Hn−1
Euc(∂E ∩B(x0, r))

rn−1
<∞.

Let ε be some small number to be determined later; by the choice of
x0, for sufficiently small r0 > 0, for all 0 < r < r0 by the definition of
M above we have

Hn−1
Euc((∂E\K) ∩B(x0, r))

Hn−1
Euc(∂E ∩B(x0, r))

<
ε

2M
. (7.6)

Since x0 6∈ D∞, for sufficiently small r we also have

Hn−1
Euc(∂E ∩B(x0, r)) ≤ (M + ε)rn−1.

Therefore, by (7.6), for sufficiently small r > 0,

Hn−1
Euc((∂E\K) ∩B(x0, r)) < εrn−1. (7.7)

We can find a small positive number r > 0 that satisfies the above
requirements and in addition satisfies

µ(B(x0, r)) ≥
Q

2
rn.

By inequality (6.1),

Bd(x0, C
−1µ(B(x0, r))

1
n ) ⊂ B(x0, r) ⊂ Bd(x0, Cµ(B(x0, r))

1
n ).

So in particular, by the definition of Q and the choice of r, we have
that Bd(x0, cQ

1
n r) ⊂ B(x0, r) for c = C−1 2−1/n.

Now by Theorem 5.2, we can find y0 ∈ E and y1 ∈ Ec such that

Bd(y0, c1Q
1
n r) ⊂ E ∩Bd(x0, cQ

1
n r) ⊂ B(x0, r)

and
Bd(y1, c1Q

1
n r) ⊂ Bd(x0, cQ

1
n r) \ E ⊂ B(x0, r)

.
For i = 0, 1 let

γi = inf
{
h > 0 : Bd(yi, c1Q

1
n r) ⊂ B(yi, h)

}
,

that is, B(yi, γi) is the smallest Euclidean ball containing the metric
ball Bd(yi, c1Q

1/nr). Note that by Lemma 6.2,

µ(B(yi, γi)) ≥ µ(Bd(yi, c1Q
1/nr)) ≥ cQ rn.

Because Bd(yi, c1Q
1/nr) ⊂ B(x0, r), it follows that Bd(yi, c1Q

1/nr) ⊂
B(yi, 2r), and so γi ≤ 2r.

Since B(x0, r) ⊂ B(yi, 2r) we have by the doubling property of µ,
with respect to the Euclidean metric, that µ(B(yi, 2r)) ≤ CQrn.
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As observed above, γi ≤ 2r, and so (6.9) applies here to give

cQrn

CQrn
≤ µ(B(yi, γi))

µ(B(yi, 2r))
≤ C

( γi
2r

)Q1

.

Thus γi ≥ c r and so by Lemma 6.6 we have that

B(yi, c r) ⊂ Bd(yi, c1Q
1
n r).

As K is purely unrectifiable, by the Besicovich-Federer Projection
theorem ([Mat, Theorem 18.1(2)]), for i = 0, 1 there must exist points

ỹi ∈ B(yi, c r/4) such that for v = ỹ1−ỹ2
|ỹ1−ỹ2| we have

Hn−1
Euc(Pv⊥(K)) = 0.

Here Pv⊥ is the projection to the (n − 1)-dimensional hyperplane or-
thogonal to the vector v.

Let ξ1 = v; then we can find unit vectors ξ2, ξ3, . . . ξn such that
{ξ1, ξ2, . . . ξn} forms an orthonormal basis for the vector space Rn. For
any z ∈ Rn and β > 0 let Qβ(z) denote the cube whose faces are normal
to the vectors {ξ1, ξ2, . . . ξn}, with Euclidean side length β, and center
located at z. Note

Q c r
8n1/2

(ỹ0) ⊂ E and Q c r
8n1/2

(ỹ1) ⊂ Rn \ E.

Consider the following cross-section of the cube Q c r
8n1/2

(ỹ0),

Π := Q c r
8n1/2

(ỹ0) ∩
(
〈v〉⊥ + ỹ0

)
,

where 〈v〉 is the one-dimensional vector subspace of Rn spanned by the
vector v, and 〈v〉⊥ is the (n− 1)-dimensional hyperplane orthogonal to
the vector v. For each z ∈ Π let

ez = P−1
v⊥

({Pv⊥(z)}) ∩Q c r
8n1/2

(ỹ1) ∩
(
〈v〉⊥ + ỹ1

)
,

that is, ez is the point in the region

Q cr
8n1/2

(ỹ1) ∩
(
〈v〉⊥ + ỹ1

)
= Π + ỹ1 − ỹ0

corresponding to z ∈ Π such that z − ez = ỹ0 − ỹ1.
Let

Π′ =
{
z ∈ Π : P−1

v⊥
(Pv⊥(z)) ∩K = ∅

}
,

that is, Π′ is the collection of all points z ∈ Π such that the line segment
[z, ez] connecting z to ez does not intersect the purely unrectifiable set
K. By the choice of ỹi, i = 0, 1, we know that Hn−1

Euc(Π \ Π′) = 0.
However, for any z ∈ Π′ we know that z ∈ E and ez ∈ Ec so we must
have the line segment [z, ez] intersect ∂E\K. So for each z ∈ Π′ we can
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pick a point bz ∈ (∂E\K) ∩ [z, ez]. On the other hand, as orthogonal
projections do not increase the measure Hn−1

Euc ,

Hn−1
Euc(∂E \K) ≥ Hn−1

Euc

(⋃
z∈Π′

bz

)
≥ Hn−1

Euc

(
Pv⊥

(⋃
z∈Π′

bz

))

= Hn−1
Euc(Π

′) =

(
c r

8
√
n

)n−1

=

(
c

8
√
n

)n−1

rn−1.

This contradicts (7.7) when we choose 0 < ε <
(

c
8
√
n

)n−1

.

�

Corollary 7.8. Suppose that there is a positive number α such that
ω(x) ≥ α for Ln-almost every x in a neighborhood of E. Then ∂E has
Hn−1
Euc finite measure and is Euclidean (n− 1)-rectifiable.

Proof. By Lemma 7.3, we have ∂E = Z ∪ F∞ ∪ F0, with Hn−1
Euc(Z) = 0

and Hn−1
Euc being σ-finite on F∞. It follows from the assumption ω ≥ α

almost everywhere that for all x ∈ ∂E we have

lim inf
r→0+

µ(B(x, r))

rn
≥ Cn α > 0,

that is, F0 is empty.
Now we look at F∞ =

⋃
k∈NA1/k \ Z. Because of the assumption

that ω ≥ α almost everywhere, we know that F∞ = A1/k0 \ Z where
k0 ∈ N large enough so that 1/k0 < Cn α. So by Lemma 7.1 we have
that

Hn−1(∂E) = Hn−1
Euc(F∞) <∞.

Thus an application of [Mat, Theorem 6.2] gives Hn−1
Euc(D∞) = 0, and

so ∂E is rectifiable by Theorem 7.5. �
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