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Abstract

For the two dimensional complex parabolic Ginzburg-Landau equation we prove that,
asymptotically, vortices evolve according to a simple ordinary differential equation, which
is a gradient flow of the Kirchhoff-Onsager functional. This convergence holds except for a
finite number of times, corresponding to vortex collisions and splittings, which we describe
carefully. The only assumption is a natural energy bound on the initial data.

This paper, together with [3, 4], is companion to [2] where the higher dimensional
case is considered.
2000 Mathematics Subject Classification : 35B40, 35K55, 35Q40.

1 Introduction

This work closes a series of papers [3, 4] devoted to the study of the two-dimensional complex-
valued parabolic Ginzburg-Landau equation

∂uε

∂t
− ∆uε =

1

ε2
uε(1 − |uε|2) on R

2 × R
+.

Our focus is put on the description of the asymptotic behavior of sequences of solutions as
ε → 0, under the only assumption that the initial datum u0

ε(·) ≡ uε(·, 0) verifies

(H0) Eε(u
0
ε) =

∫

R2
eε(u

0
ε) =

∫

R2
[
|∇u0

ε|2
2

+
(1 − |u0

ε|2)2
4ε2

] ≤ M0|log ε| ,

where M0 > 0 is some fixed constant.
This problem has received a lot of attention in the last decade, as our historical review

below will show. In particular it has been recognized that the energy regime given by (H0)
allows for the formation of topological defects called vortices. It has also been recognized
that the dynamics of these vortices is non trivial accelerating time by a factor |log ε|, that is
considering the functions

uε(z, s) = uε(z, s|log ε|), z = x + iy ≡ (x, y) ∈ R
2.

The next theorem, proved in [3, 4], gives a precise meaning to the notion of vortices in this
setting, as well as a first description of their dynamics.

Theorem 1 ([3, 4]). Assume (uε)ε>0 verifies (PGL)ε and (H0). Then, for a subsequence
εn → 0 we have

uεn(z, s) → u∗(z, s) =

l(s)
∏

i=1

(

z − ai(s)

|z − ai(s)|

)di(s)

exp[i(〈~c(s), z〉 + b(s)], (1)
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where, for i = 1, . . . , ℓ(s), ai(s) ∈ R
2, di(s) ∈ Z, b(s) ∈ [0, 2π) and ~c : R

+ → R
2 is a lipschitz

function. The convergence in (1) is uniform on every compact subset of R
2 ×R

+ \Σv, where

Σv = ∪s>0 ∪l(s)
i=1 {(ai(s), s)}.

Moreover, the trajectory set Σv is a closed, 1-dimensional rectifiable subset of R
2.

We proved moreover that the numbers l(s) and di(s) are uniformly bounded by a constant
depending only on M0, and that, except for a finite number of times1,

di(s) 6= 0. (2)

It is worthwile to notice that the limiting map u∗(·, s) has modulus 1, hence with values in
the circle S1, but is singular at the points ai(s) when di(s) 6= 0. In this case, it also has
diverging local Dirichlet energy. The points ai(s) are called the vortices at time s, and the
integers di(s) their degrees: they correspond to the winding numbers of the limiting map
u∗(., s) around the vortices ai(s). The number b(s) ∈ R corresponds to a constant phase shift,
and the vector ~c(s) ∈ R

2 is reminiscent of a wavenumber.2

The set Σv describes the evolution in time of the set of vortices, and therefore we refer to
it as the trajectory set. The main results of this paper provide a complete description of the
trajectory set Σv. We first have

Theorem 2. There exists a finite number of times 0 = τ0 < τ1 < · · · < τq < τq+1 = +∞
such that

i) The number of vortices ℓ(s) ≡ ℓk is constant on each interval (τk, τk+1), for k = 0, . . . , q.
ii) The restriction of Σv to R

2×(τk, τk+1) is a disjoint union of ℓk smooth one dimensional
graphs. More precisely, relabelling possibly the points a1(s), . . . , aℓk

(s), their degrees di(s) = di

are constant in (τk, τk+1), and their trajectories are given by the system of ordinary differential
equations

d2
i

dai

ds
(s) = −∇aiW (a1, . . . , aℓk

) + dic(s)
⊥, i = 1, . . . , ℓk , (3)

where W is the Kirchhoff-Onsager function defined as

W (a1, . . . , aℓk
) = −2

ℓk
∑

i6=j=1

didj log |ai − aj | . (4)

1Which are among the times τ1, . . . , τq of Theorem 2
2Notice that functions ~c and b depend only on the time variable s, but not on the space variable z. The

function ~c can be directly deduced from the initial value, for instance by Fourier transform. It accounts
for persistence of low frequency oscillations in the phase over the diverging time period considered, namely
t = s|log ε|. The possible presence of low frequencies is of course related to the fact that the domain R

2 is
unbounded.
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Figure 1 : An example of trajectory set.

The times τ1, . . . , τq were already identified in [4] as the only times of dissipation in an
appropriate asymptotic sense. More precisely, the following was proved there (Theorem 4
and Corollary 3.1).

Theorem 3 ([4]). For s /∈ {τ0, . . . , τq},

v
s
εn

(x) ≡ eεn(uεn(x, s))

|log εn|
dx ⇀ v

s
∗ = π

ℓ(s)
∑

i=1

d2
i (s)δai(s) (5)

in the sense of measures on R
2, and

|∂tuεn |2dxds ⇀ ω∗ = π
q
∑

k=0

ℓ(τk)
∑

i=1

βk
i δ(ai(τk),τk), (6)

in the sense of measures on R
2 × R

+, where βk
i ∈ N.

Since the total energy π
∑

d2
i (s) is quantized and non increasing (see [4]), it is also piece-

wise constant. The times τ1, . . . , τq correspond therefore to the times of energy loss, where
dissipation concentrates. The points (ai(τk), τk) for which βk

i 6= 0 are called the dissipation
points.

At this stage, we have completely described the trajectories inside the intervals (τk, τk+1).
The next step is to understand the behavior of the trajectories accross the dissipation times.
Since we already know by Theorem 1 that Σv is closed, the points (ai(τk), τk) are the only
possible endpoints of the trajectories in (τk−1, τk) and (τk, τk+1). For a given point (ai(τk), τk),
let C−

1 , . . . , C−
l−i

and C+
1 , . . . , C+

l+i
denote the vortices trajectories respectively in R

2 × (τk−1, τk)

and R
2 × (τk, τk+1) for which (ai(τk), τk) is an endpoint. Accordingly, let d−1 , . . . , d−

l−i
and

d+
1 , . . . , d+

l+i
be the degrees of the corresponding vortices. It follows from (5), (6) and the

formula for the evolution of the energy in localized form (see e.g. [4], Proposition 3.3), that

βk
i =

l−i
∑

j=1

(d−j )2 −
l+i
∑

j=1

(d+
j )2. (7)
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We say that a point (ai(τk), τk)) is a regular point of the trajectory set if Σv is a lipschitz
graph over s in the neighborhood of (ai(τk), τk), or equivalently if l−i = l+i = 1. If not, we say
that (ai(τk), τk) is a branching point.

Theorem 4. A point (ai(τk), τk) is a branching point if and only if it is a dissipation point.
In this case, we have

l−i
∑

j=1

d−j = di(τk) =

l+i
∑

j=1

d+
j (Conservation of the degree) (8)

l−i
∑

j=1

(d−j )2 ≥ d2
i (τk) ≥

l+i
∑

j=1

(d+
j )2 (Energy decrease) (9)

where the first (resp. second) inequality in (9) is strict whenever l−i ≥ 2 (resp. l+i ≥ 2). In
particular,

l−i
∑

j=1

(d−j )2 >

l+i
∑

j=1

(d+
j )2.

Part of the statements in the previous theorems have already been known in the case
|di| = 1 (see the historical review below). An important a novelty here is that there are no
restriction on the di’s. One may wonder whether multiple degrees may be really observed as
limits of solutions to (PGL)ε. This question is positively answered in Section 5.3.

For a given M0, the number of integer solutions to (8) - (9) is quite large. We may
classify them into four different classes of increasing complexity. First, there are collisions
with annihilation, corresponding to l+i = 0 (an example of such a collision is provided by
Figure 2a). There are also collisions without annihilation nor splitting: here l+i = 1, and
l−i ≥ 2 (see Figure 2b). Next, there are splittings of single multiple degree vortices, for
which l−i = 1 and l+i ≥ 2 (see Figure 2c). The remaining solutions to (8) - (9) correspond
to simultaneous collisions and splittings, for which l+i ≥ 2 and l−i ≥ 2 (see Figure 2d). In
section 5.3, we will show examples in the classes a, b and c which may be realized through
limits of solutions to (PGL)ε.

da cb
Figure 2 : Four classes of dissipation points.

In a related direction, a natural question is to know if the positions and degrees of the
vortices at some time s0 completely determine their positions and degrees at future times.
Whereas collisions are determined by singularities in the ordinary differential equation (3),
splittings are not, and clearly Theorem 2 does not settle the question of the occurrence of
such splittings. More precisely, the dissipation times τ1, . . . , τq as well as the number of
vortices and their degrees involved after splittings are not inferred in a constructive way.
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Notice in particular that the algebraic relations (8) and (9) do not have in general a unique
solution.3 As a matter of fact, there is no hope to determine the complete future trajectories
by knowing the positions and the degrees at some fixed time: an important part of the
relevant information is lost in the limiting procedure. This issue will be discussed in more
details in Section 5.3, when we construct an example of splitting.

In Section 6, we study the asymptotic behavior of the trajectories near a branching point.
We show that, after a suitable parabolic rescaling centered at the collision point, vortices
converge to the set of critical points of W restricted to the manifold

M =
{

∑

d2
jzj z̄j = ∓4Γ±

i

}

,

that is those for which ∇jW = −1
2d2

jzj . Such critical points have already attracted attention
in the context of fluid dynamics, in particular for rotating stationary configurations of vortices
(see e.g. Palmore [16]).

A brief historical review. The first works on the dynamics of Ginzburg-Landau vortices,
in particular by Neu [13, 14], Peres & Rubinstein [17], Pismen & Rubinstein [18], and E [7],
were based on formal matched asympotics. In these works, the vortices are described as the
nodal set of the complex field uε.

Most of the first rigorous results deal with (PGL)ε on a simply connected bounded domain
with fixed Dirichlet or Neumann boundary conditions: in that case the interaction energy W
has to be modified appropriately in order to take into account the boundary datum. In [19],
Rubinstein & Sternberg rigorously studied the dynamics of a single vortex, under the a priori
assumption on the full solution that the nodal set consists of exactly one point for all positive
time: they proved that the vortex speed is of order |log ε|−1 in the original time scale. Lin
[11] extended their result to the case of ℓ distinct vortices of equal degree +1, removing the
technical a priori assumption of [19] by a set of more natural assuptions on the initial data,
among which the energy bound

∫

Ω
eε(u

0
ε) ≤ πℓ|log ε| + O(1) as ε → 0. (10)

Concerning the dynamical law (3), the first mathematical proofs are due Jerrard & Soner
[9] and Lin [11] independently. In [12], Lin established (3) under the assumptions of [11]: in
this case ~c = 0, di = +1, and it is therefore easily seen that the solutions of (3) exist for
all time. In [9], Jerrard & Soner were able to handle the case of ℓ vortices of degrees +1
and −1, under a set of assumptions on the initial data involving as in [11, 12] the energy
bound (10). In this case, ~c still vanishes, but (3) has a finite life span (corresponding to our
first dissipation time τ1) if at least two vortices have different signs. The convergence and
the dynamical law was there established up to τ1. In these papers, vortices are identified as
concentration points for the energy density. Upper and lower energy estimates are crucial in
their approach, an important point being that the energy is bounded off the vorticity set.
In [20, 21], Sandier & Serfaty and Serfaty proposed a somehow different proof of the result
of [9], introducing an abstract theory for Γ−convergence of gradient flows. In [21], it is also
shown that if Eε(u

0
ε) ≤ πℓ|log ε| + |log ε|(log |log ε|)−β for some β > 1, then (10) is met after

translating time by some Tε ≤ C log |log ε|.
3Except for collisions involving clusters of ±1-vortices, with total degree equal to 0 or ±1.
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Concerning collisions and annihilations of vortices, the first rigorous result was obtained
by Baumann, Chen, Phillips & Sternberg [1], who showed that for fixed ε and under some
natural energy bounds, the solution to (PGL)ε on R

2 converges to a unitary constant as time
goes to infinity: in particular, if vortices exist they annihilate in finite time. A localized
quantitative version of annihilation was obtained in [3] for confined clusters of vortices of
total degree zero, and independently in [21] for confined ±1 dipoles.

Concerning technical ingredients, in this context the important algebraic relation (24), as
well as the energy quantization of energy which may be derived from it, was first introduced
in [6] in the elliptic case. It was then extended independently in [4] and [21] to the parabolic
setting.

Although it might not be obvious at first sight, inequality (10) is a rather strong well-
preparedness assumption, since the minimal energy necessary for the creation of a +1 or a
−1 vortex (which plays the role of the topological ground state) is exactly π|log ε| + O(1).
A first restriction related to inequality (10) is that it does not allow for initial data with
multiple degree vortices, nor diverging phase energy. A second important restriction was
already pointed out in [9] Remark 2.2: inequality (10) relates the energy to the degrees,
and it is not clear at first that this relation remains after collisions. The assumption (H0),
which was our framework in [3, 4] and here, was motivated by the possibility to encompass
the previous restrictions. We also decided to study (PGL)ε on the whole R

2 mainly for two
reasons. First, this avoids some technicalities related to the boundary, and allows to use more
freely the scale invariance of the equation. Second, it permits the phase and the vortices to
interact, as shown by the presence of the ~c term in (3).

In [3], we proved Theorem 1, which gives a precise meaning to the notion of vortices in
our framework. In contrast to the results in [11, 9, 20], our statements require the use of
subsequences. This intrinsic restriction is related to the wider class of possible initial data
that (H0) allows for, as well as the fact that the occurence of splittings cannot be inferred
once the limit in ε has been taken. [3] also contains the previously mentioned result on
annihilation.

In [4], we proved Theorem 3 and established the results in Theorem 2 on (τk, τk+1) under
the additional assumption that di(s) = ±1 for all i = 1, . . . , ℓ(s) and some s ∈ (τk, τk+1). As
emphasized in [4], the main obstacle on the way to Theorem 2 is the possible splitting and
recombination of multiple degree vortices without energy loss, i.e. outside the dissipation
times. The main point in our proof of Theorem 2 is to show that they do not occur.

Strategy for the proofs. The arguments involved in the proofs of Theorem 2 and 4 do not
rely on additional results about (PGL)ε, but instead on properties of Σv established in [4] as
well as new algebraic properties of W.

For the proof of Theorem 2 i), we need to show that for s0 /∈ {τ1, . . . , τk} and (ai(s0, s0)) ∈
Σv, for s close to s0 and for some neighborhood Bi of ai(s0), Bi contains only a single vortex.
In order to analyze the size and the spreading of the possible cluster of vortices emanating
from (ai(s0), s0), we consider the variance

fi(s) =

∑

aj(s)∈Bi
d2

j (s)|aj(s) − âi(s)|2
∑

aj(s)∈Bi
d2

j (s)
,
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where âi(s) denotes the barycenter of the cluster of vortices in Bi, with weights given by the
energy densities d2

j (s), namely

âi(s) =

∑

aj(s)∈Bi
d2

j (s)aj(s)
∑

aj(s)∈Bi
d2

j (s)
.

Our goal is to prove that fi(s) vanishes identically in a neighborhood of s0, by mean of a
Gronwall type inequality. In order to define more precisely Bi, we recall that in [4] (Theorem
5 and identity (9)), we have shown that given s0 > 0 and i ∈ {1, . . . , ℓ(s0)}, there exists some
∆s0 > 0 and ri(s0) > 0 such that

Σs
v
∩ B(ai(s0), ri(s0)) \ B(ai(s0), ri(s0)/2) = ∅ (11)

for all s in [s0 −∆s0, s0 + ∆s0], where Σs
v

= {a1(s), . . . , aℓ(s)(s)}. If s0 /∈ {τ1, . . . , τq}, we may
assume, decreasing possibly ∆s0, that [s0 − ∆s0, s0 + ∆s0] contains none of the dissipation
times τk. In this case, the degrees di(s) of vortices emanating from or colliding at ai(s0) have
been shown (see Theorem 5) to be constrained by the algebraic equilibrium relation

∑

aj(s)∈Bi

d2
j (s) =

(

∑

aj(s)∈Bi

dj(s)
)2

= d2
i (s0) (12)

for all s in [s0 − ∆s0, s0 + ∆s0], where Bi = B(ai(s0), ri(s0)).
If s /∈ {τ1, . . . , τq}, the computation of f ′

i(s) follows from the identities

d

ds

∫

Bi

|x|2 dv
s
∗ = 4π

∑

ak(s)/∈Bi
aj(s)∈Bi

dk(s)dj(s)Re
( aj(s)

ak(s) − aj(s)

)

+ 2π
∑

aj(s)∈Bi

dj(s)〈aj(s),~c(s)
⊥〉 (13)

and
d

ds
âi(s) =

1

di(s0)
[~c(s)⊥ +

∑

ak(s)/∈Bi
aj(s)∈Bi

2dk(s)∇aj (log |aj(s) − ak(s)|)] (14)

for s ∈ [s0 − ∆s0, s0 + ∆s0], which we proved in [4]. In view of the expression for v
s
∗ in (5),

we are therefore led to

d

ds

(

∑

aj(s)∈Bi

πd2
j (s)|aj(s) − âi(s)|2

)

= 4π
∑

ak(s)/∈Bi
aj (s)∈Bi

dk(s)dj(s)Re
( aj(s) − âi(s)

ak(s) − aj(s)

)

+ 2πdi(s0)〈ǎi(s) − âi(s),~c(s)
⊥〉,

(15)

where ǎi(s) denotes a second type of barycenter, namely

ǎi(s) =

∑

aj(s)∈Bi
dj(s)aj(s)

∑

aj(s)∈Bi
dj(s)

· (16)

We refer to âi(s) as the center of mass of the cluster and to ǎi(s) as the topological center of
mass of the cluster. The identity (15) leads to
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Proposition 1. The function fi(s) is lipschitzian and verifies

|f ′
i(s)| ≤ C(M0, s0) (|âi(s) − ǎi(s)| + fi(s)) on [s0 − ∆s0, s0 + ∆s0], (17)

where C(M0, s0) depends only on s0 and M0.

In order to integrate the differential inequality (17), we need some control on the term
|ǎi(s) − âi(s)|. For arbitrary configurations of points and degrees, there is no reason that â
and ǎ should be close. However, for simple examples of critical points of W we noticed that
they are equal. This observation led us to the following identity.

Lemma 1. Consider ℓ points z1, . . . , zℓ ∈ C, and ℓ real numbers d1, . . . , dl whose sum is non
zero. Then the following identity holds:

∑

djzj
∑

dj
=

∑

d2
jzj

(
∑

dj)2
+

∑∇zjW (z1, . . . , zℓ)z
2
j

2(
∑

dj)2
, (18)

where the sums are meant for j ranging from 1 to ℓ.

Specifying formula (18) with zj = aj(s) − âi(s), and in view of (12), we obtain

Proposition 2. It holds

|ǎi(s) − âi(s)| ≤ C(M0)|∇W ({aj(s)}j∈I(s))| fi(s), (19)

where C(M0) depends only on M0 and where I(s) = {j ∈ {1, . . . , ℓ(s)}, aj(s) ∈ Bi}.

Combining (17) and (19), we finally derive

|f ′
i(s)| ≤ C(M0, s0)(1 + |∇W ({aj(s)}j∈I(s))|)fi(s) . (20)

Since fi(s0) = 0, Gronwall’s lemma would then allow to conclude that fi(s) ≡ 0 on a neigh-
borhood I of s0 provided that

∫

I
|∇W ({aj(s)}j∈I(s))| ds < +∞. (21)

As a matter of fact, we will even prove that
∫

I
|∇W ({aj(s)}j∈I(s))|2 ds < +∞, (22)

using the gradient-flow type properties of the ode (3). This last statement may seem rather
odd at first reading, since the ode (3) is precisely what we wish to show. Our actual argument
is by induction on di(s0). Indeed, when |di(s0)| = 2, the splitting may only create ±1 vortices,
for which we already established (3) in [4]. Similarly, if |di(s0)| = k, the splitting may only
involve vortices of degree at most k− 1 in absolute value, which are handled by the inductive
argument. To establish (22) in view of the gradient-flow properties, we invoke

Proposition 3. We have, for any s > 0,

|W ({aj(s)}j∈I(s))| ≤ C(M0)
(

| log dist(s, {τ0, . . . , τq})| + 1
)

. (23)
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The proof of Proposition 3 relies only on the special form of W and on the κ-confinement
result of [4] which we recall next.

Theorem 5 ([4] Theorem 5). Let s > 0, a ∈ R
2, r > 0 and 0 < κ ≤ 1

2 be such that

∅ 6= Σs
v
∩ B(a, r) ⊂ B(a, κr).

There exist constants 0 ≤ κ1 ≤ 1
4 and γ1 > 0 ,depending only on M0, such that if 0 < κ ≤ κ1

and
dist(s, {τ0, . . . , τq}) ≥ γ1κ

2r2,

then
∑

i∈I(s)

d2
i (s) =

(

∑

i∈I(s)

di(s)
)2

(24)

where we have set I(s) = {i ∈ 1, ..., ℓ(s) | ai(s) ∈ B(a, r)}.

Once it is proved that fi(s) ≡ 0, statement i) of Theorem 2 follows straightforwardly.
Statement ii) of Theorem 2 is a direct consequence of the equation (14) for the center of mass
âi(s) and the fact that there is no splitting.

Remark. One may consider more generally the class of ode’s

d

ds
miai(s) = −∇aiW (a1, . . . , aℓk

) + dic(s)
⊥, i = 1, . . . , ℓk , (25)

where the coefficients mi > 0 may be thought as masses. In our case, the masses and the
degrees are constrained by the relation mi = d2

i . Defining for the general case the center of
mass â(s) as

â(s) =

∑

mjaj(s)
∑

mj
,

then (17) still holds, with ǎ(s) being as before the topological center of mass. However,
inequality (19) in Proposition 2 does not hold in general. In particular, we do not know if a
cluster verifying the algebraic equilibrium relation (

∑

d2
i ) =

∑

d2
i may expand or not for the

ode (25). Our arguments therefore heavily rely on the quatization of energy mi = d2
i .

Concerning the proof of Theorem 4, it relies essentially on refinements of the arguments
involved in the proof of Theorem 2.

The outline of this paper is as follows. In Section 2, we derive some important properties
concerning the Kirchhoff-Onsager functional. In Section 3, we analyze the growth of cluster
of vortices, and in particular give the proofs of Proposition 1, 2 and 3. Section 4 contains the
proof of Theorem 2 and 4. In Section 5, we provide examples of branching points which are
limits of solutions to (PGL)ε. Finally in Section 6 we describe the behavior of trajectories
near branching points.
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2 Some properties of the interaction energy

We consider, for ℓ distinct points z1, . . . , zℓ ∈ C and ℓ real numbers d1, . . . , dℓ 6= 0, the
interaction energy4

W (z1, . . . , zℓ) = −
∑

i6=j

didj log |zi − zj|2 = −
∑

i6=j

log(zi − zj)(zi − zj).

This functional appears in several topics of mathematical physics. In this section, we will
derive various properties of W , most of which will be used later in this paper.

2.1 Properties of the gradient of W

For fixed d1, . . . , dℓ 6= 0, the function W is clearly well defined and smooth on the open
subset of C

ℓ consisting of ℓ-tuples of distinct points. It possesses some elementary symmetry
properties, namely

Lemma 2.1. (Invariance by rotations, translations and dilations). We have

∇W (α(z1 − β), . . . , α(zℓ − β)) =
1

ᾱ
∇W (z1, . . . , zℓ)

for any α ∈ C
∗ and β ∈ C.

The gradient ∇W has a simple expression in complex notation

Lemma 2.2. For any k ∈ {1, · · · , ℓ} we have

1

2
∇zk

W =
∂W

∂z̄k
= −dk

∑

j 6=k

dj

zj − zk
. (2.1)

As a consequence,
ℓ
∑

k=1

〈∇kW, zk〉 = Re
(

ℓ
∑

k=1

∇kWz̄k

)

=
∑

j 6=k

dkdj . (2.2)

Proof. We observe that for a smooth function h on R
+, we have

∇zh(|z|2) = 2h′(|z|2)z = 2h′(zz̄)
∂

∂z̄
(zz̄) = 2

∂

∂z̄
h(zz̄) , (2.3)

and the conclusion (2.1) follows.

The next formula is the starting point for the proof of Lemma 1.

Lemma 2.3. We have

(

ℓ
∑

k=1

dk

z − zk

)2

=
ℓ
∑

k=1

d2
k

(z − zk)2
+

ℓ
∑

k=1

∇zk
W

z − zk
. (2.4)

4Clearly W depends also on the di’s, although this is not reflected in our notation W (z1, · · · , zℓ). In most
places the di’s are implicit from the context, i.e. the degrees of the vortices. However, in case of possible
ambiguity, we will write W ({(zi, di)}1≤i≤ℓ).
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Proof. Expanding the l.h.s. of (2.4), we obtain

(

ℓ
∑

k=1

dk

z − zk

)2

=
ℓ
∑

k=1

d2
k

(z − zk)2
+
∑

j 6=k

dkdj

(z − zk)(z − zj)
. (2.5)

On the other hand, we have the identity

1

(z − zk)(z − zj)
=

1

zk − zj
(

1

z − zk
− 1

z − zj
) . (2.6)

Inserting (2.6) into (2.5) we therefore derive

(

ℓ
∑

k=1

dk

z − zk

)2

=
ℓ
∑

k=1

d2
k

(z − zk)2
+ 2

ℓ
∑

k=1





∑

j 6=k

dj

zk − zj





dk

z − zk
, (2.7)

and (2.4) follows.

2.2 Proof of Lemma 1

We expand each of the terms involved in equality (2.4) as power series of 1
z .

(

∑ dk

z − zk

)2

=
1

z2

(

∑ dk

1 − (zk/z)

)2

=
1

z2

(

∑

dk +
1

z

∑

dkzk + O(
1

z2
)

)2

=
1

z2

(

∑

dk

)2
+

2

z3
(
∑

dk)(
∑

dkzk) + O(
1

z4
),

∑ d2
k

(z − zk)2
=

1

z2

∑ d2
k

(1 − (zk/z))2

=
1

z2
(
∑

d2
k) +

2

z3
(
∑

d2
kzk) + O(

1

z4
),

∑ ∇zk
W

z − zk
=

1

z

(

∑ ∇zk
W

1 − (zk/z)

)

=
1

z
(
∑

∇zk
W ) +

1

z2
(
∑

∇zk
Wzk) +

1

z3
(
∑

∇zk
Wz2

k) + O(
1

z4
),

as |z| → ∞. Identifying the coefficients of the expansion, in view of (2.4), we are led to

ℓ
∑

k=1

∇zk
W = 0 , (2.8)

(
ℓ
∑

k=1

dk)
2 =

ℓ
∑

k=1

d2
k +

ℓ
∑

k=1

∇zk
Wzk , (2.9)
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2(
ℓ
∑

k=1

dk)(
ℓ
∑

k=1

dkzk) = 2
ℓ
∑

k=1

d2
kzk +

ℓ
∑

k=1

∇zk
Wz2

k . (2.10)

The first equality is a result of the symmetry properties of W , whereas the last one immedi-
ately yields (18).

2.3 Critical points of W

In this subsection we study critical points of W , i.e. configurations {(zi, di)}1≤i≤ℓ verifying

∇zk
W (z1, . . . , zℓ) = 0 . (2.11)

Alternatively, it follows from Lemma 2.3 that the configuration is critical if and only if

ℓ
∑

j 6=k=1

dj

zk − zj
= 0 ∀ k = 1, . . . , ℓ . (2.12)

We refer to (2.12) as the geometric equilibrium condition. Although they do not enter
directly in the proofs Theorem 2 and 4, critical configurations are useful for the understanding
of the splitting phenomenon (see Section 5. They are also interesting by themselves, since
they are stationary solutions for the dynamical law (3). They play a role in different topics.
For instance, in fluid dynamics they describe stationary vortex solutions for the 2D Euler
equation on the whole plane, and related examples may be found in electrostatics.

As a consequence of identities (2.9) and (2.10), we have

Proposition 2.1. Assume that W possesses a critial point (z1, . . . , zℓ), then necessarily

∑

d2
k =

(

∑

dk

)2
(2.13)

and
∑

dkzk
∑

dk
=

∑

d2
kzk

∑

d2
k

· (2.14)

Identity (2.13), which we refer to as the algebraic equilibrium relation, was already found
by Kirchhoff [10] in the context of vortex solutions for the Euler equation. In the framework
of Ginzburg-Landau theory, the same relation was derived by Comte and Mironescu [6] for
critical points of the Ginzburg-Landau energy Eε, and exploited in [21, 4] in the asymptotics
for (PGL)ε. It expresses also the conformal invariance of W , that is

W (z1, . . . , zℓ) = W (λz1, . . . , λzℓ) ∀λ ∈ C
∗ (2.15)

if and only if (2.13) is verified.
Identity (2.14) can be interpreted as the equality of the center of mass and the topological

center of mass, as defined in the introduction, in other words we have

ẑ = ž (2.16)

for critical points (z1, . . . , zℓ).
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Solutions to the algebraic equilibrium relation. Set D =
∑ℓ

i=1 di. Notice first that
(2.13) implies ℓ ≤ D2, so that there is no solution to (2.13) for D = 0, and only the trivial
single point solution for D = 1. More generally, let n(D) be the number of different solutions
to (2.13). We observe that n(D + 1) > n(D), i.e. n(D) is strictly increasing. Indeed, there
is of course the trivial single degree D solution, and for any solution with total degree D
one can construct a solution with total degree D + 1 by adding D + 1 degree +1 vortices,
and D degree -1 vortices. In particular, for D ≥ 2, (2.13) has at least one solution, namely
(D2 + D)/2 vortices of degree +1 and (D2 − D)/2 vortices of degree −1.

In order to illustrate the previous discussion, notice for instance that for D = 2, the only
solutions to (2.13) are the trivial solution (+2), and, up to permutations, (−1,+1,+1,+1).
For D = 3, besides the already mentioned solution (−1,−1,−1,+1,+1,+1,+1,+1,+1) and
trivial solution (+3), there is also the solution (−1,+2,+2) and, splitting one of the +2
degrees, we obtain additionally (−1,−1,+1,+1,+1,+2). For general D, the number of so-
lutions to (2.13) may be quite large. Indeed, the previous example D = 3 shows that the
set of solutions has a sort of tree structure. Once solutions to (2.13) are found, it remains
to determine the corresponding geometric equilibrium configurations, i.e. the solutions to
(2.12).

Solutions to the geometric equilibrium equation. For D = 2, the following solution to
(2.12) is known, where the largest triangle is equilateral.

−1

+1+1

+1

This construction can be generalized to arbitrary D ≥ 2 as follows

+1
+1

+1

−d

+1
+1

+1
+1

where the origin is a vortex of degree −d and where 2d + 1 vortices of degree +1 are located
at the vertices of a regular polygon, so that D = d+1. For D = 3, besides the above solution,
there is also the colinear configuration.

−1+2 +2

Notice also that given a solution {(zi, di)}1≤i≤ℓ to (2.12), one obtains further solutions of
the form {(zi, kdi)}1≤i≤ℓ for any k ∈ Z

∗. The number of solutions for large D is presumably
large, however, for D = 2 we have
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Proposition 2.2. Assume D = 2, ℓ 6= 1, and that z1, . . . , zℓ is a critical point of W =
−∑ didj log |zi − zj |2. Then necessarily ℓ = 4, and up to a rigid motion and a dilation (and
to a permutation of indices), d1 = −1, d2 = d3 = d4 = +1, and

(z1, z2, z3, z4) = (0, 1, exp(2iπ/3), exp(4iπ/3)) .

Proof. In view of the discussion in the previous section, we may assume that (d1, d2, d3, d4) =
(−1,+1,+1,+1) and, up to translations, rotations and dilations, z1 = 0 and z2 = 1. The
system (2.12) is then reduced to

1

z3
+

1

z4
= −1 &

1

1 − z3
+

1

1 − z4
= +1.

In particular, z2
3 +z3+1 = 0, so that either z3 = exp(2iπ/3) and z4 = exp(4iπ/3) or viceversa.

The proof is therefore complete.

2.4 Clusterization and computation of W

In this subsection we present two elementary lemma of somewhat combinatorial nature,
which, combined with Theorem 5, will yield the proof of Proposition 3. They already appeared
in [4]. We provide their proofs for completeness.

Lemma 2.4. Let X be a metric space, and consider ℓ distinct points a1, . . . , aℓ in X. Let
δ0 > 0 and 0 < κ ≤ 1

2 be given. Then there exists δ > 0 such that

δ0 ≤ δ ≤ (
κ

2
)−ℓδ0 (2.17)

and a subset {aj}j∈J of {ai}1≤i≤ℓ such that

∪ℓ
i=1B(ai, δ0) ⊂ ∪j∈JB(ai, δ) (2.18)

and
dist(ai, aj) ≥ κ−1δ ∀i 6= j in J. (2.19)

Proof. The proof is by iteration, in at most ℓ steps. First, consider the collection {ai}1≤i≤ℓ.
If (2.18), (2.19) is verified with δ = δ0 there is nothing else to do. Otherwise, take two
points, say a1, a2 such that dist(a1, a2) ≤ κ−1δ0, consider the collection a2, a3, . . . , al, and
set δ = 2κ−1δ0. If (2.18) is verified, we stop. Otherwise we go on in the same way. If the
process does not stop in ℓ − 1 steps, at the ℓth step we are left with one single ball of radius
δ = (κ

2 )−ℓδ0, and (2.18) is void.

Lemma 2.5. Let X be a metric space, let 0 < κ < 1/2 and 0 < r < Rmax be given. Consider
m distinct points b1, . . . , bm in X such that

dist(bi, bj) ≥ κ−1r, for i 6= j.

Then one of the following two situations holds

i) infi6=j dist(bi, bj) ≥ Rmax

14



ii) There exists a partition {1, . . . ,m} = ∪n
i=1Ji with n < m, for each i ∈ {1, . . . , n} some

b̃i ∈ ∪j∈Ji{bj} and r < R ≤ (κ
2 )−m/2Rmax such that

∪m
i=1B(bi, r) ⊂ ∪n

i=1B(b̃i, R) (2.20)

dist(b̃i, b̃j) ≥ κ−1R, for any i 6= j ∈ {1, . . . , n}, (2.21)

and, for every d1, . . . , dm ∈ R
m,

∣

∣

∣

m
∑

i6=j=1

didj log dist(bi, bj) −
n
∑

i6=j=1

DiDj log dist(b̃i, b̃j) −
n
∑

p=1

∑

i6=j∈Jp

didj log R
∣

∣

∣ ≤ C| log κ| (2.22)

where Di =
∑

j∈Ji
dj , and where the constant C depends only on m and supi |di|2.

Proof. If i) holds there is nothing left to prove. Otherwise set

δ0 = inf
i6=j

dist(bi, bj).

Applying Lemma 2.4 we obtain a subset {b̃1, . . . , b̃n} of {b1, . . . , bm} and δ0 ≤ δ ≤ (κ/2)−mδ0

such that
∪m

i=1B(bi, δ0) ⊂ ∪n
i=1B(b̃i, δ) (2.23)

and
dist(b̃i, b̃j) ≥ κ−1δ ∀i 6= j. (2.24)

We choose R = δ. It follows from the definition of δ0 and (2.24) that n < m, whereas (2.20)
and (2.21) follow directly from (2.23) and (2.24) respectively. We set, for i = 1, . . . , n,

Ji = {j : bj ∈ B(b̃i, R)}

and turn finally to (2.22). For i 6= j in {1, . . . ,m} we distinguish two cases:
- i, j belong to the same Jp, for some p ∈ {1, . . . , n}: then

| log dist(bi, bj) − log R| ≤ C| log κ|

which follows from the fact that δ0 ≤ dist(bi, bj) ≤ 2R ≤ 2(κ/2)−mδ0.
- i ∈ Jp and j ∈ Jq, p 6= q. Then

| log dist(bi, bj) − log dist(b̃p, b̃q) | ≤ Cκ.

The proof of (2.22) follows then by summation.

3 Properties for cluster of vortices

The purpose of this section is to give the proofs of Proposition 1, Proposition 2 and Propo-
sition 3, which mainly involve properties for clusters of vortices of (PGL)ε. We also propose
a local version of Proposition 3 which will be used for the proof of Theorem 4.

We begin with
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Proof of identity (15). We write,

|aj(s) − âi(s)|2 = |aj(s)|2 − 2〈aj(s), âi(s)〉 + |âi(s)|2 . (3.1)

We have

d

ds

∑

aj(s)∈Bi

πd2
j (s)〈aj(s), âi(s)〉 =

∑

aj(s)∈Bi

〈 d

ds
d2

j(s)aj(s), âi(s)〉 −
∑

aj(s)∈Bi

〈d2
j (s)aj(s),

d

ds
âi(s)〉

= di(s0)
[

〈dâi(s)

ds
, âi(s)〉 − 〈âi(s),

dâi(s)

ds
〉
]

= 0,

(3.2)

whereas, in view of (12) and (14),

d

ds

∑

aj(s)∈Bi

d2
j (s)|âi(s)|2 = 2di(s0)〈âi(s),

dâi(s)

ds
〉

= 2di(s0)〈âi(s), ~c(s)⊥ + 2
∑

ak(s)/∈Bi
aj (s)∈Bi

dk(s)∇aj log |ak(s) − aj(s)|〉. (3.3)

Combining (13), (3.1), (3.2) and (3.3) we deduce

d

ds

(

∑

aj(s)∈Bi

πd2
j (s)|aj(s) − âi(s)|2

)

= 4π
∑

ak(s)/∈Bi
aj(s)∈Bi

dk(s)dj(s)Re
( aj(s) − âi(s)

ak(s) − aj(s)

)

+ 2π
∑

aj(s)∈Bi

dj(s)〈aj(s) − âi(s),~c(s)
⊥〉 ,

(3.4)

and the conclusion follows from the fact that di(s0)ǎi(s) =
∑

dj(s)aj(s).

Proof of Proposition 1. By (11), we have for s ∈ [s0 − ∆s0, s0 + ∆s0], for ak(s) /∈ Bi and
for aj(s) ∈ Bi,

∣

∣

∣Re
( aj(s) − âi(s)

ak(s) − aj(s)

)

−Re
(aj(s) − âi(s)

ak(s) − âi(s)

)∣

∣

∣ ≤ C|aj(s) − âi(s)|2.

Therefore, we obtain, for the first term in the right hand side of (15),

∑

ak(s)/∈Bi
aj(s)∈Bi

dk(s)dj(s)Re
( aj(s) − âi(s)

ak(s) − aj(s)

)

= di(s0)〈ǎi(s) − âi(s), ~γ(s)〉 + R(s) ,

where
~γ(s) =

∑

ak(s)/∈Bi

dk(s)∇ak
log |ak(s) − âi(s)|

and

|R(s)| ≤ C(M0, s0) sup
aj(s)∈Bi

|aj(s) − âi(s)|2 ≤ C(M0, s0)

π
fi(s) .
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Hence,

d

ds

(

∑

aj∈Bi

πd2
j (s)|aj(s) − âi(s)|2

)

= 2πd(s0)〈ǎi(s) − âi(s), ~c(s)⊥ + 2~γ(s)〉 + 4πR(s)

and the conclusion then follows.

Proof of Proposition 2. In view of Lemma 1 and the translation invariance of W we have,
omitting to write the dependence in s,

∑

dj(aj − âi)
∑

dj
−
∑

d2
j(aj − âi)

(
∑

dj)2
=

∑∇ajW ({aj}j∈I(s))(aj − âi)
2

2(
∑

dj)2
, (3.5)

where the sums are taken over points aj(s) ∈ Bi. On the other hand, by (12) we obtain

∑

dj(s)(aj(s) − âi(s))
∑

dj(s)
= ǎi(s) − âi(s) and

∑

d2
j (s)(aj(s) − âi(s))

(
∑

dj(s))2
= 0,

so that (3.5) implies

|ǎi(s) − âi(s)| ≤ C|∇W ({aj(s)}j∈I(s))| sup
aj(s)∈Bi

|aj(s) − âi(s)|2

and the conclusion follows from the definition of fi(s).

In order to prove Proposition 3, we are led to consider the following situation. Let κ1

and γ1 be given by Theorem 5. Let b ∈ R
2, 0 < κ ≤ κ1, 0 < R1 ≤ R2 and let b1, . . . , bm be a

collection of m points in R
2 such that

Σs
v
∩ B(b, κ−1R2) ⊂ ∪m

j=1B(bj, R1) ⊂ B(b,R2) (3.6)

|bi − bj | ≥ κ−1R1 (3.7)

dist(s, {τ1, . . . , τq}) ≥ γ1R
2
2. (3.8)

We set, for j = 1, . . . ,m, Dj =
∑

ak(s)∈B(bj ,R1) dk(s). In view of (3.6) and the uniform bound
on the number of vortices, we may always assume that m ≤ C(M0).

We first have

Lemma 3.1. If (3.6), (3.7) and (3.8) are satisfied, then

m
∑

i6=j=1

DiDj = 0. (3.9)

Proof. We apply Theorem 5 in two situations: first with a = b and r = R2, then with a = bj

and r = R1. The first yields

∑

ai(s)∈B(b,R2)

d2
i (s) =

(

∑

ai(s)∈B(b,R2)

di(s)
)2

=
(

m
∑

j=1

Dj

)2
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whereas the second gives, for j = 1, . . . ,m

∑

ai(s)∈B(bj ,R1)

d2
i (s) =

(

∑

ai(s)∈B(bj ,R1)

di(s)
)2

= D2
j .

Since
∑

ai(s)∈B(b,R2)

d2
i (s) =

m
∑

j=1

∑

ai(s)∈B(bj ,R1)

d2
i (s)

we deduce
m
∑

j=1

D2
j =

(

m
∑

j=1

Dj

)2
,

which is equivalent to the conclusion (3.9).

Lemma 3.2. There exist constants C(M0) and 0 < κ(M0) ≤ κ1 such that if (3.6), (3.7) and
(3.8) hold and if κ ≤ κ(M0) then

∣

∣

∣

m
∑

i6=j=1

DiDj log |bi − bj|
∣

∣

∣ ≤ C(M0). (3.10)

Proof. We proceed by induction on m, the number of interior balls. When m = 1, there is
nothing to prove, whereas when m = 2, the r.h.s. of (3.10) is zero by (3.9), so that (3.10)
follows. By induction, we assume that there exist some constants 0 < κ(m − 1) ≤ κ1 and
C(m− 1) such that, for any collection of at most m− 1 balls satisfying (3.6), (3.7) and (3.8)
with κ ≤ κ(m − 1), (3.10) holds with r.h.s equal to C(m − 1). For a collection of m interior
balls satisfying (3.6), (3.7) and (3.8), we apply Lemma 2.5 with b1, . . . , bm, κ, r = R1 and
Rmax = R2. This yields a new collection of n ≤ m − 1 disjoint interior balls B(b̃j, R) which
satisfy

R1 ≤ R ≤ (
κ

2
)−m/2R2 (3.11)

|b̃i − b̃j | ≥ κ−1R (3.12)

and moreover

∣

∣

∣

m
∑

i6=j=1

didj log |bi − bj | −
n
∑

i6=j=1

DiDj log |b̃i − b̃j | −
n
∑

p=1

∑

i6=j∈Jp

didj log R
∣

∣

∣ ≤ C| log κ|.

Since κ ≤ κ1,
∑

i6=j∈Jp
didj = 0 by Lemma 3.1, so that

∣

∣

∣

m
∑

i6=j=1

didj log |bi − bj | −
n
∑

i6=j=1

DiDj log |b̃i − b̃j |
∣

∣

∣ ≤ C| log κ|. (3.13)

Since the balls B(b̃j , R) are disjoints and since b̃j ∈ B(b,R2), it follows that R ≤ R2. Set b̃ = b,
R̃1 = R, R̃2 = 2R2 and κ̃ = 2κ. One verifies in view of (3.11) and (3.12) that (3.6), (3.7) and
(3.8) are satisfied for the point b̃, the collection b̃1, . . . , b̃n, r̃1, r̃2 and κ̃. If κ̃ ≤ κ(m − 1), we
may apply the inductive hypothesis, since n ≤ m − 1, so that

∣

∣

∣

n
∑

i6=j=1

DiDj log |b̃i − b̃j|
∣

∣

∣ ≤ C(m − 1). (3.14)
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We choose κ(m) = 2−mκ1 and C(m) = Cm| log κ(m)|. Combining (3.13) and (3.14) we
obtain, if κ ≤ κ(m),

∣

∣

∣

m
∑

i6=j=1

didj log |bi − bj|
∣

∣

∣ ≤ C(m − 1) + C| log κ(m)| ≤ C(m)

and the proof is complete.

Proof of Proposition 3. We wish to divide {aj(s) ∈ Bi} into subclusters of maximal size
for which we may apply Lemma 3.2 with κ = κ(M0). For that purpose, we apply Lemma 2.4
to the points {a1, . . . , aℓ} ≡ {aj(s) ∈ Bi} , κ = κ(M0) and δ0 such that

(κ(M0)

2

)−ℓ
δ0 =

√

dist(s, {τ1, . . . , τq})
γ1

. (3.15)

For j ∈ J we set Ij = {k ∈ {1, . . . , ℓ}, ak ∈ B(aj, δ)}, and one verifies that (3.6), (3.7) and
(3.8) are satisfied with κ = κ(M0), b = aj, {bk} = {ak}k∈Ij

, R2 = δ and R1 sufficiently close
to zero. We may therefore apply Lemma 3.2 to obtain, for any j ∈ J ,

∣

∣

∣

∑

p 6=q∈Ij

dp(s)dq(s) log |ap(s) − aq(s)|
∣

∣

∣ ≤ C(M0).

For p ∈ Ij and q ∈ Ij′ with j 6= j′, we have

|ap(s) − aq(s)| ≥ (κ(M0)
−1 − 2)δ ≥ δ

so that

log |ap(s) − aq(s)| ≥ log δ0 ≥ 1

2
log |dist(s, {τ1, . . . , τq})| − C(M0).

On the other hand, we clearly have

log |ap(s) − aq(s)| ≤ log(2r(s0)) ≤ 1.

Since
ℓ
∑

p 6=q=1

=
∑

j∈J

∑

p 6=q∈Ij

+
∑

j 6=j′∈J

∑

p∈Ij , q∈Ij′

inequality (23) follows by summation.

For the proof of Theorem 4, we need also to consider the case of vortices at the dissipation
times. We have the following variant of Proposition 3.

Proposition 3.1. Let (ai(τk), τk) ∈ Σv and set

Γ±
i =

∑

j∈I(s)

d2
j (s) − d2

i (τk) for s → τ±
k . (3.16)

Then we have

W ({aj(s)}j∈I(s)) = Γ±
i log |s − τk| + O(1) as s → τ±

k . (3.17)
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Proof. We use exactly the same construction as in the proof of Proposition 3 above. For
j ∈ J, we obtain, by the same argument,

∣

∣

∣

∑

p 6=q∈Ij

dp(s)dq(s) log |ap(s) − aq(s)|
∣

∣

∣ ≤ C(M0). (3.18)

For the remaining terms, we expand further the computation in the proof of Proposition 3.
For p ∈ Ij and q ∈ Ij′ with j 6= j′, we have, by the parabolic cone property proved in [3], the
definition (3.15) of δ0 and (2.17)

|ap(s) − aq(s)| ≤ C(M0)δ

provided s is sufficiently close to τk. Since on the other hand

|ap(s) − aq(s)| ≥ (κ(M0)
−1 − 2)δ ≥ δ

we obtain
| log |ap(s) − aq(s)| − log δ| ≤ C(M0). (3.19)

Since
∑

p 6=j∈Ij
dp(s)dq(s) = 0 for all i, we are led to

∑

j 6=j′

∑

p∈Ij, q∈Ij′

dp(s)dq(s) = (d2
i (τk) −

∑

j∈I(s)

d2
j(s)) = −Γ±

i . (3.20)

In view of (3.15) and (2.17), we have log δ = 1
2 log |s− τs|+O(1). The conclusion then follows

from (3.18), (3.19),(3.20) and the definition of W.

4 Non occurence of splittings without dissipation

The main purpose of this section is to provide the proofs for Theorem 2 and 4. As mentioned
in the introduction, the main point is

Lemma 4.1. For any (ai(s0), s0) ∈ Σv, with s0 /∈ {τ1, . . . , τq} and ∆s0 and ri(s0) as in (11),
there exists a neighborhood I of s0 such that

fi(s) ≡
1

d2
i (s0)

∑

aj(s)∈Bi

d2
j (s)|aj(s) − âi(s)|2 = 0 (4.1)

for all s ∈ I, or equivalently

♯
(

Σs
v
∩ Bi

)

= 1 (4.2)

for all s ∈ I.

Proof. The proof is by induction. More precisely, for k ∈ N
∗ let (Pk) be the statement that

Lemma 4.1 holds for |di(s0)| ≤ k. First notice that (P1) holds. Indeed, for a vortex ai(s0)
with |di(s0)| = 1, (4.2) has already been established in [4] Lemma 5.3, and is actually an
immediate consequence of (12). For k ≥ 2, we next prove that (Pk) holds, assuming (Pk−1).
Let (ai(s0), s0) ∈ Σs0

v with s0 /∈ {τ1, . . . , τq} and |di(s0)| = k, and assume by contradiction
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that for any interval I ∋ s0, (4.2) does not hold on the whole I. Therefore, there exists
s1 ∈ [s0 − ∆s0, s0 + ∆s0] such that

♯
(

Σs1
v

∩ Bi

)

≥ 2. (4.3)

Assume first that s1 > s0.
Step 1. There exists a time s′0 ∈ [s0, s1) such that

♯{Σs
v
∩ Bi} = ♯{Σs1

v
∩ Bi}, ∀ s ∈ (s′0, s1]

and
♯{Σs′0

v ∩ Bi} < ♯{Σs1
v

∩ B1}.
Indeed, first notice that, by identities (12) and (4.3), all vortices in Σs1

v ∩ Bi have degrees
strictly less than k in absolute value, so that the induction hypothesis (Pk−1) can be used
for these points. In view of (4.2) and conservation of energy (12), the number ♯{Σs

v
∩ Bi} is

locally constant, whereas 1 = ♯{Σs0
v ∩Bi} < ♯{Σs1

v ∩Bi}. Therefore, s′0 is the end point of the
largest open interval containing s1 and on which the value of ♯{Σs

v
∩Bi} equals ♯{Σs1

v ∩ Bi}.
In view of Step 1, I(s) may be choosen independently of s, and the vortices aj(s) with

j ∈ I(s) may be unambiguously labelled on (s′0, s1]. Therefore, without loss of generality we
may write

{aj(s)}j∈I(s) = {a1(s), . . . , am(s)}, ∀ s ∈ (s′0, s1]

for some m ∈ N
∗. Since dj(s) is constant, we also write dj ≡ dj(s) for j ∈ {1, . . . ,m} and

s ∈ (s′0, s1].

Step 2. We have
∫ s1

s′0

|∇W (a1(s), . . . , am(s))|2 ds < +∞. (4.4)

In view of Lemma 5.2 of [4], we have, for any s ∈ (s′0, s1) and any j ∈ {1, . . . ,m},

d

ds
aj(s) =

1

dj
[~c(s)⊥ + 2

ℓ(s)
∑

k 6=j=1

dk(s)∇ak
(log |ak(s) − aj(s)|)]. (4.5)

In particular, for j ∈ {1, . . . ,m},

d

ds
aj(s) = − 1

d2
j

∇W (a1(s), . . . , am(s)) + Rj(s) (4.6)

where Rj is a continuous function bounded by a constant depending only on s0. The system
of m ordinary differential equations (4.6) would be a pseudo-gradient flow for W if Rj were
equal to zero. Here, we have

d

ds
W (a1(s), . . . , am(s)) =

m
∑

j=1

∇ajW (a1(s), . . . , am(s))
d

ds
aj(s)

= −
m
∑

j=1

1

d2
j

|∇ajW (a1(s), . . . , am(s))|2 + ∇ajW (a1(s), . . . , am(s))

≤ −C(|∇W (a1(s), . . . , am(s))|2 − 1),
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where C > 0. Integrating on (s′0, s1) we are led to

∫ s1

s′0

|∇W (a1(s), . . . , am(s))|2 ds ≤ C(|
∫ s1

s′0

d

ds
W (a1(s), . . . , am(s)) ds| + 1)

≤ C(lim
s→s′0

+
|W (a1(s1), . . . , am(s1)) − W (a1(s), . . . , am(s))| + 1)

≤ C(2 sup
s∈(s′0,s1]

|W (a1(s), . . . , am(s))| + 1).

The conclusion (4.4) then follows from Proposition 3.

Step 3. The set Σ
s′0
v ∩ Bi is reduced to a single point. In particular fi(s

′
0) = 0.

Indeed, assume by contradiction that Σ
s′0
v ∩ Bi contains at least two points. In view of the

conservation of energy (12), their degrees would be, in absolute value, strictly less than k,

so that using the induction hypothesis ♯(Σs
v
∩ Bi) would be constant equal to ♯(Σ

s′0
v ∩ Bi) in

some neighborhood of s′0. This would contradict Step 1.
Step 4. We claim that ♯(Σs1

v ∩Bi) = 1, which yields the desired contradiction to (4.3) when
s1 > s0.
In view of (20) we have

|f ′
i(s)| ≤ C(1 + |∇W (a1(s), . . . , am(s))|) fi(s), ∀ s ∈ (s′0, s1).

By Gronwall’s lemma, we obtain

fi(s) ≤ fi(s
′
0) exp(C

∫ s1

s′0

(1 + |∇W (a1(s), . . . , am(s))|) ds), ∀ s ∈ (s′0, s1].

Hence fi(s) = 0 on (s′0, s1] in view of Step 2 and Step 3. In particular fi(s1) = 0 and the
conclusion follows.

The case s1 < s0 is treated with very similar arguments.

Proof of Theorem 2. Lemma 4.1 implies that the number of vortices is locally constant out
of the dissipation times. By continuation, it is therefore constant on each interval (τk, τk+1).
Hence statement i) is proved. Once the total number of vortices is known to be constant,
statement ii) follows from the evolution law for the center of mass (14), which we proved in
Lemma 5.2 of [4].

For the proof of Theorem 4, we extend the result of Lemma 4.1 to vortices (ai(τk), τk) as
follows.

Lemma 4.2. Let (ai(τk), τk) ∈ Σv and assume that

ℓ+i
∑

j=1

(d+
j )2 = d2

i (τk) (resp.

ℓ−i
∑

j=1

(d−j )2 = d2
i (τk)).

Then
ℓ+
i = 1 (resp. ℓ−i = 1).
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Proof. Assume by contradiction that ℓ+
i ≥ 2. In view of Theorem 2, relabelling possibly the

vortices, we have for j ∈ {1, . . . , ℓ+
i }

d

ds
aj(s) = − 1

d2
j

∇W (a1(s), . . . , aℓ+i
(s)) + Rj(s),

for s ∈ (τk, τk + ∆τk), where Rj(s) is a continuous and bounded function. Arguing as in
Lemma 4.1, we obtain

∫ τk+∆τk

τk

|∇W (a1(s), . . . , aℓ+i
(s))|2 ds ≤ C( sup

s∈(τk,τk+∆τk)
|W (a1(s), . . . , aℓ+i

(s))| + 1).

In view of Proposition 3.1, the right hand side of the last inequality is finite, so that

∫ τk+∆τk

τk

|∇W (a1(s), . . . , aℓ+i
(s))| ds < +∞,

and we may then finish the proof as in Lemma 4.1 using Gronwall’s lemma.

Proof of Theorem 4. We first notice that (8), which was already obtained in [3] is, as
mentioned, a consequence of the homotopy invariance of the degree, the convergence stated
in Theorem 1, and the already established regularity properties of Σv.

Concerning (9), we turn to Proposition 3.1, and claim that

Γ+
i ≤ 0 , Γ−

i ≥ 0 . (4.7)

This is a rather direct consequence of expansion (3.17) and the gradient-flow type property
of (3). Inequalities (4.7) then follow from (9).

We now turn to the first statement in Theorem 4, namely the identification of dissipation
points and branching points. It is straightforward to show that a regular point is not a
dissipation point. Indeed, in this case ℓ+

i = ℓ−i = 1, d+
i = d−i , so that βk

i = 0 in view of (7)
and (8).

We next prove that a point which is not a dissipation point is a regular point. By Lemma
4.2, if Γ+

i = 0 (resp. Γ−
i = 0) then ℓ+

i = 1 (resp. ℓ−i = 1). In particular, if (ai(τk), τk) is
not a dissipation point, then Γ+

i − Γ−
i = βk

i = 0. In view of (4.7) it follows in this case that
Γ+

i = Γ−
i = 0, so that ℓ+

i = ℓ−i = 1 and therefore (ai(τk), τk) is a regular point.

5 Examples of branching points in the trajectory set

In the introduction we classified branching points by their complexity as illustrated in Figure
2. In this section we will show that cases a), b) and c) may be observed as limits of solutions
to (PGL)ε. Case d) would require more efforts.

5.1 Collisions with annihilation

We consider a well-prepared initial datum, having two vortices of degree +1 and −1 of the
form

u0
ε(z) = f(

|z − 1|
ε

)f(
|z + 1|

ε
)

(z − 1)(z̄ + 1)

|(z − 1)(z̄ + 1)| ,
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where f is a smooth nonnegative function on R
+ such that f(0) = 0, f ≡ 1 outside a compact

set. In particular

u0
ε → u0

∗ =
(z − 1)(z̄ + 1)

|(z − 1)(z̄ + 1)| as ε → 0 ,

i.e. u0
∗ has a vortex of degree +1 located at a+(0) = 1, and a vortex of degree −1 located

at a−(0) = −1. The solution to the ordinary differential equation (3) with initial datum as
above is given explicitely as

a±(s) = ±
√

1 − s , for 0 ≤ s < 1 .

Let uε be the solution of (PGL)ε with inital datum u0
ε, and ai(s) be the points given by

Theorem 1. It follows from [9] that for 0 ≤ s < 1, ℓ(s) = 2 and, after a possible relabelling,
a1(s) = a+(s), a2(s) = a−(s).

It follows from Theorem 4 that for s > 1, ℓ(s) = 0, so that vortices have disappeared after
s = 1. This provides an example for Figure 2a.

5.2 Collisions without annihilation

We consider here a well-prepared initial datum of the form

u0
ε(z) = vε

3
∏

k=1

f(
|z − ak(0)|

ε
)

(

z − ak(0)

|z − ak(0)|

)di

,

where f is as in Section 5.1, vε is defined as

vε(z) = f(
|z − ε−1|

ε
)

z̄ − ε−1

|z̄ − ε−1| ,

and ak(0) = k − 2, dk = (−1)k+1, for k = 1, 2, 3. Since the total degree near the origin is
different from zero, we added a “vortex at infinity” (by superposing vε) in order to have total
degree zero at infinity. In particular, (H0) is verified, with say M0 = 6π. The solution of
the ordinary differential equation (3) with initial datum ak(0) = k− 2 and dk = (−1)k+1, for
k = 1, 2, 3, is given by

ak(s) = (2 − k)
√

1 − 2s , for 0 ≤ s <
1

2
for k = 1, 2, 3.

It follows again by the argument of [9] that ak(s) are the points provided in Theorem 1. It
follows from Theorem 4, identity (8) and inequality (9) that, for s > 1/2, a2 and a3 have
disappeared and that

a1(s) = 0 for s ≥ 1

2
.

In particular, the branching point (0, 1
2) is as in Figure 2b.

5.3 On the persistency of multiple degree vortices

In view of (5), a multiple degree vortex, say of degree d ≥ 2, is energetically less favourable
than d vortices of degree one. One may therefore ask wether multiple degree vortices may
arise and survive as limits of solutions to the gradient flow (PGL)ε. The next construction,
which in this respect complements Theorem 2 and Theorem 4 by an example, provides a
positive answer to that question for d = 2.
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Theorem 5.1. Let s0 > 0 be given. There exists M0 and a sequence of solutions (uε)ε>0 of
(PGL)ε such that Σs

v
is reduced to a single vortex located at the origin and of degree d = +2,

for s < s0, and which splits at time s = s0 into two distinct vortices of degree +1.

The idea of the proof is to approximate the trivial multiple degree solution of (3) given
by ℓ(s) = 1, a1(s) ≡ 0 for s ∈ (0, s0) by solutions of (3) involving only vortices of degree ±1,
for which two vortices collapse at time s0. Since ±1-vortices do not split, these solutions may
be well approximated by (PGL)ε, in view of [4], Proposition 1.

In order to construct these solutions, the idea is to consider as initial value the stationary
solution of (3) presented in Proposition 2.2 to perturb it slightly so that the solution to the
corresponding ordinary differential equation eventually breaks up, and finally to scale the
whole construction down so that the configuration asymptotically appears as a single vortex
of degree +2.

More precisely, for δ ∈ (0, 1), we consider as initial values for equation (3) the configuration

aδ
1(0) = δ, aδ

i (0) = zi , for i = 1, 2, 3 . (5.1)

with d1 = −1, d2 = d3 = d4 = +1, and denote aδ
i (s), for i = 1, 2, 3, 4, the corresponding

solution to (3). We have

Lemma 5.1. The maximal time of existence T ∗(δ) of (3) with initial data (5.1) is finite.
Moreover, the function δ → T ∗(δ) is nonincreasing, continuous and satisfies

T ∗(δ) → +∞ as δ → 0 (5.2)

T ∗(δ) → 0 as δ → 1 (5.3)

Proof. By symmetry,

Im(aδ
i (s)) = 0, ∀ s ∈ [0, T ∗(δ) ), i = 1, 2 (5.4)

aδ
3(s) = aδ

4(s) ∀ s ∈ [0, T ∗(δ) ) . (5.5)

It is an elementary (although not straightforward) exercise to check, in view of (3), that
∀s ∈ [0, T ∗(δ) ),

d

ds
Re(aδ

1(s)) ≥ c(δ) > 0,
d

ds
Re(aδ

2(s)) ≤ −c(δ) < 0, (5.6)

d

ds
Re(aδ

3(s)) =
d

ds
Re(aδ

4(s)) ≤ 0,
d

ds
Im(aδ

3(s)) = − d

ds
Im(aδ

4(s)) ≥ 0. (5.7)

In view of (5.7) the points aδ
1 and aδ

2 are moving towards each other at a speed bounded
below by a positive constant so that they collide in finite time, in particular T ∗(δ) is finite.
On the other hand, one checks that, for any s ∈ [0, T ∗(δ) ),

d

dδ
(aδ

1(s)) > 0 ,
d

dδ
(aδ

2(s)) ≤ 0 , (5.8)

which shows that T ∗(δ) is nonincreasing. Property (5.3) is straightforward, whereas property
(5.2) follows from the continuous dependence with respect to initial data and the fact that
(z1, z2, z3, z4) is a stationary solution to (3).
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Lemma 5.2. For every δ ∈ (0, 1) and every s ∈ [0, T ∗(δ) ),

sup
i=1,..,4

|aδ
i (s)| ≤ 2 (5.9)

Proof. We have

d

ds

4
∑

i=1

|aδ
i (s)|2 = 0 . (5.10)

Indeed, by (2.2),

1

2

d

ds

4
∑

i=1

|aδ
i (s)|2 =

4
∑

i=1

aδ
i (s)∇aiW (aδ

1(s), a
δ
2(s), a

δ
3(s), a

δ
4(s)) =

∑

didj = 0. (5.11)

The conclusion follows from (5.10).

At time T ∗(δ) the point aδ
1 and aδ

2 collide and hence we remove them from the collection,
whereas the functions aδ

3 and aδ
4 can be uniquely continued beyond time T ∗(δ) according to

(3), so that ∀ s ≥ T ∗(δ), for i = 3, 4,

Re(aδ
i (s)) = Re(aδ

i (T
∗(δ))),

Im(aδ
i (s)) = (−1)i+1

(

s − T ∗(δ) − |Im(aδ
i (s))|
4

)1/2

.

We set
Σδ = ∪s>0{aδ

i (s)} .

Proposition 5.1. Let 0 < δ < 1 be given. There exists a family (uδ
ε)0<ε<1 of solutions of

(PGL)ε satisfying (H0) with M0 = 10π and such that Σv = Σδ.

Proof. In view of Theorem 2 and the fact that all the degrees involved here are either +1 or
−1, it suffices to construct a family for which

Σ0
v

= {aδ
1(0), z2, z3, z4} .

This can be done as in the two previous subsections, one may take

uδ
ε(z, 0) = vε

4
∏

i=1

f(
|z − aδ

i (0)|
ε

)

(

z − aδ
i (0)

|z − aδ
i (0)|

)di

∀ z ∈ R
2 ,

where f is a smooth nonnegative function on R
+ such that f(0) = 0, f ≡ 1 outside a compact

set, and vε is defined as

vε(z) = f(
|z − ε−1|

ε
)

(

z − ε−1

|z − ε−1|

)−2

.

One then argues as in Section 5.1 or Section 5.2.
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Proof of Theorem 5.1 For n ∈ N, we denote by δn the value for which T ∗(δn) = n. In
view of Proposition 5.1, Theorem 1 and 3, there exists εn such that

∣

∣

∣

∣

∣

1

| log εn|

∫

B(aδn
i (s),1/n2)

−π

∣

∣

∣

∣

∣

≤ 1

n2

for every s ∈ [0, n2] \ [n − 1/n, n + 1/n]. Set ε̃n = s0εn/n, and define

uε̃n(z, s) = u
δn
εn

(

√

n

s0
z,

n

s0
s)

so that uε̃n verifies (PGL)ε with ε = ε̃n, and

∣

∣

∣

∣

∣

1

| log ε̃n|

∫

B(bn
i (s),1/n3/2)

eε̃n(uε̃n) − π

∣

∣

∣

∣

∣

≤ C(
1

n2
+

log n

| log εn |
) (5.12)

for s ∈ [0, ns0] \ [s0 − s0
n2 , s0 + s0

n2 ], where

bn
i (s) =

√

s0

n
aδn

i (
n

s0
s) , i = 1, 2, 3, 4 .

Notice that, for i = 1, 2, 3, 4,

bn
i (s) → 0 for every s ∈ [0, s0) (5.13)

and that, for i = 3, 4,
bn
i (s) → 2

√
s − s0 for s ∈ (s0,+∞) (5.14)

It follows from (5.12), (5.13) and (5.14) that the set Σv corresponding to (uε̃n)n∈N fulfills
the requirements of Theorem 5.1.

Remark 5.1. 1. Theorem 5.1 provides an example for Figure 2c.
2. Persistency of multiple degree vortices with d > 2 could presumably be obtained by a similar
construction, provided one knows a critical point of W of toal degree d involving only +1 and
−1 vortices.

6 Behavior near branching points

The parabolic nature of a branching point (ai(τk), τk) is suggested by the formula

d

ds

∫

Bi

|x − ai(τk)|2 dv
s
∗ = 2Γ±

i + O(|s − τk|
1
4 ),

where Γ±
i are defined in (3.16). Therefore, in order to analyze the limiting behavior of

trajectories near a branching point, we perform the parabolic change of variables, for5 s > τk,

s̃ = − log(s − τk), ãj(s̃) =
aj(s) − ai(τk)√

s − τk
.

5One argues similarly for s < τk.
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The equation for ãj becomes

d

ds̃
ãj =

1

d2
j

∇jW (ã1, · · · , ãℓk
) − 1

dj
exp(−s̃)c⊥ +

1

2
ãj, (6.1)

for which we have to consider the limit s̃ → +∞, which corresponds to s → τ+
k . In view of

the change of variables, the vortices ãj for j /∈ {1, · · · , ℓ+
i } are sent at infinity, whereas in

view of the parabolic cone property (see [3] Theorem 2) the points ãj for j ∈ {1, · · · , ℓ+
i }

remain in a bounded set. Equation (6.1) therefore reads, for j ∈ {1, · · · , ℓ+
i },

d

ds̃
ãj =

1

d2
j

∇jW (ã1, · · · , ãℓ+i
) +

1

2
ãj + O(exp(− s̃

2
)) (6.2)

as s̃ → +∞.

Lemma 6.1. We have
∣

∣

∣4Γ+
i +

ℓ+i
∑

k=1

d2
kã

2
k

∣

∣

∣ ≤ C exp(− s̃

4
).

Proof. In view of (6.2) and (2.2), we have

d

ds̃

ℓ+i
∑

k=1

d2
kã

2
k = 4Γ+

i +

ℓ+i
∑

k=1

d2
kã

2
k + O(exp(− s̃

2
)).

Set E(s̃) = (4Γ+
i +

∑ℓ+i
k=1 d2

kã
2
k)

2. It follows from (6.1) that

d

ds̃
E(s̃) = E(s̃) + O(exp(− s̃

2
)).

Integrating from s̃
2 to s̃ we obtain

E(
s̃

2
) exp(

s̃

2
) ≤ E(s̃) + C

∫ s̃

s̃
2

exp(s̃ − t) exp(− t

2
) dt ≤ C exp(

s̃

4
),

so that E(s̃) ≤ C exp(− s̃
2) and the conclusion follows.

Arguing as in Lemme 6.1, one may prove6 similarily that

∣

∣

∣

ℓ+i
∑

k=1

d2
kãk(s̃)

∣

∣

∣ ≤ C exp(− s̃

4
).

Lemma 6.2. We have

lim sup
s̃→+∞

∣

∣

∣W (ã1(s̃), · · · , ãℓ+i
(s̃))

∣

∣

∣ < +∞.

6We will not make use of this fact in our subsequent arguments.
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Proof. By (3.17), we have, as s → τ+
k ,

W (a1(s), · · · , aℓ+i
(s)) = Γ+

i log |s − τk| + O(1) = −Γ+
i s̃ + O(1).

On the other hand, by definition of ãj and W ,

W ({ãj(s̃)}) = W ({ aj(s)√
s − τk

}) = W ({aj(s)}) − Γ+
i log(s − τk) = W ({aj(s)}) − Γ+

i s̃.

Combining the two identities we obtain the conclusion.

Up to the exponentially decreasing error term, (6.2) represents a gradient flow of W under

the constraint
∑ℓ+i

j=1 d2
ja

2
j = −4Γ+

i .

Lemma 6.3. For s̃ > 0, set L(s̃) = W (ã1(s̃), · · · , ãℓ+i
(s̃)) + 1

4

∑ℓ+i
j=1 d2

j ã
2
j(s̃). Then we have

d

ds̃
L(s̃) ≥ 1

2

ℓ+i
∑

j=1

d2
j

( 1

d2
j

∇jW +
1

2
ãj

)2
− C exp(−s̃).

Proof. We have, by definition of L and (6.2),

d

ds̃
L(s̃) ≥

ℓ+i
∑

j=1

(

∇jW +
1

2
d2

j ãj

) d

ds̃
ãj =

ℓ+i
∑

j=1

d2
j

( 1

d2
j

∇jW +
1

2
ãj

)( 1

d2
j

∇jW +
1

2
ãj + O(exp(− s̃

2
))
)

and the conclusion follows by Young’s inequality.

It follows from Lemma 6.1 and 6.2 that L is uniformly bounded, and therefore we deduce
from Lemma 6.3

Corollary 6.1. We have

∫ +∞

0

∣

∣

∣∇jW ({ãj(s̃)}) +
d2

j

2
ãj(s̃)

∣

∣

∣

2
ds̃ < +∞. (6.3)

Inequality (6.3) is typical of gradient flows, where it is used to prove convergence towards
critical points. In this context, we introduce the configuration set

C =







{(aj , dj)}j=1,··· ,ℓ, aj ∈ C, aj 6= ak for j 6= k,

dj ∈ Z
∗,
∑

dj = di,
∑

d2
j − (

∑

dj)
2 = Γ+

i







,

the constrained subset of C,

M =
{

{(aj , dj)} ∈ C,
∑

d2
j |aj|2 = −4Γ+

i

}

,

and the set of critical points of W restricted to M,

K =
{

{(aj , dj)} ∈ M, ∇kW ({(aj , dj)}) = −d2
k

2
ak

}

.
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Notice that the configuration sets C and M have a stratified structure, each leaf corresponding
to fixed values of the total number of vortices. The notion of criticality for an element in K
is meant here for the restriction of W to the leaf to which it belongs.

We define a distance on C by

dist
(

{(aj , dj)})1≤j≤ℓ, {(a′j , d′j)})1≤j≤ℓ′

)

= sup
|∇ξ|≤1

∣

∣

∣

∣

∣

∣

ℓ
∑

j=1

djξ(aj) −
ℓ′
∑

j=1

d′jξ(a
′
j)

∣

∣

∣

∣

∣

∣

.

Notice that this distance represents the flat norm (see [8]) of the current
∑ℓ

j=1 djδaj −
∑ℓ′

j=1 d′jδa′
j
. It is known (see [5]) to be equivalent to the minimal connection between the

points {(aj , dj)} and {(a′j , d′j)}.
Before we proceed to the main result of this section, we gather some properties of K which

will be used later.

Lemma 6.4. The set K is compact.

Proof. We consider a sequence ({(an
j , dn

j )}1≤j≤ℓn)n∈N in K, and show that a subsequence
converges to an element of K. Without loss of generality, we may assume that ℓn ≡ ℓ is
constant, and that dn

j = dj is independent of n. Since M is bounded, so is K, and we may
therefore assume passing possibly to a subsequence that an

j → aj as n → +∞, for j = 1, · · · , ℓ.
If all the points aj are distinct, then we are done by continuity of ∇W. To complete the proof,
it remains to consider the situation where several points converge to the same limit. In this
case, denote by {bj}j∈J the set of limit points, Jj = {k ∈ 1, · · · , ℓ, an

k → bj}, and set, for
j ∈ J, Dj =

∑

k∈Jj
dj . Our aim is to prove that the configuration {(bj ,Dj)}j∈J belongs to K.

The fact that ∇kW ({an
j }) = −d2

k
2 an

k reads, in view of (2.1),

4
∑

m6=k

dkdm

an
m − an

k

= d2
ka

n
k , k = 1, · · · , ℓ

that is, for k ∈ Jj ,

4
∑

m6=k
m∈Jj

dkdm

an
m − an

k

= −4
∑

m6=k
m/∈Jj

dkdm

an
m − an

k

+ d2
ka

n
k ,

and therefore

4
∑

k∈Jj

∑

m6=k
m∈Jj

dkdm

an
m − an

k

= −4
∑

k∈Jj

∑

m6=k
m/∈Jj

dkdm

an
m − an

k

+
∑

k∈Jj

d2
ka

n
k .

The left hand side of the previous equality is zero, by antisymmetry. Passing to the limit as
n → +∞ in the right hand side, we are led to

4
∑

m6=j
m∈J

DmDj

bm − bj
=





∑

k∈Jj

d2
k



 bj . (6.4)

To conclude, we claim that for all j ∈ J,
∑

k∈Jj

d2
k = D2

j . (6.5)
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Indeed, by (2.9) we have

∑

k∈Jj

d2
k =

∑

k∈Jj

d2
k +

∑

k∈Jj

∇zk
W ({(an

k − bj, dk)}k∈Jj
) (an

k − bj).

Since ∇zk
W ({(an

k − bj , dk)}k∈Jj
)−∇zk

W ({(an
k − bj, dk)}k=1,··· ,ℓ) is bounded independently of

n, the conclusion (6.5) follows letting n → +∞. From (6.5) we then deduce that

∑

j∈J

D2
j − (

∑

j∈J

Dj)
2 = Γ+

i ,

and from (6.4) and (6.5) that

∇jW ({(bj ,Dj)}j∈J) = −
D2

j

2
bj.

The proof is complete.

In the spirit of the Palais-Smale condition, we have the following variant of Lemma 6.4.

Lemma 6.5. Let (an
j , dn

j )1≤j≤ℓn be a sequence such that an
j ∈ C, an

j 6= an
k for j 6= k, dn

j ∈ Z
∗,

∑

dn
j = di and

∑

(dn
j )2 − (

∑

dn
j )2 = Γ+

i .

Assume moreover that for 1 ≤ j ≤ ℓn,

∇jW ({(an
k , dn

k)}) = −
dn

j
2

2
an

j + o(1), as n → +∞.

Then, up to a subsequence {(an
j , dn

j )} converges towards an element in K as n → +∞.

The argument is exactly the same as in the proof of Lemma 6.4: it suffices in many
identities to replace zero by o(1). Therefore we omit the proof.

Corollary 6.2. Let δ > 0. There exists ε > 0 such that, for every configuration (aj , dj)1≤j≤ℓ

with aj ∈ C, aj 6= ak for j 6= k, dj ∈ Z
∗,

∑

dj = di and
∑

(dj)
2 − (

∑

dj)
2 = Γ+

i ,

if moreover

dist({(aj , dj)},K) ≥ δ then
∑

j

|∇jW ({(ak, dk)}) +
d2

j

2
aj | ≥ ε.

The proof follows from Lemma 6.5 arguing by contradiction.
We come back now to the aymptotics of ãj(s̃). The main result of this section is

Theorem 6.1. We have
dist({(ãj(s̃), dj)},K) → 0

as s̃ tends to plus infinity.

31



Proof. This is again a standard argument for gradient flow type equations, once a Palais-
Smale property has been established. Indeed, it follows from (6.3) and Lemma 6.5 that there
exists a sequence (s̃n)n∈N such that s̃n → +∞ and

dist({(ãj(s̃n), dj)},K) → 0 as n → +∞.

It remains to show that convergence holds not only for a sequence but for s̃ → +∞. To that
aim, for a given δ > 0, assume that s̃a < s̃b are such that

dist({(ãj(s̃a), dj)},K) = δ, dist({(ãj(s̃b), dj)},K) = 2δ, (6.6)

and for every s̃ ∈ (s̃a, s̃b) it holds dist({(ãj(s̃), dj)},K) ≥ δ. Then, by Corollary 6.2 we have,
for some ε > 0 depending on δ,

∑

j

|∇jW ({ãk(s̃)}) +
d2

j

2
ãj(s̃)| ≥ ε ∀s ∈ (s̃a, s̃b).

Hence,

∫ s̃b

s̃a

∑

j

|∇jW ({ãk(s̃)}) +
d2

j

2
ãj(s̃)|2 ds̃ ≥ ε

∫ s̃b

s̃a

∑

j

|∇jW ({ãk(s̃)}) +
d2

j

2
ãj(s̃)| ds̃

≥ ε
∑

j

∫ s̃b

s̃a

| d

ds̃
ãj(s̃)| ds̃ − C exp(−s̃a)

≥ C(εδ − exp(−s̃a)).

In particular,

∫ +∞

s̃a

∑

j

|∇jW ({ãk(s̃)}) +
d2

j

2
ãj(s̃)|2 ds̃ ≥ C(εδ − exp(−s̃a)). (6.7)

In view of (6.3), the integral on the left hand side of (6.7) tends to zero as s̃a goes to +∞,
so that (6.6) may only happen for s̃a bounded by a constant depending only on δ and the
conclusion follows.

As a consequence of Theorem 6.1, there exists a sequence s̃n → +∞ an a critical point
(bj ,Dj)j∈J such that (ãj(s̃n), dj) → (bj ,Dj)j∈J with 2 ≤ ♯J ≤ ℓ+

i . Asymptotic self-similarity
of the trajectory set near the branching point (ai(τk), τk) would mean that the whole family
(ãj(s̃), dj) converges to the same limit (bj ,Dj)j∈J . However, we do not know if this holds.
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