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1. Introduction

In this paper we deal with models of electrical conduction in composite media and,
specifically, biological tissues. The classical governing equation is

− div(A∇u+ B∇ut) = 0 , (1.1)

which is derived from the Maxwell equation in the quasi-stationary approximation.
Here, u is the electrical potential. We look at a material which is a mixture of a
conductive phase of conductivity A and a dielectric phase of permeability B; we
extend the conductivity A (respectively, the permeability B) by zero in the dielectric
phase (respectively, in the conductive phase). More precisely, we look at a conductive
phase containing a finely mixed periodic array of conductive inclusions coated by
dielectric shells. The typical structure of the periodic cell we have in mind is given
in Figure 1. This leads to the assumption

A = A(x/ε0) , B = B(x/ε0) ,

where ε0 is the period of the physical structure.
On the other hand, a second small parameter appears in the models we look at, that
is the width of the dielectric shell, which we denote by η0ε0, with η0 � 1.
For example, in the case of a biological tissue, the conductive phases are given,
respectively, by the extracellular fluid and the cell cytosol, while the dielectrical
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phase is given by the cell membrane. In this case, the diameter of the cell is of the
order of tens of micrometers, while the width of the membrane is of the order of ten
nanometers, so that η0 ∼ 10−3.
A concentration of capacity is performed to replace the thin dielectric shell with a
two dimensional surface, in order to simplify the model, and, possibly, get a better
understanding of the effect of the geometrical properties of the microscopic structure.
Then a homogenization limit is taken, replacing ε0 with a parameter 0 < ε < ε0 which
is sent to 0.
Material properties are usually rescaled in concentration processes. In particular, we
will assume that in the dielectric B = ηα, and α is the ratio between the physical
permeability of the membrane and the constant η0. The reason of this scaling is
explained in Remark 2.1. On the other hand, we note that A and B are physical
properties of the material and, in principle, should not change in the homogenization
limit: a kind of stability which is standard in homogenization theory.
Letting η → 0 yields

− div(A∇uε) = 0 , in Ωε
T ; (1.2)

A∇uint
ε · ν = A∇uout

ε · ν , on Γ ε
T ; (1.3)

α

ε

∂

∂t
[uε] = A∇uout

ε · ν , on Γ ε
T ; (1.4)

[uε](x, 0) = Sε(x) , on Γ ε, (1.5)

where Ωε denotes the union of the two disjoint conductive phases, Γ ε is the separating
interface, T is a positive time, Ωε

T = Ωε × (0, T ), Γ ε
T = Γ ε × (0, T ), and uint

ε , uout
ε

are the potential in the internal and the external conductive phase, respectively. Let
ν be the normal unit vector to Γ ε pointing into the external conductive phase. We
also denote

[uε] = uout
ε − uint

ε . (1.6)

If the dielectric phase has also a conductive behaviour, which can be modeled simply
by letting A = ηβ in the dielectric phase (β is a non negative constant), condition
(1.4) is replaced with

α

ε

∂

∂t
[uε] +

β

ε
[uε] = A∇uout

ε · ν . (1.7)

However for the sake of simplicity we consider the case β = 0 in the Sections below.
Clearly, (1.2)–(1.5) should be complemented with boundary conditions for uε on ∂Ω.
Since all our arguments are independent of such boundary conditions, we omit them
in the following (see [2] for the Dirichlet problem).
This model, which has been investigated in [1] and [2] , is a special case (k = 1) of a
hierarchy of models where the equation (1.4) is replaced by

α

εk

∂

∂t
[uε] = A∇uout

ε · ν , on Γ ε, (1.8)

with k ∈ Z. For example, the case k = −1 is used in [8] in order to obtain, in
the homogenization limit, the well known bidomain model for the cardiac syncithial
tissue, where however, in the left hand side of (1.8) an extra term depending on [uε]
appears, modelling the nonlinear conductive behaviour of the membrane. The case
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k = 0 (more precisely, its stationary version where the term on the left-hand side of
(1.8) is replaced by β[uε]) is considered in [10] in connection with a heat conduction
problem in presence of thermal barrier resistance.
We show that this family of concentrated problems can be derived from equation
(1.1) by means of the unified approach sketched above, when we rescale in ε the
physical constant B, i.e., we take B = ηα/εk−1.
We observe that the homogenized limit equation for the cases k ≤ −2, k = 0, k ≥ 2,
do not preserve any trace of the permeability B of the dielectric phase, accounting
for the capacitive behaviour of the dielectric shell. Conversely, the limit equations
for the cases k = −1 and k = 1 keep trace of the permeability B. However, these two
models differ substantially from a mathematical point of view, since the former is
described by a system of degenerate parabolic equations, whereas the latter consists
of an elliptic equation with memory. These models have been employed to study
electrical conduction in biological tissues in different frequency ranges ([1], [2], [8]).
Our analysis presents a unified derivation of different schemes, thus allowing a com-
parison among their underlying physical assumptions, and could be useful to assess
the viability of each scheme as a model for a specific experimental setting.

The paper is organized as follows: the problem to be concentrated and homogenized,
together with the relevant geometrical assumptions, is stated in Section 2. The
concentration limit η → 0 is performed in Section 3, in a rigorous mathematical way,
yielding the family of concentrated problems (4.1)–(4.4), depending on k ∈ Z. These
problems are then formally homogenized (ε→ 0) in Section 4, with the aim of drawing
a comparison among them. The homogenization limit are rigorously performed for the
case k = 1 in [2] and for the case k = −1 in [11]. Finally, in Section 5, the so obtained
models are compared with regard to their physical meaning and mathematical issues.

2. Position of the problem

The typical periodic geometrical setting is displayed in Figure 1. Here we give a
detailed formal definition of it.
LetΩ be an open connected bounded subset of R

N , and letΩ = Ωε
int∪Ωε

out∪Γ ε, where
Ωε

int and Ωε
out are two disjoint open subsets of Ω, and Γ ε = ∂Ωε

int∩Ω = ∂Ωε
out∩Ω. The

regionΩε
out [respectively, Ωε

int] corresponds to the outer conductive phase [respectively,
to the conductive inclusions], while Γ ε is the dielectric interface. Let ν denote the
normal unit vector to Γ ε pointing into Ωε

out and [uε] be defined as in (1.6).
For η > 0, let us write Ω as Ω = Ωε,η ∪ Γ ε,η ∪ ∂Γ ε,η, where Ωε,η and Γ ε,η are two
disjoint open subsets of Ω, Γ ε,η is the tubular neighborhood of Γ ε with thickness
εη, and ∂Γ ε,η is the part of the boundary of Γ ε,η which intersects Ω. Moreover,
we assume also that Ωε,η = Ωε,η

int ∪ Ωε,η
out and ∂Γ ε,η = (∂Ωε,η

int ∪ ∂Ωε,η
out) ∩ Ω. Again,

Ωε,η
out, Ω

ε,η
int correspond to the conductive regions, and Γ ε,η to the dielectric shell. We

assume that, for η → 0 and ε > 0 fixed, |Γ ε,η| ∼ εη|Γ ε|N−1, Ω
ε,η → Ωε

out ∪ Ωε
int and

∂Γ ε,η → Γ ε.
More specifically, let us introduce a periodic open subset E of R

N , so that E+z = E
for all z ∈ Z

N . For all ε > 0 define Ωε
int = Ω ∩ εE, Ωε

out = Ω \ εE. We assume
that Ω, E have regular boundary, say of class C∞ for the sake of simplicity. We also
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employ the notation Y = (0, 1)N , and Eint = E ∩ Y , Eout = Y \ E, Γ = ∂E ∩ Y . As
a simplifying assumption, we stipulate that |Γ ∩ ∂Y |N−1 = 0.
For every η > 0, let Y = Eη ∪ Γ η ∪ ∂Γ η, where Eη and Γ η are two disjoint open
subsets of Y , Γ η is the tubular neighborhood of Γ with thickness η, and ∂Γ η is the
part of the boundary of Γ η which intersects Y . Moreover, Eη = Eη

int ∪ Eη
out (see

Figure 1). For η → 0, Eη → Eint ∪ Eout, |Γ η| ∼ η|Γ |N−1 and ∂Γ η → Γ .

Eη
out

Eη
int

∂Γ η

Γη

νη

νη

ν

Eout

Eint

Figure 1. The periodic cell Y . Left: before concentration; Γ η is the
shaded region, and Eη = Eη

int ∪ Eη
out is the white region. Right: after

concentration; Γ η shrinks to Γ as η → 0.

Let T > 0 be a given time. For any spatial domain G, we denote by GT = G× (0, T )
the corresponding space–time cylindrical domain over the time interval (0, T ).
We start from the problem considered in the Introduction, i.e.,

− div(Aη∇uη
ε) = 0 , in Ωε,η

T ; (2.1)

− div(Bη∇uη
ε t) = 0 , in Γ ε,η

T ; (2.2)

Aη∇uη
ε · νη = Bη∇uη

ε t · νη , on ∂Γ ε,η
T ; (2.3)

∇uη
ε(x, 0) = S

η
ε(x) , in Γ ε,η, (2.4)

where uη
ε(t) ∈ H1(Ω) at each time level t, S

η
ε = ∇S̃η

ε , for some S̃η
ε ∈ H1(Γ ε,η) and

|Sη
ε | ∼ 1/η. Here Aη (A in the previous section) satisfies Aη(x) = σint in Ωε,η

int ,
Aη(x) = σout in Ωε,η

out and Aη(x) = 0 in Γ ε,η; Bη (B in the previous section) satisfies
Bη(x) = αη in Γ ε,η and Bη(x) = 0 in Ωε,η (see Remark 2.1 and Subsection 5.1); νη

is the unit normal vector to ∂Γ ε,η pointing into Ωε,η and σint, σout, α are positive
constants. We also define σ : Ω → R as

σ = σint in Ωε
int, σ = σout in Ωε

out.

We note that (2.1)–(2.3) can be compactly written as

− div (Aη∇uη
ε +Bηuη

ε t) = 0 in ΩT ,
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coinciding with (1.1).

Remark 2.1. We are interested in preserving, in the limit η → 0, the conduction across
the membrane Γ ε instead of the tangential conduction on Γ ε. To this purpose, we
need to preserve the flux Bη∇uη

εt · ν and the jump [uη
εt] across the dielectric shells to

be concentrated. Hence, we must rescale Bη = αη, instead of scaling Bη = α/η in
Γ ε,η, as more usual in concentrated-capacity literature. �

3. Derivation of the concentrated problems

For the sake of definiteness, we assume here zero Dirichlet boundary data on the
boundary of Ω. However, the argument is essentially local and could be reproduced
once uniform L2-estimates for uη

ε and ∇uη
ε are available.

The rigorous formulation of the problem (2.1)–(2.3) is

T∫

0

∫

Ωε,η
out

∪Ωε,η
int

Aη(x)∇uη
ε · ∇ϕ dx dτ =

T∫

0

∫

Γ ε,η

αη∇uη
ε · ∇ϕτ dx dτ , (3.1)

where
uη

ε ∈ L2(0, T ;H1
o (Ω)) ,

for all ϕ ∈ C2
o (Ω × (0, T )).

The rigorous formulation of the concentrated problem (1.2)–(1.4) is moreover

T∫

0

∫

Ωε
out

∪Ωε
int

σ(x)∇uε · ∇φ dx dτ =

T∫

0

∫

Γ ε

α

ε
[uε][φ]τ dσ dτ , (3.2)

where
uε|Ωε

out
∈ L2(0, T ;H1(Ωε

out)) , uε|Ωε
int

∈ L2(0, T ;H1(Ωε
int)) ,

for all φ such that

φ|Ωε
int

∈ C2
o

(
(Ωε

int ∪ Γ ε) × (0, T )
)
, φ|Ωε

out
∈ C2

o

(
(Ωε

out ∪ Γ ε) × (0, T )
)
.

By an integration by parts, one can derive from (3.1) the energy inequality

T∫

t0

∫

Ωε,η
out

∪Ωε,η
int

|∇uη
ε |2 dx dτ + sup

0<t<T

∫

Γ ε,η(t)

η|∇uη
ε |2 dx ≤ γ , (3.3)

where γ does not depend on η.
As a consequence, the L2-norm of uη

ε |Ωε
out

can be bounded by means of the usual

Poincarè inequality and a standard extension technique. Then, the L2-norm of the
trace of uη

ε |Ωε
int

on ∂Γ ε,η ∩ Ωε
int can be bounded in terms of the L2-norm of the trace

of uη
ε |Ωε

out

and the bound in (3.3).

Hence, as η → 0, we may assume, extracting a subsequence if needed,

uη
ε → uε , weakly in L2

loc(Ω × (0, T )),

where
uε|Ωε

int
∈ L2

loc(0, T ;W 2
1 (Ωε

int)) , uε|Ωε
out

∈ L2
loc(0, T ;W 2

1 (Ωε
out)) .
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Moreover, we may also assume

∇uη
ε → ∇uε , weakly in L2

loc(Ω
ε
int × (0, T )), L2

loc(Ω
ε
out × (0, T )).

3.1. Diffeomorphisms. The following fact is well known.

Theorem 3.1. There exists an η0 > 0 such that for η < η0, the application

ψ : Γ ε ×
(
− εη

2
,
εη

2

)
→ R

N , ψ(ξ, r) = ξ + rν(ξ) ,

is a diffeomorphism onto its image, which equals (by definition) Γ ε,η.

Locally, we can represent Γ ε as a graph

xN = F (x′) , x′ = (x1, . . . , xN−1) , (3.4)

perhaps after relabelling the coordinates. In the following we always assume this
representation, i.e., we choose a testing function whose support is contained in the
region where (3.4) is valid. The general case can then be recovered by means of a
standard partition of unity argument.
Let ν denote also the normal as a function of the local coordinates; then

ν(x′) = (−∇x′F (x′), 1)g(x′)−
1

2 , g(x′) = 1 + |∇x′F (x′)|2 .

Let us introduce the notation

ψ−1 : Γ ε,η → Γ ε ×
(
− εη

2
,
εη

2

)
, ψ−1(y) = (π0(y), F (π0(y)), ρ(y)) ,

with

π0 : Γ ε,η → R
N−1 , ρ : Γ ε,η →

(
− εη

2
,
εη

2

)
.

We know that, for y ∈ Γ ε,η, if we let µ(y) be the closest point of Γ ε to y, then
y−µ(y) must be normal to Γ ε. Since ψ is a diffeomorphism, (π0(y), F (π0(y))) is the
only point with this property. It follows that in Γ ε,η

ρ(y) = (signed) distance from Γ ε.

Hence

∇ρ(y) = ν(π0(y)) , for y = (π0(y), F (π0(y)) ∈ Γ ε, i.e., for ρ(y) = 0,

while in general, by virtue of the assumed regularity of Γ ε,

∇ρ(y) = ν(π0(y)) +Rη(y) , y ∈ Γ ε,η , (3.5)

where we denote by Rη a quantity such that

|Rη| ≤ γη , 0 < η < η0 .
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3.2. Piecewise smooth testing function. Let

ϕ1 ∈ C2
o

(
(Ωε

int ∪ Γ ε) × (0, T )
)
, ϕ2 ∈ C2

o

(
(Ωε

out ∪ Γ ε) × (0, T )
)
.

Then define for 0 < η < η0, y ∈ Γ ε,η, the functions ϕ3η and J from

ϕ3η(y) =

[
ϕ2

(
ψ(π0(y), εη/2), t

)
− ϕ1

(
ψ(π0(y),−εη/2), t

)]ρ(y) + εη/2

εη

+ ϕ1

(
ψ(π0(y),−εη/2), t

)
=: J ρ(y) + εη/2

εη
+ ϕ1

(
ψ(π0(y),−εη/2), t

)
,

where for the sake of notational simplicity we use ψ to denote the diffeomorphism
written in local coordinates.
The function

ϕη(y, t) =





ϕ1(y, t) , y ∈ Ωε,η
int ,

ϕ3η(y, t) , y ∈ Γ ε,η ,

ϕ2(y, t) , y ∈ Ωε,η
out ,

is an admissible testing function in (3.1).
Owing to our smoothness assumptions, we have

∇ϕ3η(y) =
(
∇J

)ρ(y) + εη/2

εη
+ J (εη)−1∇ρ(y) + ∇ϕ1

(
ψ(π0(y),−εη/2), t

)

= Cη(y) + J (εη)−1∇ρ(y) = Cη(y) + J (εη)−1ν(π0(y)) , (3.6)

where we have used (3.5) and denoted by Cη any quantity that stays bounded for all
0 < η < η0.

3.3. The limit η → 0. Write (3.1) for ϕη, i.e.,

T∫

0

∫

Ωε,η
out

∪Ωε,η
int

Aη(x)∇uη
ε · ∇ϕη dx dτ =

T∫

0

∫

Γ ε,η

αη∇uη
ε · ∇ϕ3ητ dx dτ . (3.7)

The left hand side of (3.7) approaches as η → 0

T∫

0

∫

Ωε
out

∪Ωε
int

σ(x)∇u · ∇ϕ dx dτ ,

where

ϕ(y, t) =

{
ϕ1(y, t) , y ∈ Ωε

int ,

ϕ2(y, t) , y ∈ Ωε
out ,

Indeed, this follows from the local convergence of ∇uη
ε and the uniform boundedness

given by (3.3).
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The right hand side of (3.7) equals, by virtue of (3.6),

T∫

0

∫

Γ ε,η

αη∇uη
ε · {Cη(y, τ) + Jτ (εη)

−1ν(π0(y))} dy dτ

= η

T∫

0

∫

Γ ε,η

α∇uη
ε · Cη(y, τ) dy dτ +

α

ε

T∫

0

∫

Γ ε,η

Jτ∇uη
ε · ν(π0(y)) dy dτ = I1 + I2 .

As η → 0, owing to (3.3),

|I1| ≤ αη
1

2

(
η

T∫

0

∫

Γ ε,η

|∇uη
ε |2 dy dτ

) 1

2

( T∫

0

∫

Γ ε,η

|Cη(y, τ)|2 dy dτ
) 1

2 ≤ γη
1

2 → 0 .

Let us next change coordinates in I2, according to y 7→ (π0(y), ρ(y)) = (x′, r). The
jacobian matrix of this change of coordinates is given by

J(x′, r) =




(e′
1,

∂F
∂x1

) + r ∂ν(x′)
∂x1

. . .

(e′
N−1,

∂F
∂xN−1

) + r ∂ν(x′)
∂xN−1

ν(x′)




where e
′
k is the standard basis in R

N−1. Then the jacobian determinant is (recall the
definition of g)

|det J(x′, r)| = |det J(x′, 0)| +Rη(x
′, r) =

√
g(x′) +Rη(x

′, r) .

Hence

I2 =
α

ε

T∫

0

∫

R
N−1

Jτ

√
g(x′)

εη

2∫

− εη
2

∇uη
ε(ψ(x′, r), τ) · ν(x′) dr dx′ dτ

+
α

ε

T∫

0

∫

R
N−1

Jτ

εη
2∫

− εη

2

Rη(x
′, r)∇uη

ε(ψ(x′, r), τ) · ν(x′) dr dx′ dτ = I21 + I22 .

Invoking again (3.3), we get from an application of Hölder’s inequality

|I22| ≤ Cη

T∫

0

∫

Γ ε,η

|∇uη
ε | dx dτ ≤ Cη

1

2 → 0 , as η → 0.
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Finally, by the bound on the traces mentioned above, it follows

I21 =
α

ε

T∫

0

∫

R
N−1

[
ϕ2τ

(
ψ(x′, εη/2), τ

)
− ϕ1τ

(
ψ(x′,−εη/2), τ

)]

√
1 + |∇x′F (x′)|2

[
uη

ε

(
ψ(x′, εη/2), τ

)
− uη

ε

(
ψ(x′,−εη/2), τ

)]
dx′ dτ

→ α

ε

T∫

0

∫

R
N−1

[
ϕ2τ

(
ψ(x′, 0), τ

)
− ϕ1τ

(
ψ(x′, 0), τ

)]

[
uout

ε

(
(x′, F (x′)), τ

)
− uint

ε

(
(x′, F (x′)), τ

)]√
1 + |∇x′F (x′)|2 dx′ dτ

=
α

ε

T∫

0

∫

Γ ε

[ϕ]τ [uε] dσ dτ .

Collecting the limiting relations above, we see that indeed (3.1) leads to (3.2) as
η → 0.

4. Homogenization of the concentrated problems

We look at the homogenization limit (ε→ 0) of the problem for uε(x, t) stated in the
Introduction. We give here a complete formulation for convenience (the operators
div and ∇ act only with respect to the space variable x):

− div(σ∇uε) = 0 , in Ωε
int, Ω

ε
out; (4.1)

[σ∇uε · ν] = 0 , on Γ ε; (4.2)

α

εk

∂

∂t
[uε] = σout∇uout

ε · ν , on Γ ε; (4.3)

[uε](x, 0) = Sε(x) , on Γ ε. (4.4)

We are interested in understanding how the limiting behaviour of the problem above
when ε→ 0 depends on the parameter k ∈ Z.
First, we have to determine the admissible order of Sε with respect to ε. Multiply
(4.1) by uε and integrate by parts. When, for the sake of simplicity, we look at the
case of Dirichlet boundary conditions uε = 0 on ∂Ω, we arrive, for all 0 < t < T , to
the energy estimate

t∫

0

∫

Ω

σ|∇uε|2 dx dτ +
α

2εk

∫

Γ ε

[uε]
2(x, t) dσ =

α

2εk

∫

Γ ε

S2
ε (x) dσ . (4.5)

Since |Γ ε|N−1 ∼ 1/ε, we assume that

Sε = O(ε(k+1)/2) , (4.6)
9



so that the right hand side of (4.5) is stable as ε → 0. In fact (4.5), coupled with
suitable Poincaré’s inequalities, is a main tool in the rigorous proof of convergence of
uε to its limit ([9], [2]).

4.1. The two-scale approach. We summarize here, to establish the notation, some
well known asymptotic expansions needed in the two-scale method (see, e.g., [5], [12]),
when applied to stationary, or evolutive, problems involving second order partial
differential equations. Introduce the microscopic variables y ∈ Y , y = x/ε, assuming

uε = uε(x, y, t) = u0(x, y, t) + εu1(x, y, t) + ε2u2(x, y, t) + . . . . (4.7)

Note that u0, u1, u2 are periodic in y, and u1, u2 are assumed to have zero integral
average over Y . Recalling that

div =
1

ε
divy + divx , ∇ =

1

ε
∇y + ∇x , (4.8)

we compute

∆uε =
1

ε2
A0u0 +

1

ε
(A0u1 + A1u0) + (A0u2 + A1u1 + A2u0) + . . . , (4.9)

Here
A0 = ∆y , A1 = divy ∇x + divx ∇y , A2 = ∆x . (4.10)

Let us recall explicitly that

∇uε =
1

ε
∇yu0 +

(
∇xu0 + ∇yu1

)
+ ε
(
∇yu2 + ∇xu1

)
+ . . . . (4.11)

We also stipulate

Sε = Sε(x, y) = S0(x, y) + εS1(x, y) + ε2S2(x, y) + . . . . (4.12)

We consider here only expansions in integral powers of ε, though (4.6) would allow,
in principle, for an expansion in powers of

√
ε.

4.2. The two extreme cases k = +∞, k = −∞. The following two cases, though
they are essentially stationary problems, provide a frame of mind we find helpful to
understand the overall picture of our class of models. Moreover they are strictly con-
nected, from the technical point of view, to the homogenization process we develop.

4.2.1. The Diffraction problem. We look here at the case of perfectly conducting
interfaces, i.e., to (4.1)–(4.4) with Sε ≡ 0 and k = +∞. More explicitly, we look at
the problem obtained when (4.1), (4.2) are complemented with

[uε] = 0 , on Γ ε,

which is assumed to hold for every t ∈ [0, T ], replacing (4.3) and (4.4). Then, time
plays only the role of a parameter. On substituting in this formulation the expan-
sion (4.7), and applying (4.8)–(4.11), one readily obtains by matching corresponding
powers of ε, that u0 solves [u0] = 0 on Γ , and

P0[u0] :

{ − σ∆y u0 = 0 , in Eint, Eout;

[σ∇yu0 · ν] = 0 , on Γ .

Hence u0 is independent of y, i.e., u0 = u0(x, t).
10



Moreover u1 satisfies [u1] = 0 on Γ , and

P1[u1] :

{ − σ∆y u1 = 0 , in Eint, Eout;

[σ∇yu1 · ν] = −[σ∇xu0 · ν] , on Γ .

Finally, u2 solves [u2] = 0 on Γ , and

P2[u2] :





− σ∆y u2 = σ∆x u0 + 2σ
∂2u1

∂xj∂yj

, in Eint, Eout;

[σ∇yu2 · ν] = −[σ∇xu1 · ν] , on Γ .

Following a classical approach, one introduces the factorization

u1(x, y, t) = −χD(y) · ∇xu0(x, t) , (4.13)

for a vector function χD : Y → R
N , satisfying

−σ∆y χ
D
h = 0 , in Eint, Eout; (4.14)

[σ(∇yχ
D
h − eh) · ν] = 0 , on Γ ; (4.15)

[χD
h ] = 0 , on Γ . (4.16)

The components χD
h are also required to be periodic functions in Y , with zero integral

average on Y . The limiting equation for u0 is finally obtained as a solvability condition
for P2[u2], and amounts to

− div
(
(σ0I + AD)∇xu0

)
= 0 , in ΩT , (4.17)

where

(AD) =

∫

Γ

[σ]ν ⊗ χD dσ , σ0 = σint|Eint| + σout|Eout| . (4.18)

To avoid repetition, we refer the reader to the classical texts (e.g., [5]) for the details
of the proof of (4.17), or to Subsection 4.4 below, where similar calculations are
carried out in a somehow more complex setting.

4.2.2. The Neumann problem. This is the case corresponding to k = −∞, when the
interfaces are perfectly insulating. Here (4.1), (4.2) are complemented with

σout∇uout
ε · ν = 0 , on Γ ε,

so that, actually, we are solving two independent Neumann problems in Ωε
int and in

Ωε
out. Of course, this is meaningful if each one of the two phases is connected (see

Remark 5.3). Again, time acts only as a parameter: the problem is in fact essentially
stationary, and the initial condition (4.4) can no longer be assigned.
Reasoning as above, we find for u0{

P0[u0] ;

σout∇yu
out
0 · ν = 0 , on Γ .

In this case [u0] 6= 0 on Γ , but u0 is independent of y in each phase, i.e.,

u0(x, y, t) =

{
uint

0 (x, t) , in Eint,

uout
0 (x, t) , in Eout.

(4.19)
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The term u1 solves{
P1[u1] ;

σout∇yu
out
1 · ν + σout∇xu

out
0 · ν = 0 , on Γ .

Analogously, u2 is given by
{

P2[u2] ;

σout∇yu
out
2 · ν + σout∇xu

out
1 · ν = 0 , on Γ .

We introduce again the factorization for u1, which is given by

u1(x, y, t) =

{
−χN (y) · ∇xu

int
0 (x, t) + ũint

1 (x, t) y ∈ Eint ,

−χN (y) · ∇xu
out
0 (x, t) + ũout

1 (x, t) y ∈ Eout ,
(4.20)

where χN is given by

−σ∆y χ
N
h = 0 , in Eint, Eout; (4.21)

[σ(∇yχ
N
h − eh) · ν] = 0 , on Γ ; (4.22)

σout(∇yχ
N
h,out − eh) · ν = 0 , on Γ . (4.23)

The components χN
h are also required to be periodic functions in Y , with zero integral

average on Y . This implies that only one of the two constants up to which χN
int and

χN
out are determined by (4.21)–(4.23) is fixed, but this does not affect (4.24) and

(4.25). Note that, in general, [χN
h ] 6= 0 on Γ .

In the limit, we obtain (as compatibility conditions for the problem solved by u2) two
partial differential equations for the two components of u0, i.e.,

− div
(
(σint|Eint|I + AN

int)∇xu
int
0

)
= 0 , in ΩT ; (4.24)

− div
(
(σout|Eout|I + AN

out)∇xu
out
0

)
= 0 , in ΩT , (4.25)

where

AN
int = −

∫

Γ

σintν ⊗ χN
int dσ , AN

out =

∫

Γ

σoutν ⊗ χN
out dσ . (4.26)

4.3. The case k ≥ 2: essentially the same as k = +∞. According to (4.6), we
stipulate S0 ≡ 0, S1 ≡ 0 in (4.12). If k > 2, we should further assume that Sh ≡ 0
for every h up to the integer part of (k + 1)/2. The problem for u0 is given by





P0[u0] ;

α
∂[u0]

∂t
= 0 , [u0]|t=0 = 0 , on Γ .

It follows that [u0] = 0 for all t. Then, P0[u0] implies as in Subsection 4.2 that u0 is
independent of y, i.e., u0 = u0(x, t).
Next, one checks that u1 solves




P1[u1] ;

α
∂[u1]

∂t
= σout∇yu0 · ν , [u1]|t=0 = 0 , on Γ .

12



Since ∇yu0 ≡ 0, we obtain [u1] = 0 for all times. It is a simple matter to verify that
u1 may be represented as

u1(x, y, t) = −χD(y) · ∇xu0(x, t) . (4.27)

The problem for u2 amounts to




P2[u2] ;

α
∂[u2]

∂t
= σout∇xu0 · ν + σout∇yu

out
1 · ν , [u2]|t=0 = S2 , on Γ .

The compatibility condition for this problem is obtained integrating the partial dif-
ferential equation by parts as in Subsection 4.4. On using also the expansion (4.27),
we finally get in the limit

− div
(
(σ0I + AD)∇xu0

)
= 0 , (4.28)

where the matrix AD was defined in (4.18). Note that (4.28) is the same limiting
equation we obtained in the Diffraction problem k = +∞. Moreover, the limiting
problem does not depend on the initial data Si, i ≥ 2, for t > 0: indeed, the
dependence of u0 on t is merely parametrical. In other words, the homogenization
limit in the case k ≥ 2 is the same as in the case k = ∞.

4.4. The case k = 1: a limiting equation with memory. According to equation
(4.6), we assume S0 ≡ 0 in (4.12).
As a consequence, and reasoning as in Subsection 4.2, we find for u0,




P0[u0] ;

σout∇yu
out
0 · ν = α

∂[u0]

∂t
, [u0]|t=0 = 0 , on Γ .

It follows (see [3]) that [u0] = 0 for all times, and

u0 = u0(x, t) .

Next we find for u1



P1[u1] ;

σout∇yu
out
1 · ν + σout∇xu

out
0 · ν = α

∂[u1]

∂t
, [u1]|t=0 = S1(x, y) , on Γ .

We want to represent u1 in a suitable way, in the spirit of (4.13), though the represen-
tation formula must be more complicated here. Let s : Γ → R be a jump function,
and consider the problem

−σ∆y v = 0 , in Eint, Eout; (4.29)

[σ∇yv · ν] = 0 , on Γ ; (4.30)

α
∂

∂t
[v] = σout∇yv

out · ν , on Γ ; (4.31)

[v](y, 0) = s(y) , on Γ , (4.32)

where v is a periodic function in Y , such that
∫

Y
v = 0. Define the transform T by

T (s)(y, t) = v(y, t) , y ∈ Y , t > 0 ,
13



and extend the definition of T to vector (jump) functions, by letting it act compo-
nentwise on its argument.
Introduce also the function χ1 : Y → R

N defined by

αχ1
h = T

(
σout(eh −∇yχ

D
h ) · ν

)
. (4.33)

Straightforward calculations show that u1 may be written in the form

u1(x, y, t) = −χD(y) · ∇xu0(x, t) + T (S1(x, ·))(y, t)

−
t∫

0

∇xu0(x, τ) · χ1(y, t− τ) dτ . (4.34)

The term u2 in the expansion of uε satisfies




P2[u2] ;

σout∇yu
out
2 · ν + σout∇xu

out
1 · ν = α

∂[u2]

∂t
, [u2]|t=0 = S2(x, y) , on Γ .

Let us find the solvability conditions for this problem. Integrating by parts the
partial differential equations solved by u2, both in Eint and in Eout, and adding the
two contributions, we get
[ ∫

Eint

+

∫

Eout

]{
σ∆x u0(x, t) + 2σ

∂2u1

∂xj∂yj

}
dy

=

∫

Γ

{
σout∇yu

out
2 · ν − σint∇yu

int
2 · ν

}
dσ =

∫

Γ

[σ∇yu2 · ν] dσ = −
∫

Γ

[σ∇xu1 · ν] dσ .

Thus for σ0 defined as in (4.18), we get

σ0 ∆x u0 = 2

∫

Γ

[σ∇xu1 · ν] dσ −
∫

Γ

[σ∇xu1 · ν] dσ =

∫

Γ

[σ∇xu1 · ν] dσ . (4.35)

We use next the expansion (4.34); namely, we recall that, in it, only the terms T (. . . )
and χ1 have a non zero jump across Γ . Thus we infer from the equality above

σ0 ∆x u0 =

∫

Γ

[σ∇xu1 · ν] dσ = −
∫

Γ

[σ]χD
h (y)νj dσu0xhxj

(x, t)

+
∂

∂xj

∫

Γ

[σT (S1(x, ·))](y, t)νj dσ −
t∫

0

u0xhxj
(x, τ)

∫

Γ

[σχ1
h](y, t− τ)νj dσ dτ .

We finally write the partial differential equation for u0 in Ω × (0, T ) as

− div

(
(σ0I + AD)∇xu0 +

t∫

0

A1(t− τ)∇xu0(x, τ) dτ −F
)

= 0 . (4.36)
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The constant matrix AD is the same as in the limiting equation of the Diffraction
problem (case k = +∞; see (4.18)). The matrix A1 is defined by

A1(t) =

∫

Γ

[σ]ν ⊗ χ1(y, t) dσ , (4.37)

The matrices AD and A1 are symmetric, and σ0I + AD is positive definite [2]. The
vector F is defined by

F =

∫

Γ

[σT (S1(x, ·))](y, t)ν dσ . (4.38)

4.5. The case k = 0: a threshold case. According to equation (4.6), we let S0 ≡ 0
in (4.12).
The problem for u0 is given by

{
P0[u0] ;

σout∇yu
out
0 · ν = 0 , [u0]|t=0 = 0 , on Γ .

It follows that u0(x, ·, t) solves two independent homogeneous Neumann problems
in Eint and Eout, as in Subsection 4.2.2, so that u0(x, ·, t)|Eint

and u0(x, ·, t)|Eout
are

independent of y, and (4.19) holds.
The problem for u1 is given by




P1[u1] ;

σout∇yu
out
1 · ν + σout∇xu

out
0 · ν = α

∂[u0]

∂t
, [u1]|t=0 = S1(x, y) , on Γ .

(4.39)

On integrating by parts the partial differential equation in P1[u1], and using also
(4.19), we have

|Γ |
(
α
∂

∂t
[u0]
)

=

∫

Γ

σout∇yu
out
1 · ν dσ +

∫

Γ

σout∇xu
out
0 · ν dσ = 0 . (4.40)

Hence, recalling [u0]|t=0 = 0, we have [u0] = 0 on Γ for all t. As a consequence, in
(4.19) the two components are actually equal, and u0 = u0(x, t). Then, the problem
for u1 may be written as

{
P1[u1] ;

σout∇yu
out
1 · ν + σout∇xu

out
0 · ν = 0 , [u1]|t=0 = S1(x, y) , on Γ .

(4.41)

Apart from the initial data S1, this is the same problem satisfied by u1 in the Neumann
problem (k = −∞). Then we may represent u1 as in (4.20), where uint

0 = uout
0 =: u0

and χN was defined in (4.21)–(4.23). The initial data for [u1] can not, in general, be
satisfied, suggesting the onset of an initial layer as ε→ 0. One condition on the two
functions ũint

1 and ũout
1 follows from the requirement that the integral average of u1 is

zero. A second condition will be found in (4.44) below.
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The problem for u2 is given by




P2[u2] ;

σout∇yu
out
2 · ν + σout∇xu

out
1 · ν = α

∂[u1]

∂t
, [u2]|t=0 = S2(x, y) , on Γ .

Since at this stage the terms containing u0 and u1 in the problem for u2 are regarded
as known, this reduces to two independent Neumann problems in Eint and in Eout,
respectively, so that two independent compatibility conditions will be enforced in the
following.
First, integrating by parts the partial differential equation for u2 both in Eint and in
Eout, adding the two contributions, and using (4.20), we obtain

− div
(
(σ0I + AN )∇xu0

)
= 0 . (4.42)

The matrix AN is defined as

AN =

∫

Γ

[σν ⊗ χN ] dσ , (4.43)

that is, as matrix AD, with χD formally substituted with χN . Note instead the
definition (4.26) of the limiting diffusion matrices in the Neumann problem. Thus, we
may see the case k = 0 as a threshold case in our sequence of problems: the insulation
provided by the interface is sufficient to modify the limiting diffusion matrix, with
respect to the Diffraction case, but it is not strong enough to force the existence of
two different limit phases, as in the Neumann problem.
Second, on integrating the evolution equation for u2 over Γ , and using again the
elliptic differential equation for u2, we obtain the second compatibility condition
∫

Γ

(
− α[χN ] · ∂

∂t
∇xu0

)
dσ + |Γ |

(
α
∂

∂t
[ũ1]
)

= σout|Eout|∆x u0 −
∫

Γ

σout∇xu
out
1 · ν dσ

= σout|Eout|∆x u0 +

∫

Γ

σout∇x(χ
N
out · ∇xu0) · ν dσ −

∫

Γ

σout∇xũ
out
1 · ν dσ

= div
(
(σout|Eout|I + AN

out)∇xu0

)
,

(4.44)

where the matrix AN
out was defined in (4.26). Equation (4.44) governs the evolution

of [ũ1] on Γ . The choice of the initial data for [ũ1] is connected to the appearence of
an initial layer. We observe that, differently from the case k = −1, equation (4.44)
is not used to derive the homogenized problem for u0.

4.6. The case k = −1: a limit degenerate parabolic system. Recalling (4.6),
we remark that no one of the terms S0, S1, . . . , needs to vanish.

16



The problem for u0 is
{

P0[u0] ;

σout∇yu
out
0 · ν = 0 , [u0]|t=0 = S0 , on Γ .

(4.45)

As a consequence, u0 is independent of y, separately in Eint and in Eout, so that (4.19)
is in force. It follows that the initial data [u0]|t=0 = S0 must be independent of y, or
an initial layer must occur.
The term u1 solves the same problem (4.41) as in case k = 0. Moreover, the rep-
resentation (4.20) for u1 is still valid. The argument exploited in Subsection 4.5 to
infer that [u0] = 0 for all times can not be repeated in the present case, since it relies
on the formulation (4.39) which is no longer valid. Indeed, uε does approach in the
case k ≤ −1 two different components uint

0 and uout
0 , as ε → 0 (clearly, in the two

different compartments Ωε
int and Ωε

out, respectively).
A further difference with the case k = 0 appears in the problem for u2, which is now
given by




P2[u2] ;

σout∇yu
out
2 · ν + σout∇xu

out
1 · ν = α

∂[u0]

∂t
, [u2]|t=0 = S2(x, y) , on Γ .

(4.46)

However, as in the case k = 0, this scheme reduces to two independent Neumann
problems for u2, in Eint and in Eout, so that we have to enforce two independent
compatibility conditions. Calculations similar to the ones outlined above, starting
from (4.46), yield

− div
(
(σint|Eint|I + AN

int)∇xu
int
0 + (σout|Eout|I + AN

out)∇xu
out
0

)
= 0 . (4.47)

The matrices AN
int and AN

out were defined in (4.26). This equation should be compared
with the limiting equations (4.24)–(4.25) obtained for the Neumann problem k =
−∞: in that case, uint

0 and uout
0 solve two independent equations.

As in case k = 0, we get the second compatibility condition by integrating the
evolution equation for u2 over Γ , and using again the other equations of (4.46). We
find

|Γ |α ∂
∂t

(uout
0 − uint

0 ) = σout|Eout|∆x u
out
0 −

∫

Γ

σout∇xu
out
1 · ν dσ

= σout|Eout|∆x u
out
0 +

∫

Γ

σout∇x(χ
N
out · ∇xu

out
0 ) · ν dσ −

∫

Γ

σout∇xũ
out
1 · ν dσ

= div
(
(σout|Eout|I + AN

out)∇xu
out
0

)
.

(4.48)

Equations (4.47) and (4.48) constitute a system of degenerate parabolic equations
for the unknowns uint

0 (x, t) and uout
0 (x, t). They are complemented with the initial

condition
uout

0 (x, 0) − uint
0 (x, 0) = S0(x) , on Ω , (4.49)

which follows from the second of (4.45).
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4.7. The case k ≤ −2: essentially the same as k = −∞. The expansion of Sε is
the same as in the case k = −1.
The problems for u0 and for u1 are the same as in the case k = −1. Then, the
representation (4.19) for u0, and (4.20) for u1 are still in force.
The problem for u2 in this case reduces to

{
P2[u2] ;

σout∇yu
out
2 · ν + σout∇xu

out
1 · ν = 0 , [u2]|t=0 = S2 , on Γ ,

(4.50)

i.e., to the same scheme obtained in the Neumann problem k = −∞. Therefore
we obtain in the limit the two independent differential equations (4.24)–(4.25). In
other words, the homogenization limit in the case k ≤ −2 is the same as in the case
k = −∞.

5. Discussion

5.1. ε-Scaling of the dielectric constant. As remarked in the Introduction, we
rescale in ε the dielectric constant Bη as follows

Bη =
ηα

εk−1
, k ∈ Z (5.1)

in order to derive the concentrated equations (4.1)–(4.4) from the equation (1.1).
We point out that different choices of k keep different physical quantities constant
in the homogenization limit ε → 0. For instance, according to (5.1), the following
physical quantities are preserved:

• the permeability of the dielectric phase, in the case k = 1;
• the capacity of the dielectric shell per unit of area, in the case k = 0;
• the total capacity of the intracellular phase with respect to the extracellular

phase, or equivalently the total capacity per unit of volume, in the case k = −1.

5.2. Comparison among the models. Following the analysis in the previous sec-
tions, we obtained five models, which can be classified according to different criteria.
As a first criterium, we could divide the models corresponding to k ≤ −1 from the
ones corresponding to k ≥ 0. The former are known as bidomain models since they
involve two unknown macroscopic functions uint

0 and uout
0 ; while the latter involve only

one macroscopic function u0 and henceforth they are known as monodomain models.
A similar classification can be found in [4] in the case of static interface conditions.
A second criterium takes into account the mathematical structure of the involved cell
functions and divides the models corresponding to k ≤ 0 from the ones corresponding
to k ≥ 1. The former involve the cell function χD, while in the latter we find χN .
Accordingly, we note that in the first class the model k = 1 is the most general,
since it formally gives model k ≥ 2 for α → +∞; while in the second class the most
general model is k = −1, since it formally gives models k = 0 and k ≤ −2 on letting
α → +∞ or α → 0, respectively. Because of the different nature of χD and χN no
continuous passage from one class to the other seems possible.
The last criterium, which is the most physical one, corresponds to single out the
models which preserve in the limit the membrane properties (i.e., the constant α).
They are just two: the model k = 1 and the model k = −1, which, remarkably, were
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the most general of their own class in the previous classification. These models are
also the only ones able to take into account the influence or the initial data.

5.3. Geometry of the problem. In the cases k ≥ 1, the matrix σ0I+AD, obtained
by means of the cell function χD and involved into the homogenized equations (4.17)
and (4.36) is positive definite for any geometry (see [2]). On the contrary, for k ≤ 0,
the matrices involved into the limiting problems depend on the cell function χN

and may degenerate depending on the geometry of the media. Indeed, if either one
of the phases Ωε

int or Ωε
out is not connected, it can be easily verified that the matrix

σint|Eint|I+AN
int or σout|Eout|I+AN

out, respectively, may degenerate or even vanish. For
example, in the geometrical setting displayed in Figure 1, we have σint|Eint|I+AN

int =
0. In a layered material, the two limiting diffusion matrices would degenerate along
the direction orthogonal to the layers.
However, in the case k = −1, the two matrices cited above appear simultaneously
in the homogenized equation (4.47). Hence the limiting problem is meaningful if at
least one of the two matrices above does not vanish. Analogously, in the case k = 0,
the homogenized equation (4.42) is not trivial when at least one of the two matrices
is not zero, since their sum gives the matrix defining the elliptic operator in (4.42).
On the other hand, in the cases k ≤ −2, both matrices in (4.24) and (4.25) may
not degenerate in order to obtain a meaningful limit problem. This is the case, for
instance, when both phases are connected.

5.4. Some simplified cases. Many papers in the literature, devoted to the study
of reconstruction of the interior of the human body from exterior electrical measure-
ments, rely on the study of the Dirichlet-Neumann map for an elliptic equation. This
fact corresponds, in the Maxwell equation (1.1), to set B = 0 and to have A different
from zero in the membrane. The choice B = 0 amounts to neglect the effect of the
displacement currents. Nevertheless, experimental data show that, for sufficiently
high frequency range, displacement currents play a relevant role; i.e., memory effects
appear (see [7]). This justify the study of models (4.36) (see [1] and [2]) and (4.47)
(see [8], [11] and [6]).
However, taking into account, for instance, problem (4.36), it is worthwhile noticing
that, for some simple geometries, it reduces to the study of an equation for the
Laplacian. This occurs, for example, when the periodicity cell is invariant with
respect to rotations of π/2, since the relevant matrix AD and A1(t) are scalar multiples
of the identity, which we denote by aD and a1(t), respectively. In this case, assigning
the current flux h on the boundary corresponds to the equation

−(σ0 + aD)
∂u0

∂n
−

t∫

0

a1(t− τ)
∂u0

∂n
(x, τ) dτ = h(x, t) , (5.2)

which can be solved with respect ∂u0

∂n
, thus obtaining a standard Neumann boundary

condition. Accordingly, the study of the inverse problem reduces to the standard
study of the Dirichlet-Neumann map, with a relevant physical difference; i.e., the
value of the normal derivative is not given by h(x, t) itself, but it can be obtained
by means of a clever use of the Laplace transformation and its inverse applied to h
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and a1. This implies that the value of the normal derivative at time t is influenced
by the flux values at previous time and this fact in itself produces the appearance of
physically relevant memory effects.
On the other hand, for general geometry, when we can not assume B = 0 (as in the
case of high frequency range) the study of the inverse problem for equation (4.36) is
still an open problem.
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