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Abstract

We show that a quasiconformal mapping between two proper, locally Ahlfors

Q-regular metric spaces, Q > 1, is absolutely continuous on almost every curve.

We further relax the limes superior in the definition of quasiconformality to a

limes inferior and verify that exceptional sets analogous to the Euclidean setting

can be allowed.

1 Introduction

The history of various definitions of quasiconformality is long. Grötzsch and Te-
ichmüller considered smooth mappings in the 1920’s and 1930’s and used an analytic
definition. In 1954, Ahlfors [1] initiated the study of non-smooth quasiconformal
mappings in the plane using a geometric definition. We take as our starting point the
following metric definition.

A homeomorphism f : X → X ′ between metric spaces (X, d) and (X′, d′) is said
to be quasiconformal if it satisfies

(1) Hf(x) := lim sup
r→0

Hf(x, r) ≤ H < ∞

for all x ∈ X for some H independent of x, where

Hf (x, r) =
Lf(x, r)

lf (x, r)
,

Lf (x, r) = sup{d′(f(x), f(y)) : d(x, y) ≤ r}

and
lf(x, r) = inf{d′(f(x), f(y)) : d(x, y) ≥ r}.

The equivalence of the metric (and geometric) definition in R
n, n ≥ 2, with the

analytic definition which requires that f ∈ W 1,n
loc (Rn; Rn) and that |Df(x)|n ≤ KJf (x)

almost everywhere, was established by Gehring in the 1960’s [8],[9]. Especially,
Gehring proved that a quasiconformal mapping is absolutely continuous on almost
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all lines by a technique that goes back to Menchoff [25]. This method relies on the
foliation of R

n by parallel lines.
The first to consider quasiconformal mappings in a non-Riemannian setting was

Mostow [26], [27]. Various definitions of quasiconformality on the Heisenberg and
Carnot groups were then used by Pansu [29], Korányi and Reimann [21], Bourdon
and Pajot [6] and Vodopyanov and Greshnov [32]. Regarding the metric definition,
the associated foliation of the space is more complicated in the group setting and
the approach used by Gehring faces formidable difficulties. Nevertheless, Mostow
[28] and Margulis and Mostow [23] were able to prove an analog of the absolute
continuity on almost all lines by a variant of this technique. It then followed that a
version of the analytic definition was also satisfied. An alternate approach was given
by Heinonen and Koskela [13]. This was based on first proving that, for a Carnot
group X = X ′, quasiconformality guarantees the global condition of quasisymmetry,
i.e. that Hf(x, r) ≤ H ′ < ∞ for all x, r, which allowed one to invoke the regularity
results by Pansu [29]. This method was shown in [14] to be robust enough to extend to
a class of Ahlfors Q-regular metric spaces that support a suitable Poincaré inequality.
In fact, (localizing) this general setting covers all the above absolute continuity results.

A problem of general interest is then to give minimal assumptions on metric
spaces X and X ′ and on a homeomorphism f between these spaces so as to guarantee
absolute continuity on almost all curves or even quasisymmetry. The goal would be
to relax the Poincaré inequality or the foliation properties of X by geodesics as well
as to relax (1).

In the Euclidean setting, it was shown by Heinonen and Koskela in 1995 that,
surprisingly, Hf(x) can be replaced with

hf (x) := lim inf
r→0

Hf(x, r)

in the definition of quasiconformality, see [13]. It should come as no surprise that the
resulting new definition is easier to verify in practical situations and of importance
in complex dynamics [11], [10], [30]. This improvement was obtained by invoking the
powerful Besicovitch covering theorem that is in nature Euclidean and already fails
in Heisenberg groups [21], [31]. The question whether this improvement could also
hold in non-Euclidean settings was then raised. This has remained an open problem
until now. The technique from [13] was however shown by Balogh and Koskela [2]
to yield an intermediate result where the limit superior can be replaced with a less
stringent limit.

Furthermore, in the Euclidean setting, one can allow for an exceptional set in the
definition. Already Gehring [8],[9] showed that the uniform boundedness of Hf(x) in
the definition of quasiconformality can be relaxed to the assumption that Hf(x) < ∞
outside a set E of σ-finite (n − 1)-dimensional measure and that Hf (x) ≤ H almost
everywhere. Kallunki and Koskela have recently showed that this also works for hf

[17], [18].
Our first result gives a striking generalization of the above results.

Theorem 1.1 Let X, X ′ be proper, locally Ahlfors Q-regular metric spaces, Q > 1.
Suppose that a homeomorphism f : X → X ′ satisfies hf (x) < ∞ for all x ∈ X \ E,
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where E has σ-finite (Q−1)-dimensional Hausdorff measure and that hf (x) ≤ H < ∞
almost everywhere. Then f ∈ W 1,1

loc (X; X ′).

Because each homeomorphism in the Sobolev class W1,1
loc (X; X ′) is absolutely con-

tinuous on 1-modulus almost every curve, Theorem 1.1 encompasses all previous
results. For the definition of W 1,1

loc (X; X ′) see Section 3 below.
The local Ahlfors Q-regularity of a space X requires that X be equipped with

a Borel regular measure with the property that, given a compact set A, there are
constants C > 0 and δ > 0 so that

C−1rQ ≤ µ(B(x, r)) ≤ CrQ

whenever x ∈ A and 0 < r < δ. The properness requires that each closed ball in X
be compact.

As pointed out above, no result in terms of hf was known outside the Euclidean
space. Moreover, the earlier results did not allow for an exceptional set even for Hf .

Our proof of Theorem 1.1 is substantially different from the two approaches de-
scribed above. Gehring’s method, together with its variants, require the space X to
have a nice foliation by curves. We assume no such structure for X. On the other
hand, the technique used in [13], [14] heavily relies on the Poincaré inequality that
now gets entirely disposed of, as we assume only the Ahlfors regularity of X and X′.
The hf -result further bases on the Besicovitch covering theorem that surely fails in
our generality. Let us mention here two key points in our proof. We prove a new
covering theorem that is tailored for our needs and essentially consider all the curves
in X at once. As a consequence, we obtain a new proof even in the Euclidean setting
that is simpler than the argument in [17], [18].

In the case of Carnot groups, we obtain a much stronger result than Theorem 1.1.

Theorem 1.2 Let f be a self-homeomorphism of a Carnot group G with homogeneous
dimension Q > 1 such that hf (x) < ∞ for all x ∈ X \E, where E has σ-finite (Q−1)-
dimensional Hausdorff measure and that hf (x) ≤ H < ∞ almost everywhere. Then

f is quasisymmetric, f ∈ W 1,Q
loc (G; G), and |f∗(x)|Q ≤ KJf(x) almost everywhere.

Here f∗ is the horizontal differential of f at x and Jf is the determinant of f∗.
Theorem 1.1 and Theorem 1.2 are new even for Heisenberg groups [21], [13], [23],

[2], even if we replace hf with Hf . It seems that such a result cannot be established
by a variant of the technique used by Gehring, Margulis and Mostow. To comment
on the size of the exceptional set in the above statement, recall that the topological
dimension of the Heisenberg group H

n, n ≥ 1, is 2n+1 and the homogeneous is 2n+2.
The best conclusion one could hope for, from a Gehring type argument, would then
be an exceptional set of Euclidean dimension 2n = Q−2. Notice, however, that there
are examples of sets in H

n of Heisenberg dimension Q−1 whose Euclidean dimension
is strictly larger than Q − 2, see [3], [4], [20].

Theorem 1.2 will be obtained as a corollary to our more general results. Indeed,
the statement continues to hold when G is replaced with a proper, Q-regular metric
space that supports a 1-Poincaré inequality. Regarding the regularity f ∈ W 1,Q

loc , one
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only needs to assume, in addition to the 1-Poincaré inequality for the initial space,
that the target space be Q-regular. This appears to be a new conclusion even in the
Euclidean setting. Our approach also allows for a version of Theorem 1.2 under a
p-Poincaré inequality assumption for 1 < p ≤ Q.

The paper is organized as follows. In Section 2 we introduce a new covering lemma
and its consequence for quasiconformal mappings. This will allow us to bypass the
lack of the Besicovitch covering theorem. We discuss path families in Section 3 and
prove a proposition that will be crucial for allowing an exceptional set. Theorem 1.1
is proven in Section 4. Finally, in Section 5, we prove a quasisymmetry result, and
deduce Theorem 1.2 from it.

2 Covering lemmas

Let us begin by recalling the usual Vitali covering theorem, see [24], pages 23–25. In
what follows, A ⊂⊂ X requires that the closure of A be compactly contained in X,
and, given a ball B = B(x, r) and λ > 0, we use the notation λB for B(x, λr).

Lemma 2.1 Let B be a family of closed balls in a metric space X so that ∪B∈BB ⊂⊂
X. Then there is a finite or countable sequence Bi ∈ B of pairwise disjoint balls such
that

∪B∈BB ⊂ ∪i5Bi.

The following variant of the above Vitali covering theorem will be crucial for us.
The point here is that we can ask for more information on the selected sequence when
we confine ourselves with only covering the set of centers of the original balls.

Lemma 2.2 Let B be a collection of balls B(x, rx) (open or closed) with x ∈ A in a
metric space X such that

∪B∈BB ⊂⊂ X.

Then there exists a finite or countable sequence Bi = B(xi, ri) ∈ B with the following
properties:

(i) A ⊂ ∪iB(xi, ri).

(ii) If i 6= j, i, j ∈ N, it follows that

either (a) xi ∈ X \ B(xj , rj) and B(xj , rj) \ B(xi, ri) 6= ∅

or (b) xj ∈ X \ B(xi, ri) and B(xi, ri) \ B(xj , rj) 6= ∅.

(iii) B(xi,
1
3
ri) ∩ B(xj ,

1
3
rj) = ∅ when i 6= j.

Proof. Denote B = {B(x, rx) : x ∈ A}. Let M = supx∈A rx < ∞. Set

A1 = {x ∈ A :
3

4
M < rx ≤ M}.
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Choose x1 ∈ A1, x2 ∈ A1 \ B(x1, rx1
), x3 ∈ A1 \ ∪

2
i=1B(xi, rxi

) and so on. For some
J ∈ N

A1 \
J
⋃

j=1

B(xj , rxj
) = ∅

since ∪B∈BB ⊂⊂ X, rx ≈ M for x ∈ A1 and the balls B(xj ,
1
3
rxj

) are pairwise disjoint.
However, our covering construction is not good enough, because (ii) is not necessarily
satisfied. For this purpose, set F1 = {1} and

Fj+1 = {i ∈ Fj : B(xi, rxi
) 6⊂ B(xj+1, rxj+1

)} ∪ {j + 1}.

Now ∪J
j=1B(xj , rxj

) = ∪j∈FJ
B(xj , rxj

) since we only remove those balls which are
already covered. Now set B1 = {B(xi, rxi

) : i ∈ FJ}. This family has the property
(ii). Property (iii) clearly also holds.

We continue inductively. Once Bk is chosen, repeat the above construction for

Ak+1 = {x ∈ A \ (∪k
i=1 ∪B∈Bi

B) :

(

3

4

)k+1

M < rx ≤

(

3

4

)k

M}

to obtain Bk+1.
Set BS = ∪∞

j=1Bj = {Bk = B(xk, rk) : k ∈ N}. Clearly by construction A ⊆
∪B∈BS

B. So let us check property (ii): Let j 6= i. If Bj , Bi ∈ Bk for some k then (ii)
is automatically valid by construction. If Bj ∈ Bk and Bi ∈ Bl, we can assume that
k < l, then by construction xi /∈ Bj and

d(xi, xj) ≥ rj >

(

3

4

)k

M ≥

(

3

4

)k−l+1

ri ≥ ri.

Thus xj /∈ Bi and we conclude that (ii) is valid.
To prove (iii), let B(xi, ri), B(xj , rj) ∈ BS. By symmetry we may assume that they

satisfy part (a) of (ii). Notice that (a) yields that d(xi, xj) ≥ rj and ri < d(xi, xj)+rj .
If there were a point y ∈ B(xi,

1
3
ri) ∩ B(xj ,

1
3
rj), then we would conclude that

d(xi, xj) ≤
1

3
ri +

1

3
rj <

1

3
d(xi, xj) +

2

3
rj .

Then d(xi, xj) < rj, which is a contradiction.

The power of Lemma 2.2 is demonstrated by the following result.

Lemma 2.3 Let f : X → Y be a homeomorphism between metric spaces X and Y
and B = {B(xi, ri) : i ∈ N} a family of (open or closed) balls. Assume that there
exists H ≥ 1 such that for each Bi = B(xi, ri) ∈ B we have that

B(f(xi),
1

H
diam(f(Bi))) ⊂ f(Bi)

and B satisfies the condition (ii) of Lemma 2.2. Then for i 6= j we have

B

(

f(xi),
diam(f(Bi))

10H2

)

∩ B

(

f(xj),
diam(f(Bj))

10H2

)

= ∅.
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Proof. Denote by Bj = B(xj , rj) and Bi = B(xi, ri). Assume that xi /∈ Bj and let
z ∈ Bj \ Bi. Then f(xi) /∈ f(Bj) and f(z) ∈ f(Bj) \ f(Bi). We have two cases to
consider.

Case 1: dY (f(xi), f(xj)) > diamf(Bi)
2H

.

Since xi /∈ Bj we have dY (f(xi), f(xj)) >
diamf(Bj)

2H
. This implies by the triangle

inequality that

B(f(xi),
diamf(Bi)

5H
) ∩ B(f(xj),

diamf(Bj)

5H
) = ∅

Case 2: dY (f(xi), f(xj)) ≤
diamf(Bi)

2H
.

Since f(z) /∈ B(f(xi),
diamf(Bi)

H
) we see that

dY (f(z), f(xj)) + dY (f(xi), f(xj)) ≥
diamf(Bi)

H
,

which implies

diamf(Bj) +
diamf(Bi)

2H
≥

diamf(Bi)

H
,

and therefore

diamf(Bj) ≥
diamf(Bi)

2H
.

From the above estimate we infer that

dY (f(xi), f(xj)) ≥
diamf(Bj)

H
≥

diamf(Bi)

2H2
.

And by the triangle inequality we obtain

B(f(xi),
diamf(Bi)

10H2
) ∩ B(f(xj),

diamf(Bj)

10H2
) = ∅,

finishing the proof.

3 Path families and Sobolev spaces

Let Γ be a path family in a metric measure space (X, d, µ). Here path refers to a
continuous, non-constant map γ : I → X, where I ⊂ R is a non-degenerate interval.
We call a Borel function ρ : X → [0,∞] admissible for the path family Γ, if

∫

γ

ρ ds ≥ 1

for each locally rectifiable γ ∈ Γ. The p-modulus of Γ is defined by

modp(Γ) = inf

{
∫

X

ρp(x) dµ : ρ : X → [0,∞] is admissible for Γ

}

.

6



We say that a condition holds for p-almost every path in Γ if modp(Γ̂) = 0, where

Γ̂ ⊂ Γ consists of those paths γ ∈ Γ for which this condition fails. The p-modulus is
an outer measure in the collection of all path families in X. For the basic properties
of the p-modulus we refer the reader to [14], [16].

Let (X, d, µ) be a metric measure space and (X ′, d′) be a metric space. Given
an open set U ⊂ X and a continuous mapping f : U → X ′, we say that a non-
negative Borel-function g is an upper gradient of f in U if, for each rectifiable path
γ : [0, 1] → U, we have that

(2) d′(f(γ(1)), f(γ(0))) ≤

∫

γ

g ds.

We recall here that each such γ can be parametrized by a 1-Lipschitz map γ̃ : [0, L] →
U. For 1 ≤ p < ∞, we call a non-negative Borel-function g a p-weak upper gradient
of f in U if the above inequality holds for p-almost every rectifiable path in U. It then
follows from the properties of the p-modulus that (2) also holds for each subpath of
p-almost every γ in U. The existence of a p-integrable p-weak upper gradient always
guarantees the existence of a p-integrable upper gradient, see [22]. Let f : X → X ′

be continuous. Then f is in the Sobolev space W1,p
loc (X; X ′) if, for each relatively

compact open set U ⊂ X, f has an upper gradient g ∈ Lp(U) in U, and if there is
x0 ∈ U so that u(x) = d′(f(x), f(x0)) ∈ Lp(U). In what follows, we will typically have
µ(U) < ∞, and thus only a p-integrable p-weak upper gradient is asked for. Notice
that for a proper X, each f ∈ W 1,p

loc (X; X ′) is absolutely continuous on p-almost every
rectifiable path. For the purposes of this paper it suffices to consider continuous
mappings f ; for the definition and properties of general Sobolev classes we refer the
reader to [16].

Because of the importance of p-weak upper gradients, we now give a sufficient
condition for a path family to be of p-modulus zero.

Given a set E ⊂ X and a path γ : I → X, we let ](γ∩E) denote the cardinality of
γ(I)∩E. We also write Γrect for the collection of all rectifiable paths in X. We denote
the λ-dimensional Hausdorff measure by Hλ, and say that a set E ⊂ X has σ-finite
Hλ-measure if it is contained in a countable union of sets with finite Hλ-measure.

Proposition 3.1 Let (X, d, µ) be a proper, locally Q-regular metric space, E ⊂ X
and 1 < p < Q. If E has σ-finite HQ−p-measure, then

(3) modp({γ ∈ Γrect : γ ∩ E is not countable }) = 0.

We do not know if Proposition 3.1 could also hold for p = 1, but the following
version of it will be sufficient for our needs.

Proposition 3.2 Let f : X → Y be a homeomorphism between metric spaces, where
X is proper and locally Q-regular. Let E ⊂ X have σ-finite HQ−1-measure. Then

(4) mod1({γ ∈ Γrect : H1(f(γ ∩ E)) > 0}) = 0.
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For the proofs of these propositions we need a technical result that will also be
applied later on.

Lemma 3.3 Let (X, d, µ) be a proper, locally Q-regular metric space. Further, let
B0 = B(x0, r0) and fix 1 ≤ p < ∞. There are constants δ and C so that given any
collection B1, B2, · · · of balls in B0 with radii at most δ and non-negative numbers ai,
we have the estimate

∫

B0

(

∑

i

aiχ6Bi
(x)

)p

dµ ≤ C

∫

B0

(

∑

i

aiχ 1

6
Bi

(x)

)p

dµ.

In fact, we may take δ = 1
6
δ0, where δ0 is the constant for B0 in the local Q-

regularity condition.
For p = 1 the claim immediately follows from the local Q-regularity and measure

comparison. The general case is obtained using the Lp − Lp/(p−1)-duality and the
boundedness of an appropriate restricted maximal function. In fact, already the
doubling of the measure µ for scales up to 6δ would be sufficient; see [5] for a proof
that generalizes to our setting.

A crucial step in proving Proposition 3.1 is the following result.

Lemma 3.4 Let (X, d, µ) be a proper, locally Q-regular metric space, E ⊂ X bounded
and 1 < p < Q. Denote by Γ the collection of all rectifiable curves γ in X such that
](γ ∩ E) = ∞. If HQ−p(E) < ∞, then modp(Γ) = 0.

Proof. Fix a ball B0 so that E ⊂ B0. Set for k, l ∈ N

Γk,l = {γ ∈ Γ : ∃{x1, x2, . . . , xk} ∈ γ ∩ E s.t. d(xi, xj) >
1

l
when i 6= j}.

Then Γ = ∩k ∪l Γk,l and Γk,l ⊂ Γk,l+1. Thus

(5) modp(∪lΓk,l) = lim
l→∞

modp(Γk,l)

(cf. [15]).
Fix k and l and let ε > 0. Since HQ−p(E) < ∞, there is a cover of E by balls

(Bi)i such that diam(5Bi) < 1
2l

, E ⊂ ∪iBi and
∑

i r
Q−p
i ≤ HQ−p(E) + ε. We may

assume that Bi ⊂ B0 and that diam(5Bi) < δ, where δ is the constant for B0 in the
local Q-regularity condition.

By Lemma 2.1, we find a subfamily of these balls (denoted the same way) that
are pairwise disjoint and with E ⊂ ∪i5Bi. Set

ρ(x) =
1

k

∑

i

1

ri
χ6Bi

(x).

Now ρ is admissible for Γk,l, since we have
∫

γ
χ6Bi

ds ≥ ri for at least k different
indices. By Lemma 3.3 we have that

∫

X

ρp(x) dµ ≤
C

kp

∫

X

(

∑

i

1

ri
χBi

(x)

)p

dµ.
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Here C depends on Q, p, B0. Since the balls Bi are pairwise disjoint, by the local
Q-regularity of µ we obtain

(6)

∫

X

ρp(x) dµ ≤
C

kp

∑

i

rQ−p
i ≤

C

kp

(

HQ−p(E) + ε
)

.

Our ε was arbitrary, and thus

modp(∪lΓk,l) = lim
l→∞

modp(Γk,l) ≤
C

kp
HQ−p(E).

Since Γ ⊂ ∪lΓk,l for every k, the claim follows.

We continue with the case p = 1. The difficulity in extending the above proof to
this case lies in inequality 5. It only holds for p > 1, the basic issue being reflexivity
of Lp.

Lemma 3.5 Let f : X → Y be a homeomorphism between metric spaces, and assume
that X is proper and locally Q-regular. Let E ⊂ X have finite HQ−1-measure. Fix
ε > 0. Then

(7) mod1({γ ∈ Γrect : H1(f(γ ∩ E)) > ε}) = 0.

Proof. Denote our family of curves by Γε. By subadditivity, we may without loss of
generality assume that E ⊂ B0 for some ball B0. Let k ≥ 1 be an integer. Because
B0 is compact and f is continuous, we find δk > 0 so that, given x, x′ ∈ B0 with
dX(x, x′) < δk, we have that

(8) dY (f(x), f(x′)) <
ε

2k+3
.

As in the proof of the previous lemma, we find a sequence of balls (Bk
i )i so that

Bk
i ∩ Bk

j = ∅ when i 6= j, diam(Bk
i ) ≤ 1

6
min{δ, δk}, E ⊂ ∪i5Bk

i and so that

(9)
∑

k

(diam(5Bk
i ))Q−1 < 5Q−1HQ−1(E) + ε.

Consider the sequence (ρk)k of Borel-functions, defined by

ρk(x) =
1

2k

∑

i

1

diam(Bk
i )

χ6Bk
i
(x).

By (9) we see that

(10)

∫

X

ρk dµ ≤
C

2k
(HQ−1(E) + ε).

Set

Γ(k) = {γ ∈ Γε :

∫

γ

ρk ds ≥ 1}.
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By (10) and subadditivity we conclude that

(11) mod1(∪j≥kΓ(j)) ≤
C

2k
(HQ−1(E) + ε).

Let γ ∈ Γε. Since H1(f(γ∩E)) > ε, for all sufficiently large integers m there exist
points y1, . . . , y2m ∈ f(γ ∩ E) so that

dY (yi, yj) >
ε

2m+3
.

Notice that, by (8), there have to be at least 2m balls 5Bm
i in our sum which intersect

γ. Thus,
∫

γ

ρm ds ≥ 1.

It follows that Γε ⊂ ∪j≥kΓ(j), for each k. From (11) we then conclude that mod1(Γε) =
0.

Proof of Proposition 3.1. Suppose that p > 1. We may write E = ∪iEi, where each
Ei is bounded with HQ−p(Ei) < ∞. Write

Γi = {γ ∈ Γrect : γ ∩ Ei is not countable }.

By the Lemma 3.4, modp(Γi) = 0, and the claim follows by subadditivity of the
p-modulus.

Proof of Proposition 3.2. Lemma 3.5 shows that modp(Γ1/j) = 0 for each j ≥ 1.
Here Γ1/j consists of those rectifiable curves for which H1(f(γ∩E)) > 1/j. The claim
follows by subadditivity.

4 Absolute continuity on almost all paths

Theorem 1.1 is an immediate consequence of the following slightly more general result.

Theorem 4.1 Let (X, dX , µ) and (Y, dY , ν) be locally Q-regular metric spaces, Q > 1,
and suppose that E ⊂ X has σ-finite HQ−1-measure. Assume also that X is proper.
If f : X → Y is a homeomorphism such that hf(x) < ∞ for every x ∈ X \ E and
hf (x) ≤ H < ∞ for µ-almost every x ∈ X, then f ∈ W 1,1

loc (X; Y ).

Proof. Let B0 = B(x0, r0) be a fixed ball. Without loss of generality assume that
H > 1. For each k = 1, 2, . . . write

Ak = {x ∈ B(x0, r0) : Hk < hf (x) ≤ Hk+1}.

The set Ak is a Borel set since hf is a Borel function. Moreover µ(∪kAk) = 0. Fix
1 < p < Q, and let 0 < ε < ε0, where 0 < ε0 < δ with δ from the local Q-regularity
condition for B(x0, r0). Choose ε0 so small that f(B(x, ε0)) ⊂ B(f(x), δ′) for each
x ∈ B(x0, r0) for the constant δ′ from the local Q-regularity condition for f(B(x0, r0)).
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Since µ(Ak) = 0, for every k there exists an open set Uk such that Ak ⊂ Uk and

(12) µ(Uk) ≤
1

H2kpQ/(Q−p)

(

1

2kν(f(B(x0, r0 + ε)))
p

Q

)
Q

Q−p

,

since we assumed that our measure is Borel regular. Notice here that
ν(f(B(x0, r0 + ε))) is finite since X is proper and ν is locally Q-regular.

For points x ∈ B(x0, r0)\(∪kAk∪E) pick a radius 0 < rx < ε such that Hf(x, rx) ≤
2H. For points x ∈ Ak choose a radius 0 < rx < ε such that Hf (x, rx) ≤ 2Hk+1 and
B(x, rx) ⊂ Uk. Consider now the family {B(x, rx)} of balls. By applying Lemma 2.2
for these balls we find a countable collection B = {B(xi, ri)} such that B(x0, r0)\E ⊂
∪B∈BB and 1

3
B, B ∈ B, are pairwise disjoint. Denote by BH the subcollection of the

balls B(x, rx) ∈ B for which x ∈ B(x0, r0) \ (∪kAk ∪ E) and by Bk those for which
x ∈ Ak.

Relying on Lemma 2.3 we notice that

(i) B(f(xi),
Lf (xi,ri)

250H2 ), where B(xi, ri) ∈ BH , are pairwise disjoint and

(ii) B(f(xi),
Lf (xi,ri)

250H2k+2 ), where B(xi, ri) ∈ Bk, are pairwise disjoint.

Set

ρε(x) =
∑

i

Lf (xi, ri)

ri

χ2Bi
(x).

The function ρε is clearly Borel measurable. Let Γε denote all rectifiable paths
γ : [0, 1] → B(x0, r0) such that H1(f(γ ∩ E)) = 0 and diam(γ) > ε.

Let γ be a member of Γε. If Bi ∩ γ 6= ∅, then H1(γ ∩ 2Bi) ≥ ri. Thus
∫

γ

ρε ds ≥
∑

Bi∩γ 6=∅

Lf (xi, ri) ≥
1

2

∑

Bi∩γ 6=∅

diam(fBi) ≥
1

2
dY (f(γ(0)), f(γ(1))),

where the last inequality comes from the fact that the sets f(Bi) cover f(γ) up to a
set of zero H1-measure.

By Lemma 3.3 and the pairwise disjointness of the balls 1
3
Bi, we have the estimate

∫

X

ρp
ε dµ ≤ C

∫

B(x0,r0+2ε)

∑

i

Lf (xi, ri)
p

rp
i

χ 1

3
Bi

dµ,

where C = C(B0, µ, p).
Next we estimate this integral from above in two parts. First we consider the sum

over BH -terms, which we denote by SH . By Hölder’s inequality we have

SH = C

∫

B(x0,r0+2ε)

∑

Bi∈BH

Lf (xi, ri)
p

rp
i

χ 1

3
Bi

dµ

≤ Cµ(B(x0, r0 + 2ε))
Q−p

Q

(

∫

B(x0,r0+2ε)

(
∑

Bi∈BH

Lf(xi, ri)
p

rp
i

χ 1

3
Bi

)
Q

p dµ

)
p

Q

≤ Cµ(B(x0, r0 + 2ε))
Q−p

Q

(

∑

Bi∈BH

Lf(xi, ri)
Q

)
p

Q

.
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The last inequality comes from the pairwise disjointness of 1
3
Bi’s and local Q-regularity

of µ. Since, by (i), the balls B(f(xi),
Lf (xi,ri)

250H2 ) with B(xi, ri) ∈ BH are pairwise disjoint
and Y is locally Q-regular, we obtain the estimate

SH ≤ Cµ(B(x0, r0 + 2ε))
Q−p

Q ν(f(B(x0, r0 + ε)))
p

Q < ∞,

where C = C(B0, µ, f(B0), ν, p, H). The fact that the above term is finite comes from
the properness of X and local Q-regularity of both measures.

Next we need to estimate from above the sum over Bk’s. We denote the sum
corresponding to Bk by Sk. Using the local Q-regularity and Hölder’s inequality we
obtain

Sk ≤ C
∑

Bi∈Bk

Lf (xi, ri)
p

H2kp+2p
H2kprQ−p

i

≤ C

(

∑

Bi∈Bk

(
Lf(xi, ri)

H2k+2
)Q

)
p

Q
(

∑

Bi∈Bk

H2kpQ/(Q−p)µ(
1

3
Bi)

)
Q−p

Q

,

where C = C(B0, µ, p, H). Now, by (ii), the balls B(f(xi),
Lf (xi,ri)

250H2k+2 ) with B(xi, ri) ∈
Bk, are pairwise disjoint, and therefore the first term is no more than Cν(f(B(x0, r0 +

ε)))
p

Q . For the second term we use (12), so that

Sk ≤ C (ν(f(B(x0, r0 + ε))))
p

Q
1

2kν(f(B(x0, r0 + ε)))
p

Q

≤
C

2k
.

Thus
∫

X

ρp
ε dµ ≤ C(SH +

∑

k

Sk)

≤ Cµ(B(x0, r0 + 2ε))
Q−p

Q ν(f(B(x0, r0 + ε)))
p

Q + C.

So, for all paths γ ∈ Γε, we have the estimate

dY (f(γ(0)), f(γ(1))) ≤

∫

γ

2ρε ds

with
∫

(2ρε)
p dµ ≤ M < ∞ when 0 < ε < ε0. The weak compactness of Lp guarantees

that there is ρ ∈ Lp and a sequence of εi’s that decreases to zero such that ρ is a
Lp-weak limit of 2ρεi

=: ρi. Here we needed the fact that p > 1. Notice that

(13) dY (f(γ(0)), f(γ(1))) ≤

∫

γ

ρi ds

for each i ≥ j when γ ∈ Γj := Γεj
. By Mazur’s lemma (cf. Theorem 2 in Chapter V.1

of [33]), we find functions ρ̂i, each a convex combination of ρi, ρi+1, . . . , so that the
sequence {ρ̂i} converges to ρ in Lp. Now (13) also holds with ρi replaced with ρ̂i for

12



each i ≥ j. By Fuglede’s lemma (cf. [15]), (13) holds for ρ for p-almost every γ ∈ ∪jΓj.
Thus, using Proposition 3.2, we notice that (13) holds for 1-almost every rectifiable
curve in B(x0, r0); recall that we excluded the curves for which H1(f(γ ∩ E)) > 0.
Thus f has a 1-weak upper gradient in L1(B(x0, r0)), and consequently an upper
gradient in L1(B(x0, r0)). In conclusion, f ∈ W 1,1(B(x0, r0); Y ), and the theorem is
proven.

Remark 4.2 The above proof immediately gives the following variations on Theorem
4.1. First of all, if we consider a smaller exceptional set E which is of σ-finite HQ−p-
measure, 1 < p < Q, we can conclude (using Proposition 3.1 instead of Proposition
3.2) that f ∈ W 1,p

loc (X; Y ). In the borderline case p = Q, one can still conclude that
f ∈ W 1,Q

loc (X; Y ) but one can only allow for a countable exceptional set E and the
bound hf(x) ≤ H needs to be assumed for each x ∈ X \E. For a further improvement
on this see Theorem 5.1 and Remarks 5.3 below.

The proof of Theorem 4.1 is not constructive in the sense that no explicit upper
gradient is given. Classically, one can take the maximal streching

Lf(x) = lim sup
r→0

Lf (x, r)

r

as an upper gradient. In our situation it turns out to be better to consider the volume
derivative

µf(x) = lim
r→0

ν(f(B(x, r)))

µ(B(x, r))
.

Recall that, by the Lebesgue-Radon-Nikodym theorem [7], this limit exists almost
everywhere and we have the estimate

∫

A

µf(x) dµ ≤ ν(f(A))

for each measurable set A ⊂ X. Consequently,

(14)

∫

A

u(f(x))µf(x) dµ ≤

∫

f(A)

u(y) dν

when u ≥ 0 is continuous.
For technical reasons, we assume from now on a global condition on the measures

µ and ν. We say that a measure µ on a metric space X is Q-regular if it is locally
Q-regular with a universal constant Cµ and with δ = diam(X), i.e.

1

Cµ

rQ ≤ µ(B(x, r)) ≤ Cµr
Q

holds for each x and all 0 < r < diam(X).

13



Proposition 4.3 Let (X, dX , µ) and (Y, dY , ν) be Q-regular metric spaces, Q > 1.
Assume also that X is proper. Let f : X → Y be a homeomorphism such that hf (x) ≤
H < ∞ for µ-almost every x ∈ X. Define

gf(x) =







H lim supr→0

(

ν(f(B(x,r)))
µ(B(x,r))

)
1

Q

when hf (x) ≤ H

∞ when hf (x) > H
.

If f is absolutely continuous on γ : [0, L] → X, which is 1-Lipschitz, then

(15) dY (f(γ(0)), f(γ(L))) ≤ C

∫

γ

gf ds,

where C depends only on the Q-regularity constants of µ, ν.

Proof. Notice that gf is Borel measurable since hf is Borel measurable.
Let y ∈ γ(]0, L[). Then there are arbitrarily small ry > 0 so that

f(B(y, ry)) ⊂ B(f(y), Lf(y, ry)) ⊂ B(f(y), 2hf(y)lf(y, ry)).

We might have here that hf(y) = ∞, but that will not harm us. Let x ∈]0, L[ and
write y = γ(x). Because γ is 1-Lipschitz we conclude that

diam(f(γ(]x − ry, x + ry[))) ≤ 4hf(y)lf(y, ry)

≤ Chf (y)ν(f(B(y, ry))
1

Q ,(16)

where we used the Q-regularity of ν.
Fix ε > 0. For i ∈ Z, let

Ei = {x ∈]0, L[: 2i−1 < gf(γ(x)) ≤ 2i}.

Let x ∈ Ei. Using (16), the definition of gf and the Q-regularity of µ, we may pick
an arbitrarily small ry > 0 such that

diam(f(γ(]x − ry, x + ry[)) ≤ C2iry.

Covering Ei appropriately, we obtain intervals I
(i)
1 , I

(i)
2 , . . . so that Ei ⊂ ∪jI

(i)
j and

∑

j

diam(f(γ(I i
j))) ≤ C

∫

γ|Ei

gf ds +
ε

2i
.

Letting i run trought Z, we end up with a collection J1, J2, . . . of intervals such that
∪iEi ⊂ ∪jJj and

(17)
∑

j

diam(f(γ(Jj))) ≤ C

∫

γ

gf ds + ε.

In order to obtain (15) we still need to consider the remaining parts of ]0, L[ where
gf is either 0 or ∞.
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Write E0 = {x ∈]0, L[: gf(γ(x)) = 0}, and let x ∈ E0. Then (16) implies that

lim inf
r→0

diam(f(γ(]x − r, x + r[)))

r
= 0.

It follows that

(18) H1(f(γ(E0))) = 0.

Write E∞ = {x ∈]0, L[: gf(γ(x)) = ∞}. If H1(E∞) > 0, then (15) is trivially
true. Otherwise, H1(E∞) = 0, and the absolute continuity of f on γ shows that

(19) H1(f(γ(E∞))) = 0.

The claim follows by combining (17), (18) and (19) and letting ε → 0.

Remark 4.4 Combining Lemma 4.3 and Remark 4.2 it is easy to check that the
uniform boundedness of hf implies the so-called geometric definition (see [9]) for
proper Q-regular spaces. Notice also that, in the Euclidean setting, it follows that
f is quasiconformal if and only if there is a constant K so that Kµ

1/Q
f is a Q-weak

upper gradient of f.

5 W 1,Q
loc and quasisymmetry

Let us recall that (X, d, µ) supports a p-Poincaré inequality, 1 ≤ p < ∞ if there are
two constants C and τ such that

1

µ(B(x, r))

∫

B(x,r)

|u − uB(x,r)| dµ ≤ Cr

(

1

µ(B(x, τr))

∫

B(x,τr)

gp dµ

)1/p

whenever B(x, r) is a ball, u is continuous and g is an upper gradient of u. Here
uB(x,r) is the average of u over B(x, r). It then follows that this also holds when g is a
p-weak upper gradient, see [22]. For more on Poincaré inequalities see [14], [12], [19].

We begin by improving on the regularity of f in Theorem 4.1.

Theorem 5.1 Let (X, dX , µ) and (Y, dY , ν) be Q-regular metric spaces, Q > 1, and
suppose that E ⊂ X has σ-finite HQ−1-measure. Assume also that X is proper
and supports a 1-Poincaré inequality. If f : X → Y is a homeomorphism such that
hf (x) < ∞ for every x ∈ X \E and hf(x) ≤ H < ∞ for µ-almost every x ∈ X, then

f ∈ W 1,Q
loc (X; Y ).

Proof. From Theorem 4.1 we know that f ∈ W 1,1
loc (X; Y ), and from Proposition 4.3

that gf ∈ LQ
loc(X) is a 1-weak upper gradient. Because X supports a 1-Poincaré

inequality, it follows that f ∈ W 1,Q
loc (X; Y ); see Proposition 4.4 in [22] and Theorem

6.11 in [15].

We continue with a quasisymmetry result. This result could be proven by combin-
ing the ideas from the proof of Theorem 4.1 with the techniques in [13], [14]. Instead
of that we sketch a direct proof along classical lines using Theorem 4.1.
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Theorem 5.2 Let (X, dX , µ) and (Y, dY , ν) be both proper, Q-regular metric spaces,
Q > 1, and E ⊂ X such that it has σ-finite HQ−1-measure. Assume also that X
supports a 1-Poincaré inequality and that Y is linearly locally connected. If f : X → Y
is a homeomorphism such that hf (x) < ∞ for every x ∈ X \ E and hf (x) ≤ H < ∞

for almost every x ∈ X, then f is quasisymmetric, f ∈ W 1,Q
loc (X; Y ), and Lf (x)Q ≤

Kµf(x) almost everywhere for some constant K.

Proof. Fix B(x0, r0), and suppose that L := Lf (x0, r0) is much larger than l :=
lf (x0, r0).

From Theorem 4.1 and Proposition 4.3 we know that f is absolutely continuous
on 1-almost every path and that we may take gf as defined in Proposition 4.3 as an
upper gradient.

Suppose that E and F are continua so that y0 ∈ f(E) ⊂ B(y0, Cl) and f(F ) ⊂
Y \ B(y0, L/C) for some y0 ∈ Y. We define a function u : X → [0,∞[ by setting

u(x) =
log(L/CdY (f(x), y0))

log(L/C2l)

in A := f−1(B(y0, L) \ B(y0, l)) and by extending u to all of X by setting u = 0
in X \ f−1(B(y0, L/C)) and u = 1 in f−1(B(y0, Cl)). It easily follows that g(x) =
log(L/C2l)−1dY (f(x), y0)

−1gf(x)χA(x) is a 1-weak upper gradient of u.

Now
∫

X

gQ dµ ≤ CHQ log(L/l)−Q

∫

A

d(f(x), y0)
−Qµf(x) dµ(x)

≤ CHQ log(L/C2l)−Q

∫

B(y0,L/C)\B(y0,Cl)

d(y, y0)
−Q dν(y)

≤ C log(L/C2l)1−Q

by (14) and the Q-regularity of Y.

On the other hand, the Poincaré inequality and Q-regularity assumptions on
Y allow us to choose the continua E, F as above so that diam(E), diam(F ) ≥ r0,
d(E, F ) ≤ 2r0, where C is a constant only depending on the Q-regularity constant,
Q, and the constants in the linear local connectivity condition. For all this see section
4 in [14] and 4.4 and 4.5 in [12]. Because g is a 1-weak upper gradient of u, we may
apply the 1-Poincaré inequality to the pair u, g and Theorem 5.9 in [14] shows that

∫

X

gQ dµ ≥ C > 0.

A bound on L/l follows, as desired.

Next, from Theorem 5.1 we know that f ∈ W 1,Q
loc (X; Y ).

The final conclusion immediately follows from the uniform boundedness of Hf (x, r).
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Remarks 5.3 1) If we instead of a 1-Poincaré inequality on X assume a p-Poincaré
inequality, 1 < p < Q, then the conclusions of Theorem 5.1, 5.2 still hold provided
we require that the exceptional set E have σ-finite HQ−p-measure. Notice that a Q-
Poincaré inequality for a space as in the above theorem always implies a p-Poincaré
inequality for some p < Q by a very recent result in [19].

2) There is a local version of Theorem 5.2, whose formulation and proof we leave
to the interested reader.

Proof of Theorem 1.2 A Carnot group of homogeneous dimension Q > 1 is proper, Q-
regular, and supports a 1-Poincaré inequality. Thus the claim follows from Theorem
5.2, except for the inequality for the horizontal gradient. This inequality follows from
the corresponding inequality in Theorem 5.2 and quasisymmetry [21], [29], [32].
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