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Abstract. We investigate the rigidity properties of stable, bounded so-
lutions of semilinear elliptic partial differential equations in Riemannian
manifolds that admit an Euclidean universal covering, finding conditions
under which the level sets are geodesics or the solution is constant.

Let M be a complete, connected, Riemannian manifold, endowed with a
metric g. Let f ∈ C1(R). We will consider classical, bounded solutions u ∈
C2(M) ∩ L∞(M) of the following semilinear partial differential equation:

(1) ∆gu+ f(u) = 0.

We say that u is stable if, for any ϕ ∈ C∞0 (M), we have that

(2)
∫

M

(
|∇gϕ|2 − f ′(u)ϕ2

)
> 0.

The notion of stability is a classiclal topic in the calculus of variations and
it may often be related with geometric features (such as monotonicity of
the solution) and with quantities of physical relevance (such as energy min-
imization): we refer to [Dup11] for a troughout discussion on the notion of
stability and its importance. Also, as usual, we say that the metric g is flat
if its sectional curvature vanishes identically (see, e.g., [GHL90]).

The purpose of this note is to prove symmetry and rigidity properties for
stable, bounded solutions u of (1) under several circumstances. First of all
(see Theorem A), we will show that if M admits R2 with the flat metric as
universal covering, then the level sets of u are geodesics.

These results extend some previous works of the authors, such as Theo-
rem 2 of [FSV08b].

The proof is based on some technology developed to study some questions
related to a major problem posed by De Giorgi (see [DG79], and also [FV09]
for a recent review on this topic).

Though we do not know whether our assumptions in Theorem A are
optimal, we recall that, in general, there exist bounded, stable solutions in
higher dimensional Euclidean spaces whose level sets are not totally geodesic
(see [dPKW08]), so our hypotheses cannot be dropped completely.

Next (see Theorem B), we prove that if f > 0 and M has a Euclidean
covering space Rn with n 6 4, then u is constant. For results on compact
manifolds, see the pioneer work of [Jim84]. For related results on manifolds,
see [FSV08b]. See also [DF10], for the Euclidean case up to dimension 4,
and [Far07], which studied stable solutions of the Lane-Emden equation,
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showing that in dimension 11 and higher there are stable, bounded, positive,
radial, non-costant solutions even in the Euclidean case (this is somewhat
a counterpart of Theorem B, though it leaves open the case of intermediate
dimensions).

The proof of Theorem B is based on a parabolicity estimate of [DF10].
We observe (see Corollary C), that the results in Theorems A or B hold

if M has dimension n = 2 or n 6 4, respectively, and it is endowed with
the flat metric. In this sense, the scope of this note is complementary to
the one of [FSV08b]: while [FSV08a] aims to classify the stable solutions
in manifold with non-negatitive Ricci cuvature, here we attempt a similar
classifications for manifold with vanishing sectional curvature.

Following are the results obtained, and their proofs.

Theorem A. Suppose that M has R2 with the flat metric as universal
covering. Let u be a stable, bounded solution of (1) on M .

Then, either u is constant or any connected component of each level set
of u is a geodesic.

Proof. If p is the projection from R2 to M and we set U(x) := u(p(x)), we
have that

(3) U is a solution of ∆U + f(U) on R2,

because p is a local isometry and ∇g in normal coordinates becomes the
Euclidean ∇, since g is pulled back to the Euclidean metric.

Moreover,

U is stable, i.e., for any ϕ ∈ C∞0 (R2) we have that∫
R2

(
|∇ϕ|2 − f ′(U)ϕ2

)
> 0.

(4)

Indeed, the stability condition in (2) (resp., in (4)) is equivalent to the exis-
tence of a positive solution v ∈ C2(M, (0,+∞)) (resp., V ∈ C2(R2, (0,+∞)))
of the linearized equation ∆gv + f ′(u)v = 0 in M (resp., ∆V + f ′(u)V = 0
in R2): see, e.g., [FCS80, FC85]. Hence, the stability of u in (2) gives the
existence of v as above. Then, if for any x ∈ R2 we define the lifted func-
tion V (x) := v(p(x)), we have that V is a positive solution of the linearized
equation pulled back on the covering, thus proving (4).

Now we apply Theorem 1.1 of [FSV08a] to U . We remark that U satisfies
the hypotheses of Theorem 1.1 of [FSV08a] thanks to (3) and (4). As a
consequence, U is one-dimensional, i.e. there exist ω ∈ S1 and h : R → R

such that

(5) U(x) = h(ω · x) for any x ∈ R2.

We claim that
either h is constant or
the level sets of h are made by points that do not accumulate.

(6)

To establish this we suppose that there exist points tk, each different by the
others, that accumulate to some to, for which h(tk) = 0. By Rolle’s Theorem,
there exists τk on the segment joining tk to tk+1 such that h′(τk) = 0. Of
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course, τk accumulates to to as well. We have

h(to) = lim
k→+∞

h(tk) = 0,

h′(to) = lim
k→+∞

h(tk)− h(to)
tk − to

= 0,

and h′′(to) = lim
k→+∞

h′(τk)− h′(to)
τk − to

= 0.

In particular, f(h(to)) = −h′′(to) = 0. Thus, if we set g(t) = (g1(t), g2(t)) :=
(h(t), h′(t)) and ψ(g1, g2) = (g2,−f(g1)), we have that g′(t) = ψ(g(t)).
Also, the constant function go(t) := (h(to), 0) satisfies g′o(t) = ψ(go(t)).
Since g(to) = go(to), we have that g(t) = go(t) for any t ∈ R, due to the
Uniqueness Theorem for ODEs, hence h is constant. This proves (6).

Then, by (5) and (6) we have that either U is constant or that all the level
sets of U are straight lines with direction perpendicular to ω. In the latter
case, the level sets of u are the image by the projection p of such straight
lines, and therefore they are geodesics, because all the Cristoffel symbols
vanish when they are written in local coordinates, since the pull back of g
is Euclidean. �

Theorem B. Suppose that f(r) > 0 for any r ∈ R and that M has a
Euclidean covering space Rn with n 6 4.

Let u be a stable, bounded solution of (1) on M . Then u is constant.

Proof. By arguing as in (3) and (4), we see that, if p is the projection fromRn

to M and U(x) := u(p(x)), then U is a stable solution of ∆U +f(U) on Rn.
Accordingly, by Theorem 1.1 of [DF10], we have that U is constant. �

Corollary C. Suppose that the metric g of M is flat. Let u be a stable,
bounded solution of (1) on M .

Then,
• if dimM = 2, then either u is constant or any connected component

of each level set of u is a geodesic;
• if dimM 6 4, and f(r) > 0 for any r ∈ R, then u is constant.

Proof. By Theorem 3.82 on page 135 of [GHL90], we have that M has a
Euclidean covering space Rn.

So the results follow from Theorems A and B. �
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