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Abstract

We point out some of the differences between the consequences of p-Poincaré
inequality and that of ∞-Poincaré inequality in the setting of doubling metric
measure spaces. Based on the geometric characterization of ∞-Poincaré inequa-
lity given in [DJS], we give a geometric implication of p-Poincaré inequality and
show throughout examples that the characterization in the p finite case is not
possible. The examples we give are metric measure spaces which are doubling and
support an∞-Poincaré inequality, but support no finite p-Poincaré inequality. In
particular, these examples show that one cannot expect a self-improving property
for ∞-Poincaré inequality in the spirit of Keith-Zhong [KZ]. We also show that
the persistence of Poincaré inequality under measured Gromov-Hausdorff limits
fails for ∞-Poincaré inequality.

1 Introduction

Some of recent research in analysis on metric measure space has focused on the ge-
ometric properties of Poincaré inequalities. Given 1 ≤ p < ∞, when analyzing the
behavior of minimizers of energy functionals, a p-Poincaré inequality allows us to con-
trol the variance of a Sobolev function on a ball in terms of the average value on the
(perhaps on a concentric larger) ball of the p-th power of the gradient, thus ensuring
good behavior of the functions. Papers such as [HeKo], [Ke], [KZ], [Se1], [Se], [Ko],
and [Ch] have studied some geometric properties of p-Poincaré inequalities. However,
some of the geometric and analytic consequences of Poincaré inequalities seem at the
surface to be independent of the index p in p-Poincaré inequality, as in the papers [Ke]
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(Lip− lip-condition), [Se] (quasiconvexity), and [Ch] (measurable differentiable struc-
ture and persistence of Poincaré inequality under pointed measured Gromov-Hausdorff
limits of metric spaces).

Because of Hölder’s inequality, the larger the value of p the easier it would be for a
metric measure space to support a p-Poincaré inequality. Hence the weakest Poincaré
inequality, the ∞-Poincaré inequality, is satisfied by the most general class of metric
measure spaces considered in the theory of analysis in metric spaces. Such an ∞-
Poincaré inequality was studied in [DJS]. In the light of the above discussion, it is
natural to ask whether the results obtained for p-Poincaré inequality with finite p also
holds for the case p = ∞. Such is the case with quasiconvexity, as shown in [DJS].
However, not all results translate well from the p <∞ situation to the p =∞ case. The
goal of this current note is to point out some of the differences between the consequences
of p-Poincaré inequality and that of ∞-Poincaré inequality. These differences appear
to be due to the fact that unlike the Lp-norm for finite p, the L∞-norm is not sensitive
to small local perturbations.

We begin this paper by introducing the notations needed in the paper in Section 2,
and giving further details of the properties under consideration. In [DJS] it is shown
that a complete connected doubling metric measure space supports an ∞-Poincaré in-
equality if and only if it is thick quasiconvex. In Section 3, we study a concept analogous
to thick quasiconvexity associated with p-Poincaré inequality for finite p ≥ 1, and give
an example which illustrates that this analogous geometric property does not imply
the validity of a p-Poincaré inequality. The metric measure space given in this example
is doubling and supports an ∞-Poincaré inequality, but supports no finite p-Poincaré
inequality. So this example shows in addition that one cannot expect a self-improving
property for ∞-Poincaré inequalities; the fact that a doubling metric measure space
supporting a p-Poincaré inequality for some 1 < p < ∞ also supports a q-Poincaré
inequality for some 1 ≤ q < p was shown by Keith and Zhong [KZ]. In Section 3 we
also discuss the persistence of ∞-Poincaré inequalities under Gromov-Hausdorff con-
vergence. The discussion in Chapter 9 of [Ch] demonstrates that if {Xn, dn, µn}n is a
sequence of metric measure spaces with µn doubling measures supporting a p-Poincaré
inequality, and in addition the constants associated with the doubling property and
Poincaré inequality are uniformly bounded, and furthermore, this sequence of metric
measure spaces converges in the measured Gromov-Hausdorff sense to a metric measure
space (X, d, µ), then this limit space also is doubling and supports a p-Poincaré inequal-
ity. We will provide an example which demonstrates that this persistence of Poincaré
inequality under measured Gromov-Hausdorff limits fails for ∞-Poincaré inequality.

Section 4 of this paper concentrates on doubling weights in Rn. Positive dou-
bling weights w in Rn support an ∞-Poincaré inequality. This is seen by the fact
that a weighted measure µ, given by dµ = w dL n, has the same class of null sets as
L n when the weight w is positive L n-almost everywhere, and the property of thick
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quasiconvexity—which is equivalent to ∞-Poincaré inequality—therefore holds for the
measure µ just as it does for L n. The question is then whether a positive doubling
weight in Rn necessarily supports a p-Poincaré inequality for some finite p ≥ 1. In
Section 4 we construct a positive doubling weight that does not support p-Poincaré in-
equality for any finite p, that is, an Euclidean ∞-admissible weight that is not an A∞
weight. This weight provides us with a second example of a metric measure space that
supports a weak ∞-Poincaré inequality but no finite p-Poincaré inequality. Note that
there are doubling weights in Rn that are not Lebesgue measure-a.e. positive, see [St,
page 40, 8.8(b)]. Finally, in Section 5 we discuss some further open problems related
to consequences of ∞-Poincaré inequalities.

2 Notation and Preliminaries

We assume throughout the paper that (X, d, µ) is a metric measure space, that is, a
metric space equipped with a metric d and a Borel measure µ such that 0 < µ(B) <∞
for each open ball B ⊂ X.

A measure µ is doubling if there is a constant Cµ > 0 such that for all x ∈ X and
r > 0,

µ(B(x, 2r)) ≤ Cµ µ(B(x, r)).

In the above definition of doubling measure, we can equivalently replace open balls
B(z, R) with closed balls B(z,R) = {y ∈ X : d(y, z) ≤ R}.

By a curve γ we will mean a continuous mapping γ : [a, b] → X. Recall that the
length of a continuous curve γ : [a, b]→ X is the number

`(γ) = sup
{ n−1∑

i=0

d(γ(ti), γ(ti+1))
}

where the supremum is taken over all finite partitions a = t0 < t1 < · · · < tn = b of
the interval [a, b]. We will say that a curve γ is rectifiable if `(γ) < ∞. The integral
of a Borel function g over a rectifiable path γ is usually defined via the arc-length
parametrization γ0 of γ in the following way:∫

γ

ρds =

∫ `(γ)

0

g ◦ γ0(t)dt.

Recall here that every rectifiable curve γ admits a parametrization by the arc-length;
that is, with γ0 : [a, b]→ X, for all t1, t2 ∈ [a, b] with t1 ≤ t2, we have `(γ0|[t1,t2]

) = t2−t1.
Hence from now on we only consider curves that are arc-length parametrized. The
book [V, Chapter 1] has an elegant discussion about paths and path integrals; while the
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discussion in this reference is given in the setting of Euclidean domains, the discussion
and proofs there are so general as to be valid in the setting of any metric space.

We recall the definition of p-modulus, an outer measure on the collection of all paths
in X.

Definition 2.1. (Modulus of a family of curves) Let Γ be a family of non-constant
rectifiable curves in X. For 1 ≤ p ≤ ∞ we define the p-modulus of Γ by

Modp(Γ) =

{
infρ

∫
X
ρp dµ if 1 ≤ p <∞,

infρ ‖ρ‖L∞(X) if p =∞,

where the infimum is taken over all non-negative Borel functions ρ : X → [0,∞] such
that

∫
γ
ρ ds ≥ 1 for all γ ∈ Γ. If some property holds for all rectifiable curves in X

except for a family Γ with Modp Γ = 0, then we say that the property holds for p-a.e.
curve.

Example 2.2. (Cusp domains) Fixing m ∈ N, let X ⊂ R2 be the region

X := {(x, y) ∈ R2 : x ≥ 0 and 0 ≤ y ≤ xm}

be endowed with the Euclidean distance and the 2-dimensional Lebesgue measure L 2.

Figure 1: Fibrating the cusp domain

One can prove that the p-modulus of curves in X passing through the origin is
positive if and only if p > m+ 1. To see this, let ρ be admissible for computing the p-
modulus of the family of curves connecting the origin to the vertical line segment {1}×R
inside this domain. For each 0 ≤ a ≤ 1 let γa be the curve given by γa(t) = (t, atm),
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where t ranges between 0 and 1. Then γa is a curve in X connecting the origin to the
vertical line segment. Furthermore, the family {γa}0≤a≤1 fibrates X ∩ ([0, 1]× [0, 1]),
and since ρ is admissible, we have that∫

γa

ρ ds =

∫ 1

0

ρ ◦ γa(t)
√

1 +m2a2t2m−2 dt ≥ 1.

Thus by Hölder’s inequality, with q denoting the Hölder conjugate of p,

1 ≤
∫ 1

0

ρ ◦ γa(t)tm/p t−m/p
√

1 +m2a2t2m−2 dt

≤
(∫ 1

0

ρ ◦ γa(t)ptm dt
)1/p(∫ 1

0

t−mq/p
(
1 +m2a2t2m−2

)q/2
dt

)1/q

.

Since 1 ≤
√

1 +m2a2t2m−2 ≤
√

1 +m2 for 0 ≤ t ≤ 1, the integral

C1 :=

∫ 1

0

t−mq/p
(
1 +m2a2t2m−2

)q/2
dt

is finite if and only if
∫ 1

0
t−mq/p dt is finite, and this happens precisely when p > m+ 1.

When p > m+ 1, from the above we see that∫ 1

0

ρ ◦ γa(t)ptm dt ≥ C1−p
1 > 0.

It follows that (by setting ρ(x, y) = 0 for x > 1 without loss of generality),∫
X

ρp dL 2 =

∫ 1

0

∫ 1

0

ρ ◦ γa(t)p tm dt da ≥ C1−p
1 > 0,

and so the p-modulus of the family of all curves passing through the origin, which
contains γa, 0 ≤ a ≤ 1 as a sub-family, is at least C1−p

1 > 0.

For 1 ≤ p < m + 1, with the aid of the admissible function ρ(x, y) = 1/x, (x, y) ∈
X, we see that the p-modulus of the family of all curves in X passing through the
origin is zero. A more careful analysis using the function ρ(x, y) = (ln(R/r))−1 x−1

for (x, y) ∈ X which is admissible for computing the p-moduli of curves connecting
{r} ×R to {R} ×R in X for 0 < r < R, and then letting r → 0 also shows that when
p = m + 1 the p-modulus is zero. Observe that the measure L 2|X on X is doubling
with doubling constant 2m.

A useful generalization of Sobolev spaces to general metric spaces is Newtonian
Spaces N1,p(X) introduced in [Sh, Sh1]. The case p = ∞ was studied in [DJ]. The
definition is based on the notion of upper gradients of Heinonen and Koskela [HeKo],
and weak upper gradients of Koskela and MacManus [KoMc].
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Definition 2.3. A non-negative Borel function g on X is a p-weak upper gradient of
an extended real-valued function f on X if

|f(γ(a))− f(γ(b))| ≤
∫
γ

g

for p-a.e. rectifiable curve γ in X.

Let Ñ1,p(X, d, µ), where 1 ≤ p ≤ ∞, be the class of all p-integrable functions on

X for which there exists a p-weak upper gradient in Lp(X). For f ∈ Ñ1,p(X, d, µ) we
define

‖f‖ eN1,p := ‖f‖Lp + inf
g
‖g‖Lp ,

where the infimum is taken over all p-weak upper gradients g of f . Now, we define in
Ñ1,p(X, d, µ) an equivalence relation by f1 ∼ f2 if and only if ‖f1 − f2‖ eN1,p = 0. Then

the space N1,p(X, d, µ) = N1,p(X) is defined as the quotient Ñ1,p(X, d, µ)/ ∼ and it is
equipped with the norm ‖f‖N1,p(X) = ‖f‖ eN1,p .

The following Poincaré inequality is now standard in literature on analysis on metric
spaces.

Definition 2.4. Let 1 ≤ p ≤ ∞. We say that (X, d, µ) supports a weak p-Poincaré
inequality if there are constants λp, Cp > 0 such that when f : X → R∪ {−∞,∞} is a
measurable function and g : X → [0,∞] is an every upper gradient of f , and B(x, r)
is a ball in X, ∫

B(x,r)
|f − fB(x,r)| dµ ≤ Cp r

(∫
B(x,λpr)

gpdµ
)1/p

if 1 ≤ p <∞, and ∫
B(x,r)

|f − fB(x,r)| dµ ≤ C∞ r‖g‖L∞(B(x,λ∞r))

if p = ∞. Note that it is necessary to have λp ≥ 1. The word weak refers to the
possibility that λp may be larger than 1. Here for arbitrary A ⊂ X with 0 < µ(A) <∞
we write

fA =

∫
A
f :=

1

µ(A)

∫
A

fdµ.

In most situations the constant Cp in the p-Poincaré inequality depends strongly
on p (the dependence is crucial as we make p smaller), but the constant λp depends
usually on the shapes of holes in X and rarely on p. Hence, in the remainder of this
paper we will drop the subscript in λp and merely denote it λ.

Next we discuss the notion of pointed measured Gromov-Hausdorff convergence of
a sequence of pointed metric measure spaces, {(Xn, dn, µn, pn)}n with pn ∈ Xn, to a

6



pointed metric measure space (X, d, µ, p) with p ∈ X. We first recall the notion of
Hausdorff convergence of compact metric spaces. See [G] or [BBI, Chapter 7.4] for
further details.

A metric space is said to be proper if closed and bounded subsets of that space are
compact. Given a proper metric space (Z, dZ), and two compact sets K1, K2 of Z, the
Hausdorff distance dH(K1, K2) is the number

dH(K1, K2) := inf

{
ε > 0 : K2 ⊂

⋃
z∈K1

B(z, ε) and K1 ⊂
⋃
z∈K2

B(z, ε)

}
.

A sequence of compact sets {Kn}n in Z is said to converge in the Hausdorff topology to
a compact set K ⊂ Z if dH(Kn, K)→ 0 as n→∞. Given a sequence of proper metric
subspaces {An}n of Z, p ∈ An for all n, and a proper metric subspace A ⊂ Z and a
point p ∈ A, we say that the pointed sequence {(An, p)}n converges in the Hausdorff
topology to (A, p) if for all r > 0 the sequence of compact sets {B(p, r)∩An}n converges
in the Hausdorff topology to B(p, r) ∩ A.

We next recall the pointed measured Gromov-Hausdorff convergence . The notion
of pointed measured Gromov-Hausdorff convergence was introduced by Fukaya in [Fu].
See also [Ke3], [Ch] and references therein.

Definition 2.5. A sequence of proper pointed metric measure spaces {(Xn, dn, µn, pn)}
is said to converge to another complete pointed metric measure space (X, d, µ, p) if
there exists a proper pointed metric metric space (Z, ρ, q) and isometric embeddings
i : X → Z and in : Xn → Z for each n ∈ N such that in(pn) = q = i(p), (in(Xn), q)
converges to (i(X), q) in the above-mentioned sense of Hausdorff topology on Z, and
such that (in) ∗ µn converges to i ∗ µ in the weak* sense.

In the above definition, in ∗ µn is the push-forward of the measure µn under the
isometry in; for sets A ⊂ Z, we have in ∗ µn(A) = µn(i−1

n (A)). We say that a sequence
of Borel measures νn on Z converges in the weak* sense to a Borel measure ν if for all
compactly supported continuous functions ϕ on Z,

lim
n→∞

∫
Z

ϕdνn =

∫
Z

ϕdν.

If for all Borel sets A ⊂ Z we have νn(A)→ ν(A) as n→∞, then νn converges in the
weak* sense to ν, but the converse is not always true, as shown by the measures µn given
by dµn = [1− (1− n−1)2]−1 χB((0,0),1)\B((0,0),1−n−1) dL

2 and µ = (2π)−1H1|S1((0, 0), 1)
on R2.

If a sequence of compact sets {Kn}n of Z converges in the Hausdorff topology to
a compact set K ⊂ Z, then this sequence converges in the Gromov-Hausdorff sense to
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K, but again the converse need not hold, as demonstrated by the example Z = R2,
Kn = B((n, 0), 1), and K = B((0, 0), 1). The notion of Gromov-Hausdorff convergence
is therefore more flexible and depends more on the shapes of the sequence of metric
spaces approximating the shape of the limit space.

3 p-thick quasiconvexity

It is known that if a complete doubling metric measure space supports a weak p-
Poincaré inequality, then the space is quasiconvex , that is, there exists a constant
such that every pair of points can be connected with a curve whose length is at most
the constant times the distance between the points (see [Se1] or [HeKo]). See [Ko] for
further improvements of the quasiconvexity condition. In what follows, we consider a
stronger geometric property. We will prove that every pair of sets of positive measure
which are a positive distance apart can be connected by a “thick” family of quasiconvex
curves in the sense that the modulus of this family of curves is positive. The following
definition makes this idea more precise.

Definition 3.1. A metric measure space (X, d, µ) is said to be a p-thick quasiconvex
space (where 1 ≤ p ≤ ∞) if there is a constant C ≥ 1 such that for all x, y ∈ X,
all 0 < ε < 1

4
d(x, y), and all measurable sets E ⊂ B(x, ε) and F ⊂ B(y, ε) satisfying

µ(E)µ(F ) > 0, we have that

Modp(Γ(E,F,C)) > 0.

Here Γ(E,F,C) denotes the set of all curves γp,q connecting p ∈ E and q ∈ F with
`(γp,q) ≤ Cd(p, q). Following [DJS], we say that X is thick quasiconvex if it is ∞-thick
quasiconvex.

Remark 3.2. Note that every complete p-thick quasiconvex space X supporting a
doubling measure is quasiconvex. The converse is not true in general. The Sierpinski
carpet is a quasiconvex space which is not∞-thick quasiconvex ([DJS, Corollary 4.15]),
and so it is not p-thick quasiconvex either for any 1 ≤ p ≤ ∞.

Lemma 3.3. Whenever 1 ≤ p ≤ ∞ the Euclidean space Rn is p-thick quasiconvex with
quasiconvexity constant C = 1.

Proof. An easy modification of Lemma 3.8 tells us that it suffices to prove that Rn is
p-thick quasiconvex for p = 1.

Let x, y ∈ Rn be two distinct points, and 0 < ε < |x − y|/10. Let E ⊂ B(x, ε)
and F ⊂ B(y, ε) be two measurable sets of positive measure, and Γ(E,F, 1) be the
collection of all straight line segments connecting points in E to points in F . We wish
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to show that Mod1(Γ(E,F, 1)) > 0. To do this, let z ∈ E be a point of density 1
of E, and w ∈ F be a point of density 1 of F ; since both E and F have positive
measure, by Lebesgue differentiation theorem such points exist. Let L be the line
passing through z and w, P1 be the (n − 1)-dimensional hyperplane perpendicular to
L, and P2 the (n−1)-dimensional hyperplane parallel to P1, such that the balls B(z, 2ε)
and B(w, 2ε) lie between these two hyperplanes.

Let E1 be the orthogonal projection of E to P1 and F1 the orthogonal projection
of F to P2. By Fubini’s theorem, we know that Hn−1(E1) > 0 and Hn−1(F1) > 0, and
that the projection z1 of z to P1 is a point of Hn−1-density 1 for E1 and the projection
w1 of w to P2 is a point of Hn−1-density 1 for F1. Let Γ be the collection of all line
segments parallel to L and connecting points in E1 to points in F1. We now show that
Mod1(Γ) > 0. Suppose Mod1(Γ) = 0. Then lines parallel to L and passing through
Hn−1-almost every point in E1 does not intersect F1, and lines parallel to L and passing
through Hn−1-almost every point in F1 does not intersect E1 (see the discussion of [V,
Chapter 1, Section 7.2]). Let ν1 = χE1Hn−1, and ν2 = χF1Hn−1. It follows that the
projection ν ′2 of the measure ν2 to the hyperplane P1 is mutually singular with ν1.
However, because w1 is a Hn−1-point of density 1 for F1, and the projection of w1 to P1

is the same as z1, it follows that z1 is a point of density 1 for both ν1 and the projection
ν ′2 of ν2 to P1; this is not possible since by the mutual singularity of the two measures,
and by the definition of the two measures, for r > 0,

ν ′2(B(z1, r)) + ν1(B(z1, r)) ≤ Hn−1|P1(B(z1, r)).

It follows that Mod1(Γ) > 0. Since every curve in Γ has a subcurve in Γ(E,F, 1), it
follows that Mod1(Γ(E,F, 1) ≥ Mod1(Γ) > 0, which concludes the proof.

Remark 3.4. The proof of the above lemma also tells us that in the Euclidean setting,
given two parallel (n−1)-dimensional hyperplanes of Rn and two sets of Hn−1-measure
positive, one lying in one of the hyperplanes and the other lying in the other hyperplane,
the set of all geodesic line segments connecting points in one set to points in the second
set has positive 1-modulus.

The following result was proven in [DJS, Theorem 4.6].

Theorem 3.5. ([DJS, Theorem 4.6]) Suppose that X is a connected complete metric
space supporting a doubling Borel measure µ which is non-trivial and finite on balls.
Then the following conditions are equivalent:

(a) X supports a weak ∞-Poincaré inequality.

(b) X is thick quasiconvex.
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Figure 2: Thick quasiconvex family

(c) LIP∞(X) = N1,∞(X) with comparable energy semi-norms.

(d) X supports a weak ∞-Poincaré inequality for functions in N1,∞(X).

The proof of the above theorem given in [DJS] shows that the constants C∞, λ of
∞-Poincaré inequality, the constant C of thick quasiconvexity, and the constant of
comparison of energy semi-norms of the two function spaces mentioned in the above
theorem depend only on each other and on the doubling constant of the measure on
X. In this paper we use the equivalence of Condition (a) and Condition (b).

The following proposition gives an analog of Condition (a) implying Condition (b)
for the case of finite p; the converse is not true in general, as will be shown below.

Proposition 3.6. Let (X, d, µ) be a metric measure space with µ a doubling measure. If
X supports a weak p-Poincaré inequality for functions in N1,p(X) with upper gradients
in Lp(X), then X is p-thick quasiconvex.

Proof. Let x, y ∈ X such that x 6= y, and let 0 < ε < d(x, y)/4. Fix n ∈ N and let
Γn = Γ(B(x, ε), B(y, ε), n) be the collection of all rectifiable curves connecting B(x, ε)
to B(y, ε) such that `(γ) ≤ n d(x, y). By the choice of ε, if p, q are the end points of γ,
then d(p, q)/4 ≤ d(x, y) ≤ 4d(p, q).

Suppose that Modp(Γn) = 0. Then, there exists a non-negative Borel measurable
function g ∈ Lp(X) such that ‖g‖Lp(X) = 1 and for all γ ∈ Γn, the path integral∫
γ
g ds =∞.
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Next, for each k ≥ 1 consider the family of functions gk = 1
k
g. It is clear that

‖gk‖Lp(X) = 1/k. By the Maximal Function Theorem (see [He, 2.2]),

(1) µ({z ∈ X : M(gpk)(z) > 1}) ≤ C

1

∫
X

gpk = C‖gk‖pLp(X) < C
1

kp
.

Recall here that M(g)(z) = supr>0

∫
B(z,r)

|g|dµ.

Let
Sk = {z ∈ X : M(gpk)(z) ≤ 1} = {z ∈ X : M(gp)(z) ≤ kp}.

Observe that if k1 ≤ k2 then Sk1 ⊂ Sk2 , and the set G = X \
⋃
k≥1 Sk has measure zero

by inequality (1). Let

uk(z) = inf
γ connecting z to B(x,ε)

∫
γ

(1 + gk) ds.

Note that uk = 0 on B(x, ε) for each k. If z ∈ B(y, ε) and γ is a rectifiable curve
connecting z to B(x, ε), then either γ ∈ Γn in which case

∫
γ
(1 + gk) ds ≥

∫
γ
gk ds =∞,

or else γ 6∈ Γn, in which case `(γ) > nd(x, y) and so
∫
γ
(1 + gk) ds ≥

∫
γ

1 ds > nd(x, y),

and hence uk(z) ≥ n d(x, y). It follows that the function vk = min{uk, n d(x, y)} has
the properties that

1. vk = 0 on B(x, ε),

2. vk = n d(x, y) on B(y, ε),

3. 1 + gk is an upper gradient of vk on X,

4. vk ∈ N1,p(X).

Since µ(G) = 0 we can find points x0 ∈ B(x, ε/4) \G and y0 ∈ B(y, ε/4) \G. Let
k ∈ N such that x0, y0 ∈ Sk. By using the chain of balls Bi = B(x0, 2

1−id(x, y)) if i ≥ 0
and Bi = B(y0, 2

1+id(x, y)) if i ≤ −1, and by the weak p-Poincaré inequality,

n d(x, y) = vk(y0) = |vk(x0)− vk(y0)| ≤
∑
i∈Z

|vkBi
− vkBi+1

|

≤ C
∑
i∈Z

∫
2Bi

|vk − vkBi
| dµ

≤ C
∑
i∈Z

2−|i|d(x, y)
( 1

µ(λBi)

∫
λBi

(1 + gk)
p dµ

)1/p

≤ C
∑
i∈Z

2−|i|d(x, y)
(

1 +
( 1

µ(λBi)

∫
λBi

(gk)
p dµ

)1/p)
≤ Cd(x, y)

∑
i∈Z

2−|i|(1 + 1) ≤ Cd(x, y).
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Observe that x0, y0 are Lebesgue points of vk since vk = 0 on the open set B(x, ε) 3 x0

and vk = n d(x, y) on B(y, ε) 3 y0. Thus we must have n ≤ C, with C depending
solely on the doubling constant and the constant of the Poincaré inequality. Hence if
n > C then the curve family Γn = Γ(B(x, ε), B(y, ε), n) must have positive p-Modulus,
completing the proof in the simple case that E = B(x, ε) and F = B(y, ε). The proof
for more general E,F is very similar, where we modify the definition of uk by looking
only at curves that connect z to E, and then observing that almost every point in E
and almost every point in F are Lebesgue points for the modified function vk, with
vk = 0 on E and vk = nd(x, y) on F . This completes the proof of the proposition.

If p = ∞, the converse of Proposition 3.6 is true ([DJS, Theorem 4.5]). The
following example shows that for finite p, the converse of Proposition 3.6 is not true
in general. The metric measure space in this example, being thick quasiconvex and
hence supporting a weak ∞-Poincaré inequality, also demonstrates that there is no
self-improvement of ∞-Poincaré inequality in the spirit of [KZ].

Example 3.7. Let Q = [0, 1] × [0, 1] ⊂ R2 be the unit square. Let Q1 be the set
obtained by dividing Q into nine equal squares of side-length 1/3 and removing the
central open square. The set Q1 is the union of 8 squares of side-length 1/3. Repeating
this procedure on each of the 8 squares making up Q1 we obtain the set Q2, a union of
82 squares, each of side-length 1/32. Repeating this process we get a sequence of sets
Qj consisting of 8j squares of side-length 1/3j. Notice that each Qj has positive area, so
we can define a probability measure µj concentrated on Qj obtained by renormalizing
the Lebesgue measure (restricted to Qj) to have measure one. The metric measure
space under consideration is

X = Q1 ∪ (Q2 + (1, 0)) ∪ (Q3 + (2, 0)) ∪ · · · (Qj + (j − 1, 0)) ∪ · · ·

endowed with the measure
µ =

∑
i

χQj+(j−1,0) · µj,

and with the Euclidean metric restricted to X. Here, Qj + (j−1, 0) is the set obtained
by translating Qj in the direction parallel to the x-axis by j − 1 units;

Qj + (j − 1, 0) := {(x+ j − 1, y) ∈ R2 : (x, y) ∈ Qj},

and µj is the measure given by

µj = (9/8)j L 2|Qj+(j−1,0).

It can be directly verified that the measure µ is doubling on X.

Suppose that (X, d, µ) supports a weak p-Poincaré inequality for some finite p with
constants Cp and λ. By [BS, Theorem 4.4], uniform domains in (X, d, µ) also support a
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Figure 3: Sierpiński strip

weak p-Poincaré inequality with constants C ′p and λ′, where C ′p and λ′ depend solely on
Cp, λ, and the uniformity constant of the uniform domain. Recall here that a domain
Ω ⊂ X is C-uniform, C ≥ 1 if for every pair of points x, y ∈ Ω there is a C-quasiconvex
curve γ in Ω connecting x and y and for all z ∈ Ω,

min{`(γxz), `(γyz)} ≥ C d(x,X \ Ω).

Here γxz and γyz are subcurves connecting z to x and y, respectively. For each j, the
domains Qj+(j−1) are uniform domains in X, with the same uniformity constant. To
see this, note that the unit square Q = [0, 1]× [0, 1] is a C0-uniform domain in R2. Let
P1 = (x1, y1), P2 = (x2, y2) ∈ Qj + (j − 1, 0); then (x1 − j + 1, y1), (x2 − j + 1, y2) ∈ Q,
and so there is a C0-uniform curve β in Q connecting these two points. The curve
βj := β+(j−1, 0) may not lie in Qj +(j−1, 0), but if it does not, then it intersects the
translations of squares removed from Q in order to obtain Qj; these removed squares are
of Whitney type in Q (because the distance from the removed square to the boundary
of Q is at least 1/3 the side-length of the removed square), and so modifying the path
β in the following manner yields a curve γ connecting P1 to P2 in Qj + (j− 1, 0) which
is
√

2C0-uniform. If βj intersects the translation of one of the removed open squares,
then with P ′1, P

′
2 denoting the points of intersection of βj with the boundary of the

removed square, we may replace the sub-curve of βj inside this removed square with
the shortest of the two components obtained by removing P ′1, P

′
2 from the boundary of

the removed square. This sub-curve replacing the original sub-curve of βj has length
no more than

√
2 times the length of the sub-curve being replaced; furthermore, its

distance from the boundary (with respect to X) of Qj + (j − 1, 0) is comparable to
the corresponding quantity of the original sub-curve, with comparison constant

√
2.

Hence the curve γ obtained by modifying βj as above results in a uniform curve in
Qj + (j− 1, 0) with uniformity constant

√
2C0, which is independent of j. One should

keep in mind here that the boundary of Qj + (j − 1, 0) in X is the union of the two
vertical line segments {j − 1}× [0, 1] and {j}× [0, 1], whose translation by (−j + 1, 0)
is a subset of the boundary of Q in R2.

13



As explained above, the domains Qj + (j − 1) are uniform domains in X, with the
same uniformity constant. Therefore, for each j ≥ 1 the space (Qj + (j − 1, 0), d, µj)
supports a weak p-Poincaré inequality for some finite p with constants C ′p and λ′ and
so it is clear that the space (Qj, dj, µj), where dj is the Euclidean distance restricted to
each Qj, also supports a weak p-Poincaré inequality with the same constants C ′p and
λ′.

The sequence of pointed spaces {(Qj + (j − 1, 0), dj, µj, (j − 1, 0))} converges in
the measured Gromov-Hausdorff topology to the space (S, d, µ), where µ is the weak*
limit of the probability measures µj and S =

⋂
Qj is the Sierpinski carpet. By the

construction of the carpet, it is easy to see that the sequence of compact subsets {Qj}j
of R2 converges in the Hausdorff topology to the Sierpinski carpet equipped with the
Euclidean metric; hence the convergence of {(Qj +(j−1, 0), dj, (j−1, 0))} holds in the
Gromov-Hausdorff sense as well. The sequence of measures µj converges to an Ahlfors
s-regular measure, where the number s is given by 3s = 8. In particular, µ coincides
with the Hausdorff measure on (S, d) of dimension s, see [Fal, Page 130, Theorem 9.3]
together with [M, Theorem 1.23] or [Se, Section 4.1]. Furthermore, µ is a doubling
measure, and in fact is an Ahlfors regular measure on the carpet S.

Since p-Poincaré inequality (with uniformly bounded constants) persists to the limit
of a sequence of converging pointed metric measure spaces (see [Ch, Theorem 9.6] or
[Ke3, Theorem 3]), the limit space (S, d, µ) would support a weak p-Poincaré inequality,
which is known to be not true, see for example [BoP, Proposition 4.5] or [Se].

However, it is clear that (X, d, µ) is p-thick quasiconvex. We can use a simple
modification of the proof of Lemma 3.3 to families of curves, obtained as a union of line
segments parallel to the two coordinate axes. These curves are at most 2-quasiconvex.
The idea is that for any pair of points x, y ∈ X, one can find a narrow 2-quasiconvex
tube of curves connecting balls centered at x and y of positive p-modulus. If the largest
index j for which one of x, y lies in Qj + (j − 1, 0) is large, then this tube of curves
is correspondingly narrow and has a small p-modulus. Thus the p-modulus of curves
connecting the balls has no quantitative lower bound, and that is the reason why the
space does not support a weak p-Poincaré inequality for any finite p.

As we have seen before, p-thick quasiconvexity does not guarantee a weak p-Poincaré
inequality for finite p. However, the next lemma shows that it is a sufficient condition
to obtain a weak ∞-Poincaré inequality.

Lemma 3.8. If (X, d, µ) is a p-thick quasiconvex for some p < ∞ then (X, d, µ)
supports a weak ∞-Poincaré inequality.

Proof. Since (X, d, µ) is a p-thick quasiconvex space, we know that there exists C ≥ 1
such that for all x, y ∈ X, 0 < ε < 1

4
d(x, y), and all measurable sets E ⊂ B(x, ε), F ⊂
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B(y, ε) satisfying µ(E)µ(F ) > 0 we have that Modp(Γ(E,F,C)) > 0, where Γ(E,F,C)
denotes the set of curves γp,q connecting p ∈ E and q ∈ F with `(γp,q) ≤ Cd(p, q). Let
g be a non-negative Borel measurable function on X such that for all γ ∈ Γ(E,F,C)
we have

∫
γ
g ds ≥ 1. Since the curves γ ∈ Γ(E,F,C) are of length at most 4C d(x, y)

and hence lie in the ball B := B(x, 8C d(x, y)), and so we may assume, without loss
of generality, that the support of g lies in B. Because 0 < µ(B) < ∞ we obtain by
Hölder’s inequality that

‖g‖Lp(X) ≤ µ(B)
1
p
− 1

s‖g‖Ls(X) for all s ∈ (p,∞).

Letting s→∞ we get that ‖g‖Lp(X) ≤ µ(B)
1
p‖g‖L∞(X), and so(

Modp(Γ(E,F,C))
) 1

p ≤ µ(B)
1
p Mod∞(Γ(E,F,C)).

The last inequality says that if Modp(Γ(E,F,C)) > 0, then Mod∞(Γ(E,F,C)) > 0 and
so (X, d, µ) is an∞-thick quasiconvex space. By the geometric characterization in [DJS,
Theorem 4.6], we conclude that (X, d, µ) supports a weak ∞-Poincaré inequality.

Remark 3.9. By the aid of Lemma 3.8, the space (X, d, µ) in Example 3.7 is a dou-
bling metric measure space which supports a weak ∞-Poincaré inequality but does
not support a weak p-Poincaré inequality for any finite p. Observe that in [DJS] the
authors construct a space which supports a weak ∞-Poincaré inequality but does not
support a weak p-Poincaré inequality for any finite p. However, the measure considered
in that example was not doubling.

Finally in this section, we give an example which shows that the ∞-Poincaré in-
equality does not persist under Gromov-Hausdorff convergence.

Example 3.10. We consider the sets Qj constructed in Example 3.7 above, and the
corresponding Hausdorff limit of {Qj}j, which is the Sierpinski carpet S =

⋂
Qj.

The sequence of metric measure spaces under consideration is {(Qj, dj, µj)}, where
dj is the Euclidean distance restricted to each Qj and µj is a probability measure
concentrated on Qj. As mentioned in Example 3.7, the sequence of pointed spaces
{(Qj, dj, µj, (0, 0))} converges to the space (S, d, µ, (0, 0)), where µ is the Hausdorff
measure corresponding to the Hausdorff dimension of S. The metric measure spaces
in the sequence {(Qj, dj, µj)} are ∞-thick quasiconvex (and therefore support an ∞-
Poincaré inequality). Keep in mind that in this example the constant that appears in
the ∞-thick quasiconvexity property for each Qj depends only on the constant of the
quasiconvexity of the space. Therefore the constants are uniformly bounded by the
quasiconvexity constant. However, the limit space (S, d, µ) does not support a weak
∞-Poincaré inequality (see [DJS, Corollary 4.14]).
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4 ∞-admissible weights

The following definition of admissible weights is from [HKM].

Definition 4.1. A non-negative locally integrable function w in Rn is a p-admissible
weight with p ≥ 1 if 0 ≤ w < ∞ L n-a.e., the measure µ given by dµ = wdL n is
doubling, and (Rn, | · |, µ) admits a weak p-Poincaré inequality.

Definition 4.2. A non-negative function w on Rn is a Muckenhoupt Ap weight with
p ≥ 1, if for some C > 0 and all balls B ⊂ Rn,

1

L n(B)

∫
B

wdx <

{
C
(

1
L n(B)

∫
B
w1/(1−p)dx

)1−p
for p > 1,

C ess infB w for p = 1.

The A∞ class of weights is defined by

A∞ =
⋃
p>1

Ap.

It is well-known that Ap weights are p-admissible (see [HKM, Theorem 15.21]). In
[BBK] it is shown that if n = 1, all p-admissible weights have to be of class Ap as
well. However, when n ≥ 2, not all p-admissible weights are of class Ap. For example,
when n ≥ 2, by [HKM, Corollary 15.35]), the measures dµ = |x|αdL n with α > 0 are
p-admissible in Rn for all p > 1, but belong to Ap if and only if p > 1 + nα.

It is clear that A∞ weights are ∞-admissible. Indeed, if w is an A∞ weight, then
it is an Ap weight for some finite p and so it supports a weak p-Poincaré inequality for
some finite p. By Hölder’s inequality we obtain that it also supports a weak∞-Poincaré
inequality.

Our goal of this section is to show that not all ∞-admissible weights in Rn are
A∞ weights. For the case n = 1 we will construct a weighted measure dµ = wdL n

with w > 0 L 1-a.e. such that (Rn, µ) does not support p-Poincaré inequality for any
p <∞. This weight also is an example of a metric measure space that supports a weak
∞-Poincaré inequality but no finite weak p-Poincaré inequality.

There exist doubling measures on Rn that are totally singular, i.e., measures that
have no absolutely continuous part with respect to the Lebesgue measure. In R, the
Riesz product

dν(x) =
∞∏
k=1

(1 + a cos(3k · 2πx))dL 1(x) for |a| < 1

is a doubling measure (see [St, page 40, Section 8.8(a)]) such that ν and the Lebesgue
measure L 1 are mutually singular with the Lebesgue measure, see [Z], [St]. The
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sequence of measures νk given by dνk(x) :=
∏k

j=1(1 + a cos(3j · 2πx))dL 1(x) converges
weakly to the measure ν. However, a stronger statement holds. By the definition of
Fourier-Stieltjes integral given in [Z, page 10] and by [Z, page 209, (7.4)], we know that
νk → ν in measure, that is, whenever A ⊂ R is a Borel set, we have limk νk(A) = ν(A).

The first step is to construct a sequence of weights wk, k ≥ 1, in R such that wkdL 1

approximates dν better as k goes to∞. We do this via convolution. We could of course
take wk =

∏k
j=1(1 + a cos(3k · 2πx)), but this choice does not give us the estimates for

the weight w needed subsequently.

Let ψ : R → R be the characteristic function ψ = 2−1 χ[−1,1], and for k ∈ N let
ψk(x) = k ψ(kx). Observe that

∫
R ψk dL

1 = 1 and that ψk = 2−1k χ[−1/k,1/k]. For
k ∈ N, we set

wk(x) =

∫
R
ψk(y − x) dν(y) =

k

2
ν([x− 1/k, x+ 1/k]).

Then wk is lower semi-continuous and positive everywhere on R. The measure µk given
by this weight, dµk = wk dL 1, is doubling, with the doubling constant independent of
the integer k. To see this, note that for z ∈ R and r > 0,

µk(B(z, r)) = µk([z − r, z + r]) =

∫ z+r

z−r
wk(x) dx =

k

2

∫ z+r

z−r
ν([x− 1/k, x+ 1/k]) dx.

If r ≤ 10/k, then because ν is a doubling measure we can find a constant C > 0, that
depends only on the doubling constant of ν, such that for all x1, x2 ∈ [z − r, z + r] we
have

ν([x1 − 1/k, x1 + 1/k]) ≤ C ν([x2 − 1/k, x2 + 1/k]).

In this case, from the above, we have

(2)
k

C
r ν([z−1/k, z+1/k]) ≤ µk(B(z, r)) ≤ Ck r ν([z−1/k, z+1/k]) when r ≤ 10/k.

If r ≥ 1/(4k), then we can find intervals I1, . . . , In, with n ≈ kr, such that

• [z − r, z + r] =
⋃n
j=1 Ij,

• Ij = [aj, bj] satisfies a1 = z − r, bn = z + r, and bj = aj+1 for j = 1, . . . , n− 1,

• (8k)−1 ≤ bj − aj ≤ (4k)−1.

Then for all x ∈ Ij we have by the doubling property of ν, a constant C which depends
only on the doubling constant of ν (and in particular, independent of k) such that for
all x ∈ Ij,

ν([x− 1/k, x+ 1/k]) ≤ C ν([aj − 1/k, aj + 1/k]),
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and so when r ≥ 1/(4k),

µk([z − r, z + r]) =
k

2

n∑
j=1

∫
Ij

ν([x− 1/k, x+ 1/k]) dx

≈ k

2

n∑
j=1

1

k
ν([aj − 1/k, aj + 1/k])

≈
n∑
j=1

ν([aj − 1/k, aj + 1/k]) ≈ ν([z − r, z + r]).(3)

Here the constant of comparison in the above is dependent solely on the doubling
constant of ν, and in particular is independent of k, z, r. If r ≤ 5/k, then 2r ≤ 10/k
and so by (2),

µk(B(z, 2r)) ≈ k 2r ν(B(z, 1/k)) ≈ 2µk(B(z, r)),

that is, µk(B(z, 2r)) ≤ C µk(B(z, r)) when r ≤ 5/k. When r ≥ 5/k, then we certainly
have r ≥ 1/(4k) and so by (3) and the doubling property of ν,

µk(B(z, 2r)) ≈ ν(B(z, 2r)) ≤ C ν(B(z, r)) ≤ C µk(B(z, r)).

Thus µk is doubling. Let [a, b] ⊂ R. By the doubling property of ν, for k ∈ N we have

µk([a, b]) =

∫ b

a

ν([x− 1/k, x+ 1/k]) dx

≈
∫ b

a

ν([x− 1/(k + 1), x+ 1/(k + 1)]) dx = µk+1([a, b]),(4)

with the constant of comparison independent of k, a, b.

Now let

w(x) = w1(x)χ(−∞,2](x) +
∞∑
k=2

wk(x− k)χ[k,k+1](x),

and we consider the corresponding weighted measure µ given by dµ = w dL 1. We now
prove that µ is a doubling measure on R.

Let z ∈ R and r > 0. Then µ(B(z, r)) =
∫ z+r
z−r w(x) dx. If [z − r, z + r] ⊂ [k, k + 1]

for some 2 ≤ k ∈ N or if [z − r, z + r] ⊂ (−∞, 1], then by (4),

µ(B(z, 2r)) ≈ µk(B(z − k, 2r)) ≤ C µk(B(z − k, r)) = C µ(B(z, r)).

Here, if [z − r, z + r] ⊂ (−∞, 1] then k = 1. So without loss of generality, we may
assume that there is an integer k ≥ 2 such that k ∈ (z − r, z + r). We consider two
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cases. In the first case, r ≤ 1/4. Then [z − 2r, z + 2r] ⊂ [k − 1, k + 1], and so by (4),
the doubling property of µk, µk−1 established above, and by (4) again,

µ(B(z, 2r)) =µk−1([z − 2r − k + 1, 1]) + µk([0, z + 2r − k])

=µk−1([z − 2r − k, 0]) + µk([0, z + 2r − k]) ≈ µk([z − 2r − k, z + 2r − k])

≤ C µk([z − r − k, z + r − k]) = C µk([z − r − k, 0]) + C µk([0, z + r − k])

= C µk([z − r − k + 1, 1]) + C µk([0, z + r − k])

≤ C (µk−1([z − r − k + 1, 1]) + µk([0, z + r − k]) = C µ(B(z, r)).

Here we also used the fact that by the construction of ν we have

(5) ν([a, b]) = ν([a+ 1, b+ 1])

and hence for all k ∈ N we have wk(x) = wk(x+1) and so µk([a, b]) = µk([a+1, b+1]).
Thus if we have r ≤ 1/4, the doubling property of µ holds for balls of radii r. Next, if
r ≥ 1/4, then for k ≥ 2 we have r ≥ 1/(4(k − 1)), and so by combining (3) with the
above-mentioned invariance of ν, µk under translation of intervals by integers (that is,
periodicity 1), and the doubling property of ν,

µ(B(z, 2r)) ≈ ν(B(z − k, 2r)) ≤ C ν(B(z − k, r)) ≈ µ(B(z, r)).

Hence µ is doubling on R.

By [M, Theorem 1.26] we know that the sequence of doubling measures wkdL 1

converges weakly to ν as k →∞, that is,

lim
k∞

∫
R
φ(x)wk(x)dL 1(x) =

∫
R
φ(x)dν(x),

for all φ ∈ C0(R). The statement of [M, Theorem 1.26] is for continuous mollifiers
ψ, but the proof given there is valid for all compactly supported non-negative Borel
functions ψ satisfying

∫
R ψ dx = 1 as it is in our case.

The metric measure space (R, | · |, µ) with the doubling weighted measure dµ =
wdL 1 does not support a p-Poincaré inequality for any finite p. To see this we argue
as follows. Since ν is singular with respect to L 1 there exists a set Borel E0 ⊂ R such
that ν(E0) = 0 and L 1(E0) > 0. Since L 1 is an inner measure, we can in addition
take E0 to be a compact subset of R. Without loss of generality we may assume that
E0 ⊂ [0, 1]. Let E =

⋃
k∈NE0 + k. Then by the periodicity 1 invariance (5) of ν and

L 1, for all k ∈ N we have ν(E ∩ [k, k + 1]) = 0 and L 1(E ∩ [k, k + 1]) = L 1(E0) > 0.
Let g = χE, and we define f : R→ R by

f(x) =

∫ x

0

g(y) dy.
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It is clear that g is an upper gradient of f and that f(k) = kL 1(E0) > 0 when k is a
positive integer. Furthermore, for k ∈ N we get

f(x) = f(k + 1) + f(x− k − 1) for all x ≥ k + 1.

In the interval [k, k+ 1] we have f(x) = f(x+ 1)− (f(k+ 1)− f(k)). Since wk ≈ wk+1

in [0, 1] with the constant of comparison dependent solely on the doubling constant of
ν, we have whenever k ∈ N,∫

[k,k+2]
|f − f(k + 1)|dµ ≥ C > 0,

with the constant C dependent solely on the doubling constant of ν and L 1(E0). Note
that as µk converges in the weak* topology, we have lim infk µk([0, 2]) ≥ ν([0, 2]) > 0.
It follows that for sufficiently large k ∈ N,∫

[k,k+2]
gp dµ ≤ 2

ν([0, 2])
µ([k, k + 2]) = 2

µk(E0) + µk+1(E0)

ν([0, 2])
.

Since ν(E0) = 0 and E0 is compact, it follows that

0 ≤ lim sup
k→∞

µk(E0) ≤ ν(E0) = 0,

and thus the function-upper gradient pair (f, g) cannot sustain a weak p-Poincaré
inequality.

On the other hand, (R, | · |, µ) is a p-thick quasiconvex space. First of all observe
that the only quasiconvex simple curves in the space are the segments joining two
points in the real line. Fix two points a, b ∈ R and choose g an admissible function for
computing the p-modulus of the simple quasiconvex curve connecting a to b, that is, a
measurable function g such that ∫ b

a

g dL 1 ≥ 1.

By Hölder’s inequality,
∫ b
a
gpdL 1 ≥ C(a, b, p) > 0 for each p ≥ 1. As mentioned before,

for all k ∈ N we have wk(x) = k/2 ν([x−1/k, x+1/k]); hence by the doubling property
of ν there is a constant c = c(a, b) > 0 such that w ≥ c on [a, b]. Therefore,∫

R
gpdµ =

∫
R
gpwdL 1 ≥ c

∫ b

a

gpdL 1 ≥ cC(a, b, p) > 0,

which gives us a strictly positive p-modulus of the segments. It follows from Lemma 3.8
in the previous section that this weight w is ∞-thick quasiconvex and hence is ∞-
admissible.
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Remark 4.3. Observe that the weight given in the previous example is defined in the
real line. We can make an analogous construction in higher dimensions by using the
measure

ω(x1, . . . , xn) :=
n∏
j=1

w(xj).

In this case, the function that violates the Poincaré inequality is obtained as a function
of the single variable x1, that is, F (x1, . . . , xn) = f(x1) with f the function defined as
in the previous example.

5 Open problems.

We conclude the discussion in this paper by listing some problems in this section, for
which we have so far neither a counterexample nor a proof.

Cheeger proved in [Ch] that doubling p-Poincaré spaces admit a differentiable struc-
ture for which Lipschitz functions are differentiable µ-a.e. A remarkable fact is that
although the exponent p is present in the hypothesis of this result, it has no role in the
conclusions. Keith, in [Ke2] (see also [Ke]) weakened the hypotheses so as not depend
on p. He defined the Lip− lip condition as follows: A metric measure space X is said
to satisfy a Lip− lip condition if there exists a constant K ≥ 1 such that

Lip f(x) ≤ K lip f(x)

for all Lipschitz functions f : X −→ R, for µ-a.e. x ∈ X (the exceptional set of measure
zero is of course allowed to depend on f). As a consequence of [Ch, Theorem 6.1]
and the fact that lip f is also a weak upper gradient of any Lipschitz function f , we
know that complete doubling metric measure spaces which admit a weak p-Poincaré
inequality satisfy the Lip− lip condition as well. The thesis [Ke, Section 1.4] conjectures
that this generalization can be understood as a version of Cheeger’s theorem for p =∞.
The following example shows that these two conditions are not equivalent.

Example 5.1. Let X ⊂ R2 be the set obtained by removing certain thin rectangles
from [0, 1]× [0, 1] as follows:

X = [0, 1]× [0, 1] \
⋃

2≤n∈N

(
1

n
− 1

n4
,

1

n

)
×
(

1

2
, 1

)
.

We consider the complete space (X, d, µ) where d is the Euclidean distance and µ is
the 2-dimensional Lebesgue measure L 2 restricted to X. The space is not quasiconvex
and so it cannot support any weak p-Poincaré inequality for 1 ≤ p ≤ ∞. However,
since it is an open set of R2 (except for the boundary, which has zero L 2-dimensional
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measure), it satisfies the Lip− lip condition. Furthermore, it can be checked that since
the rectangles (n−1 − n−4, n−1) × (2−1, 1) removed from [0, 1] × [0, 1] are sufficiently
thin, the measure on X is doubling.

Some of the classical theorems in analysis in the Euclidean setting can be extended
to doubling metric measure spaces. The Lebesgue differentiation Theorem is such an
example: if f is a locally integrable function on a doubling metric space X, then

f(x) = lim
r→0

(∫
B(x,r)

fpdµ
)1/p

,

for µ−a.e. point in X. In other words, almost every point in X is a Lebesgue point for
f , see for example [He, Theorem 1.8]. One of the difficulties when working with the
L∞-norm is that the Lebesgue differentiation Theorem is no longer true. That is, there
are examples for which

f(x) 6= lim
r→0
‖f‖L∞(B(x,r)),

in a set of positive measure. This fact makes proving that a weak∞-Poincaré inequality
implies a Lip− lip condition a difficult task.

Question 1: Is it true that when a complete doubling metric measure space sup-
ports a weak ∞-Poincaré inequality, it must necessarily satisfy a Lip− lip condition?
Even if such a space does not satisfy a Lip− lip condition, does it support a non-trivial
(that is, there is a Lipschitz function whose derivative is non-vanishing on a set of
positive measure) measurable differentiable structure in the sense of [Ch, Ke]? We
point out here that by the results in [Ke], the Lip− lip condition together with the
doubling measure by itself guarantees a measurable differentiable structure, but this
structure may not be natural in the sense that there may be a Lipschitz function whose
derivative vanishes on an open connected set without the function itself being constant
on that open connected set. If the metric space satisfies a weak∞-Poincaré inequality
in addition to doubling and a Lip− lip condition, then the Poincaré inequality forces
the function, whose derivative vanishes on a connected open set, to be itself constant
on that connected open set.

The second problem is that for a finite p, we can approximate functions from above
in Lp(X) by lower semi-continuous functions (it follows from Vitali-Caratheodory the-
orem [F, pp. 209–213 ]). This is highly used when proving that the p-Modulus of the
collection of all curves that connect x0 itself toX\B(x0, R) is positive (see [HeKo]). Un-
fortunately such an approximation by lower semi-continuous functions in the L∞-norm
does not hold true, and so we cannot conclude that the ∞-modulus of the collection
of all curves connecting x0 to X \B(x0, R) is positive if X is only known to support a
weak ∞−Poincaré inequality.

Question 2: Is it true that if X supports a weak ∞-Poincaré inequality, then the
∞-modulus of all curves connecting x0 to X \B(x0, R) is positive?
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Question 3: There exist metric measure spaces that are ∞-thick quasiconvex but
are not p-thick quasiconvex for any finite p ≥ 1 (see for example [DJS]); however, the
examples we know of, are not doubing measure spaces. We have seen in this paper
that there are doubling metric measure spaces that are∞-thick quasiconvex and hence
support an ∞-Poincré inequality but fail to support a weak p-Poincaré inequality for
any finite p; however, these example spaces given in this paper are p-thick quasiconvex
for some finite p. Are there doubling∞-thick quasiconvex spaces which are not p-thick
quasiconvex?
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