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Abstract. We prove that H-regular surfaces in the Heisenberg group H1 are not in
general bi-Lipschitz equivalent to the plane R2 endowed with the “parabolic” distance,
which instead is the model space for C1 surfaces without characteristic points. In Heisen-
berg groups Hn, H-regular surfaces can be seen as intrinsic graphs: we show that such
parametrizations do not belong to Sobolev classes of metric-space valued maps.

1. Introduction

Recent years have witnessed an increasing interest towards Analysis and Geometry in
Metric Spaces, in the perspective of generalizing classical methods and results to such
structures. In particular, the Heisenberg group Hn, endowed with the so called Carnot-
Carathéodory distance dc, has provided a fruitful setting for these investigations. One
of the main questions which have arisen concerns how to develop a general theory of
“intrinsically regular” hypersurfaces: in [9], B. Franchi, R. Serapioni and F. Serra Cassano
introduced the notion of H-regular hypersurface, which was shown to be a good one by
several evidences provided by different authors. It is easy to see that Euclidean C1 surfaces
without characteristic points (see [3]) are in fact H-regular. On the contrary, there is a
huge gap between these two notions, since H-regular surfaces can be fractals from the
Euclidean viewpoint (see [10]). Deep studies of H-regular surfaces have been carried out
in [1, 4, 6]; we address the reader to [5, 11] for a more comprehensive introduction to the
Heisenberg group and H-regular hypersurfaces.

A problem raised in [9], which is directly related to the theory of rectifiability in the
Heisenberg group, is the following one: is it possible to see H-regular hypersurfaces as bi-
Lipschitz deformations of a given “model” metric space? Here, by bi-Lipschitz we mean
Lipschitz continuous maps with Lipschitz continuous inverse map. In [7], D. R. Cole and
S. Pauls have proved that any noncharacteristic C1 surface S in the first Heisenberg group
H1 can be locally parametrized by means of a Lipschitz homeomorphism defined on an
open set of the plane R2

η,τ endowed with the “parabolic” distance

(1.1) %
(
(η, τ), (η′, τ ′)

)
:= |η − η′|+ |τ − τ ′|1/2 .

We are able to show that Cole-Pauls homeomorphism is indeed bi-Lipschitz continuous:
see Theorem 3.1. The question of extending their result to general H-regular surfaces was
left open. We give a negative answer to this problem, thus providing a further evidence of
the gap between C1 and genuine H-regular surfaces. Our first result is in fact the following

Theorem 1.1. There exists a H-regular hypersurface S ⊂ H1 and a point P ∈ S with the
following property: any Lipschitz continuous map ψ : A → U from an open set A ⊂ R2
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to a neighbourhood U of P on S cannot be a homeomorphism. In particular, there cannot
exist a bi-Lipschitz parametrization ψ : (A, %)→ (U , dc).

In the work [9] the authors proved an Implicit Function Theorem which has provided
a key tool in the study of several properties of H-regular hypersurfaces. They show that
such a surface S ⊂ Hn can be locally parametrized as the intrinsic graph Φ : ω → S
of a function φ : ω → R. Here ω is an open subset of a maximal subgroup W of Hn.
It was found in [1] that such Φ is bi-Lipschitz continuous provided we endow ω with a
certain quasi-distance ρφ depending on φ itself. It would be interesting to investigate
the regularity of Φ : (ω, d) → (S, dc) with respect to some “fixed” distance d on ω. A
question risen in [10] was to understand whether the map Φ belongs to some Sobolev
class W 1,p

m ((ω, d), (Hn, dc)) of maps between metric spaces. At least in the H1 case (see
Remark 4.3 therein) the authors conjectured that the parametrization Φ should belong to
W 1,4
m ((ω, d), (Hn, dc)), where the distance on ω is the Euclidean one on W ≡ R2. We are

able to answer in the negative also to this second question:

Theorem 1.2. The intrinsic parametrization Φ : ω → S of a H-regular surface S does
not belong to the Sobolev space W 1,p

m ((ω, d), (Hn, dc)) for any 1 ≤ p ≤ +∞ when d is the
Euclidean distance on ω. The same result holds when d is the distance dc on ω ⊂ Hn

provided Φ is not the inclusion map ω ↪→ Hn (i.e. if φ 6≡ 0).

The paper is organized as follows. Section 2 is devoted to the presentation of the
preliminary material. In Section 3 we give the proof of Theorem 1.1, while Section 4
contains the one of Theorem 1.2.

Acknowledgements. We wish to express our gratitude to Zoltàn M. Balogh and Giovanna
Citti, for having signaled us the problem of the bi-Lipschitz parametrization of H-regular
surfaces and for many invaluable discussions. We have also to thank Francesco Serra
Cassano for several suggestions.

2. Notations and preliminary results

We will identify Hn with R2n+1 by means of the coordinates

Hn 3 P ←→ (x, y, t) ∈ Rn × Rn × R
according to which the group law reads as

(x, y, t) · (x′, y′, t′) =
(
x+ x′, y + y′, t+ t′ + 1

2

∑n
j=1(xjy′j − yjx′j)

)
.

The group identity is 0 and the inverse element (x, y, t)−1 is (−x,−y,−t). The Lie algebra
of left invariant vector fields is generated by

Xj = ∂xj −
yj
2 ∂t, Yj = ∂yj + xj

2 ∂t, for j = 1, . . . , n; T = ∂t,

where as usual we identified vector fields and first order differential operators. The only
nonvanishing commutation relationships are given by [Xj , Yj ] = T for any j = 1, . . . , n.
For computational convenience, instead of the usual Carnot-Carathéodory distance dc we
will consider the equivalent distance d∞ on Hn arising from the homogeneous norm

||P ||∞ := max{|(x, y)|, |t|1/2},
i.e. d∞(P,Q) := ||Q−1·P ||∞. Absolutely continuous curves γ with γ′(s) ∈ span{X1, . . . , Yn}
for a.e. s ∈ R are called horizontal.

A continuous function f : Ω ⊂ Hn → R is of class C1
H(Ω) if its horizontal derivatives

∇Hf := (X1f, . . . ,Xnf, Y1f, . . . , Ynf)
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are represented, in distributional sense, by continuous functions on the open set Ω. The
inclusion C1(Ω) ⊂ C1

H(Ω) is strict; see for example [9], Remark 5.9.

Definition 2.1. We shall say that S ⊂ Hn is a H-regular hypersurface if for every P ∈ S
there exist an open ball B(P, r) and a function f ∈ C1

H(B(P, r)) such that

S ∩B(P, r) = {Q ∈ B(P, r) : f(Q) = 0} and ∇Hf 6= 0 on B(P, r).

Euclidean C1 surfaces are H-regular provided they have no characteristic points, i.e. no
points where the tangent plane coincides with span {X1, . . . , Yn}.

It will not be restrictive to consider only H-regular surfaces given as level sets {f = 0}
of C1

H functions with X1f > 0. With this assumption in mind, in the following we fix W
to be the maximal subgroup of Hn defined by

W := exp
(
span{X2, . . . , Xn, Y1, . . . Yn, T}

)
= {(x, y, t) ∈ R2n+1 : x1 = 0}.

We also write (y, t) to denote a point (0, y, t) ∈W if n = 1; if n ≥ 2 we write (y1, z, t) ∈ R×
R2n−2 × R instead of (0, x2, . . . , xn, y1, . . . , yn, t) ∈W, where z = (x2, . . . , xn, y2, . . . , yn).

Theorem 2.2 (Implicit Function Theorem, [9]). Let S = {f = 0} be a H-regular hyper-
surface given as the level set of a C1

H function f with X1f > 0. Then, locally on S, there
exists a unique continuous map φ : ω ⊂ W → R such that S = Φ(ω), where Φ is defined
by

(2.1) Φ(A) := A · (φ(A), 0, . . . , 0) = exp(φ(A)X1)(A).

Moreover, Φ turns out to be a homeomorphism.

The explicit structure of Φ is given by

Φ(y, t) = (φ(y, t), y, t− 1
2yφ(y, t)), if n = 1

Φ(y1, z, t) = (φ(y1, z, t), x2, . . . , xn, y1, y2, . . . , yn, t− 1
2y1φ(y1, z, t)), if n ≥ 2.

This not being restrictive, we will always suppose that the whole surface S coincides with
the image of Φ. It was proved in [10] that Φ is 1/2-Hölder continuous (in fact, also slightly
better, see Corollary 4.5 in [1]) when the distance on ω ⊂W ≡ R2n is the Euclidean one,
but not, in general, of class C0,α for α > 1

2 .
The problem of the regularity of φ and Φ, that from now on will always be related by

(2.1), was addressed in [1, 4, 6]. In particular, in [1] it was proved that the map Φ : ω → S
is bi-Lipschitz continuous provided we endow ω with a certain quasi-distance ρφ, that
depends on φ itself. Explicitly, for A,B ∈ ω one has

• if n = 1, A = (y, t), B = (y′, t′), then

ρφ(A,B) := |y′ − y|+ |t′ − t− 1
2(φ(A) + φ(B))(y′ − y)|1/2;

• if n ≥ 2, A =
(
y1, x2, . . . , xn, y2, . . . , yn, t

)
, B =

(
y′1, x

′
2, . . . , x

′
n, y
′
2, . . . , y

′
n, t
)
, then

ρφ(A,B) :=
∑n

j=2 |x′j − xj |+
∑n

j=1 |y′j − yj |

+
∣∣∣t′ − t− 1

2(φ(A) + φ(B))(y′1 − y1) + 1
2

∑n
j=2(x′jyj − xjy′j)

∣∣∣1/2 .
If S is H-regular, ρφ turns out to be a quasi-metric, i.e. the triangular inequality is replaced
by

ρφ(A,B) ≤ K
(
ρφ(A,C) + ρφ(C,B)

)
for any A,B,C ∈ ω

for a certain K ≥ 1. The problem of finding a bi-Lipschitz parametrization of S is therefore
equivalent to that of finding a bi-Lipschitz parametrization of (ω, ρφ). Moreover, curves
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on S with finite length (i.e. horizontal curves) correspond, via Φ, to curves with finite
length in (ω, ρφ).

It turns out that the parametrization φ of a H-regular surface S is “regular” (i.e. dif-
ferentiable in a specific sense, see [1, 6]) along the directions

(2.2)
Xj = ∂xj −

yj
2 ∂t for 2 ≤ j ≤ n

W φ := Y1 + φT = ∂y1 + φ∂t

Yj = ∂yj + xj
2 ∂t for 2 ≤ j ≤ n.

Remark 2.3. We will not enter into details regarding the intrinsic gradient ∇φφ :=
(X1φ, . . . ,Xnφ,W

φφ, Y2φ, . . . , Ynφ) of parametrizations φ of H-regular surfaces: we refer
again to [1, 6]. Let us only recall that ∇φφ : ω → R2n−1 is a continuous function which
determines the horizontal normal to the surface, in the sense that

νS(P ) =

(
− 1√

1 + |∇φφ|2
,

∇φφ√
1 + |∇φφ|2

)
(Φ−1(P )) .

In particular, horizontal curves on S have derivatives lying in the linear space generated
by the vectors

(2.3)

(
(Xjφ) ◦ Φ−1

)
X1 +Xj (j = 2, . . . , n)(

(W φφ) ◦ Φ−1
)
X1 + Y1(

(Yjφ) ◦ Φ−1
)
X1 + Yj (j = 2, . . . , n).

In fact, the derivative of such a curve at a point P , whenever it exists, belongs to the blow
up of S at P , which is the “vertical” maximal subgroup “orthogonal” to νS(P ).

In the sequel we will need the following result, which allows to exhibit examples of
H-regular surfaces in H1 which are not of class C1.

Theorem 2.4 ([1], Corollary 5.11). Suppose n = 1 and φ : ω ⊂ W ≡ R2
y,t → R is a

continuous map depending only on the second variable t, namely φ(y, t) = ϕ(t). Assume
that ϕ2 is of class C1; then the image Φ(ω) is a H-regular surface in H1. Moreover,
(W φφ)(y, t) = 1

2(ϕ2)′(t).

Finally, we need to define Sobolev classes of maps between metric spaces; we refer to
[2] and the references therein. Given two metric spaces (M,dM ), (N, dN ), a nonnegative
Radon measure µ on M and 1 ≤ p ≤ +∞, we will say that u : M → N belongs to the
Sobolev space W 1,p

m ((M,dM ), (N, dN )) if there exists g : M → [0,+∞] with g ∈ Lp(M,dµ)
and

(2.4) dN (u(A), u(B)) ≤
(
g(A) + g(B)

)
dM (A,B) for any A,B ∈M.

We will always be concerned with the case M = ω, (N, dN ) = (Hn, d∞) and µ = L2n.

3. Proof of Theorem 1.1

As mentioned in the Introduction, H-regular surfaces of class C1 can be modeled on the
parabolic plane (1.1), as precised in the following result. The first part of the statement
was proved by D. R. Cole and S. D. Pauls [7].

Theorem 3.1. Let S be a C1 surface; then for any non characteristic point P ∈ S there
is a Lipschitz continuous homeomorphism

ψ : (A, %) −→ (U , d∞) ,
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from an open set A ⊂ R2 to a neighbourhood U of P in S, with Lipschitz continuous
inverse map ψ−1.

Proof. It is not restricting to suppose that P = 0 and that a neighbourhood U ⊂ S of 0 is
parametrized by a C1 function φ : ω → U with φ(0) = 0. Let us introduce the map

ψ : A → ω

(η, τ) 7→ exp(ηW φ)(0, τ)

which is defined, possibly restricting ω, on a proper open set A ⊂ R2. It is not difficult
to notice that the Lipschitz homeomorphism Ψ : A → U introduced by D. R. Cole and S.
Pauls is such that Ψ = Φ ◦ ψ. Since Φ is a (ρφ-d∞) bi-Lipschitz homeomorphism, it will
be sufficient to show that the inverse map ψ−1 is (ρφ-%)-Lipschitz continuous.

To this aim, for any A = (y, t) ∈ ω let us introduce the curve τA solution of the ODE

τA(y) = t, τ̇A(s) = φ(s, τA(s)) .

It is immediate to see that ψ−1(A) = ψ−1(y, t) = (y, τA(0)). The Lipschitz estimate we
need to prove is therefore

|y′ − y|+ |τB(0)− τA(0)|1/2 ≤ c ρφ(A,B) ∀ A = (y, t), B = (y′, t′) ∈ ω .
If y′ = y we have

|τB(0)−τA(0)| =
∣∣∣∣t′ − t+

∫ 0

y
[φ(s, τB(s))− φ(s, τA(s))]ds

∣∣∣∣ ≤ |t′−t|+c1 ∫ 0

y
|τB(s)−τA(s)|ds

and by Gronwall’s lemma one conclude that

|τB(0)− τA(0)|1/2 ≤ c2|t′ − t|1/2 = ρφ(A,B) .

If y′ 6= y we define C := exp((y−y′)W φ)(B) = (y, t′′). We refer to [1, Theorem 3.8] for the
proof of the inequality |t′′ − t′|1/2 ≤ c3ρφ(A,B); with this in our hands we can conclude
in a stroke since

|y′−y|+|τB(0)−τA(0)|1/2 = |y′−y|+|τC(0)−τA(0)|1/2 ≤ |y′−y|+c2|t′′−t|1/2 ≤ c ρφ(A,B) .

�

As we said, Theorem 3.1 fails to hold for general H-regular surfaces: the idea for con-
structing a counterexample lies in the possibility of finding H-regular surfaces which are
connected by curves with finite length, and to notice that the parabolic plane does not
share this property. Clearly, C1 noncharacterictic surfaces are not connected by means of
such curves.

Let us consider the intrinsic graph S := Φ(W) of the map

(3.1) φ(y, t) :=
{
− tα

1−α if t ≥ 0
0 if t < 0 .

The exponent α is chosen to satisfy 1
2 < α < 1: in this way S is H-regular thanks to

Theorem 2.4 and (W φφ)(y, t) = α
(1−α)2

t2α−1 if t ≥ 0, (W φφ)(y, t) = 0 otherwise. The
surface is constituted by the union of the two C1 surfaces

S+ := {(x, y, t) ∈ Hn : t+ 1
2xy > 0, x = − 1

1−α
(
t+ 1

2xy
)α}

S− := {(0, y, t) ∈ H1 : t < 0}

glued together along the horizontal line L := {(0, y, 0) : y ∈ R}; S is clearly not C1 regular
at points of L.
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Proof of Theorem 1.1. Let us consider the H-regular surface S parametrized by the map
φ in (3.1) and the point P = (0, 0, 0) ∈ S; let ψ be as in the statement of the Theorem.

Step 1: horizontal curves on S. For any fixed τ the curve γτ := ψ(·, τ) : R → H1 is
Lipschitz continuous; therefore (see Remark 2.3) it is tangent to the vector field W :=
Y1 + (W φφ ◦ Φ−1)X1 on S. In particular, the support of γτ is contained in exponential
lines of W . It is a matter of fact that the projection Φ−1(γ) of an integral curve γ of W
is an integral curve of W φ in W.

Let us investigate the behaviour of the integral curves of W φ, i.e. the solutions of the
Cauchy problem

c′(s) = W φ(c(s)) = ∂y + φ(c(s))∂t .
More precisely, if c(s) = (cy(s), ct(s)) we have

c′y = 1 and c′t = − cαt
1− α

.

Lipschitz regularity of the coefficients of this ODE is violated at points (y, 0), therefore
we cannot expect uniqueness of solutions whenever ct = 0. By standard considerations on
this kind of problem we can divide the solutions of the ODE into two families {c+w}w∈R
and {c−ζ }ζ≤0:

c+w(s) =

{
(s, (w − s)

1
1−α ) if s ≤ w

(s, 0) if s ≥ w
(3.2)

c−ζ (s) = (s, ζ).(3.3)

Notice that for a given curve c+w the parameter w denotes the point (w, 0) where it touches
the horizontal axis y. We will also write c++

w to denote the restriction of c+w to ]−∞, w],
i.e. the part of c+w lying in the upper halfplane. The upper (closed) halfplane is connected
by means of c−0 and of paths of type c+w .

Step 2: a curve passing through 0. It will not be restrictive to suppose ψ(0, 0) = 0 ∈ S
and U = Φ

(
] − δ, δ[2

)
for some positive δ. For the sake of simplicity let us write ψ also

to denote the (%-ρφ)-Lipschitz induced map Φ−1 ◦ ψ : A →] − δ, δ[2, which is such that
ψ(0, 0) = (0, 0); suppose by contradiction that it is also a homeomorphism. Then the set

K := ψ−1{(0, t) : t ∈ [0, δ/2]}
is a compact subset of A and for sufficiently small r > 0

(3.4) {(η + h, τ) : (η, τ) ∈ K,−r ≤ h ≤ r} ⊂ A .
Let us set

r+ := sup{η > 0 : ψ(η, 0) ∈ R× {0}} ≥ 0
r− := inf{η < 0 : ψ(η, 0) ∈ R× {0} ≤ 0 .

One cannot have r+ = r− = 0; indeed, this would imply

{ψ(η, 0) : η > 0} ⊂ Im c++
0 \ {0} and {ψ(η, 0) : η < 0} ⊂ Im c++

0 \ {0} ,
and by continuity (ψ(0, 0) = 0) we obtain

{ψ(η, 0) : η > 0} ∩ {ψ(η, 0) : η < 0} 6= ∅
i.e. ψ is not injective, a contradiction.

Step 3: conclusion. Therefore, one between r+ and r− is nonzero: by substituting ψ
with ψ(−η, τ) if necessary, we can suppose that r+ > 0. One has

{ψ(η, 0) : 0 ≤ η ≤ r+} ⊂ R× {0},
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otherwise the curve ψ(·, 0)|[0,r+] would “leave” the horizontal axis R×{0} and then “return”
on it after some time. This could be possible only by covering forward and then backward
a piece of some c++

w , and contradicting in particular the injectivity of ψ. We can choose
r ∈ ]0, r+[ such that (3.4) holds. Set A := ψ(r, 0) = (y, 0); by continuity one must have

(3.5) [0, y]× {0} ⊂ {ψ(η, 0) : 0 ≤ η < r} if y > 0
[y, 0]× {0} ⊂ {ψ(η, 0) : 0 ≤ η < r} if y < 0.

Since A 6= 0 (i.e. y 6= 0) we easily find an ε > 0 such that

V1 ∩ V2 = ∅,
where

V1 :=
⋃

0<w<ε

Im c++
w and V2 :=

⋃
y−ε<w<y+ε

Im c++
w .

Notice that A ∈ V2, since A ∈ c++
y . Now, it is not difficult to prove that, in order to join

a point A1 ∈ V1 with a point A2 ∈ V2 by following only exponential lines of W φ, one must
cover the whole segment I defined by

I := [ε, y − ε]× {0} if y > 0, I := [y + ε, 0]× {0} if y < 0 .

Setting (ηt, τt) := ψ−1(0, t), one can notice that

lim
t→0

ψ(ηt + r, τt) = ψ(r, 0) = A.

For sufficiently small t > 0 the curve ψ(·, τt) joins A1 := (0, t) ∈ V1 with A2 := ψ(ηt+r, τt)
following only exponentials of W φ; moreover, A2 must belong to V2. This implies that
I ⊂ Im ψ(·, τt); since (see (3.5)) we have also I ⊂ Im ψ(·, 0), this would contradict the
injectivity of ψ provided we are able to choose a sufficiently small t such that τt 6= 0. Were
this not possible, there would exist λ > 0 such that ψ−1(0, t) = (ηt, 0) for any t ∈ [0, λ],
i.e.

{0} × [0, λ] ⊂ Im ψ(·, 0) .
Therefore the image Φ({0} × [0, λ]) would be a horizontal curve, while it can be easily
checked that this is not the case. A contradiction arises and the proof is completed. �

Remark 3.2. In the spirit of Federer’s notion of rectifiability (see [8]) it would be inter-
esting to understand if H-regular surfaces can be seen as Lipschitz images of the parabolic
plane. In this sense, Theorem 1.1 essentially says that one cannot expect injectivity of
the parametrization, since the images on S of horizontal lines (·, t) ⊂ (R2, %) are somehow
“forced to meet”.

The surface S can be locally parametrized by means of Lipschitz images of the parabolic
plane. This clearly follows from Theorem 3.1 for neighbourhoods of points in S+ ∪ S−.
For points P ∈ L, it will be sufficient to observe that P−1S = S (thus reducing to the
case P = 0) and to show that the map

ψ(η, τ) :=
{
c+τ−1(η) if τ > 0
c−τ (η) if τ ≤ 0 ,

is (%-ρφ)-Lipschitz continuous from a neighbourhood of (0, 0) to a neighbourhood of (0, 0)
in W. Explicitly, we have

ψ(η, τ) =

 (η, (τ − 1− η)1/1−α) if τ > 0 and η ≤ τ − 1
(η, 0) if τ > 0 and η ≥ τ − 1
(η, τ) if τ ≤ 0 .

Clearly, ψ is not injective, as ψ(0, τ) = (0, 0) for any τ ∈ [0, 1].
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It is not difficult (see [1]) to show that exponential curves of W φ are (locally) Lipschitz
continuous with respect to ρφ; in particular

ρφ(ψ(η1, τ), ψ(η2, τ)) ≤ c|η1 − η2|

for (η1, τ), (η2, τ) in a neighbourhood of (0, 0). It will therefore be sufficient to prove that

ρφ(ψ(η, τ1), ψ(η, τ2)) ≤ C|τ1 − τ2|1/2

for some C > 0 and any (η, τ1), (η, τ2) in a neighbourhood of (0, 0). We have several cases
to take into account. If τ1, τ2 > 0, η ≤ τ1 − 1 and η ≤ τ2 − 1 then

ρφ(ψ(η, τ1), ψ(η, τ2)) = |(τ1 − 1− η)1/1−α − (τ2 − 1− η)1/1−α|1/2 ≤ C|τ1 − τ2|1/2 ,

where we used that s 7→ s1/1−α is locally Lipschitz continuous since 1/1 − α > 2. If
τ1, τ2 > 0 and τ2 − 1 ≤ η ≤ τ1 − 1 then

ρφ(ψ(η, τ1), ψ(η, τ2)) = (τ1 − 1− η)1/2(1−α) ≤ (τ1 − τ2)1/2(1−α) ≤ C|τ1 − τ2|1/2 .

If τ1 > 0, τ2 ≤ 0 and η ≤ τ1 − 1 we can restrict to η ≥ −1 to get

ρφ(ψ(η, τ1), ψ(η, τ2)) = ((τ1−1−η)1/(1−α)−τ2)1/2 ≤ (τ1/1−α
1 −τ2)1/2 ≤ (Cτ1−(C∨1)τ2)1/2 .

The remaining cases τ1 > 0, τ2 ≤ 0, η > τ1 − 1 and τ1, τ2 ≤ 0 are easy to handle.

The problem of finding bi-Lipschitz (or evan just Lipschitz) parametrizations of H-
regular surfaces in Hn, n ≥ 2, is still open even for smooth hypersurfaces. The model
space should be R×Hn−1 ≡ R2n endowed with the product distance

%
(
(η,A), (η′, A′)

)
:= |η − η′|+ d∞(A,A′), (η,A), (η′, A′) ∈ R×Hn−1 .

It can be easily seen that this distance is equivalent to the restriction of d∞ to R2n ≡W,
as both of them are homogeneous and left invariant on W.

Moreover, it is not clear whether the statement of Theorem 1.1 extends to the higher
dimensional case n ≥ 2; namely, if there exist H-regular hypersurfaces in Hn that are not
Lipschitz homeomorphic to R×Hn. Notice, for instance, that R×Hn−1 is connected by
means of finite length curves; the same happens for any H-regular surface, the subgroup
W being always connected by integral curves of span{X2, . . . , Xn,W

φ, Y2, . . . , Yn} when
n ≥ 2 (see [1, 6]).

4. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2, that will follow from Lemma 4.1
when Φ is not the inclusion ω ⊂ W ↪→ Hn (i.e. when φ 6≡ 0). When φ ≡ 0, Theorem 1.2
still holds when d is the Euclidean distance on ω (see Remark 4.2) but not for d = dc|ω,
since in this case Φ is clearly an isometry.

In the following, d will be used to denote any of the metric dc|ω or the Euclidean distance
on ω; we will just use the fact that, locally in ω,

(4.1) d
(
(y1, z, t), (y′1, z, t)

)
≤ C|y1 − y′1|

for some C > 0. Lemma 4.1 treats only the case n ≥ 2, the generalization to n = 1 being
straightforward.

Lemma 4.1. Let φ : ω ⊂ R2n → R be a continuous, not identically vanishing function;
then there exists no measurable function g : ω → [0,+∞] such that

(a) g is L2n-a.e. finite;
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(b) for any A = (y1, x2, . . . , xn, y2, . . . , yn, t), A′ = (y′1, x
′
2, . . . , x

′
n, y
′
2, . . . , y

′
n, t
′) ∈ ω it

holds∣∣∣t′ − t− 1
2(φ(A′) + φ(A))(y′1 − y1) + 1

2

n∑
j=2

(x′jyj − xjy′j)
∣∣∣1/2 ≤ (g(A′) + g(A)

)
d(A′, A) .

Proof. We reason by contradiction. Since L2n
(
{φ 6= 0} ∩ {|g| < +∞}

)
> 0 there exist z̄, t̄

such that

L1
(
{y1 ∈ R : (y1, z̄, t̄) ∈ ω, φ(y1, z̄, t̄) 6= 0, |g(y1, z̄, t̄)| <∞}

)
> 0 .

In particular there is M > 0 with L1(EM ) > 0, where EM is defined by

EM := {y ∈ R : (y1, z̄, t̄) ∈ ω, φ(y1, z̄, t̄) 6= 0, |g(y1, z̄, t̄)| ≤M}.
Let us choose a Lebesgue point ȳ ∈ EM of EM ; in particular, φ(ȳ1, z̄, t̄) 6= 0, |g(ȳ1, z̄, t̄)| ≤
M and there exists a sequence {yj1}j∈N ⊂ EM with yj1 → ȳ1. By exploiting condition (b)
and using (4.1) for points A = (ȳ1, z̄, t̄), Aj = (yj1, z̄, t̄) we achieve

|12(φ(A) + φ(Aj))(yj1 − ȳ1)|1/2 ≤ (g(A) + g(Aj)) d(A,Aj)
≤ 2CM |yj − ȳ|

whence
|φ(A) + φ(Aj)| ≤ 8C2M2|yj1 − ȳ1| .

We then let j →∞ and use the continuity of φ to obtain φ(A) = 0, a contradiction. �

Remark 4.2. When φ ≡ 0 and d is the Euclidean distance on ω, the statement of Lemma
4.1 (and consequently Theorem 1.2) still holds. Reasoning as before, we can in fact choose
ȳ1, z̄ and M > 0 such that

(4.2) L1
(
{t ∈ R : (ȳ1, z̄, t) ∈ ω, |g(ȳ1, z̄, t)| ≤M}

)
> 0.

Consider then a Lebesgue point t̄ for the set in (4.2) and a sequence tj → t̄ in the same
set. Exploiting condition (b) and using (4.1) we now obtain

|tj − t̄|1/2 ≤ 2CM |tj − t̄|
for any j, a contradiction.
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