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Abstract. A variational model proposed in the physics literature to describe the onset of pat-
tern formation in two-component bilayer membranes and amphiphilic monolayers leads to the

analysis of a Ginzburg-Landau type energy, precisely,

u 7→
Z

Ω

»
W (u)− q |∇u|2 +

˛̨
∇2u

˛̨2 –
dx.

When the stiffness coefficient −q is negative, one expects curvature instabilities of the membrane

and, in turn, these instabilities generate a pattern of domains that differ both in composition

and in local curvature. Scaling arguments motivate the study of the family of singular perturbed
energies

u 7→ Fε(u, Ω) :=

Z
Ω

»
1

ε
W (u)− qε|∇u|2 + ε3|∇2u|2

–
dx.

Here, the asymptotic behavior of {Fε} is studied using Γ-convergence techniques. In particular,

compactness results and an integral representation of the limit energy are obtained.

1. Introduction

In [10], [21], (see also [11, 18]) Andelman, Kawasaki, Kawakatsu, and Taniguchi introduced a
nonlocal variational model for the shape deformation of unilamellar membranes undergoing an
inplane phase separation. A simplified local version of this model (see [18]) leads to the study of
a Ginzburg-Landau energy ∫

Ω

[
W (u)− q |∇u|2 +

∣∣∇2u
∣∣2 ] dx, (1.1)

where the order parameter u is a real-valued function on a domain Ω ⊂ R2, W is a nonnegative
double-well potential and q > 0. Here, and in what follows, ∇u and ∇2u denote the gradient
vector and the Hessian matrix of u, respectively. Since the stiffness coefficient −q is negative, one
expects instability of the membrane and pattern formation.

The model (1.1) in the one-dimensional case was independently proposed by Coleman, Marcus,
and Mizel in [4] in connection with the study of periodic or quasiperiodic layered structures. There
is a vast literature of the qualitative properties of local minimizers of (1.1) in this setting (see [2],
[4], [9], [12], [14] [17], [19]).

In this paper we use Γ-convergence techniques to characterize the singular perturbation limit of
the family of rescaled energies

Fε(u,Ω) :=
∫

Ω

[
1
ε
W (u)− qε|∇u|2 + ε3|∇2u|2

]
dx, (1.2)

in dimension N ≥ 1. The limiting functional provides the effective energy on the phase transition
surface. Our analysis will be carried out without any assumption on the sign of q. When q = 0, the
problem was already studied in [7] under weaker hypotheses on W . The case q < 0 is easier, and
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may be obtained using simpler techniques (see [9], where |∇2u|2 is replaced by |∆u|2). However,
it is also covered by our arguments, which are developed for the more difficult case q > 0.

Throughout the paper we assume that Ω is a bounded open set of RN with C1 boundary and
W : R→ [0,+∞) is a continuous function satisfying the following conditions for a suitable constant
c0 ≥ 1:

(H1) W (s) = 0 if and only if s ∈ {−1, 1};
(H2) W (s) ≥ (|s| − 1)2 for all s ∈ R;
(H3) W (s) ≤ c0W (t) + c0 for every t ∈ R and every s ∈ R with |s| ≤ |t|.

A prototype for W is

W (s) := (s2 − 1)2.

We begin by stating a compactness result for sequences with finite energy.

Theorem 1.1. Let Ω be a bounded open set of RN with C1 boundary and assume (H1) and (H2).
Then there exists a constant q∗ > 0, independent of Ω, such that, if −∞ < q < q∗/N , if {εn}
converges to zero, and {un} ⊂ H2(Ω) satisfies

lim inf
n→+∞

Fεn(un,Ω) < +∞,

then there exist a subsequence {unk} ⊂ {un} and u ∈ BV (Ω; {−1, 1}) such that unk → u in L2(Ω).

Here and in what follows BV (Ω; {−1, 1}) denotes the set of all functions u of bounded variation
in Ω such that u(x) ∈ {−1, 1} for LN -a.e. x ∈ Ω.

A major difficulty in the proof of the previous theorem is the fact that the energy may have a
negative term. To overcome this problem and to obtain apriori bounds from below, we prove the
following interpolation result that determines q∗ in Theorem 1.1.

Theorem 1.2. Let Ω be a bounded open set of RN with C1 boundary and assume (H1) and (H2).
Then there exists a constant q∗ > 0, independent of Ω, such that for every −∞ < q < q∗/N there
exists ε0 = ε0(Ω, q) > 0 such that

qε2

∫
Ω

|∇u|2 dx ≤
∫

Ω

W (u) dx+ ε4

∫
Ω

|∇2u|2 dx (1.3)

for every ε ∈ (0, ε0) and every u ∈ H2(Ω).

Note that if q ≤ 0, then ε0 =∞. To state the Γ-convergence result, given −∞ < q < q∗/N , we
define

mN := inf
{∫

Q

[
1
ε
W (u)− qε|∇u|2 + ε3|∇2u|2

]
dx : 0 < ε ≤ 1, u ∈ A

}
, (1.4)

where Q := (−1/2, 1/2)N and

A :=

{
u ∈ H2

loc(RN ) : u(x) = −1 near x · eN = −1
2
, u(x) = 1 near x · eN =

1
2
,

u(x) = u(x+ ei) for all x ∈ RN , i = 1, . . . , N − 1

}
.

(1.5)

Here and in what follows {e1, . . . , eN} is the canonical basis of RN , and by “near” we mean “in a
neighborhood of”.

We will show that mN > 0 for −∞ < q < q∗/N (see Proposition 3.9 below).
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Theorem 1.3. Let Ω be a bounded open set of RN with C1 boundary, let −∞ < q < q∗/N , and
assume (H1)– (H3). Then the sequence of functionals Fε : L2(Ω)→ R ∪ {+∞}, defined by

Fε(u) :=

{
Fε(u,Ω) if u ∈ H2(Ω),

+∞ if u ∈ L2(Ω) \H2(Ω),
(1.6)

Γ-converges as ε→ 0+ to the functional F : L2(Ω)→ R ∪ {+∞} defined by

F(u) :=

{
mN PerΩ({u = 1}) if u ∈ BV (Ω; {−1, 1}),

+∞ if u ∈ L2(Ω) \BV (Ω; {−1, 1}).
(1.7)

In view of Proposition 8.1 in [5], for every sequence {εn}, εn → 0+, and every u ∈ L2(Ω), we
have that

Γ− lim inf
n→∞

Fεn (u) = inf
{

lim inf
n→+∞

Fεn(un) : {un} ⊂ L2(Ω), un → u in L2(Ω)
}
,

Γ− lim sup
n→∞

Fεn (u) = inf
{

lim sup
n→∞

Fεn(un) : {un} ⊂ L2(Ω), un → u in L2(Ω)
}
.

Thus, also by Theorem 1.1, to prove Theorem 1.3, it suffices to show:

(i) Lower bound: For every u ∈ L2(Ω), for every sequence {εn}, εn → 0+, and every sequence
{un} ⊂ H2(Ω) such that un → u in L2(Ω),

F(u) ≤ lim inf
n→+∞

Fεn(un). (1.8)

(ii) Upper bound: For every η > 0, every u ∈ BV (Ω; {−1, 1}), and every sequence {εn},
εn → 0+, there exists {un} ⊂ H2(Ω) such that un → u in L2(Ω) and

lim sup
n→∞

Fεn(un) ≤ (1 + η)F(u) + η. (1.9)

Remark 1.4. By standard properties of Γ-convergence (see e.g. Corollary 7.20 in [5]), Theorems
1.1 and 1.3 imply that minimizers of Fεn , up to a subsequence, converge in L2 (Ω) to a minimizer
of F .

Remark 1.5. As usual (see [15], [20]), one can also impose the constraint
∫

Ω
u (x) dx = m, for some

m ∈
[
−LN (Ω) ,LN (Ω)

]
. We omit the details.

This paper can be considered as a first step towards the analysis of the original nonlocal model
mentioned at the beginning of the introduction, which will be studied in forthcoming papers.

This paper is organized as follows. In Section 2 we introduce some of the notation used in
the paper and we give some preliminary results. In Section 3 we prove Theorem 1.2, while in
Section 4 we prove Theorems 1.1 and 1.3. Section 5 is devoted to the study of the properties of
the one-dimensional constant m1 defined in (1.4) with N = 1.

Near the completion of this work, we became aware that a detailed analysis of the one-dimensional
case had been obtained independently and at the same time by Cicalese, Spadaro and Zeppieri
in [3].

2. Preliminaries

Throughout the paper, Ω is a bounded open set of RN with C1 boundary. The symbols LN
and HN−1 denote the N -dimensional Lebesgue measure and the (N − 1)-dimensional Hausdorff
measure in RN , respectively. We shall label the first N − 1 coordinates of a point x ∈ RN by x′,
and the N -th one by xN , so that x = (x′, xN ). Given ν ∈ SN−1 := {x ∈ RN : |x| = 1}, the symbol
Qν denotes an open unit cube centered at the origin with two of its faces normal to ν, i.e.,

Qν :=
{
x ∈ RN : |x · ν| < 1

2
, |x · νi| <

1
2
, i = 1, . . . , N − 1

}
, (2.1)
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where {ν1, . . . , νN−1, ν} is an orthonormal basis of RN . If x0 ∈ RN and r > 0, then Qν(x0, r) :=
x0+rQν . If {ν1, . . . , νN−1, ν} is the canonical basis, we drop the dependence on eN , i.e., Q(x0, r) :=
x0 + r(−1/2, 1/2)N = x0 + rQ, where Q is the open unit cube centered at the origin with faces
normal to the coordinates axes. A rectangle in RN is a set of the form R = I1 × · · · × IN , where
Ii is an interval of R, i = 1, . . . , N .

Given Ψ ∈ C∞c
(
RN
)

with supp Ψ ⊂ B (0, 1) and
∫

RN Ψ (x) dx = 1, for every ε > 0 we define
the mollifier

Ψε (x) :=
1
εN

Ψ
(x
ε

)
, x ∈ RN . (2.2)

Note that supp Ψε ⊂ B (0, ε). As usual, given u ∈ L1
loc

(
RN
)
, we define

uε (x) := (u ∗Ψε) (x) =
∫

RN
Ψε (x− y)u (y) dy (2.3)

for x ∈ RN . Then uε ∈ C∞
(
RN
)

and, if u is bounded, then uε → u in Lploc

(
RN
)

for every
1 ≤ p < +∞, with

‖uε‖∞ ≤ ‖u‖∞ , ‖∇uε‖∞ ≤ C ‖u‖∞ /ε,
∥∥∇2uε

∥∥
∞ ≤ C ‖u‖∞ /ε2. (2.4)

The space of all bounded Radon measures on Ω is denoted by Mb(Ω). It is identified with the
dual of C0 (Ω), the space of continuous functions vanishing on ∂Ω.

In the sequel, the letter C will denote a generic constant that may change from line to line.

3. Interpolation Inequalities Involving W

3.1. The One-Dimensional Case. Let I be an open interval of R, u : I → R, and let ε > 0. We
set

Fε(u, I) :=
∫
I

[
1
ε
W (u)− qε(u′)2 + ε3(u′′)2

]
dx, (3.1)

and

F (u, I) :=
∫
I

[
W (u)− q(u′)2 + (u′′)2

]
dx. (3.2)

By the change of variable vε(x) := u(εx), we have

Fε(u, I) = F (vε, ε−1I). (3.3)

The following two results are due to Gagliardo. For the proof we refer to [8, Lemma 1.I,
Lemma 1.II].

Lemma 3.1. There exists a constant c1 > 0 such that

sup
x∈I

∣∣u′(x)
∣∣ ≤ c1 [∫

I

u2 dx

]1/8 [∫
I

(u′′)2 dx

]3/8

(3.4)

for every bounded open interval I of R and every u ∈ H2(I) with u′ vanishing at some point of I.

Lemma 3.2. There exist two constants c2 > 0 and c3 > 0 such that

sup
x∈I

∣∣u′(x)
∣∣ ≤ c2 [∫

I

u2 dx

]1/8 [∫
I

(u′′)2 dx

]3/8

+ c3|I|−3/2

[∫
I

u2 dx

]1/2

(3.5)

for every bounded open interval I of R and every u ∈ H2(I).

The following lemma is a modified version of Nirenberg’s inequality (2.7) in [16], which was
given without proof. For the reader’s convenience, we give here a complete proof.



SINGULAR PERTURBATION MODELS IN PHASE TRANSITIONS FOR SECOND ORDER MATERIALS 5

Lemma 3.3. There exist two constants c4, c5 > 0 such that∫
I

(u′)2 dx ≤ c4λ−2

∫
I

u2 dx+ c5λ
2

∫
I

(u′′)2 dx (3.6)

for every open interval I of R and for every 0 < λ ≤ |I| and u ∈ H2(I).

Proof. Step 1: Assume first that u ∈ C∞ (I) and that I = (0, λ) for some λ > 0. Fix s ∈
(
0, 1

3λ
)

and t ∈
(

2
3λ, λ

)
. By the Mean Value Theorem, there exists ξ ∈ (s, t) such that

u′ (ξ) =
u (t)− u (s)

t− s
.

Hence, by the Fundamental Theorem of Calculus, for all x ∈ (0, λ),

u′ (x) = u′ (ξ) +
∫ x

ξ

u′′ (y) dy =
u (t)− u (s)

t− s
+
∫ x

ξ

u′′ (y) dy.

Since t− s ≥ λ
3 , it follows that

|u′ (x)| ≤ 3
λ

(|u (t)|+ |u (s)|) +
∫ λ

0

|u′′ (y)| dy,

and, by Hölder’s inequality, we obtain

|u′ (x)| ≤ 3
λ

(|u (t)|+ |u (s)|) + λ1/2

(∫ λ

0

(u′′ (y))2 dy

)1/2

.

Using the convexity of the function τ 7→ τ2, we have that

(u′ (x))2 ≤ 33

λ2

(
(u (t))2 + (u (s))2

)
+ 3λ

∫ λ

0

(u′′ (y))2 dy.

By averaging first in s over (0, λ/3) and then in t over (2λ/3, λ), we get

(u′ (x))2 ≤ 34

λ3

(∫ λ

2
3λ

(u (t))2 dt+
∫ 1

3λ

0

(u (s))2 ds

)
+ 3λ

∫ λ

0

(u′′ (y))2 dy

≤ 34

λ3

∫ λ

0

(u (y))2 dy + 3λ
∫ λ

0

(u′′ (y))2 dy.

Finally, we integrate in x over (0, λ), to obtain∫
I

(u′ (x))2 dx ≤ 34

λ2

∫
I

(u (y))2 dy + 3λ2

∫
I

(u′′ (y))2 dy. (3.7)

Step 2: If I has infinite length and u ∈ C∞ (I), let λ > 0 and subdivide I in subintervals of
length λ. Then (3.7) holds in each subinterval, and adding these inequalities yields∫

I

(u′ (x))2 dx ≤ 34

λ2

∫
I

(u (y))2 dy + 3λ2

∫
I

(u′′ (y))2 dy.

On the other hand, if I has finite length, then for 0 < λ ≤ |I| let m ∈ N be the integer part of |I|λ
and divide I into m subintervals of length λ1 := 1

m |I|. Then by Step 1, (3.7) holds in each of the
m subintervals of I with λ1 in place of λ. To conclude, it suffices to add these inequalities and to
observe that λ ≤ λ1 ≤ 2λ.

Step 3: To remove the additional hypothesis that u ∈ C∞ (I), one can use standard mollifiers. We
omit the details. �

We now present the main result of this section: An interpolation inequality involving the double
well potential W .
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Theorem 3.4. Assume (H1) and (H2). There exists a constant q∗ > 0 such that for every
−∞ < q < q∗ the following inequalities hold:

(i) For every open interval I, with |I| ≥ 1,

q

∫
I

(u′)2 dx ≤
∫
I

W (u) dx+
∫
I

(u′′)2 dx (3.8)

for all u ∈ H2
loc(I).

(ii) For every open interval I,

q

∫
I

(u′)2 dx ≤
∫
I

W (u) dx+
∫
I

(u′′)2 dx (3.9)

for every u ∈ H2
loc(I) such that u′ vanishes at some point of I.

Proof. It is enough to prove (3.4) and (3.9) for bounded intervals I. Indeed, in the case of an
unbounded interval I, it suffices to subdivide I into subintervals of length one, apply (i) on each
subinterval, and then add all these inequalities. Thus, without loss of generality, we assume that
I = (0, `), and by density that u ∈ C2(I) and has a finite number M of zeros.

(i) In this case ` ≥ 1. We divide the proof into three cases depending on M .

Case 1. Assume that M = 0 and, without loss of generality, that u > 0 on I. Applying (3.6) to
u− 1, with λ = 1 ≤ `, we obtain∫

I

(u′)2 dx ≤ c4
∫
I

(u− 1)2 dx+ c5

∫
I

(u′′)2 dx

≤ c4
∫
I

W (u) dx+ c5

∫
I

(u′′)2 dx,

(3.10)

where the last inequality follows by (H2), in view of the fact that u > 0.

Case 2. Assume now that M = 1 and let `1 be the unique zero of u. If `1 ≥ 1/2 and `−`1 ≥ 1/2,
we can repeat the proof of Case 1 on each subinterval (0, `1) and (`1, `), taking λ = 1/2 in (3.6).
Then ∫

I

(u′)2 dx ≤ 4c4
∫
I

W (u) dx+
1
4
c5

∫
I

(u′′)2 dx. (3.11)

Consider now the case `1 < 1/2 and ` − `1 ≥ 1/2 (the case `1 ≥ 1/2 and ` − `1 < 1/2 is
analogous). Without loss of generality, we may assume that u < 0 in (0, `1) and u > 0 in (`1, `).
Since `− `1 ≥ 1/2, as in (3.11), we obtain∫ `

`1

(u′)2 dx ≤ 4c4
∫ `

`1

W (u) dx+
1
4
c5

∫ `

`1

(u′′)2 dx. (3.12)

On the other hand, by the Fundamental Theorem of Calculus and Young’s inequality, we have∫ `1

0

(u′)2 dx ≤ (u′(`1))2 +
∫ `1

0

(u′′)2 dx. (3.13)

We apply (3.5) to u− 1 in (`1, `) to obtain

sup
[`1,L]

|u′| ≤ c2

[∫ `

`1

(u− 1)2 dx

]1/8 [∫ `

`1

(u′′)2 dx

]3/8

+ c3(`− `1)−3/2

[∫ `

`1

(u− 1)2 dx

]1/2

≤ c2

[∫ `

`1

(u− 1)2 dx

]1/8 [∫ `

`1

(u′′)2 dx

]3/8

+ 23/2c3

[∫ `

`1

(u− 1)2 dx

]1/2

,

(3.14)
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where we have used the fact that ` − `1 ≥ 1/2. Thus, by Young’s inequality, (H2), and the fact
that u > 0 in (`1, `),

(
u′(`1)

)2 ≤ 2c22

[∫ `

`1

(u− 1)2 dx

]1/4 [∫ `

`1

(u′′)2 dx

]3/4

+ 24c23

∫ `

`1

(u− 1)2 dx

≤ 1
2
c22

∫ `

`1

W (u) dx+
3
2
c22

∫ `

`1

(u′′)2 dx+ 24c23

∫ `

`1

W (u) dx.

(3.15)

Inserting (3.15) into (3.13) and adding the resulting inequality to (3.12) yields the conclusion.

Case 3. Assume now that M ≥ 2 and let `1 < · · · < `M be the zeros of u in I. We fix
i = 1, . . . ,M − 1, and we obtain the estimate in the interval Ji := (`i, `i+1). Without loss of
generality, we assume that u > 0 on Ji. Since u(`i) = u(`i+1), the derivative u′ vanishes at some
point of Ji, and so we can apply (3.4) to u− 1 to obtain

sup
Ji

(u′)2 ≤ c21
[∫

Ji

(u− 1)2 dx

]1/4 [∫
Ji

(u′′)2 dx

]3/4

≤ 1
4
c21

∫
Ji

W (u) dx+
3
4
c21

∫
Ji

(u′′)2 dx,

(3.16)

where we have used Young’s inequality, (H2), and the fact that u > 0 in Ji.
If |Ji| ≤ 1/2, then by (3.16),∫

Ji

(u′)2 dx ≤ 1
2

sup
Ji

(u′)2 ≤ 1
8
c21

∫
Ji

W (u) dx+
3
8
c21

∫
Ji

(u′′)2 dx. (3.17)

If |Ji| > 1/2, then as in (3.11), we get∫
Ji

(u′)2 dx ≤ 4c4
∫
Ji

W (u) dx+
1
4
c5

∫
Ji

(u′′)2 dx. (3.18)

It remains to prove the estimate in the intervals J0 := (0, `1) and JM := (`M , `). We only treat
the interval J0. If |J0| ≤ 1/2, by (3.13) and (3.16) applied to J1 we obtain∫

J0

(u′)2 dx ≤ (u′(`1))2 +
∫
J0

(u′′)2 dx

≤ 1
4
c21

∫
J1

W (u) dx+
3
4
c21

∫
J1

(u′′)2 dx+
∫
J0

(u′′)2 dx.

(3.19)

If |J0| > 1/2, inequality (3.18) holds.
The inequality in the interval I is obtaining by summing the appropriate inequalities among

(3.17), (3.18) and (3.19). We observe that in Case 3 we never used the hypothesis ` ≥ 1.

(ii) In view of (i), it suffices to consider the case ` < 1. As before, we divide the proof into three
cases depending on the number M of zeros.

Case 1. Assume that M = 0 and, without loss of generality, that u > 0 on I. We can apply
(3.4) to I and, arguing as in (3.16) and (3.17), we get∫

I

(u′)2 dx ≤ sup
I

(u′)2 ≤ 1
4
c21

∫
I

W (u) dx+
3
4
c21

∫
I

(u′′)2 dx.

Case 2. Assume that M = 1 and let `1 be the unique zero of u in I. Without loss of generality,
we can assume that u > 0 on (0, `1) and that u′ vanishes at a point of [`1, `). Since ` < 1, by the
Fundamental Theorem of Calculus,∫ `

0

(u′)2 dx ≤ 2(u′(`1))2 + 2
∫ `

0

(u′′)2 dx.
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If u′(`1) = 0, then the proof is concluded. Thus assume that u′ vanishes at a point of (`1, `). Then,
by (3.4) applied to u− 1 in (`1, `), arguing as in (3.16), we obtain(

u′(`1)
)2 ≤ 1

4
c21

∫ `

`1

W (u) dx+
3
4
c21

∫ `

`1

(u′′)2 dx.

Combining the last two inequalities, we conclude Case 2.
Case 3. If M ≥ 2, we can proceed as in Case 3 of Part (i). �

Corollary 3.5. Assume (H1) and (H2). For every open interval I, every 0 < ε ≤ |I|, and every
−∞ < q < q∗,

qε2

∫
I

(u′)2 dx ≤
∫
I

[
W (u) + ε4(u′′)2

]
dx,

for all u ∈ H2
loc(I).

Proof. By Theorem 3.4 (i) and (3.3), for every ε ≤ |I|, q < q∗, and u ∈ H2
loc(I), we have

0 ≤ F (vε, ε−1I) =
∫
ε−1I

[W (vε)−q(v′ε)2+(v′′ε )2] dy =
1
ε

∫
I

[
W (u)− qε2(u′)2 + ε4(u′′)2

]
dx. (3.20)

This concludes the proof. �

The next corollary extends the previous result to the case of an open set Ω ⊂ R with a finite
number of connected components.

Corollary 3.6. Assume (H1) and (H2). Let Ω be an open subset of R with a finite number of
connected components, and let ε0 = ε0(Ω) be the length of the shortest connected component of Ω.
Then

qε2

∫
Ω

(u′)2 dx ≤
∫

Ω

[
W (u) + ε4(u′′)2

]
dx (3.21)

for every 0 < ε ≤ ε0, every −∞ < q < q∗, and every u ∈ H2
loc(Ω). In particular, Theorem 1.2

holds for N = 1.

Proof. By Corollary 3.5 the inequality holds for each connected component. To conclude it suffices
to add all these inequalities.

Since a bounded open set Ω of R with C1 boundary has finitely many connected components,
Theorem 1.2 holds for N = 1. �

If Ω has an infinite number of connected components, then an inequality like (3.21) does not
hold. More precisely, we have the following result.

Proposition 3.7. Assume (H1). Assume also that Ω is a bounded open subset of R with infinitely
many connected components. Then for every q > 0 and every ε > 0 there exists u ∈ H2(Ω) such
that

qε2

∫
Ω

(u′)2 dx >

∫
Ω

[
W (u) + ε4(u′′)2

]
dx. (3.22)

Proof. Fix q > 0 and ε > 0. Since W is continuous and W (1) = 0, there exists δ > 0 such that

W (s) < qε2 for 1 ≤ s ≤ 1 + δ. (3.23)

Let {In} be the family of connected components of Ω and, for every n, let an < bn be the endpoints
of In. Since |In| → 0 as n → ∞, there exists m such that |In| ≤ δ for every n ≥ m. We define
u : Ω → R by u(x) := 1 if x ∈ In for some n < m, and by u(x) := 1 + x − an if x ∈ In for some
n ≥ m. Then u ∈ H2(Ω). By construction, for every n ≥ m we have 1 < u < 1 + |In| ≤ 1 + δ on



SINGULAR PERTURBATION MODELS IN PHASE TRANSITIONS FOR SECOND ORDER MATERIALS 9

In, hence by (3.23) W (u) < qε2 on In. On the other hand, W (u) = W (1) = 0 on the intervals In
with n < m. Therefore

qε2

∫
Ω

(u′)2 dx = qε2
+∞∑
n=m

|In| >
+∞∑
n=m

∫
In

W (u) dx =
∫

Ω

[
W (u) + ε4(u′′)2

]
dx,

which concludes the proof of (3.23). �

Remark 3.8. Note that the function u ∈ H2(Ω) constructed in the previous proof belongs to C∞(Ω)
but, in general, not to C∞(Ω). However, if bn < an+1 for every n (or if an > bn+1 for every n),
then u belongs to C∞(Ω). Indeed, since u′′ = 0 in Ω, it is enough to show that, if {xj} ⊂ Ω is a
sequence converging to a point of the boundary, then the limits of {u(xj)} and {u′(xj)} exist and
are finite. If {xj} is contained in a finite number of intervals In, then there is nothing to prove. In
the opposite case, we have u(xj)→ 1 and u′(xj)→ 1.

3.2. The N-Dimensional Case. In order to prove Theorem 1.2 for N ≥ 2, we will use slicing
techniques. Given ξ ∈ SN−1, let Πξ be the hyperplane through the origin orthogonal to ξ, i.e.,

Πξ := {x ∈ RN : x · ξ = 0}.

For every open set Ω of RN and every y ∈ Πξ we define the slice Ωξy by

Ωξy := {t ∈ R : y + tξ ∈ Ω}.

The orthogonal projection Ωξ of Ω onto Πξ is given by

Ωξ := {y ∈ Πξ : Ωξy 6= ∅}.

For every function u : Ω→ Rm and for every y ∈ Ωξ, we define uξy : Ωξy → Rm by

uξy(t) := u(y + tξ).

It is well-known (see, e.g., [13]) that, if u ∈ H2(Ω), then for every ξ ∈ SN−1 and for HN−1-a.e.
y ∈ Πξ we have uξy ∈ H2(Ωξy) and(

uξy
)′(t) = (∇u)ξy(t) · ξ for L1-a.e. t ∈ Ωξy,(

uξy
)′′(t) = (∇2u)ξy(t)ξ · ξ for L1-a.e. t ∈ Ωξy.

(3.24)

We turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. Let q < q∗/N and fix q̃ ∈ (q, q∗/N). Given ` > 0, ξ ∈ SN−1, and y ∈ Ωξ,
we define Ωξ,`y as the union of all the connected components of Ωξy with length greater than `, i.e.,
Ωξ,`y is given by all points x ∈ Ω belonging to a segment, with length greater than `, parallel to ξ
and contained in Ω. Set

Ω(ξ, `) := {y + tξ : y ∈ Ωξ, t ∈ Ωξ,`y }.
Note that the slices satisfy

Ω(ξ, `)ξy = Ωξ,`y .

Hence, Ω(ξ, `)ξy is the union of a finite family of open intervals with length greater than `. Therefore,
for HN−1-a.e. y ∈ Ωξ, we are in a position to apply Corollary 3.5 to obtain that for every ε ≤ `,

Nq̃ε2

∫
Ω(ξ,`)ξy

((
uξy
)′(t))2

dt ≤
∫

Ω(ξ,`)ξy

W
(
uξy(t)

)
dt+ ε4

∫
Ω(ξ,`)ξy

((
uξy
)′′(t))2

dt. (3.25)

Integrating both sides of the previous inequality with respect to y over Ωξ, using (3.24) and Fubini’s
Theorem, we get

Nq̃ε2

∫
Ω(ξ,`)

(
∇u(x) · ξ

)2
dx ≤

∫
Ω

W (u(x)) dx+ ε4

∫
Ω

∣∣∇2u(x)
∣∣2 dx,
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which implies

Nq̃ε2

∫
Ω

(
∇u(x) · ξ

)2
dx−Nq̃ε2

∫
A(ξ,`)

∣∣∇u(x)
∣∣2 dx ≤ ∫

Ω

W (u(x)) dx+ ε4

∫
Ω

∣∣∇2u(x)
∣∣2 dx,

where A(ξ, `) := Ω \ Ω(ξ, `). Note that for every α ∈ RN ,∫
SN−1

(α · ξ)2 dHN−1(ξ) =
1
N
|α|2σN−1,

where σN−1 := HN−1(SN−1). Averaging both sides of the previous inequality in the variable ξ
over SN−1 and using Fubini’s Theorem, we get, for every ε ≤ `,

q̃ε2

∫
Ω

∣∣∇u(x)
∣∣2 dx− Nq̃

σN−1
ε2

∫
SN−1

∫
A(ξ,`)

∣∣∇u(x)
∣∣2 dx dHN−1(ξ)

≤
∫

Ω

W (u(x)) dx+ ε4

∫
Ω

∣∣∇2u(x)
∣∣2 dx. (3.26)

By Fubini’s Theorem∫
SN−1

∫
A(ξ,`)

∣∣∇u(x)
∣∣2 dx dHN−1(ξ) =

∫
Ω

∣∣∇u(x)
∣∣2HN−1

(
D(x, `)

)
dx, (3.27)

where D(x, `) := {ξ ∈ SN−1 : x ∈ A(ξ, `)}. To conclude the proof, we have to choose ` > 0 such
that HN−1(D(x, `)) is small, uniformly in x.

For every x ∈ ∂Ω and r > 0, let Cr(x) be the right circular cylinder centered at x with height
2r, radius r, and axis parallel to the normal ν(x) of ∂Ω at x. Fix η > 0 such that

q < q̃
(

1− Nη

σN−1

)
. (3.28)

Since the boundary of Ω is of class C1, there exists r > 0 such that for every x ∈ ∂Ω the intersection
Cr(x)∩ ∂Ω is the graph of a C1 function defined on the basis of the cylinder. By taking r smaller,
if necessary, we can also assume that for every x ∈ ∂Ω,

HN−1({ξ ∈ SN−1 : ξ ∈ T∂Ω(y), y ∈ Cr(x) ∩ ∂Ω}) < η, (3.29)

where T∂Ω(y) is the tangent space to ∂Ω at x. We observe that r depends on Ω and η, which, in
turn, depends on q.

We now fix ` < r/2. In particular, ` depends on Ω and q. We want to show thatHN−1
(
D(x, `)

)
<

η for every x ∈ Ω. Fix x ∈ Ω. If D(x, `) = ∅, then there is nothing to prove. Otherwise, let
ξ0 ∈ D(x, `). By the definition A(ξ, `), and by the characterization of its complement Ω(ξ, `) in
Ω, the point x belongs to a segment parallel to ξ0 with length less than or equal to `, and with
endpoints on ∂Ω. Let x0 be one of these endpoints. Note that |x−x0| < `. If ξ belongs to D(x, `),
the point x also belongs to a segment parallel to ξ with length less than or equal to `, and with
endpoints x1 and x2 on ∂Ω. Since ` < r/2, this segment is contained in Cr(x0). Consider the
2-dimensional plane containing x and parallel to the vectors ξ and ν(x0). Then this plane intersects
Cr(x0)∩ ∂Ω on a C1 curve containing x1 and x2. Then, by the Mean Value Theorem, there exists
a point y on the curve such that ξ is tangent to the curve at y and, therefore, ξ ∈ T∂Ω(y). We
conclude that

D(x, `) ⊂
{
ξ ∈ SN−1 : ξ ∈ T∂Ω(y), y ∈ Cr(x) ∩ ∂Ω

}
,

hence HN−1
(
D(x, `)

)
< η. This, together with (3.26), (3.27), and (3.28), gives (1.3) for every

ε ≤ `. �

In the proof of Theorem 1.3, we will also need to consider rectangles.

Proposition 3.9. Assume (H1) and (H2). Let Ω be an open set that can be written as the
union of finitely many pairwise disjoint open rectangles and of a set of Lebesgue measure zero,
and let ε0 = ε0(Ω) be the smallest side-length of these rectangles. Then (1.3) holds for every
−∞ < q < q∗/N , every 0 < ε ≤ ε0, and every u ∈ H2(Ω).
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Proof. Assume first that Ω is given by a single rectangle R = (a1, b1) × · · · × (aN , bN ). Let
u ∈ H2(R) and let q < q∗/N . Fix i = 1, . . . , N . Since bi − ai ≥ ε0, by Corollary 3.5,

Nqε2

∫ bi

ai

(
∂u

∂xi

)2

dxi ≤
∫ bi

ai

[
W (u) + ε4

(
∂2u

∂x2
i

)2
]
dxi ≤

∫ bi

ai

[
W (u) + ε4

∣∣∇2u
∣∣2] dxi.

Set Ri := (a1, b1) × · · · × (ai−1, bi−1) × (ai+1, bi+1) × · · · × (aN , bN ), and integrate the previous
inequality over Ri to obtain

Nqε2

∫
R

(
∂u

∂xi

)2

dx ≤
∫
R

[
W (u) + ε4

∣∣∇2u
∣∣2] dx.

Summing over i = 1, . . . , N and then dividing by N , we get

qε2

∫
R

∣∣∇u∣∣2 dx ≤ ∫
R

[
W (u) + ε4

∣∣∇2u
∣∣2] dx. (3.30)

Next, if Ω is the union of finitely many pairwise disjoint open rectangles and of a set with Lebesgue
measure zero, we obtain (3.30) in each rectangle and then add all the inequalities. �

4. Proof of Theorems 1.1 and 1.3

In this section we prove Theorems 1.1 and 1.3. As we will see below, Theorem 1.1 is a conse-
quence of Theorem 1.2 and standard compactness results for the Modica–Mortola functional.

Proof of Theorem 1.1. Let −∞ < q < q∗/N , where q∗ is the constant given in Theorem 1.2, and
let σ ∈ (0, 1) be so small that (q + σ)/(1− σ) < q∗/N . Let u ∈ H2(Ω) and write

W (u)− qε2|∇u|2 + ε4|∇2u|2

= (1− σ)
(
W (u)− q + σ

1− σ
ε2|∇u|2 + ε4|∇2u|2

)
+ σ

(
W (u) + ε2|∇u|2 + ε4|∇2u|2

)
.

(4.1)

By Theorem 1.2, there exists ε0 = ε0(Ω, q) > 0 such that for every 0 < ε < ε0 we have∫
Ω

[
1
ε
W (u)− q + σ

1− σ
ε|∇u|2 + ε3|∇2u|2

]
dx ≥ 0,

which implies that∫
Ω

[
1
ε
W (u)− qε|∇u|2 + ε3|∇2u|2

]
dx ≥ σ

∫
Ω

[
1
ε
W (u) + ε|∇u|2 + ε3|∇2u|2

]
dx. (4.2)

Hence, ∫
Ω

[
1
ε
W (u)− qε|∇u|2 + ε3|∇2u|2

]
dx ≥ σ

∫
Ω

[
1
ε
W (u) + ε|∇u|2

]
dx. (4.3)

Now consider {un} ⊂ H2(Ω) such that

lim inf
n→+∞

Fεn(un,Ω) < +∞.

By (4.3), and using standard compactness results for Modica–Mortola type functionals (see, e.g.,
[15], [20]), there exist a subsequence {unk} ⊂ {un} and u ∈ BV (Ω; {−1, 1}) such that unk → u in
L1(Ω). In turn, by (H2), for every measurable set E ⊂ Q and for all k sufficiently large,∫

E

|unk |2 dx ≤ 2LN (E) + 2
∫
E

W (unk) dx ≤ C
(
LN (E) + εnk

)
.

This implies, in particular, that the sequence {|unk |2} is equi-integrable. Since {|unk |} converges
to u in measure, by Vitali’s Convergence Theorem it follows that

lim
k→+∞

∫
Ω

|unk − u|2 dx = 0. (4.4)

�
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Proposition 4.1. Assume (H1) and (H2). Then mN > 0 for every −∞ < q < q∗/N .

Proof. Let −∞ < q < q∗/N and σ ∈ (0, 1) be so small that (q + σ)/(1 − σ) < q∗/N . Arguing as
in the proof of Theorem 1.1, using Proposition 3.9 instead of Theorem 1.2, we obtain that∫

Q

[
1
ε
W (u)− qε|∇u|2 + ε3|∇2u|2

]
dx ≥ σ

∫
Q

[
1
ε
W (u) + ε|∇u|2

]
dx ≥ 2σ

∫
Q

√
W (u)|∇u| dx

≥ 2σ
∫
Q′

∫ 1/2

−1/2

√
W (u(x′, xN ))

∣∣∣∣ ∂u∂xN (x′, xN )
∣∣∣∣ dxN dx′

for every u ∈ H2(Q) and every 0 < ε ≤ 1, where Q′ := (−1/2, 1/2)N−1. Since u(x′,±1/2) = ±1
for every u ∈ A and for every x′ ∈ Q′ (see (1.5)), a change of variables shows that∫ 1/2

−1/2

√
W (u(x′, xN ))

∣∣∣∣ ∂u∂xN (x′, xN )
∣∣∣∣ dxN ≥ ∫ 1

−1

√
W (s) ds .

Therefore, the previous inequalities give∫
Q

[
1
ε
W (u)− qε|∇u|2 + ε3|∇2u|2

]
dx ≥ 2σ

∫ 1

−1

√
W (s) ds > 0

for every u ∈ A and every 0 < ε ≤ 1. By (1.4) this implies mN > 0. �

Next we prove Theorem 1.3. We will use a blow-up argument that will reduce the problem to
the case in which the target function is of the type

u0(x) :=

{
1 if x · ν > 0,

−1 if x · ν < 0,
(4.5)

where ν ∈ SN−1. The lemma below allows us to replace a sequence {vn} converging to u0 by
a sequence {wn} of functions still converging to u0, satisfying wn = u0 on the faces of cube Qν
orthogonal to ν, and without increasing the limiting energy.

Let Ψε be defined as in (2.2). Then

(u0 ∗Ψε) (x) = 1 if x · ν > ε, (u0 ∗Ψε) (x) = −1 if x · ν < −ε, (4.6)

∇ (u0 ∗Ψε) (x) = 0 and ∇2 (u0 ∗Ψε) (x) = 0 if |x · ν|> ε. (4.7)

Lemma 4.2. Let −∞ < q < q∗/N . Assume (H1)– (H3). For every sequence {εn}, εn → 0+, and
every sequence {vn} ⊂ H2(Qν) converging in L2(Qν) to u0, there exists a sequence {wn} ⊂ H2(Qν)
such that wn → u0 in L2(Qν), wn = u0 ∗Ψεn near ∂Qν , and

lim inf
n→+∞

∫
Qν

[
1
εn
W (wn)− qεn|∇wn|2 + ε3

n|∇2wn|2
]
dx

≤ lim inf
n→+∞

∫
Qν

[
1
εn
W (vn)− qεn|∇vn|2 + ε3

n|∇2vn|2
]
dx.

Proof. For simplicity, we assume that ν = eN , the general case being completely analogous. If the
right-hand side of the previous inequality is infinite, then it suffices to take wn := u0 ∗Ψεn . Thus,
by extracting a subsequence (not relabeled), without loss of generality, we may assume that the
following limit exists, that

lim
n→+∞

∫
Q

[
1
εn
W (vn)− qεn|∇vn|2 + ε3

n|∇2vn|2
]
dx = C < +∞, (4.8)

and that vn(x)→ u0(x) for LN -a.e. x ∈ Q. Let σ ∈ (0, 1) be so small that (q+σ)/(1−σ) < q∗/N .
As in (4.2) and (4.8) (using Proposition 3.9 in place of Theorem 1.2), we deduce from (4.8) that
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l,m,nL(i  )*

B

A

L =

=

=
l,m,n

l,m,n

l,m

Q

Figure 4.1. Geometry of the sets Al,m,n, Bl,m,n and L
(i∗)
l,m,n.

for n large enough we have∫
Q

[
1
εn
W (vn) + εn|∇vn|2 + ε3

n|∇2vn|2
]
dx

≤ 1
σ

∫
Q

[
1
εn
W (vn)− qεn|∇vn|2 + ε3

n|∇2vn|2
]
dx ≤ 1

σ
(C + 1).

(4.9)

For every l,m ∈ N, with l,m ≥ 4, define

Ll,m :=
{
x ∈ Q :

1
l
< dist(x, ∂Q) ≤ 1

l
+

1
m

}
.

Let
⌈
ε−1
n

⌉
be the smallest integer greater than ε−1

n . Then

εn/2 ≤
⌈
ε−1
n

⌉−1 ≤ εn, (4.10)

for εn < 1. Divide Ll,m into
⌈
ε−1
n

⌉
pairwise disjoint layers of width

1
m
⌈
ε−1
n

⌉ ,

L
(i)
l,m,n :=

{
x ∈ Q :

1
l

+
i− 1
m
⌈
ε−1
n

⌉ < dist
(
x, ∂Q

)
≤ 1
l

+
i

m
⌈
ε−1
n

⌉}, i = 1, . . . ,
⌈
ε−1
n

⌉
.

Set

ũn := u0 ∗Ψεn

and note that if vn = ũn for infinitely many n, then there is nothing to prove. Otherwise, without
loss of generality, we may assume that for every n ∈ N, ‖vn − ũn‖L2(Q) > 0 and we have

dε−1
n e∑
i=1

∫
L

(i)
l,m,n

[
1
εn
W (vn) + εn|∇vn|2 + ε3

n|∇2vn|2 +
|vn − ũn|2

‖vn − ũn‖L2(Q)

]
dx

=
∫
Ll,m

[
1
εn
W (vn) + εn|∇vn|2 + ε3

n|∇2vn|2 +
|vn − ũn|2

‖vn − ũn‖L2(Q)

]
dx ≤ C,

where in the last inequality we have used (4.9), and the fact that vn, ũn → u0 in L2(Q). Thus,
also by (4.10), there exists i∗ = i∗(m,n) such that∫

L
(i∗)
l,m,n

[
1
εn
W (vn) + εn|∇vn|2 + ε3

n|∇2vn|2
]
dx+

∫
L

(i∗)
l,m,n

|vn − ũn|2

‖vn − ũn‖L2(Q)
dx ≤ Cεn. (4.11)
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Construct cut-off functions ϕl,m,n ∈ C∞c (Q; [0, 1]) such that

ϕl,m,n = 0 on
{
x ∈ Q : dist(x, ∂Q) ≤ 1

l
+

i∗ − 1
m
⌈
ε−1
n

⌉} =: Al,m,n,

ϕl,m,n = 1 in
{
x ∈ Q : dist(x, ∂Q) >

1
l

+
i∗

m
⌈
ε−1
n

⌉} =: Bl,m,n,
(4.12)

and

‖∇ϕl,m,n‖∞ = O(m/εn), ‖∇2ϕl,m,n‖∞ = O(m2/ε2
n). (4.13)

Define

wl,m,n := ϕl,m,nvn + (1− ϕl,m,n)ũn.

Note that Q is the disjoint union of Al,m,n, L(i∗)
l,m,n, and Bl,m,n, and that wl,m,n ∈ H2(Qν). Since

vn, ũn → u0 in L2(Q), we have that

lim
n→+∞

‖wl,m,n − u0‖L2(Q) = 0 (4.14)

for all l,m ≥ 4. Moreover∫
Q

[
1
εn
W (wl,m,n)− qεn|∇wl,m,n|2 + ε3

n|∇2wl,m,n|2
]
dx

≤
∫
Al,m,n

[
1
εn
W (ũn) + |q| εn|∇ũn|2 + ε3

n|∇2ũn|2
]
dx

+
∫
L

(i∗)
l,m,n

[
1
εn
W (wl,m,n) + |q| εn|∇wl,m,n|2 + ε3

n|∇2wl,m,n|2
]
dx

+
∫
Bl,m,n

[
1
εn
W (vn)− qεn|∇vn|2 + ε3

n|∇2vn|2
]
dx =: I1 + I2 + I3.

(4.15)

By (H1), (4.6), (4.7), the continuity of W , and (2.4), in this order, we get

I1 =
∫
Al,m,n∩{|xN |<εn}

[
1
εn
W (ũn) + |q| εn|∇ũn|2 + ε3

n|∇2ũn|2
]
dx

≤ C

εn
LN
({

x ∈ Q : dist(x, ∂Q) ≤ 1
l

+
1
m
, |xN | < εn

})
≤ C

(
1
m

+
1
l

) (4.16)

for all n sufficiently large.
By the continuity of W and (H3), it follows that

W (s) ≤ CW (t) + C (4.17)

for every t ∈ R and every s ∈ R of the form s = θt+(1− θ) t0, where |t0| ≤ 1 and θ ∈ [0, 1]. Indeed,
if |t| ≥ 1, then |s| ≤ θ |t|+ (1− θ) |t0| ≤ |t|, and so (4.17) follows from (H3), while if |t| ≤ 1, then
|s| ≤ 1, and so W (s) ≤ max|τ |≤1W (τ).

Since |ũn| ≤ 1 and

∇wl,m,n = ϕl,m,n∇vn + (1− ϕl,m,n)∇ũn + (vn − ũn)∇ϕl,m,n,
∇2wl,m,n = ϕl,m,n∇2vn + (1− ϕl,m,n)∇2ũn + 2∇ϕl,m,n � (∇vn −∇ũn) + (vn − ũn)∇2ϕl,m,n,
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where � is the symmetrized tensor product, by (4.7), (4.13), (4.17), (2.4), and (4.11) we have

I2 ≤ C
∫
L

(i∗)
l,m,n∩{|xN |<εn}

[
(m2 + |q|) εn|∇ũn|2 + ε3

n|∇2ũn|2
]
dx

+ C

∫
L

(i∗)
l,m,n

[
1
εn

(W (vn) + 1) + (m2 + |q|) εn|∇vn|2
]
dx

+ C

∫
L

(i∗)
l,m,n

[
ε3
n|∇2vn|2 +

m4 + |q|m2

εn
|vn − ũn|2

]
dx

≤ C

εn
(1 +m2)LN

(
L

(i∗)
l,m,n ∩

{
x ∈ Q : |xN | < εn

})
+

C

m
⌈
ε−1
n

⌉
εn

+ C

∫
L

(i∗)
l,m,n

[ 1
εn
W (vn) +m2εn|∇vn|2 + ε3

n|∇2vn|2
]
dx+

Cm4

εn

∫
L

(i∗)
l,m,n

|vn − ũn|2 dx

≤ C(1 +m2)εn +
C

m
+ Cm4‖vn − ũn‖L2(Q),

(4.18)

where we used also the inequalities m2 + |q| ≤ Cm2 and m4 + |q|m2 ≤ Cm4. Moreover, since
Q \Bl,m,n can be written as a union of finitely many pairwise disjoint rectangles with the smallest
side-length greater than 1/l, by Proposition 3.9 and the fact that −∞ < q < q∗/N , for all n
sufficiently large, we have∫

Q\Bl,m,n

[
1
εn
W (vn)− qεn|∇vn|2 + ε3

n|∇2vn|2
]
dx

=
∫
Al,m,n∪Li∗l,m,n

[
1
εn
W (vn)− qεn|∇vn|2 + ε3

n|∇2vn|2
]
dx ≥ 0.

(4.19)

Thus,

I3 ≤
∫
Q

[
1
εn
W (vn)− qεn|∇vn|2 + ε3

n|∇2vn|2
]
dx

and, recalling (4.15), (4.16), (4.18), and (4.19), we obtain

lim
l→+∞

lim
m→+∞

lim
n→+∞

∫
Q

[
1
εn
W (wl,m,n)− qεn|∇wl,m,n|2 + ε3

n|∇2wl,m,n|2
]
dx

≤ lim
n→+∞

∫
Q

[
1
εn
W (vn)− qεn|∇vn|2 + ε3

n|∇2vn|2
]
dx.

(4.20)

In view of (4.14) and (4.20), the result now follows by a standard diagonalization argument. �

Remark 4.3. Using a change of variables with a rotation, it can be shown that for every ν ∈ SN−1,

mN = inf
{∫

Qν

[
1
ε
W (u)− qε|∇u|2 + ε3|∇2u|2

]
dx : 0 < ε ≤ 1, u ∈ Aν

}
, (4.21)

where

Aν :=

{
u ∈ H2

loc(RN ) : u(x) = −1 near x · ν = −1
2
, u(x) = 1 near x · ν =

1
2
,

u(x) = u(x+ kνi) for all x ∈ RN , i = 1, . . . , N − 1, and k ∈ Z

} (4.22)

and {ν1, . . . , νN−1, ν} is an orthonormal basis of RN . Hence, the functions wn constructed in the
previous lemma belong to Aν .

We now turn to the proof of Theorem 1.3.
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Proof of Theorem 1.3. Step 1. We prove inequality (1.8). Let u ∈ L2(Ω), let {εn} be a sequence
of positive numbers converging to 0, and let {un} ⊂ H2(Ω) be such that un → u in L2(Ω). If the
right-hand side of (1.8) is infinite, then there is nothing to prove. Otherwise, we can extract a
subsequence, not relabeled, such that un → u LN -a.e. in Ω and

lim
n→+∞

∫
Ω

[
1
εn
W (un)− qεn|∇un|2 + ε3

n|∇2un|2
]
dx

exists, is finite, and coincides with the lim inf of the original sequence. Using Theorem 1.1, we
have that u ∈ BV (Ω, {−1, 1}), and so that we may write

u = χE0 − χΩ\E0 ,

where PerΩ(E0) < +∞.
Set fn := 1

εn
W (un)− qεn|∇un|2 + ε3

n|∇2un|2. By the previous inequality and Theorem 1.2, the
sequence {fn} is bounded in L1(Ω). Therefore, there exist a subsequence (not relabeled) and two
bounded Radon measures µ, λ such that

fn LN
⌊

Ω ∗
⇀ λ, |fn| LN

⌊
Ω ∗
⇀ µ in Mb(Ω). (4.23)

We claim that λ ≥ 0. By the Besicovitch Derivation Theorem (see, e.g., [6, Theorem 1.155]), for
|λ|-a.e. x0 ∈ Ω,

dλ

d|λ|
(x0) = lim

r→0+

λ
(
Q(x0, r)

)
|λ|
(
Q(x0, r)

) ∈ R,

where |λ| denotes the total variation of λ. Choose a sequence {rk} satisfying µ
(
∂Q(x0, rk)

)
= 0.

Then (see, e.g., [6, Corollary 1.204]),

dλ

d|λ|
(x0) = lim

k→+∞

λ
(
Q(x0, rk)

)
|λ|
(
Q(x0, rk)

)
= lim
k→+∞

lim
n→+∞

1
|λ|
(
Q(x0, rk)

) ∫
Q(x0,rk)

fn(x) dx ≥ 0,

where in the last inequality we have used the fact that, by Proposition 3.9, for every fixed k ∈ N,∫
Q(x0,rk)

fn(x) dx ≥ 0 for all n sufficiently large (depending on k). Since λ is absolutely continuous
with respect |λ|, this implies that λ ≥ 0.

Consider the nonnegative measure

ζ (E) := HN−1(E ∩ ∂∗E0)

defined over all Borel subsets E ⊂ Ω, where ∂∗E0 is the essential boundary of E0 (see Definition
3.60 in [1]). Since PerΩ(E0) < +∞, by Theorem 3.61 and (3.62) in [1], we have that

ζ (Ω) = HN−1(Ω ∩ ∂∗E0) = PerΩ(E0) < +∞,
so that ζ is a bounded Radon measure. Hence, we may use the Radon-Nikodym and Lebesgue
Decomposition Theorem (see, e.g., [6, Theorem 1.180]) to decompose λ as λ = gζ+λs, where g is a
nonnegative integrable function and λs ≥ 0 is a bounded Radon measure, with λs and ζ mutually
singular. We claim that

g(x0) ≥mN for HN−1-a.e. x0 ∈ Ω ∩ ∂∗E0. (4.24)

Assuming that (4.24) holds, the inequality λs ≥ 0 gives

lim
n→+∞

∫
Ω

[
1
εn
W (un)− qεn|∇un|2 + ε3

n|∇2un|2
]
dx

= lim
n→+∞

∫
Ω

fn(x) dx ≥ λ(Ω) ≥
∫

Ω∩∂∗E0

g(x) dHN−1(x)

≥mNHN−1(Ω ∩ ∂∗E0) = mN PerΩ({u = 1}),
which proves (1.8).
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In the remaining of this step we show that (4.24) holds. By Theorem 3.59 and 3.61 in [1], for
HN−1-a.e. x0 ∈ Ω ∩ ∂∗E0 we have

lim
r→0+

LN
({
x ∈ Qν(x0, r) \ E0 : (x− x0) · ν < 0

})
rN

= 0, (4.25)

lim
r→0+

LN
({
x ∈ Qν(x0, r) ∩ E0 : (x− x0) · ν > 0

})
rN

= 0, (4.26)

lim
r→0+

HN−1 (Qν(x0, r) ∩ ∂∗E0)
rN−1

= 1, (4.27)

where ν := ν(x0) is the outward normal to E0 at x0. Fix any such x0 ∈ Ω. In view of the
Besicovitch Derivation Theorem (see, e.g., [6, Theorem 1.155]), we can also assume that

g(x0) = lim
r→0+

λ (Qν(x0, r))
HN−1 (Qν(x0, r) ∩ ∂∗E0)

< +∞. (4.28)

Then, by (4.27) and choosing rk → 0+ such that µ
(
∂Qν(x0, rk)

)
= 0, we obtain (see, e.g., [6,

Corollary 1.204]),

g(x0) = lim
k→+∞

λ
(
Qν(x0, rk)

)
rN−1
k

= lim
k→+∞

lim
n→+∞

1
rN−1
k

∫
Qν(x0,rk)

[
1
εn
W (un(x))− qεn|∇un(x)|2 + ε3

n|∇2un(x)|2
]
dx

= lim
k→+∞

lim
n→+∞

∫
Qν

[
rk
εn
W (vn,k(y))− q εn

rk
|∇vn,k(y)|2 +

(
εn
rk

)3

|∇2vn,k(y)|2
]
dy,

(4.29)

where vn,k ∈ H2(Qν) is defined by

vn,k(y) := un(x0 + rky).

Since un → u in L2(Ω), by (4.25) and (4.26), we have that

lim
k→+∞

lim
n→+∞

‖vn,k − u0‖L2(Qν) = 0, (4.30)

where u0 is defined in (4.5). By (4.29), (4.30), and a diagonalization argument we may find a
subsequence {εnk} of {εn} such that

tk :=
εnk
rk
→ 0, vk := vnk,k → u0 in L2(Qν) as k → +∞,

and

g(x0) = lim
k→+∞

∫
Qν

[
1
tk
W (vk)− qtk|∇vk|2 + t3k|∇2vk|2

]
dy. (4.31)

Applying Lemma 4.2 to the sequences {vk} and {tk}, we conclude that there exists a sequence
{wk} ⊂ H2(Qν) such that wk → u0 in L2(Qν), {wk} ⊂ Aν (see (4.22)) and

g(x0) = lim
k→+∞

∫
Qν

[
1
tk
W (vk)− qtk|∇vk|2 + t3k|∇2vk|2

]
dy

≥ lim inf
k→+∞

∫
Qν

[
1
tk
W (wk)− qtk|∇wk|2 + t3k|∇2wk|2

]
dy.

(4.32)

Since each wk belongs to Aν (see Remark 4.3), (4.24) follows from (4.21) and (4.32).
Step 2. We prove inequality (1.9). Given u ∈ BV (Ω; {−1, 1}), write

u = χE0 − χΩ\E0 , (4.33)
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where PerΩ(E0) < +∞. If min
{
LN (E0) ,LN (Ω \ E0)

}
= 0, then PerΩ(E0) = 0, u is constantly

equal either to 1 or −1, and it suffices to take un = u. Hence, in what follows we assume that u is
not constant. By (1.5), for every fixed ρ > 0 there exist ε0 > 0 and w ∈ A such that∫

Q

[
1
ε0
W (w)− qε0|∇w|2 + ε30|∇2w|2

]
dx < mN + ρ. (4.34)

It suffices to show that for every sequence εn → 0+, there exists a sequence {un} ∈ H2(Ω) such
that un → u in L2(Ω) as n→ +∞ and

lim sup
n→+∞

∫
Ω

[
1
εn
W (un)− qεn|∇un|2 + ε3

n|∇2un|2
]
dx

≤ (mN + 2ρ) PerΩ({u = 1}).
(4.35)

We divide the proof of (4.35) into three substeps.
Substep 2A. Consider first the case in which u has a flat interface orthogonal to a given direction

ν ∈ SN−1 and Ω has Lipschitz boundary that meets this interface orthogonally, i.e.,

u(x) :=

{
1 if (x− x0) · ν > 0,

−1 if (x− x0) · ν < 0,
(4.36)

for every x ∈ RN and some x0 ∈ Ω, and

the normal ν(x) to ∂Ω is orthogonal to ν (4.37)

at all points x ∈ ∂Ω with |(x− x0) · ν| small enough.
Consider a rotation R such that ReN = ν. For every n, define wn ∈ H2

loc(RN ) by

wn(x) :=



1 if (x− x0) · ν ≥ εn
2ε0

,

w

(
ε0R

T (x− x0)
εn

)
if |(x− x0) · ν| ≤ εn

2ε0
,

−1 if (x− x0) · ν ≤ − εn
2ε0

.

(4.38)

Without loss of generality, we may assume that x0 = 0, ν = eN , and that R is the identity. Using
a change of variables and the periodicity of w in the first N − 1 coordinates, we can prove that

‖wn‖L2({x∈Ω: |xN |≤εn/(2ε0)}) ≤ C‖w‖L2(Q)
εn
ε0
. (4.39)

This inequality, together with (4.36) and (4.38), gives

‖wn − u‖L2(Ω) ≤ C‖w‖L2(Q)
εn
ε0

+ LN
({

x ∈ Ω : |xN | ≤
εn
2ε0

})
, (4.40)

which tends to 0 as n→ +∞.
Let Ω′ := {x′ ∈ RN−1 : (x′, 0) ∈ Ω}. By (4.37) we have {x ∈ Ω : |xN | ≤ εn/(2ε0)} =

Ω′×[−εn/(2ε0), εn/(2ε0)] for n large enough. Setting t := xN ε0/εn, by (H1), (4.38), and Fubini’s
Theorem, we have

Fεn(wn,Ω) =
∫{

x∈Ω: |xN |≤εn/(2ε0)
} 1
εn

[
W (w)− qε20|∇w|2 + ε40|∇2w|2

](ε0x
εn

)
dx

=
∫

Ω′

∫ 1/2

−1/2

[
1
ε0
W (w)− qε0|∇w|2 + ε30|∇2w|2

](
ε0x
′

εn
, t

)
dt dx′

(4.41)

for n large enough. Since w is periodic in the first N − 1 variables, the functions

x′ 7→
∫ 1/2

−1/2

W (w(x′, t)) dt, x′ 7→
∫ 1/2

−1/2

|∇w(x′, t)|2 dt, x′ 7→
∫ 1/2

−1/2

|∇2w(x′, t)|2 dt
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δ

+1
Ω

−1

Ω
Ω

1

2

Figure 4.2. Construction in Substep 2B. Here Ω ∩ ∂P = H1 ∪H2 ∪ F is just an
angle and F is its vertex.

are periodic, and, by Fubini’s Theorem, belong to L1
loc

(
RN−1

)
. Therefore we can apply the

Riemann-Lebesgue Lemma, obtaining from (4.41) and from Fubini’s Theorem that

lim
n→+∞

Fεn(wn,Ω) = LN−1
(
Ω′
) ∫

Q

[
1
ε0
W (w)− qε0|∇w|2 + ε30|∇2w|2

]
dx

≤
(
mN + ρ

)
HN−1

(
Ω′ × {0}

)
=
(
mN + ρ

)
PerΩ({u = 1}).

(4.42)

where we use also (4.34). This concludes the proof of (4.35).

Substep 2B. Consider now the case in which u has a polyhedral interface, i.e., the set E0 in (4.33)
has the form E0 = P ∩Ω, with P polyhedral. This means that ∂P = H1∪H2∪· · ·∪HL∪F , where
the sets Hi are pairwise disjoint (relatively open) convex polyhedra of dimension N − 1, while the
set F is the union of a finite number of convex polyhedra of dimension N − 2. In particular, each
set Hi is contained in a hyperplane, i.e.,

Hi ⊂ {x ∈ RN : (x− xi) · νi = 0}, (4.43)

for some xi ∈ RN and νi ∈ SN−1. We assume that νi is the inner unit normal to ∂P on Hi. To
simplify the proof, we assume also that

∂Ω ∩ ∂P is the union of a finite number of C1 manifolds of dimension N − 2. (4.44)

Fix 0 < δ < 1 small and let (see Figure 4.2)

Uδ :=
{
x ∈ Ω : dist

(
x, F ∪ (∂Ω ∩ ∂P )

)
≤ δ
}
. (4.45)

We can find a finite family H ′1, H
′
2, . . . ,H

′
L of relatively open subsets of H1, H2, . . . ,HL, with

(N − 2)-dimensional boundary of class C∞, such that{
x ∈ Hi ∩ Ω : dist

(
x, ∂Ω ∪ F

)
≥ δ

2

}
⊂ H ′i ⊂ H ′i ⊂ Hi ∩ Ω. (4.46)

Fix 0 < η < δ/2. For every i = 1, 2, . . . , L let

Ωi := {x+ tνi : x ∈ H ′i, |t| < η}, (4.47)

where νi is given by (4.43). We assume also that η is so small that the sets Ω1,Ω2, . . . ,ΩL are
pairwise disjoint.
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Since Ωi satisfies (4.37) for every i = 1, 2, . . . , L, we can now apply the construction of Substep A,
with Ω replaced by Ωi, and we obtain a sequence win ∈ H2(Ωi) such that

win → u in L2(Ωi) as n→ +∞ (4.48)

and
lim

n→+∞
Fεn(win,Ωi) ≤

(
mN + ρ

)
HN−1

(
Hi ∩ Ωi

)
. (4.49)

By construction,
win(x) = u(x) for x ∈ Ωi and dist(x,Hi) ≥

εn
2ε0

. (4.50)

In order to define un in Ω, we extend u to RN by setting u(x) := χP (x) − χRN\P (x) for every
x ∈ RN and define ũn := u ∗Ψεn (see (2.3)). We choose cut-off functions ϕδ ∈ C∞c (RN ; [0, 1]) such
that

ϕδ = 0 in Uδ, ϕδ = 1 in RN \ U2δ, ‖∇ϕδ‖∞ ≤ C/δ, ‖∇2ϕδ‖∞ ≤ C/δ2. (4.51)

We define un in Ω by setting

un :=

ϕδw
i
n + (1− ϕδ)ũn in each Ωi, i = 1, . . . , L,

ũn in A := Ω \ (Ω1 ∪ · · · ∪ ΩL).
(4.52)

We claim that un ∈ H2(Ω). By (4.50) and (4.52), for n large enough we have un = ũn in a
neighborhood of {x ∈ ∂Ωi : dist(x,Hi) = η} (the part of ∂Ωi parallel to Hi). Note that, by (4.45),
(4.46), and (4.47), the part of ∂Ωi orthogonal to Hi,

Di := {x ∈ ∂Ωi : dist(x,Hi) < η}
is contained in the interior of Uδ. Therefore by (4.51), un = ũn in a neighborhood of Di. This
shows that un ∈ H2(Ω).

By (4.48) and the fact that ũn → u in L2(Ω), we have that un → u in L2(Ω) as n→ +∞.
Note that by (4.6) and (4.7), un is different from ±1 only in the region

Rn :=
{
x ∈ Ω : dist(x, ∂P ) ≤ max{εn/(2ε0), εn}

}
and so, since A ∩Rn ⊂ Uδ for n large enough and HN−1(∂P ∩ Uδ) ≤ Cδ, we get

Fεn(un, A) ≤
∫
A∩Rn

[
1
εn
W (ũn) + |q| εn|∇ũn|2 + ε3

n|∇2ũn|2
]
dx ≤ Cδ. (4.53)

Moreover,

Fεn(un,Ωi) ≤
∫

Ωi∩Uδ

[
1
εn
W (ũn) + |q| εn|∇ũn|2 + ε3

n|∇2ũn|2
]
dx

+
∫

Ωi∩(U2δ\Uδ)

[
1
εn
W (un) + |q| εn|∇un|2 + ε3

n|∇2un|2
]
dx

+
∫

Ωi\U2δ

[
1
εn
W (win)− qεn|∇win|2 + ε3

n|∇2win|2
]
dx =: K1 +K2 +K3.

(4.54)

Since F ∪ (∂Ω∩ ∂P ) has dimension N − 2, we have HN−1(Hi ∩Uδ) ≤ Cδ. Therefore, reasoning as
in (4.16), we obtain

K1 ≤ Cδ. (4.55)

Next we estimate K2 and K3. By (4.17) in Ωi we have

W (un) ≤ CW (win) + C, (4.56)

∇un = ϕδ∇win + (1− ϕδ)∇ũn + (win − ũn)∇ϕδ, (4.57)

∇2un = ϕδ∇2win + (1− ϕδ)∇2ũn + 2∇ϕδ � (∇win −∇ũn) + (win − ũn)∇2ϕδ. (4.58)
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Using (H1), Young’s inequality, (4.51) and (4.56), we obtain

K2 ≤ C
∫

Ωi∩(U2δ\Uδ)∩Rn

[ 1
εn
W (win) +

1
εn

+
(
|q|εn +

ε3
n

δ2

)∣∣∇win∣∣2 + ε3
n

∣∣∇2win
∣∣2] dx

+ C

∫
Ωi∩(U2δ\Uδ)∩Rn

[(
|q|εn +

ε3
n

δ2

)
|∇ũn|2 + ε3

n|∇2ũn|2 +
(
|q|εn
δ2

+
ε3
n

δ4

)∣∣win − ũn∣∣2 ] dx
(4.59)

Using (4.38) and arguing as in (4.41) and (4.42), we obtain

lim
n→+∞

∫
Ωi∩(U2δ\Uδ)∩Rn

[ 1
εn
W (win) +

1
εn

+
(
|q|εn +

ε3
n

δ2

)∣∣∇win∣∣2 + ε3
n

∣∣∇2win
∣∣2] dx

≤ CHN−1
(
Hi ∩ (U2δ \ Uδ)

)
≤ Cδ,

(4.60)

where we used the fact that w ∈ H2 (Q) and the constant C depends on w, and, in turn, on ρ.
Using (2.4) and (4.39) we also get∫

Ωi∩(U2δ\Uδ)∩Rn

[(
|q|εn +

ε3
n

δ2

)
|∇ũn|2 + ε3

n|∇2ũn|2 +
(
|q|εn
δ2

+
ε3
n

δ4

)∣∣win − ũn∣∣2 ] dx
≤ C

εn

(
1 +

ε2
n

δ2
+
ε4
n

δ4

)
LN (Ωi ∩ (U2δ \ Uδ) ∩Rn) + C

(ε3
n

δ2
+
ε5
n

δ4

)
‖w‖2L2(Q)

≤ C
(

1 +
ε2
n

δ2
+
ε4
n

δ4

)
δ + C

(ε3
n

δ2
+
ε5
n

δ4

)
‖w‖2L2(Q),

(4.61)

where we have also used the change of variables that leads to (4.40). Combining (4.59), (4.60),
and (4.61) we obtain

K2 ≤ Cδ + C
ε2
n

δ4
(4.62)

for εn < 1.
Using the change of variables y = ε0R

T
i (x − xi)/εn, where Ri and xi are the rotation and the

vector that appear in (4.38), the periodicity of win with respect to the variables tangential to Hi,
and reasoning as in (4.41) and (4.42), we get

lim
n→+∞

∫
Ωi∩U2δ

εn|∇win|2 dx ≤ Cδ
∫
Q

|∇w|2 dx.

Thus,

K3 ≤
∫

Ωi

[
1
εn
W (win)− qεn|∇win|2 + ε3

n|∇2win|2
]
dx+

∫
Ωi∩U2δ

|q| εn|∇win|2 dx

≤
∫

Ωi

[
1
εn
W (win)− qεn|∇win|2 + ε3

n|∇2win|2
]
dx+ Cδ.

Combining the previous inequality with (4.49), (4.54), (4.55), (4.53), and (4.62), we obtain

lim sup
n→+∞

Fεn(un,Ω) ≤ lim sup
n→+∞

L∑
i=1

Fεn(un,Ωi) + lim sup
n→+∞

Fεn(un, A)

≤
(
mN + ρ

) L∑
i=1

HN−1
(
Ωi ∩Hi

)
+ Cδ

≤
(
mN + ρ

)
HN−1

(
Ω ∩ ∂P

)
+ Cδ.

By fixing δ sufficiently small, we have that (1.9) holds.
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Substep 2C. We now consider the case in which the set E0 in (4.33) is an arbitrary set of finite
perimeter in Ω. Since Ω is bounded and has C1 boundary, by first approximating E0 with smooth
sets (see Remark 3.43 in [1]) and then with polyhedral sets, we may find sets Ek ⊂ Ω of the form
Ek = Pk ∩ Ω, where Pk is a polyhedral set satisfying (4.44), such that HN−1(∂Ek ∩ ∂Ω) = 0,
χEk → χE0 in L2(Ω), and PerΩ(Ek) → PerΩ(E0) as k → +∞. By applying Substep 2B to each
function uk := χEk − χΩ\Ek the result follows by the lower semicontinuity of the Γ-upper limit
(see, e.g., Proposition 6.8 in [5]). �

5. The One-Dimensional Cell Problem

This section is devoted to the study of the property of the constant m1, defined in (1.4) with
N = 1, which is the effective interface energy density in dimension one. In Subsection 5.1, we
prove that the infimum in m1 is realized when ε→ 0+. Precisely, we show that m1 coincides with
the constant

m∗ := inf
{∫

R

[
W (u)− q(u′)2 + (u′′)2

]
dx : u ∈ H2

loc(R), lim
x→±∞

u(x) = ±1
}
. (5.1)

We also prove that the infimum in (5.1) is attained and that m∗ is continuous as a function of q
(see Theorem 5.5). This implies, in particular, that when q → 0 the constant m∗ reduces to the
effective energy density per unit area obtained in [7]. In Subsection 5.2, we prove that, under the
additional assumption that the double well potential W is even, minimizers of (5.1) have only one
zero.

5.1. Properties of m1.

Theorem 5.1. Let q < q∗ and assume (H1) and (H2). Then m1 = m∗.

We begin with a preliminary result.

Lemma 5.2. Let q < q∗ and assume (H1) and (H2). For every η > 0 there exists δ > 0 such that∫ −`
−`−1

[
W (v)− q(v′)2 + (v′′)2

]
dx+

∫ `+1

`

[
W (w)− q(w′)2 + (w′′)2

]
dx < η (5.2)

for every ` ≥ 1/2 and every a0, a1, b0, b1 ∈ R with

|a0 + 1| < δ, |a1| < δ, |b0 − 1| < δ, |b1| < δ, (5.3)

where v and w are the polynomials of third degree such that v(−` − 1) = −1, v′(−` − 1) = 0,
v(−`) = a0, v′(−`) = a1, w(`) = b0, w′(`) = b1, w(`+ 1) = 1, and w′(`+ 1) = 0.

Proof. Since W is continuous and W (±1) = 0, the result follows from a straightforward computa-
tion. We omit the details. �

Remark 5.3. Fix σ ∈ (0, 1) so small that (q + σ)/(1 − σ) < q∗. Reasoning as in the proof of
Theorem 1.1, but using Theorem 3.4 (i) in place of Theorem 1.2, we have that∫

I

[
W (u)− q(u′)2 + (u′′)2

]
dx ≥ σ

∫
I

[
W (u) + (u′)2 + (u′′)2

]
dx (5.4)

for every interval I with |I| ≥ 1 and every u ∈ H2
loc(I).

We now turn to the proof of Theorem 5.1.

Proof of Theorem 5.1. Setting ` = 1/(2ε), in view of (1.4), (1.5), and (3.3), we may write

m1 = inf
`≥1/2

inf
u∈A`

∫ `

−`

[
W (u)− q(u′)2 + (u′′)2

]
dx,
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where

A` :=

{
u ∈ H2

loc(R) : u(x) = −1 near x = −`, u(x) = 1 near x = `

}
. (5.5)

Given any u ∈ A`, set û(x) := −1 for x ∈ (−∞, `), û(x) := u(x) for x ∈ [−`, `], and û(x) := 1 for
x ∈ (`,+∞). Since û ∈ H2

loc(R), it is admissible in the minimum problem for m∗, hence

m∗ ≤
∫

R

[
W (û)− q(û′)2 + (û′′)2

]
dx =

∫ `

−`

[
W (u)− q(u′)2 + (u′′)2

]
dx.

Taking the infimum over all u ∈ A` and ` ≥ 1/2 gives m∗ ≤m1.
To prove the converse inequality, fix η > 0 and let u ∈ H2

loc(R) be such that u(x) → ±1 as
x→ ±∞ and ∫

R

[
W (u)− q(u′)2 + (u′′)2

]
dx ≤m∗ + η. (5.6)

Fix σ ∈ (0, 1) so small that (q + σ)/(1− σ) < q∗ as in Remark 5.3. Then, by (5.4),∫
R

[
W (u) + (u′)2 + (u′′)2

]
dx ≤ m∗ + η

σ
,

which implies that u′ ∈ H1(R), since W ≥ 0. By Morrey’s Theorem (see [13, Theorem 11.34]),
it follows that u′(x) → 0 as x → ±∞. Let δ > 0 be the number given in Lemma 5.2. Since
u(x)→ ±1 and u′(x)→ 0 as x→ ±∞, there exists ` ≥ 1/2 satisfying

|u(−`) + 1| < δ, |u′(−`)| < δ, |u(`)− 1| < δ, |u′(`)| < δ.

Let v and w be the polynomials of third degree such that v(−` − 1) = −1, v′(−` − 1) = 0,
v(−`) = u(−`), v′(−`) = u′(−`), w(`) = u(`), w′(`) = u′(`), w(` + 1) = 1, and w′(` + 1) = 0.
Define

u (x) :=


−1 for x ≤ −`− 1,
v (x) for − `− 1 < x < −`,
u (x) for − ` ≤ x ≤ `,
w (x) for ` < x < `+ 1,
+1 for x ≥ `+ 1.

Since u ∈ H2
loc(R), it belongs to A`+2, and so

m1 ≤
∫ `+1

−`−1

[
W (u)− q(u′)2 + (u′′)2

]
dx =

∫ `

−`

[
W (u)− q(u′)2 + (u′′)2

]
dx

+
∫ −`
−`−1

[
W (v)− q(v′)2 + (v′′)2

]
dx+

∫ `+1

`

[
W (w)− q(w′)2 + (w′′)2

]
dx

≤
∫ `

−`

[
W (u)− q(u′)2 + (u′′)2

]
dx+ η,

where in the last inequality we have used Lemma 5.2. Since by Theorem 3.4 (i),(∫ −`
−∞

+
∫ +∞

`

)[
W (u)− q(u′)2 + (u′′)2

]
dx ≥ 0,

we have that
m1 ≤

∫
R

[
W (u)− q(u′)2 + (u′′)2

]
dx+ η ≤m∗ + 2η,

by (5.6). As η → 0+, we get m1 ≤m∗. �

Remark 5.4. It follows from the proof of the previous theorem that

m∗ = inf
{∫

R

[
W (u)− q(u′)2 + (u′′)2

]
dx : u ∈ H2

loc(R), lim
x→±∞

u(x) = ±1, lim
x→±∞

u′(x) = 0
}
.

To highlight the dependence on q, in what follows we write m∗q for the constant defined in (5.1).



24 M. CHERMISI, G. DAL MASO, I. FONSECA, AND G. LEONI

Theorem 5.5. Assume (H1) and (H2). Then for every q < q∗ the minimum problem (5.1)
defining m∗q has a solution and the function q 7→m∗q is continuous from (−∞, q∗) into (0,+∞).

Proof. We recall that m∗q > 0 for every q < q∗ by Proposition 4.1 and Theorem 5.1. Fix q ∈
(−∞, q∗) and a sequence {qn} ⊂ (−∞, q∗) such that qn → q.

Step 1. We show that
lim sup
n→+∞

m∗qn ≤m∗q . (5.7)

Let η > 0 and let u ∈ H2
loc(R) be such that u(x)→ ±1 as x→ ±∞ and∫

R

[
W (u)− q(u′)2 + (u′′)2

]
dx ≤m∗q + η.

Since u is also admissible for the minimum problem defining m∗qn , for every n we get

m∗qn ≤
∫

R

[
W (u)− qn(u′)2 + (u′′)2

]
dx.

Taking the limit as n→ +∞, and using the fact that u′ ∈ L2(R) (see (5.6)), we deduce that

lim sup
n→+∞

m∗qn ≤
∫

R

[
W (u)− q(u′)2 + (u′′)2

]
dx ≤m∗q + η.

It now suffices to let η → 0+.
Step 2. It remains to show that

lim inf
n→+∞

m∗qn ≥m∗q (5.8)

and that the minimum problem (5.1) defining m∗q has a solution. For every n let un ∈ H2
loc(R) be

such that un(x)→ ±1 as x→ ±∞ and∫
R

[
W (un)− qn(u′n)2 + (u′′n)2

]
dx ≤m∗qn +

1
n
. (5.9)

Since un(x) → ±1 as x → ±∞, each function un must vanish at some point. By translation
invariance, we may assume that un(0) = 0 for every n.

We claim that there exist a subsequence of {un}, not relabeled, and a function u in H2
loc(R)

such that {un} converges weakly to u in H2
loc(R) and∫

R

[
W (u)− q(u′)2 + (u′′)2

]
dx ≤ lim inf

n→+∞
m∗qn . (5.10)

Fix σ ∈ (0, 1) so small that (q + σ)/(1− σ) < q∗. Since qn → q, for all n sufficiently large we have
that (qn + σ)/(1− σ) < q∗. Hence, by (5.4), (5.9) and (5.7), in this order, we have that∫

R

[
W (un) + (u′n)2 + (u′′n)2

]
dx ≤

m∗q + 1
σ

(5.11)

for all n sufficiently large. Since W ≥ 0, by extracting a subsequence, not relabeled, we may
assume that {u′n} converges weakly in H1(R) to some function w.

Moreover, in view of (5.11), (H2), and the Rellich Compactness Theorem, by using a diagonal
argument we may find a subsequence of {un}n, not relabeled, converging weakly in H2

loc(R) to a
function u ∈ H2

loc(R), with u′ = w L1-a.e. in R. In particular, u′ belongs to H1(R). We may also
assume that (qn + σ)/(1− σ) < q∗ for all n.

Using the facts that qn → q and that, for every fixed k, {un}n converges to u weakly in
H2((−k, k)) and strongly in H1((−k, k)), we have∫ k

−k

[
W (u)− q(u′)2 + (u′′)2

]
dx ≤ lim inf

n→+∞

∫ k

−k

[
W (un)− qn(u′n)2 + (u′′n)2

]
dx. (5.12)
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Since by Theorem 3.4 (i),(∫ −k
−∞

+
∫ +∞

k

)[
W (un)− qn(u′n)2 + (u′′n)2

]
dx ≥ 0,

from (5.7), (5.9), and (5.12), we deduce that∫ k

−k

[
W (u)− q(u′)2 + (u′′)2

]
dx ≤ lim inf

n→+∞

∫
R

[
W (un)− qn(u′n)2 + (u′′n)2

]
dx = lim inf

n→+∞
m∗qn .

Using the facts that W ≥ 0 and u′, u′′ ∈ L2(R), and applying Lebesgue’s Monotone Convergence
Theorem to the sequence

{
χ(−k,k)W (u)

}
and Lebesgue’s Dominated Convergence Theorem to the

sequences
{
χ(−k,k)(u′)2

}
and

{
χ(−k,k)(u′′)2

}
, we may let k → +∞ in the previous inequality to

obtain (5.10).
We claim that u(x)→ ±1 as x→ ±∞. Fix 0 < ρ < 1

2 and let

xn := sup {x < 0 : |un + 1| ≤ ρ in (−∞, x)} ,
yn := inf {x > 0 : |un − 1| ≤ ρ in (x,+∞)} .

Note that, since un(0) = 0 and un(x) → ±1 as x → ±∞, then −∞ < xn < 0 < yn < +∞. We
claim that

{yn − xn} is bounded. (5.13)
If not, then there exists a subsequence, not relabeled, satisfying yn − xn → +∞. Using (5.4), we
obtain ∫ xn

−∞

[
W (un)− qn(u′n)2 + (u′′n)2

]
dx ≥ σ

∫ xn

−∞

[
W (un) + (u′n)2

]
dx

≥ σ

2

∫ xn

−∞

√
W (un)|u′n| dx ≥

σ

2
min

{∫ −1+ρ

−1

√
W (s) ds,

∫ −1

−1−ρ

√
W (s) ds

}
.

(5.14)

Similarly, we get∫ +∞

yn

[
W (un)− qn(u′n)2 + (u′′n)2

]
dx ≥ σ

2
min

{∫ 1

1−ρ

√
W (s) ds,

∫ 1+ρ

1

√
W (s) ds

}
. (5.15)

Let K > 0 be the minimum between the two numbers in the right-hand side of (5.14) and (5.15).
Fix η ∈ (0,K) and let δ > 0 be as in Lemma 5.2. For every n we define

An := {x ∈ [xn, yn] : |un(x)− 1| ≥ δ, |un(x) + 1| ≥ δ},
Bn := {x ∈ [xn, yn] : |u′n(x)| ≥ δ}.

By (5.11) we obtain

L1(An) ≤
m∗q + 1
σωδ

and L1(Bn) ≤
m∗q + 1
σδ2

,

where ωδ := min{W (s) : |s − 1| ≥ δ, |s + 1| ≥ δ} (note that ωδ > 0 by (H1), (H2), and by the
continuity of W ). Since yn − xn → +∞, for n large enough there exists zn ∈ (xn + 1, yn − 1) \
(An ∪Bn). Without loss of generality, we may assume that |un(zn)− 1| < δ and |u′n(zn)| < δ. By
Lemma 5.2 and the fact that qn → q, we obtain a function vn such that vn ∈ H2

loc(R), vn = un in
(−∞, zn), vn is a polynomial of third degree in [zn, zn + 1], vn = 1 in (zn + 1,+∞), and∫

R

[
W (vn)− qn(v′n)2 + (v′′n)2

]
dx

=
∫ zn

−∞

[
W (un)− qn(u′n)2 + (u′′n)2

]
dx+

∫ zn+1

zn

[
W (vn)− qn(v′n)2 + (v′′n)2

]
dx

≤
∫ zn

−∞

[
W (un)− qn(u′n)2 + (u′′n)2

]
dx+ η
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for all n sufficiently large. Since vn is admissible for m∗qn , in view of the previous inequality,∫ zn

−∞

[
W (un)− qn(u′n)2 + (u′′n)2

]
dx ≥m∗qn − η. (5.16)

We write∫
R

[
W (un)− qn(u′n)2 + (u′′n)2

]
dx =

∫ zn

−∞

[
W (un)− qn(u′n)2 + (u′′n)2

]
dx

+
∫ yn

zn

[
W (un)− qn(u′n)2 + (u′′n)2

]
dx+

∫ +∞

yn

[
W (un)− qn(u′n)2 + (u′′n)2

]
dx.

Since yn − zn ≥ 1, by Theorem 3.4 (i) the second term in the right-hand side of the previous
inequality is nonnegative. Therefore, using (5.15) and (5.16), we deduce∫

R

[
W (un)− qn(u′n)2 + (u′′n)2

]
dx ≥m∗qn − η +K

for all n sufficiently large. Since η < K, this contradict (5.9) for all n sufficiently large, and
concludes the proof of (5.13).

Since xn ≤ 0 ≤ yn, there exists a constant 0 < `ρ < +∞ such that −`ρ < xn ≤ 0 ≤ yn < `ρ for
every n. It follows from the definition of yn that |un (x)− 1| ≤ ρ for every x > `ρ and for every
n. Letting n→∞ and using the fact that {un} converges strongly to u in H1

loc(R), we have that
|u (x)− 1| ≤ ρ for every x > `ρ. Since this result holds for every 0 < ρ < 1

2 , we have shown that
u(x)→ 1 as x→ +∞. In the same way we prove that u(x)→ −1 as x→ −∞.

Hence, u is admissible for m∗q , which, together with (5.7) and (5.10), implies that

m∗q ≤
∫

R

[
W (u)− q̃(u′)2 + (u′′)2

]
dx ≤ lim inf

n→+∞
m∗qn ≤ lim sup

n→+∞
m∗qn ≤m∗q .

This shows that the function q 7→ m∗q is continuous at q and that u is a solution of the minimum
problem (5.1) defining m∗q . �

Remark 5.6. It follows from the previous theorem that

lim
q→0

m∗q = m∗0,

where

m∗0 = inf
{∫

R

[
W (u) + (u′′)2

]
dx : u ∈ H2

loc(R), lim
x→±∞

u(x) = ±1
}

is the effective energy density per unit area obtained in [7].

5.2. The One-Dimensional Case with W Even. In this section, we assume that W : R →
[0,+∞) is an even continuous function satisfying (H1) and (H2). Define

p+ := inf

{∫ +∞

0

[
W (u)− q(u′)2 + (u′′)2

]
dx : u ∈ H2

loc([0,+∞)), lim
x→+∞

u(x) = 1,

u(0) = 0, u(x) ≥ 0 for all x ≥ 0

}
,

(5.17)

and

p := inf

{∫ +∞

0

[
W (u)− q(u′)2 + (u′′)2

]
dx : u ∈ H2

loc([0,+∞)),

lim
x→+∞

u(x) = 1, u(0) = 0

}
,

(5.18)
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where H2
loc([0,+∞)) is the space of all functions u : [0,+∞) → R such that u ∈ H2((0, T )) for

every T > 0. We have the following characterization.
We have the following characterization.

Proposition 5.7. Let q < q∗ and let W : R→ [0,+∞) be an even continuous function satisfying
(H1) and (H2). Then the minimum problems (5.17) and (5.18) have a solution and

2p+ = 2p = m∗. (5.19)

Proof. Fix σ ∈ (0, 1) so small that (q + σ)/(1 − σ) < q∗. Then, for every admissible u for (5.17),
by (5.4), (H2), and the fact that u ≥ 0,∫ +∞

0

[
W (u)− q(u′)2 + (u′′)2

]
dx ≥ σ

∫ +∞

0

[
(u− 1)2 + (u′)2 + (u′′)2

]
dx,

therefore u−1 ∈ H2(0,∞). Reasoning as in Step 2 of the proof of Theorem 5.5, it follows if {un} is
a minimizing sequence of the infimum problem in (5.17), then it admits a subsequence converging
in H2

loc(0,∞) to a minimizer u of the same problem.

We claim now that 2p+ ≥ 2p ≥ m∗. The first inequality is a direct consequence of (5.17) and
(5.18). In order to verify that 2p ≥ m∗, let η > 0 and let u be an admissible function for (5.18)
such that ∫ +∞

0

[
W (u)− q(u′)2 + (u′′)2

]
dx ≤ p + η.

We define

w(x) :=

{
−u(−x) if x < 0,

u(x) if x ≥ 0.
Then w is an admissible function for (5.1), and so.

m∗ ≤ 2p + 2η.

Letting η → 0+ we conclude that m∗ ≤ 2p.
It suffices to prove that m∗ ≥ 2p+. Let η > 0 and let u be an admissible function for (5.1) such

that ∫
R

[
W (u)− q(u′)2 + (u′′)2

]
dx ≤m∗ + η. (5.20)

Since u(x)→ ±1 as x→ ±∞, the function u must vanish at some point. By translation invariance,
we may assume that u(0) = 0. Let x1 and x2 be the smallest and the largest zero of u, respectively.
Then, x1 ≤ 0 ≤ x2, and by Proposition 3.4 (ii),∫ x2

x1

[
W (u)− q(u′)2 + (u′′)2

]
dx ≥ 0 (5.21)

Define w(x) := −u(−x + x1) and v (x) := u(x + x2) for x ≥ 0. Since v and w are admissible
functions for p+ and W is even, we obtain from (5.20) and (5.21)

m∗ + η ≥
∫ x1

−∞

[
W (u)− q(u′)2 + (u′′)2

]
dx+

∫ +∞

x2

[
W (u)− q(u′)2 + (u′′)2

]
dx

=
∫ +∞

0

[
W (w)− q(w′)2 + (w′′)2

]
dx+

∫ +∞

0

[
W (v)− q(v′)2 + (v′′)2

]
dx ≥ 2p+.

Letting η → 0+ we deduce that m∗ ≥ 2p+.
Since p+ = p and the minimum problem (5.17) for p+ has a solution, so does problem (5.18)

for p. �

Proposition 5.8. Let q < q∗, let W : R → [0,+∞) be an even continuous function satisfying
(H1) and (H2), and let u be a minimizer of (5.18). Then u > 0 in (0,+∞).
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Proof. We argue by contradiction. Assume that u in not strictly positive in (0,+∞). Let x1 the
last zero of u. Define w(x) := u(x+ x1) for x ≥ 0. Since w is admissible for the infimum problem
defining p, we obtain

p =
∫ +∞

0

[
W (u)− q(u′)2 + (u′′)2

]
dx

=
∫ x1

0

[
W (u)− q(u′)2 + (u′′)2

]
dx+

∫ +∞

0

[
W (w)− q(w′)2 + (w′′)2

]
dx

≥
∫ x1

0

[
W (u)− q(u′)2 + (u′′)2

]
dx+ p.

Since u(0) = u(x1) = 0, we are in a position to apply Proposition 3.4 (ii) to get that∫ x1

0

[
W (u)− q(u′)2 + (u′′)2

]
dx = 0. (5.22)

If σ ∈ (0, 1) is such that (q + σ)/(1− σ) < q∗, then by (4.1),

(1− σ)
∫ x1

0

[
W (u)− q + σ

1− σ
(u′)2 + (u′′)2

]
dx+ σ

∫ x1

0

[
W (u) + (u′)2 + (u′′)2

]
dx = 0.

Since the first term in the left-hand side of the previous equality is nonnegative by Proposi-
tion 3.4 (ii), both terms should be zero. This means that u should be constantly equal to 1 or −1
in (0, x1), which contradicts the fact that u(0) = u(x1) = 0. �

As consequence of the previous proposition we conclude that minimizers of (5.1) have exactly
one zero.

Proposition 5.9. Let q < q∗, let W : R → [0,+∞) be an even continuous function satisfying
(H1) and (H2), and let u be a minimizer of (5.1). Then there exists x0 ∈ R such that u > 0 in
(x0,+∞), u < 0 in (−∞, x0), and u(x0) = 0.

Proof. Since u(x) → ±1 as x → ±∞, the function u vanishes at some point. By translation
invariance, we may assume that u(0) = 0. Let w(x) := −u(−x) for x ≥ 0. Since both w and u are
admissible functions for p and W is even, we have

m∗ =
∫ +∞

0

[
W (w)− q(w′)2 + (w′′)2

]
dx+

∫ +∞

0

[
W (u)− q(u′)2 + (u′′)2

]
dx ,∫ +∞

0

[
W (w)− q(w′)2 + (w′′)2

]
dx ≥ p,

∫ +∞

0

[
W (u)− q(u′)2 + (u′′)2

]
dx ≥ p.

Since, by Proposition 5.7, 2p = m∗, we must have∫ +∞

0

[
W (w)− q(w′)2 + (w′′)2

]
dx = p =

∫ +∞

0

[
W (w)− q(w′)2 + (w′′)2

]
dx,

which implies that both u and w are minimizers for p. By Proposition 5.8, we get u > 0 in (0,+∞),
and w > 0 in (0,+∞), that is, u < 0 in (−∞, 0). �
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