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Introduction

This thesis is devoted to the study of a generalized notion of quasistatic evolution for
a class of rate-independent models in nonlinear elasticity, with nonconvex elastic-energy
functional.

The term rate-independent characterizes those models which are independent of the
rate of the system, in the following sense: if e(t) is a solution of the evolution problem
corresponding to a loading l(t), and φ is a strictly monotone time-reparametrization, then
(e ◦ φ)(t) solves the problem with loading (l ◦ φ)(t). The notion of evolution we are
interested in is called quasistatic, meaning that we are considering a so slow time scale
that the system is assumed to be in equilibrium at each time instant.

A general framework for the study of these problems is the energetic formulation devel-
oped by Mielke (see [33]). The main advantage of this approach is that it is time-derivative
free and therefore allows to deal with cases in which the evolution is not expected to be
smooth with respect to time.

The energetic approach to rate-independent models has been widely used in the analysis
of many phenomena, like dry friction, elasto-plasticity, delamination or fracture processes,
hysteresis in shape-memory alloys, etc.

In this thesis we focus our attention on the mathematical aspects of a model, originally
proposed in [21], for the study of phase transitions in crystalline materials.

The setting of the problem is as follows: we consider a material whose reference con-
figuration is a bounded region D ⊂ R

d; the state of the system is determined by the
deformation v : D → R

N and by the internal variable z : D → Z ⊆ R
m, which represents

the phase distribution of the material. The stored energy is

W(z, v) :=

∫

D
W (z(x),∇v(x)) dx.

From a physical point of view, the energy functional should also depend on the tem-
perature, but this dependence is omitted here since this model deals with isothermal
transformations1. Changes of the phase distribution of the material dissipate an amount
of energy that is written as

H(znew − zold) :=

∫

D
H(znew(x) − zold(x)) dx,

1The case of temperature-induced phase transformation has been studied in [34], [35].
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6 INTRODUCTION

whereH is a norm on Z, zold is the old phase distribution and znew the new one. Moreover,
we require that the admissible deformations satisfy a prescribed time-dependent boundary
condition2 ϕ(t) on ∂D.

Before dealing with the specific case analyzed in this work, let us describe briefly the
simpler case of W strictly convex with respect to both variables. An energetic solution of
the evolution problem in the time interval [0, T ], with initial datum (z0, v0), is defined as a
pair of functions (z,v), depending on time and space, which fulfils the boundary condition
and satisfies the following properties:

(1) stability condition: for every t ∈ [0, T ] we have

W(z(t),v(t))〉 ≤ W(z̃, ṽ) + H(z̃ − z(t)),

for every pair (z̃, ṽ) of functions of x admissible at time t, i.e., satisfying the
prescribed boundary condition at time t;

(2) energy equality: for every t ∈ [0, T ] we have

W(z(t),v(t)) + VarH(z; 0, t) =

= W(z0, v0) +

∫ t

0
〈σ(s),∇ϕ̇(s)〉 ds,

where VarH is a suitable notion of variation and σ(t) is defined by

σ(t) :=
∂W

∂F
(z(t),∇v(t)).

Clearly, from the energy equality for (0, t), the analogous equality for any interval (s, t)
with 0 < s < t can be obtained.

These conditions have a natural mechanical interpretation. The stability property
guarantees that, unless the boundary condition (or the loading) is modified, it is not
energetically convenient any change of the state of the system, if one takes into account
the energy dissipated when the state is changed. The variation appearing in the energy
equality represents the total energy dissipated in the time interval (0, t), while σ(s) is the
stress of the system, so that the integral term in the energy equality represents the work
due to the change in time of the boundary condition; therefore the energy balance can be
regarded as an energy-conservation law.

The main goal in the study of rate-independent problems is providing a constructive
proof of the existence of an evolution with the above requisites3.

To this end, the standard method is based on the study of auxiliary incremental min-
imum problems, which are used to construct inductively approximate solutions (see [33]
and references therein). We consider

min
{

W(z, v) + H(z − z̄)
}

(1)

among all (z, v) admissible at time t, for a given z̄. Under suitable regularity and growth
assumptions on W and H, the convexity of W guarantees the solvability of this minimum
problem and the uniqueness of the minimizer. Fixed a partition 0 = t0 < · · · < tk =

2In this thesis we also consider the more general case of a boundary condition imposed on a subset
of the boundary, and the case of a nontrivial external load depending on time l(t) (see Chapter 3, and
Chapter 4).

3The results about uniqueness of the evolution are still very few, see [7], [39], [36].
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T of the time interval, the discrete approximate solution is now constructed with the
following inductive process: (z(t0), v(t0)) coincides with the initial datum (z0, v0), and,
fixed (z(ti−1), v(ti−1)), we define (z(ti), v(ti)) as the solution of (1) with t = ti and z̄ =
z(ti−1), for i = 1, . . . , k.

The next step consists in the study of the limit of piecewise constant interpolations of
(z(ti), v(ti)) as the mesh size of the partition tends to zero. An a priori bound on these
interpolations, provided by the minimality property, allows to extract a convergent sub-
sequence. Using some technical arguments, it is possible to deduce the required stability
property and energy balance for the limit of the selected sequence of interpolations4.

Coming back to our model, the natural stored-energy density W for a multi-phase
material has a multi-well structure (see [40], [39], [27], [21], [37], [38]), so that we deal
with a density which does not satisfies any convexity assumption with respect to z (in
addition, all the results in this thesis are proved without any quasiconvexity assumption
with respect to the deformation gradient). This lack of convexity gives rise to many
technical difficulties, making the incremental minimum problems (1) unsolvable in usual
functional spaces5; it is also responsible for the formation of microstructures (see, e.g.,
[41], [27], [37]). In [21], [4], [28], suitable regularizing spatial terms are introduced in
the energy functional to overcome this difficulty, either depending on the gradient of the
internal variable, or penalizing phase interfaces.

The aim of this thesis is to study a generalized formulation of the evolution problem
avoiding any artificial regularization.

Following the approach proposed in [12], we place the problem in a suitable space of
Young measures, where the incremental minimum problems can be solved. Then we adapt
the standard method of approximate solutions to this extended setting.

To specify the main features of the mathematical setting and highlight the motivations,
it is worth pointing out the following facts. Since we assume that W has quadratic
growth, the natural framework of the problem is represented by Young measures with
finite second moment, instead of generalized Young measures considered in [12]; this fact
sensibly simplifies the technical difficulties, making available, e.g., the tool of disintegration
with respect to x (see Theorem 1.3.1). A Young measure approach has been proposed in
[32], [27], [37], too. The main challenge in the Young measure formulation concerns
the correlations between Young measures at subsequent time instants, which are involved
in determining the total-dissipation energy of the system. In the mentioned papers, the
definition of dissipation proposed by the authors seems to neglect some information: “Our
approach will account only for dissipation losses if the distribution functions associated
with the microstructure changes but not if the distributions stay fixed while the texture
of the micro-pattern changes” ([32]).

In this thesis we follow the approach of [12], based on the notion of compatible systems,
introduced in [10]. Roughly speaking, a compatible system is a family of Young measures
indexed on all finite sequences of time instants; we require that if the measure associated
to a time sequence {t1, . . . , tn} is compared with the one corresponding to a subsequence
{s1 . . . , sm} ⊂ {t1, . . . , tn}, a reasonable projection property is satisfied. The advantage of

4We refer to [21], [29], [33] for a complete proof.
5In Remark 3.4.3 we present an explicit example in which (1) has actually no solution.
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this formulation consists in the capability of capturing the mutual interactions, occurring
in passages to the limit, between oscillations at different time instants.

Since we do not need to use generalized Young measures, we are able to rephrase
the definition of compatible system using a probabilistic language. In Chapter 2, an
alternative formulation of compatible systems in terms of stochastic processes is provided
using a modification of Kolmogorov’s Theorem (see [26]): in Theorem 2.2.2, we prove
that we can associate to any compatible system of Young measures with finite second
moment a suitable stochastic process on a probability space of the form (D × Ω, P ). The
variation accounting for the total-dissipation energy reduces in this language to the usual
variation of the stochastic process (Zt)t∈[0,T ], considered as a function from [0, T ] into

L1(D × Ω; Rm).
The probabilistic language is useful in order to better explain the necessity to deal with

objects accounting simultaneously for more than one time instant: as the joint probability
of two events can be expressed by the product of the probabilities only if the events are
independent, in the same way the knowledge of the probability laws Zs(P ) and Zt(P ) is
not always enough to determine the probability law (Zs,Zt)(P ).

Hence we deal with a generalized formulation, in which the quasistatic evolution is
expressed in terms of stochastic processes Zt : D×Ω → R

m and Y t : D×Ω → R
N×d, for t ∈

[0, T ]. In case stronger hypotheses allow to describe the evolution with functions z(t) : D →
R

m and ∇v(t) : D → R
N×d, they can be regarded as special stochastic processes Zt and

Y t which do not depend on the variable ω. In the general case of Zt and Y t depending on
both variables x and ω, the stochastic process represent the limit of oscillating functions,
in a suitable topology; the role of the dependence on ω is to describe the statistics of these
oscillations (see formula 2.2.2).

In Chapter 3, which contains the result of [17], the definition of a generalized notion
of quasistatic evolution is given in terms of both Young measures and stochastic processes,
and an existence result is proved, in a general framework (Z = R

m).
The admissible set in which we look for the evolution is defined as the set of all stochastic

processes (Zt,Y t)t∈[0,T ] on D×Ω with values in R
m×R

N×d, which can be approximated in
a suitable way by means of functions on D satisfying the boundary condition. The proof of
a closure property for the admissible set, needed to show the solvability of the incremental
minimum problems, represents one of the most technical points of this chapter: it requires
the usage of an equiintegrability result, in the version proposed by Fonseca, Müller, and
Pedregal (Decomposition Lemma, see [20]), and a careful diagonalization argument.

A globally stable quasistatic evolution is defined as an admissible process (Zt,Y t)t∈[0,T ]

satisfying the following conditions:

(ev1) partial-global stability: for every t ∈ [0, T ], we have

∫

D×Ω
W (Zt(x, ω),Y t(x, ω)) dP (x, ω) ≤ (2)

≤
∫

D×Ω
W (Zt(x, ω) + z̃(x),Y t(x, ω) + ∇ũ(x)) dP (x, ω) +

∫

D
H(z̃(x)) dx,

for every z̃ ∈ L2(D; Rm) and every ũ ∈ H1
0 (D; RN );
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(ev2) energy inequality: for every t ∈ [0, T ] we have

∫

D×Ω
W (Zt(x, ω),Y t(x, ω)) dP (x, ω) + VarH(Z, P ; 0, t) ≤

≤
∫

D
W (z0(x),∇v0(x)) dx+

∫ t

0
〈σ(s),∇ϕ̇(s)〉 ds (3)

where σ represents the stress (see Remark 3.3.10).

A basic tool in the proof of the existence theorem for this notion of evolution is a suit-
able version of Helly’s selection principle for compatible systems of Young measures (see
Theorem 2.1.6).

The stability condition we are able to prove for the evolution has a global character,
since there is no restriction on the norm of the competitors in the minimality property
(ev1); nevertheless, due to hard technical difficulties occurring in the passage to the limit of
the approximate solutions, it is only possible to compare the evolution with its translation
by functions on D, and this does not allow to choose arbitrary random variables Z̃ : D ×
Ω → R

m, Ỹ : D × Ω → R
N×d as competitors in (2). This is what we mean by “partial-

global”. For the same reason, only an energy inequality for time interval of the form (0, t)
can be obtained.

An interesting question is the comparison of this existence result with the one obtained
in [21], i.e., can our result be regarded as a limit case of that analyzed by Francfort
and Mielke with a spatial regularization? The answer is yes: under the more restrictive
assumption that W is quasiconvex with respect to the deformation gradient, we show in
Section 3.5 that the limit of the regularized evolutions converge to an admissible pair
satisfying properties (ev1) and (ev2), as the regularization parameter tends to zero. This
provides an easier proof of our existence result in this special case.

As noticed above, the notion of quasistatic evolution presented in Chapter 3 is based
on a global minimization procedure. One of the major drawbacks of this approach is the
possibility for the evolution to perform abrupt jumps from one potential well to another
one, without taking into account the barriers separating them. Therefore it would be
preferable to follow a path composed by local minimizers rather than global minimizers.

As observed in [32], in this context it is nontrivial to find a suitable definition for the
term “local”; moreover, the notion of locality should have some physical interpretation.

In the last years, many authors have dealt with this problem: see [15], [11], [8], [45],
[24]. They study regularized problems which take into account the contribution of viscous
forces, to obtain in the limit, as the regularization parameter vanishes, an evolution which
does not jump over potential barriers.

In Chapter 4, which contains the results of [18], we follow the same approach, adapted
to the framework of stochastic processes. The property of global stability is weakened and
replaced by a

(ev1)vv stationarity condition: for every t ∈ [0, T ]

−divσ(t) = 0 (4)

ζ(t) ∈ ∂H(0) (5)



10 INTRODUCTION

where σ(t) is the stress, ζ(t) is a dual variable associated to the stochastic process
Zt (see Remark 4.6.7 for the definition), and ∂H is the usual subdifferential of
convex analysis.

Moreover, we want to adopt a selection criterion based on a sort of viscous approximation
among stochastic processes satisfying (4), (5), and the energy inequality (3): we will accept
as a solution of the quasistatic-evolution problem only those stochastic processes which
are attainable as limit of solutions to suitable regularized evolution problems. For this
reason this evolution will be called approximable.

These auxiliary problems can be solved in usual function spaces, and given a regu-
larization parameter ε, they consist in finding a pair of functions (zε,vε), satisfying the
boundary condition and absolutely continuous with respect to time, such that the following
equalities hold:

(a) equilibrium condition: for a.e. t ∈ [0, T ]

−divσε(t) − ε∆v̇ε(t) = 0; (6)

(b) regularized flow rule: for a.e. t ∈ [0, T ]

żε(t) = N ε
K(ζε(t)) a.e. in D,

where N ε
K(ζ) is an approximation of the normal to K, defined by N ε

K(ζ) := 1
ε (ζ−PK(ζ)),

PK being the projection onto K := ∂H(0).
An easy computation shows that conditions (a) and (b) for ε-regularized problems are

equivalent to the following properties:

(1)ε equilibrium condition: for a.e. t ∈ [0, T ]

−divσε(t) − ε∆v̇ε(t) = 0 (7)

modified dual constraint: for a.e. t ∈ [0, T ]

ζε(t) − εżε(t) ∈ ∂H(0);

(2)ε energy equality: for every t ∈ [0, T ],

W(zε(t),vε(t)) +

∫ t

0
H(żε(s)) ds + ε

∫ t

0
‖żε(s)‖2

2 ds+

+ ε

∫ t

0
〈∇v̇ε(s),∇v̇ε(s) −∇ϕ̇(s)〉 ds = W(z0, v0) +

+

∫ t

0
〈σε(s),∇ϕ̇(s)〉 ds.

Thanks to the effect of the viscous regularization, we can reproduce the standard argu-
ments of time-discretization and construction of approximate solutions in the framework
of Sobolev spaces, as in the convex case. Indeed, the incremental minimum problem
corresponding to the evolution equations (1)ε, (2)ε is as follows:

min
{

W(z, v) + H(z − z(ti−1)) + ε
2τi

‖z − z(ti−1)‖2
2 + ε

2τi
‖∇v −∇v(ti−1)‖2

2

}

, (8)

among all (z, v) admissible at time ti, where τi is the time step ti − ti−1; under suitable
regularity assumptions on W , the functional in (8) is strictly convex for τi sufficiently
small, so that the minimizer exists and is unique.
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The particular structure of these minimum problems allows to prove not only the
existence in Sobolev spaces, but also the regularity with respect to time and the uniqueness
of the solution (zε,vε) to the ε-regularized problem.

Unfortunately, in the limit as ε vanishes, (zε,vε) may develop stronger and stronger
oscillations in space, since we loose the convexification effect of the regularizations and
come back to the nonconvexity of the original problem. Therefore, in general we cannot
expect to describe the approximable evolution in terms of functions rather than stochastic
processes.

Theorem 4.6.8 proves that the limit as εk tends to 0 of a suitably chosen subsequence
(zεk

,vεk
) satisfies the stationarity condition (4), (5), and the energy inequality (3), but also

in this case we are not able to obtain neither a complete energy balance nor a uniqueness
result.

The last part of Chapter 4 (Section 4.7) provides an explicit example which shows that
the notion of globally stable quasistatic evolution and that one of approximable quasistatic
evolution lead to different solutions. The simplified assumptions considered there allow to
prove that there exists a unique approximable evolution, which lives in function spaces,
and both the internal variable and the deformation gradient are spatially homogeneous.
Theorem 4.7.2 shows that this evolution does not fulfil the requirements of the definition
of globally stable evolution, since the stability condition is violated.

We have so far considered a very general setting with Z = R
m. If we are interested in

a material with a finite number of phases, it is reasonable to analyze the case in which Z
is a finite set {θα : α = 1, . . . , q}. In Chapter 5, which presents the results of [19], we
consider the quasistatic evolution problem in this particular setting6.

As in Chapter 3, the lack of convexity of the energy functional requires to study the
problem in the extended framework of Young measures, but the fact that Z is finite makes
it meaningless to consider translations of the internal variable or viscous regularizations.
On the other hand the discrete setting brings significant advantages from a mathematical
point of view; indeed, the Young measure which is going to substitute the internal variable
is a measure on D with values in Z, hence it has finite moments of every order. We will
see in the sequel that this point is crucial in order to improve the notion of quasistatic
evolution with respect to the one considered in Chapter 3.

For this discrete case it seems to be more convenient to use the Young measure for-
mulation instead of the probabilistic one, since the first one lends itself to a more evident
mechanical interpretation.

To motivate this claim, let us recall that every probability measure on a finite set can
be written as a linear combination of Dirac measures; in this sense the finite sequence of
coefficients (whose sum is 1, since we deal with a probability) identifies the measure. In
particular, this holds for the disintegration of any Young measure on D with values in Z.

In the same way, we can deduce that every compatible system on D with time set [0, T ]
and values in Z can be represented by a suitable family of finite sequences of functions on
D with values in [0, 1], in the following way. Given a compatible system µ and an index
{t1, . . . , tn}, to the element µt1...tn is associated a sequence (bt1...tn

α1...αn
)(α1,...,αn)∈{1,...,q}n in

6In this discrete setting we consider the more general case in which the dissipation rate H is a distance
on Z, not necessarily generated by a norm.
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L∞(D; [0, 1]) through the relation:

µx
t1...tn =

∑

(α1,...,αn)

bt1...tn
α1...αn

(x)δ(θα1 ,...,θαn) for a.e. x ∈ D,

where µx
t1...tn represents the disintegration of µt1...tn , and δ(θα1 ,...,θαn) is the Dirac measure

centered in the vector (θα1 , . . . , θαn).
An analogous representation is proposed for the Young measure substituting the pair

(z,∇v) in the stored-energy functional, but in this case we have to deal with finite se-
quences both of coefficients and of Young measures, since the gradient of the deformation
takes values in the continuous set R

N×d (see Lemma 2.3.3).
In this language, when we deal with a Young measure on D with values in Z which is

representable by a function z, the coefficient bα(x) associated to δθα is given by

bα(x) =

{

1 if z(x) = θα

0 otherwise.

In this particular case, the Young measure representation can be interpreted in the follow-
ing way: the material assumes a pure phase distribution, i.e., to every point x is associated
a pure phase θ ∈ Z. While in the general case we say that the material has a mixed phase
distribution meaning that at each point x we have a mixture of phases θα with volume
fractions bα(x).

The compatible systems describe the evolution of the phase distribution from a statis-
tical point of view: if we consider two time instants s < t, bst

αβ(x) represents the volume
fraction at x undergoing the phase transition from θα at time s to θβ at time t.

Thanks to these remarks, the formulation of a notion of quasistatic evolution in terms
of a family of finite sequences of coefficients b and a family of finite sequences of Young
measures λ seems to be the most appropriate one for the discrete case.

The set of admissible pairs (b,λ) is described by approximation properties by functions,
in this case taking values in Z × R

N×d.
As in Chapter 3, we consider an evolution based on a global minimization process;

indeed we cannot use the viscously regularized problems in the discrete case, since their
solutions may not satisfy the constraint of taking values in Z × R

N .
The stability condition in terms of (b,λ) is the following:

(ev1)d partial-global stability: for every t ∈ [0, T ] we have
∑

α

∫

D×RN×d

bt
α(x)W (θα, F ) d(λt

α)(x, F ) ≤

≤
∑

α,β

∫

D×RN×d

Mβα(x)bt
α(x)W (θβ, F + ∇ũ(x)) dλt

α(x, F ) + (9)

+
∑

α,β

H(θβ, θα)

∫

D
Mβα(x)bt

α(x) dx,

for every ũ ∈ H1
0 (D; RN ), and every measurable function M on D with values in

a special set of q × q real matrices.

The elements of this set are the matrices with nonnegative entries such that the sum of the
entries of each column is 1; in probabilistic language they are called stochastic matrices
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(see, e.g., [2, Part 2]), and their entries Mβα represent the probability of a transition from
phase θα to phase θβ. In our model, Mβα(x) is the proportion of the volume fraction at
x originally in phase θα undergoing a phase transition to θβ. According to the picture
described so far, the quantity

H(θβ, θα)Mβα(x)bt
α(x)

can be interpreted as the energy density dissipated at the point x by the phase transition
from θα to θβ. Therefore, the following expression

∑

α,β

H(θβ, θα)

∫

D
Mβα(x)bt

α(x) dx

represents the energy which would be dissipated on the whole domain D, if we performed
the microscopic phase transitions determined by M .

We observe that any other phase distribution (b̃α)α can be obtained by the action of

a suitable stochastic matrix: indeed, it is enough to choose Mβα(x) := b̃β(x) for every
α, β. Therefore, even though this notion of stability shares the partial character with the
stability condition in Chapter 3, it seems to be better, since the minimality property is
now satisfied with a quite large set of competitors including all possible rearrangements
of the phase distribution.

From the stability property we can deduce a pointwise condition. If we call active at x
the phases θα for which bt

α(x) > 0, then the Euler equation for the internal variable can
be written as follows: for a.e. x with active phase θα, we have

∫

RN×d

W (θα, F ) d(λt
α)x(F ) ≤

∫

RN×d

W (θβ, F ) d(λt
α)x(F ) +H(θβ, θα),

for every β (see Section 5.6). According to the above physical picture, this condition can
be interpreted as a pointwise optimality condition of the active phases.

Clearly, an Euler equation for the deformation can be derived as well: it is the same
classical equilibrium condition on the stress σ we have found in the case Z = R

m (see
Remark 5.3.5 for the definition of σ in terms of (b,λ)).

The energy inequality expressed in terms of (b,λ) takes the following form:

(ev2)d energy inequality: for every t1 ≤ t2 in [0, T ] we have
q

∑

α=1

∫

D×RN×d

bt2
α (x)W (θα, F ) dλt2

α (x, F ) + DissH(b; t1, t2) ≤

≤
q

∑

α=1

∫

D×RN×d

bt1
α (x)W (θα, F ) dλt1

α (x, F ) +

∫ t2

t1

〈σ(s),∇ϕ̇(s)〉 ds.

The dissipation DissH(b; t1, t2) is defined by

DissH(b; t1, t2) := sup

k
∑

i=1

∑

αβ

H(θβ, θα)

∫

D
b

si−1si

αβ (x) dx, (10)

where the supremum is taken over all partitions t1 = s0 < · · · < sk = t2 of the interval
[t1, t2].

As remarked in [41], Young measures “determine the asymptotic local distribution
of function values but contain no information about the direction, length scale or fine
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geometry of the oscillations”, therefore it is still not clear which should be the right
notion of dissipation energy given in terms of Young measures and solving the lack of
information about micro-patterns highlighted in [32]. Nevertheless, in this discrete setting,
it is possible to show how our definition of dissipation depending on functions b

si−1si

αβ (see

(10)) fills in some gaps of the notions proposed in [32], [27], [37], which only take into
account the contribution of single time instants (b

si−1
α and bsi

β in our language). Indeed,

consider the case of a homogeneous phase distribution b
si−1
α = 1/q for every α; if we

suppose that the material undergoes a transition from si−1 to si just permuting the phases
and leaving the volume fractions unchanged, we have bsi = bsi−1 ; hence the dissipation

computed using only bsi−1
and bsi

is zero, while the dissipation energy computed using
our formula with bsi−1si depends on the permutation and it is not zero.

Due to the partial character of the stability condition, we cannot still have a complete
energy balance; nevertheless the energy inequality holds here for any pair of time instants,
and not only for intervals of the form (0, t).

In Theorem 5.4.2 we give an existence result for this improved notion of quasistatic
evolution, assuming just suitable continuity and growth hypotheses on the energy density
W and its partial derivatives with respect to the deformation gradient7.

The proof of this theorem follows the classical scheme already mentioned; the new fea-
ture concerns the choice of the solutions to the discretized minimum problems. In the
spirit of [14], we use the Ekeland Principle to select minimizers satisfying special approx-
imability properties. Then the regularity results for quasi-minima of integral functionals
(see [3] and [22]) are used to prove a uniform bound on the moments of order 2r > 2
of the selected minimizers, and consequently of the approximate solutions. Clearly, the
regularity argument applies only to the “gradient part” of the Young measure substituting
(z,∇v), i.e., to the projection over the set D × R

N×d of this measure; this is the reason
why it is fundamental that the “internal variable part” of the measure, i.e., the projection
over D × Z, has equibounded moments of every order.

As a by-product of this selection procedure in the construction of approximate solutions
(bt

n,λ
t
n), we get the continuity of the functional

(bt
n,λ

t
n) 7→

∫

D×RN×d

∑

α

(bt
n)α(x)W (θα, F ) d(λt

n)α(x, F ).

Thanks to this continuity property, we are able to obtain in the limit the stability condition
and the energy inequality written above. A technical difficulty in the proof of the stability
condition is the approximation of the right hand-side of (9) by integrals corresponding to
functions satisfying the prescribed boundary condition. This is done by adapting to our
problem the classical Riemann Lebesgue Lemma.

7These assumptions are actually weaker than those in Chapter 3 and Chapter 4, where it is necessary
to require some condition of Lipschitz type on W .



CHAPTER 1

Mathematical preliminaries

In this chapter we fix some notation and recall some results which will be useful in the
sequel.

In the whole thesis D will be a bounded, connected, open subset of R
d, for d ≥ 1, while

Ξ will denote a finite dimensional Hilbert space.

1.1. Functions

The Lebesgue measure on R
d is usually denoted by Ld, while Hk is the k-dimensional

Hausdorff measure; we sometimes use the notation |E| for the Lebesgue measure of a
measurable subset E of R

d. The Borel σ-algebra on D is denoted by B(D). The symbol
1B indicates the characteristic function of a subset B of R

d.
For 1 ≤ p ≤ +∞, ‖ · ‖p is the usual norm on Lp, while W 1,p(D; RN ) denotes the usual

Sobolev space of all Lp functions from an open domain D ⊆ R
d into R

N , with Lp first
derivatives. We indicate W 1,2(D; RN ) with H1(D; RN ). The symbol 〈·, ·〉 will denote a
duality pairing depending on the context.

Given a function f ∈ L1(D) and a measurable subset E ⊆ D, the mean value of f over
E is denoted by (f)E , i.e.

(f)E := 1
|E|

∫

E
f(x) dx =

∫

E
−f(x) dx.

We recall the well-known following lemma.

Lemma 1.1.1. Let f ∈ L2(D), and consider a finite measurable partition (Di)
I
i=1 of D.

The projection of f onto the space

K := {g ∈ L2(D) : g|Di
is constant for every i = 1, . . . , I}

is

PK(f) :=

I
∑

i=1

(f)Di1Di .

The classical Riemann Lebesgue Lemma (see, e.g., [43, pg. 121]) will be fundamental
for the results in the last chapter.

Lemma 1.1.2 (Riemann Lebesgue Lemma). Let us consider f ∈ L∞([0, 1]d; Rm) and
extend it by periodicity to all R

d. The sequence fδ(x) := f(x
δ ) satisfies

fδ ⇀

∫

[0,1]d
f(x) dx L∞-weakly*,

as δ → 0.

15
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A function f : D× Ξ → R is said to be a Carathéodory function if f(x, ·) is continuous
for a.e. x ∈ D and f(·, ξ) is measurable for every ξ ∈ Ξ. The space of all continuous
functions φ : D × Ξ → R, such that |φ| ≥ ε is compact for every ε > 0, is denoted by
C0(D × Ξ). The following classical result (see, e.g., [16, Section 1.3]) will be very useful
in the next chapter.

Lemma 1.1.3 (Scorza-Dragoni Lemma). Let A and B be Borel subsets of R
d and R

n,
respectively, with A compact. Consider a Carathéodory function f : D × B → R. Then
for every ε > 0, there exists a compact set Kε ⊂ A such that |A \Kε| ≤ ε for which the
restriction of f to Kε ×B is continuous.

The symbol Mq×q
St denotes the set of all stochastic matrices of size q × q, i.e. the set of

all matrices (Mβα)βα with

• 0 ≤Mβα ≤ 1 for every α, β,
• ∑

β Mβα = 1, for every α.

Before concluding this section, we want to to point out some properties and to introduce
some new notations related to the integral functional H : L1(D; Rm) → R, defined by

H(z) :=

∫

D
H(z(x)) dx,

where H : R
m → [0,+∞) satisfies the following assumptions:

• H is positively homogeneous of degree one and convex;

• there exists a positive constant λ, such that 1
λ |θ| ≤ H(θ) ≤ λ|θ|.

From the hypotheses on H, it follows that H is lower semicontinuous with respect to the
weak topology of L2(D; Rm) and satisfies the triangle inequality, i.e.

H(z1 + z2) ≤ H(z1) + H(z2).

For every ε > 0 we define the function Hε : R
m → R as

Hε(θ) := H(θ) +
ε

2
|θ|2, (1.1.1)

and the corresponding integral functional Hε : L2(D; Rm) → R as

Hε(z) :=

∫

D
Hε(z(x)) dx. (1.1.2)

The convex conjugate H∗
ε : R

m → R of Hε is

H∗
ε (ζ) := sup

θ∈Rm
{ζθ −Hε(θ)}.

Since the convex conjugate H∗ of H is the indicator function of the convex set K := ∂H(0)
(see [44, Theorem 13.2]), using [44, Theorem 16.4], it can be proved that

H∗
ε (ζ) = 1

2ε |ζ − PK(ζ)|2, (1.1.3)

where PK : R
m → K is the projection onto K. Therefore H∗

ε is differentiable with gradient

N ε
K(ζ) := 1

ε (ζ − PK(ζ)). (1.1.4)

In particular N ε
K is Lipschitz continuous.
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Let H∗
ε : L2(D; Rm) → R be the convex conjugate of Hε. It can be easily shown (using

a general property of integral functionals, see e.g., [16, Proposition IX.2.1]) that

H∗
ε(ζ) =

∫

D
H∗

ε (ζ(x)) dx,

so that the gradient ∂H∗
ε is given by

∂H∗
ε(ζ)(x) = N ε

K(ζ(x)), for a.e. x ∈ D. (1.1.5)

Therefore ∂H∗
ε is Lipschitz continuous.

1.2. Quasi-minima

The results in the last chapter are based on some regularity theorems concerning quasi-
minima of integral functionals. We now briefly recall the notion of cubic quasi-minimum,
introduced by Giaquinta and Giusti in [22], and the related results.

Given ϕ ∈ H1(D; RN ), let G be the functional defined by

G(v) = G(v,D) :=

∫

D
G(x,∇v(x)) dx

for every v ∈ ϕ+H1
0 (D; RN ), where G : D × R

N×d → R is a function satisfying

|G(x, F )| ≤ L(|F |2 + 1)

for a suitable positive constant L, for every (x, F ) ∈ D × R
N×d.

Definition 1.2.1. Let Q > 0. A function v ∈ H1(D; RN×d) is said to be a cubic
Q-quasi-minimum for the functional G if for every cube of side R, QR ⊂⊂ D, and for
every function w ∈ H1(D; RN×d), with supp(v − w) ⊆ QR, we have

G(v,QR) ≤ QG(w,QR).

We restrict our analysis to the particular case of G(F ) = 1 + |F |2, since this is the
integrand we will consider; for the reader’s convenience, we recall the statement and
the proof of the Caccioppoli inequality for quasi-minima of the corresponding integral
functional: for our purposes, we need a slightly different statement of the result contained
in [23, Theorem 6.5]; our statement does not involve the L2∗-norm of the quasi-minimum
but it is valid for every cube QR. The precise result we will use is the following.

Theorem 1.2.2. Let v ∈ H1(D; RN ) be a Q-cubic quasi-minimum of the functional

G(w) =

∫

D
(1 + |∇w|2) dx.

Then there exist a positive constant C > 0, depending only on Q, such that

∫

QR/2

−|∇v|2 dx ≤ C
{(

∫

QR

−|∇v|2m dx
)

1
m

+ 1
}

, (1.2.1)

for every cube QR ⊂⊂ D, where m =
d

2 + d
.
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Proof. Let R/2 < t < s ≤ R. We consider a cut-off function η ∈ C∞
0 (Qs), with

0 ≤ η ≤ 1, η ≡ 1 on Qt, and |∇η| ≤ 2
s−t . Let φ := η(v − vs), where vs denotes the mean

value (v)Qs of v over Qs; define a function w by w := v−φ, so that w = vs+(1−η)(v−vs).
We have

∫

Qs

|∇φ|2 dx ≤
∫

Qs

(|∇v|2 + 1) dx+

∫

Qs

∣

∣|∇φ|2 − |∇v|2
∣

∣ dx; (1.2.2)

Since by construction ∇φ = ∇v on Qt, we have
∫

Qs

∣

∣|∇φ|2 − |∇v|2
∣

∣ dx =

∫

Qs\Qt

∣

∣|∇φ|2 − |∇v|2
∣

∣ dx ≤ (1.2.3)

≤ 2
[

∫

Qs\Qt

|∇v|2 dx+

∫

Qs

|∇w|2 dx
]

.

Moreover, by the quasi-minimum property of v, we have
∫

Qs

(|∇v|2 + 1) dx ≤ Q

∫

Qs

(|∇w|2 + 1) dx; (1.2.4)

therefore (1.2.2), (1.2.3), and (1.2.4) imply
∫

Qt

|∇v|2 dx =

∫

Qt

|∇φ|2 dx ≤
∫

Qs

|∇φ|2 dx ≤ (1.2.5)

≤ (Q+ 2)

∫

Qs

(|∇w|2 + 1) dx+ 2

∫

Qs\Qt

|∇v|2 dx.

Using the relation

|∇w|2 = |(1 − η)∇v + (v − vs)∇η|2 ≤ c[(1 − η)2|∇v|2 + (s− t)−2|v − vs|2],
we obtain from (1.2.5)

∫

Qt

|∇v|2 dx ≤ (c+ 1)(Q+ 2)
{

∫

Qs\Qt

|∇v|2 dx+

+
1

(s− t)2

∫

Qs

|v − vs|2 dx+ |Qs|
}

. (1.2.6)

Since we have
∫

Qs

|v − vs|2 dx ≤ c

∫

QR

|v − vR|2 dx,

(1.2.6) implies
∫

Qt

|∇v|2 dx ≤ (c+ 1)(Q+ 2)
{

∫

Qs\Qt

|∇v|2 dx+

+
1

(s− t)2

∫

QR

|v − vR|2 dx+ |Qs|
}

. (1.2.7)

Now we use the “hole filling” method: we add to both terms of (1.2.7) the quantity

(c+ 1)(Q + 2)

∫

Qt

|∇v|2 dx,
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to get
∫

Qt

|∇v|2 dx ≤ θ

∫

Qs\Qt

|∇v|2 dx+
1

(s− t)2

∫

QR

|v − vR|2 dx+ |QR|, (1.2.8)

with 1 > θ := (c+1)(Q+2)
(c+1)(Q+2)+1 . Therefore, we are in the position to apply the same technical

Lemma as in [23] (see [23, Lemma 6.1]), obtaining
∫

QR/2

|∇v|2 dx ≤ c
{ 1

R2

∫

QR

|v − vR|2 dx+ |QR|
}

. (1.2.9)

Set now 2∗ := 2d
2+d , we have 2∗ < d and

(2∗)
∗ =

2∗d

d− 2∗
= 2;

hence, by the Sobolev-Poincaré inequality (see [23, formula (3.32)]), we have
∫

QR

|v − vR|2 dx ≤ c
(

∫

QR

|∇v|2∗ dx
)2/2∗

= c
(

∫

QR

|∇v|2m dx
)1/m

,

which together with (1.2.9) gives (1.2.1). �

If we deal with quasi-minima satifying a prescribed boundary condition, the following
result can be proved with similar arguments (see [23, Section 6.5]).

Theorem 1.2.3. Let V ∈ W 1,p(D; RN ), for 2 < p, and let v ∈ V + H1
0 (D; RN ) be a

Q-cubic quasi-minimum of the functional

G(w) =

∫

D
(1 + |∇w(x)|2) dx,

i.e., for every cube QR ⊂ R
d, and every w ∈ H1(D; RN ) such that v − w ∈ H1

0 (D ∩QR)
we have

∫

(QR∩D)
(1 + |∇v|2) dx ≤ Q

∫

QR∩D
(1 + |∇w|2) dx.

Then there exist a positive constant C > 0, depending only on Q, such that
∫

QR/2

−|∇(v − V )|2 dx ≤ C
{(

∫

QR

−|∇(v − V )|2m dx
)

1
m

+ 1
}

, (1.2.10)

for every cube QR ⊂ R
d, where m =

d

2 + d
and v − V is extended to 0 in QR \D.

Using Theorem 1.2.2 and Theorem 1.2.3, we can obtain as in [23, Theorem 6.8] the
following result

Theorem 1.2.4. Let V ∈ W 1,p(D; RN ), for 2 < p, and let v ∈ V + H1
0 (D; RN ) a

Q-cubic quasi-minimum of the functional

G(w) =

∫

D
(1 + |∇w(x)|2) dx.

Then there exist constants γ > 0 and r > 1, depending only on Q and V , such that
∫

D
|∇v|2r dx ≤ γ

{

(

∫

D
|∇v|2 dx

)r
+ 1

}

. (1.2.11)
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1.3. Measures

In this section we collect some technical tools concerning measures in general, and
Young measures in particular.

We will use the following notation: πD and πΞ will denote the usual projections of the
product space D×Ξ on D and Ξ respectively; in the case Ξ = Ξ1×Ξ2, π̃Ξi will denote the
projection of D×Ξ1 ×Ξ2 on D×Ξi and πΞi the projection of Ξ1 ×Ξ2 on Ξi, for i = 1, 2.

We denote by Mb(D × Ξ) the space of all bounded Radon measures on D × Ξ; this
space can be identified with the dual of the Banach space C0(D×Ξ). We will consider on
Mb(D × Ξ) the weak* topology deriving from this duality.

Let (A,F) be a measure space, Ξ a finite dimensional Hilbert space, and µ ∈Mb(D×Ξ);
for every B(D)-F-measurable function f : D × Ξ → A, the image measure, defined by
µ(f−1(B)) for every measurable set B ⊆ A, will be denoted by f(µ); for every bounded
measurable function g : D → R, the product gµ is defined by

∫

D×Ξ
φ(x, ξ) d(gµ)(x, ξ) :=

∫

D×Ξ
g(x)φ(x, ξ) dµ(x, ξ),

for every bounded Borel function φ : D × Ξ → R.

We recall the following classical result (see, e.g., [46, Appendix A2]).

Theorem 1.3.1 (Disintegration Theorem). Let ν and µ be nonnegative measures in
Mb(D) and Mb(D×Ξ), respectively, such that πD(µ) = ν. Then there exists a measurable
family (µx)x∈D of probability measures on Ξ, such that

∫

D×Ξ
f(x, ξ)dµ(x, ξ) =

∫

D

(

∫

Ξ
f(x, ξ)dµx(ξ)

)

dν(x),

for every bounded Borel function f : D×Ξ → R. The measures µx are uniquely determined
for a.e. x ∈ D and we will write

µ =

∫

D
µx dν(x). (1.3.1)

The space Y (D; Ξ) of the Young measures on D with values in Ξ is the space of all
nonnegative measures µ ∈Mb(D × Ξ) such that

πD(µ) = Ld. (1.3.2)

Applying the Disintegration Theorem to µ ∈ Y (D; Ξ), we deduce the existence of a mea-
surable family of probability measures on Ξ, (µx)x∈D, with

µ =

∫

D
µx dx.

Fixed p ≥ 1, Y p(D; Ξ) denotes the space of all µ ∈ Y (D; Ξ), whose p-moment
∫

D×Ξ
|ξ|pdµ(x, ξ) =

∫

D

(

∫

Ξ
|ξ|p dµx(ξ)

)

dx

is finite.
Given ξ0 ∈ Ξ, the measure δξ0 ∈Mb(Ξ) is defined by

∫

Ξ
f(ξ) dδξ0(ξ) = f(ξ0),
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for every bounded Borel function f : Ξ → R; fixed a B(D)-B(Ξ)-measurable function
u : D → Ξ, the Young measure δu ∈ Y (D; Ξ) is defined by

∫

D×Ξ
g(x, ξ) dδu(x, ξ) =

∫

D
g(x, u(x)) dx,

for every bounded Borel function g : D × Ξ → R. In particular δξ0 is the Young measure
associated to the constant function u(x) ≡ ξ0, which should not be confused with the
measure δξ0 .

We say that a sequence µk in Y (D; Ξ) weakly* converges if it converges in the weak*
topology of Mb(D × Ξ).

Remark 1.3.2. Since the total variation of a Young measure µ is |µ|(D×Ξ) = Ld(D),
Y (D; Ξ) is contained in a bounded subset of the dual of a separable Banach space, therefore
it is metrizable with respect to the weak* topology.

In this thesis we deal with Young measures with finite p-moment, therefore it is worth
defining the following notion of convergence.

Definition 1.3.3. We will say that µk ⇀ µ p-weakly* if the p-moments of µk are
equibounded and µk ⇀ µ weakly*.

We recall that Y (D; Ξ) is not closed with respect to the weak* convergence, differently
from Y p(D; Ξ), for p > 1, which is closed under p-weakly* convergence, as we can deduce
from the following remark.

Remark 1.3.4. If µk is a sequence in Y (D; Ξ) and µk weakly* converges to some
µ ∈Mb(D × Ξ), then for every positive Carathéodory function f on D × Ξ we have

∫

D×Ξ
f(x, ξ) dµ(x, ξ) ≤ lim inf

k→∞

∫

D×Ξ
f(x, ξ) dµk(x, ξ), (1.3.3)

(see [46, Theorem 4]). In particular, if a sequence (µk)k ⊂ Y p(D; Ξ) p-weakly* converges
to a measure µ ∈ Mb(D × Ξ), then µ ∈ Y p(D; Ξ); moreover from the previous remark
we can deduce that a sequence in Y p(D; Ξ) with equibounded p-moments has always a
subsequence which converges p-weakly*.

The following lemma is a slight modification of [43, Proposition 6.5, pg.103].

Lemma 1.3.5. Let 1 < p ≤ ∞, and let (µk)k ⊆ Y p(D; Ξ) satisfy µk ⇀ µ p-weakly*,
for a suitable µ ∈ Y p(D; Ξ). Then, for every Carathéodory function f : D × Ξ → R, with
|f(x, ξ)| ≤ a(x) + b(x)|ξ|q, for every x ∈ D, ξ ∈ Ξ, for suitable 1 ≤ q < p, b a nonnegative

function in L
p

p−q (D), and a a nonnegative function in L1(D), it holds
∫

D×Ξ
f(x, ξ) dµk(x, ξ) −→

∫

D×Ξ
f(x, ξ) dµ(x, ξ).

In particular, if µk ⇀ µ p-weakly*, then π̃i(µk) ⇀ π̃i(µ) in Y p(D; Ξi), as k → ∞, for
i = 1, 2.

Proof. It is enough to prove the statement for f ≥ 0.
Let us suppose first that f has compact support and is uniformly bounded by a constant

N . By Lemma 1.1.3 , for every ε > 0, there exists a measurable subset Dε of D, such
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that |Dε| < ε, D \Dε is compact, and the restriction to D \Dε of f is continuous. Hence
f ∈ C0((D \Dε) × Ξ). Therefore, for every ε > 0 we have

∫

(D\Dε)×Ξ
f(x, ξ) dµk(x, ξ) →

∫

(D\Dε)×Ξ
f(x, ξ) dµ(x, ξ),

as k → ∞. On the other hand, we have

sup
k

∫

Dε×Ξ
f(x, ξ) dµk(x, ξ) ≤ sup

k
Nµk(Dε × Ξ) = N |Dε| ≤ Nε→ 0,

as ε→ 0, and the same holds for µ. Hence in this case the result is proved.
Let us consider now the case of f uniformly bounded by a positive constant N , and

such that ξ 7→ f(x, ξ) has compact support K ⊂ Ξ, for a.e. x ∈ D. For every δ > 0, let Dδ

be a measurable subset of D with |Dδ | ≤ δ, and consider a cut-off function ηδ : D → [0, 1],
with ηδ |D\Dδ

≡ 1. The function ηδf is uniformly bounded with compact support; hence,
by the previous step of the proof, we know that for every δ > 0

∫

D×Ξ
ηδ(x)f(x, ξ) dµk(x, ξ) →

∫

D×Ξ
ηδ(x)f(x, ξ) dµ(x, ξ),

as k → ∞. On the other hand, we have

sup
k

∫

D×Ξ
(1 − ηδ(x))f(x, ξ) dµk(x, ξ) ≤ sup

k
Nµk(Dδ × Ξ) = N |Dδ| ≤ Nδ → 0,

as δ → 0, and the same holds for µ. Therefore, also in this case we have proved the thesis.
Suppose now that ξ 7→ f(x, ξ) has compact support K ⊂ Ξ, for a.e. x ∈ D, and that

there exists a function c ∈ L1(D; R) satisfying f(x, ξ) ≤ c(x) for every ξ and a.e. x. Let
fN : D × Ξ → [0,∞) be defined by

fN (x, ξ) := min{f(x, ξ),min{N, c(x)}},
for every ξ and a.e. x, and for every N > 0. It is immediate to see that

fN(x, ξ) =

{

N if N ≤ c(x) and N ≤ f(x, ξ)

f(x, ξ) otherwise
.

In particular fN (x, ξ) ≤ N , for every ξ and for a.e. x. Therefore, by the previous step, for
every N > 0 we have

∫

D×Ξ
fN (x, ξ) dµk(x, ξ) →

∫

D×Ξ
fN(x, ξ) dµ(x, ξ),

as k → ∞. On the other hand, |f(x, ξ) − fN(x, ξ)| ≤ (c(x) −N)+, so that

sup
k

∫

D×Ξ
|f(x, ξ) − fN (x, ξ)| dµk(x, ξ) ≤ ‖(c(·) −N)+‖1 → 0,

as N → ∞, and the same holds for µ. Hence we can conclude that the result is true also
in this case.

Finally, let us consider the general case. For every t ∈ R, define a cut-off function
ηt ∈ C∞(Ξ, [0, 1]), with supp(ηt) ⊆ {|ξ| < t+ 1} and ηt|{|ξ|≤t} ≡ 1. Thanks to the growth
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hypothesis on f , ηt(ξ)f(x, ξ) ≤ a(x) + b(x)(t + 1)q , for every t; therefore we are in the
hyptheses of the previous case and

∫

D×Ξ
ηt(ξ)f(x, ξ) dµk(x, ξ) →

∫

D×Ξ
ηt(ξ)f(x, ξ) dµ(x, ξ)

as k → ∞. To conclude, it is now enough to show that

sup
k

∣

∣

∣

∫

D×Ξ
(1 − ηt(ξ))f(x, ξ) dµk(x, ξ)

∣

∣

∣
→ 0, (1.3.4)

∣

∣

∣

∫

D×Ξ
(1 − ηt(ξ))f(x, ξ) dµ(x, ξ)

∣

∣

∣
→ 0,

as t→ ∞.
To this end, let us suppose first that b is a constant function, and consider for every n

the function

fn(x, ξ) := min{f(x, ξ),min{a(x), n} + b|ξ|q},
for a.e. x ∈ D and every ξ ∈ Ξ. It is immediate to see that

fn(x, ξ) =

{

n+ b|ξ|q if n ≤ a(x) and n+ b|ξ|q ≤ f(x, ξ)

f(x, ξ) otherwise.

Hence |f(x, ξ) − fn(x, ξ)| ≤ (a(x) − n)+, so that

sup
k

∫

D×Ξ
|f(x, ξ) − fn(x, ξ)| dµk(x, ξ) ≤ ‖(a(·) − n)+‖1 → 0,

as n→ ∞. On the other hand 0 ≤ fn(x, ξ) ≤ n+ b|ξ|q; therefore, we have

0 ≤
∫

D×Ξ
(1 − ηt(ξ))fn(x, ξ) dµk(x, ξ) ≤

∫

{(x,ξ) : |ξ|>t}
fn(x, ξ) dµk(x, ξ) ≤

≤ 1

tp−q

∫

D×Ξ
|ξ|p−q(n+ b|ξ|q) dµk(x, ξ) ≤ (1.3.5)

≤ 1

tp−q
[n|D|q/p + b]

(

1 +

∫

D×Ξ
|ξ|p dµk(x, ξ)

)

;

since the p-moments of µk are uniformly bounded, we deduce from (1.3.5) that

sup
k

∫

D×Ξ

∫

D×Ξ
(1 − ηt(ξ))fn(x, ξ) dµk(x, ξ) → 0,

as t → ∞, and the same occurs to µ. Hence we have shown that (1.3.4) holds for every
positive function bounded from above by a(x) + b|ξ|q.

Consider now the general case of b ∈ L
p

p−q (D). For every m define

fm(x, ξ) := min{f(x, ξ), a(x) + min{b(x),m}|ξ|q}
for a.e. x ∈ D and every ξ ∈ Ξ. As before, we have

fm(x, ξ) =

{

a(x) +m|ξ|q if m ≤ b(x) and a(x) +m|ξ|q ≤ f(x, ξ)

f(x, ξ) otherwise,
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so that |f(x, ξ) − fm(x, ξ)| ≤ (b(x) −m)+|ξ|q. Therefore

sup
k

∫

D×Ξ
|f(x, ξ) − fm(x, ξ)| dµk(x, ξ) ≤ ‖(b(·) −m)+‖ p

p−q
sup

k

(

∫

D×Ξ
|ξ|p dµk(x, ξ) + 1

)

,

which vanishes as m → ∞, thanks to the uniform bound on the p-moment of µk. On the
other hand 0 ≤ fm(x, ξ) ≤ a(x) +m|ξ|q, so that we can apply the partial result obtained
above to deduce that, fixed m,

sup
k

∫

D×Ξ
(1 − ηt(ξ))fm(x, ξ) dµk(x, ξ) → 0,

∫

D×Ξ
(1 − ηt(ξ))fm(x, ξ) dµ(x, ξ) → 0,

as t→ ∞, which concludes the proof. �

For every g ∈ Lp(D; Ξ), the translation map Tg from D × Ξ into itself is defined by
Tg(x, ξ) := (x, ξ + g(x)). We can deduce from Lemma (1.3.5) the following result.

Lemma 1.3.6. Let (µk)k be a sequence in Y p(D; Ξ), such that µk ⇀ µ p-weakly*. Then
Tg(µk) ⇀ Tg(µ) p-weakly*, for every g ∈ Lp(X; Ξ).

More in general

Lemma 1.3.7. Let µk ⇀ µ p-weakly* and (gk)k be a bounded sequence in Lp(D; Ξ) with
gk → g strongly in L1(D; Ξ). Then Tgk

(µk) ⇀ Tg(µ) p-weakly*.

Proof. Since (gk)k is bounded in Lp(D; Ξ), the p-moments of Tgk
(µk) are equi-

bounded. We now prove that Tgk
(µk) ⇀ Tg(µ) weakly*. Since C0(D × Ξ) is the closure of

C∞
0 (D×Ξ) with respect to the norm ‖·‖∞, thanks to (1.3.2), to prove that Tgk

(µk) ⇀ Tg(µ)
weakly* it is enough to show that

∫

D×Ξ
f(x, ξ + gk(x)) dµk(x, ξ) →

∫

D×Ξ
f(x, ξ + g(x)) dµ(x, ξ),

for every f ∈ C∞
0 (D × Ξ).

Let f ∈ C∞
0 (D × Ξ), we have

∣

∣

∣

∫

D×Ξ
f(x, ξ + g(x)) dµ(x, ξ) −

∫

D×Ξ
f(x, ξ + gk(x)) dµk(x, ξ)

∣

∣

∣
≤

≤
∣

∣

∣

∫

D×Ξ
f(x, ξ + g(x)) dµ(x, ξ) −

∫

D×Ξ
f(x, ξ + g(x)) dµk(x, ξ)

∣

∣

∣
+

+

∫

D×Ξ
|f(x, ξ + g(x)) − f(x, ξ + gk(x))| dµk(x, ξ).

By the Lipschitz continuity of f and (1.3.2), the last line can be estimated by c‖g − gk‖1

for a positive constant c; Lemma 1.3.6 implies now the thesis. �

If we deal with Young measures generated by gradients, the following Lemma, in the
version of Fonseca, Müller, and Pedregal ([20, Lemma 1.2]), can be very useful.
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Lemma 1.3.8 (Decomposition Lemma). Let (vj)j be a bounded sequence in H1(D; Ξ).
Then there exists a subsequence (vjk

)k of (vj)j , and another sequence (wk)k bounded in
H1(D; Ξ), such that

Ld({vjk
6= wk or ∇vjk

6= ∇wk}) → 0, (1.3.6)

as k → ∞, and (|∇wk|2)k is equiintegrable.

Note that condition (1.3.6) implies that both sequences (∇vjk
)k and (∇wk)k generate

the same Young measure, i.e., δ∇vjk
and δ∇wk

converge to the same Young measure.

Using part of the arguments of [20] and a more careful diagonalization argument, it
can be proved the following Lemma.

Lemma 1.3.9. Let (vj)j be a bounded sequence in L2(D; Ξ) such that there exists a
Young measure µ ∈ Y 2(D; Ξ) with δvj ⇀ µ weakly*. Then there exists another sequence

(wj)j , bounded in L2(D; Ξ), such that

Ld({vj 6= wj}) → 0, (1.3.7)

as j → ∞, and (|wj |2)j is equiintegrable.

The following theorem (see [5]) gives an important convergence result in case we deal
with equiintegrable sequences.

Theorem 1.3.10. (Fundamental Theorem for Young measures) Given a Young measure
µ, generated by a sequence of functions (uj)j , and a function f ∈ C(Ξ; R) such that the
sequence (f(uj))j is weakly sequentially relatively compact in L1(D), then

f(uj) ⇀ fµ weakly in L1(D),

where the function fµ ∈ L1(D) is defined by fµ(x) :=
∫

Ξ f(ξ) dµx(ξ) for a.e. x ∈ D. In
particular

∫

D
f(uj(x)) dx→

∫

D×Ξ
f(ξ) dµ(x, ξ).

The barycentre of a Young measure µ ∈ Y p(D; Ξ) is the function bar(µ) ∈ Lp(D; Ξ)
defined as

bar(µ)(x) :=

∫

Ξ
ξ dµx(ξ),

for a.e. x ∈ D.

Lemma 1.3.11. Let µk be a sequence in Y 2(D; Ξ), such that µk ⇀ µ 2-weakly*. Assume
that there exists a sequence of functions vk ∈ H1

0 (D; Ξ) such that ∇vk = bar(µk) for every
k. Then there exists a unique function v ∈ H1

0 (D; Ξ) such that vk ⇀ v weakly in H1 and
∇v = bar(µ).

Proof. Since ‖∇vk‖2
2 ≤

∫

D×Ξ |ξ|2 dµk(x, ξ) which is bounded uniformly with respect
to k by hypothesis, using Poincaré inequality we can deduce that there exists a subsequence
vkh

and a function v ∈ H1
0 (D; Ξ), such that vkh

⇀ v weakly in H1. Using the definition
of barycentre and Lemma 1.3.5, we deduce that ∇v = bar(µ) and hence ∇vkh

⇀ bar(µ)
weakly in L2(D; Ξ); together with Poincaré inequality, this implies that the whole sequence
vk converges to v weakly in H1. �





CHAPTER 2

Compatible systems of Young measures:

the stochastic process formulation and the discrete case

In this chapter we present the definition of compatible system of Young measures with
finite p-moment and the related notion of variation on a time interval. We propose an
alternative formulation of Young measures and compatible systems using probabilistic
language. Finally, we give a more explicit description of Young measures and compatible
systems with values in a finite set.

The results of this chapter are contained in [17] and [19].

2.1. Compatible systems of Young measures

In this section we present the definitions and results related to the notion of compatible
system of Young measures.

Let 2 ≤ p ≤ ∞.

Definition 2.1.1. A compatible system of Young measures with finite p-moments on
D with time set T and values in

∏

t∈T Ξt is a family µ = (µF ) of Young measures µF ∈
Y p(D;

∏

t∈F Ξt), with F varying among all nonempty finite subsets of T , such that the
compatibility condition

π̃F
G(µF ) = µG (2.1.1)

is satisfied, for every nonempty finite subsets G ⊂ F of T , where π̃F
G : D × ∏

t∈F Ξt →
D × ∏

s∈G Ξs maps (x, (ξt)t∈F ) in (x, (ξs)s∈G).

The space of all such systems is denoted by SY p(D;
∏

t∈T Ξt); in the special case of
Ξt ≡ Ξ, for every t ∈ T we will use the notation SY p(T,D; Ξ).

Remark 2.1.2. Let Y p(D; Ξ)T denote the set of all families of Young measures with
finite p-moments on D with values in Ξ, indexed on the set T . Given (µt)t∈T ∈ Y p(D; Ξ)T ,
we can always construct a compatible system µ ∈ SY p(T,D; Ξ) satisfying µt = µt for every
t ∈ T . Indeed it is enough to define

µF :=

∫

D
( ⊗
t∈F

µx
t ) dx,

for every nonempty finite subset F of T .

The space SY p(D;
∏

t∈T Ξt) will be equipped with the weakest topology for which
the maps µ 7→ µF from SY p(D;

∏

t∈T Ξt) into Y p(D;
∏

t∈F Ξt), endowed with the weak*
topology of Mb(D × ∏

t∈F Ξt), are continuous for every nonempty finite subset F of T .
We will refer to this topology as the weak* topology of SY p(D;

∏

t∈T Ξt).

27
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From now on we consider the case in which the time set is an interval [0, T ].
The following two definitions concern different approximation properties with respect

to time.

Definition 2.1.3. A compatible system of Young measures with finite p-moments µ is
said to be left continuous if for every finite sequence t1, . . . , tm in [0, T ], with t1 < · · · < tm,
the following property holds:

µs1...sm
⇀ µt1...tm p-weakly*

as si → ti, with si ∈ [0, T ] and si ≤ ti. We will denote the space of all left continuous
compatible systems by SY p

−([0, T ],D; Ξ).

Definition 2.1.4. Given a subset Θ of [0, T ] with L1([0, T ]\Θ) = 0, a family of Young

measures ν ∈ Y p(D; RM )[0,T ] is said to be Θ-p-weakly* approximable from the left if for
every t ∈ [0, T ] \ Θ there exists a sequence sj in Θ converging to t, with sj ≤ t, such that

νsj ⇀ νt p-weakly* (2.1.2)

as j → ∞.

Remark 2.1.5. Note that the notion of p-weakly* left continuity is much stronger
than Θ-p-weakly* approximability from the left: indeed the first one requires that the
convergence condition is satisfied not only for a single time but for every finite sequence

of times, and does not depend on the choice of the sequence sj
i approximating ti.

The following theorem can be considered as a version of Helly’s Theorem.

Theorem 2.1.6. Let µk be a sequence in SY p([0, T ],D; Ξ) such that

sup
k

Var(µk; 0, T ) ≤ C , (2.1.3)

sup
t∈[0,T ]

sup
k

∫

D×Ξ
|ξ|pdµk

t (x, ξ) ≤ C∗ , (2.1.4)

for finite constants C and C∗. Then there exist a subsequence, still denoted by µk, a
set Θ ⊂ [0, T ], containing 0 and such that [0, T ] \Θ is at most countable, and µ ∈
SY p

−([0, T ],D; Ξ) with

Var(µ; 0,T) ≤ C , (2.1.5)
∫

D×Ξ |ξ|pdµt(x, ξ) ≤ C∗ for every t ∈ [0, T ] , (2.1.6)

such that, for every nonempty finite subset F of Θ, we have

µk
F ⇀ µF p-weakly*. (2.1.7)

The proof of this Theorem follows easily from Theorem 8.10 of [10], since every Young
measure can be seen as a generalized Young measure and our more restrictive hypotheses
force the limit to be an element of SY p([0, T ],D; Ξ).

We define the variation of µ ∈ SY 2([0, T ],D; Ξ) on [a, b] ⊆ [0, T ] by

Var(µ; a, b) := sup
k

∑

i=1

∫

D×Ξk+1

|ξi − ξi−1| dµt0...tk
(x, ξ0, . . . , ξk)
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where the supremum is taken over all finite partitions a = t0 < · · · < tk = b of the interval
[a, b] (with the convention Var(µ; a, b) = 0, if a = b).

If H : Ξ → [0,+∞) is positively homogeneous of degree one and satisfies the triangle
inequality, we can define the H-variation of µ ∈ SY 2([0, T ],D; Ξ) on the time interval
[a, b] ⊆ [0, T ] as

VarH(µ; a, b) := sup
k

∑

i=1

∫

D×Ξk+1

H(ξi − ξi−1) dµt0...tk
(x, ξ0, . . . , ξk), (2.1.8)

where the supremum is taken over all finite partitions a = t0 < · · · < tk = b of the interval
[a, b] (with the convention VarH(µ; a, b) = 0, if a = b).

Adapting the argument in [10] (Theorem 8.11), it can be proved the following Lemma.

Lemma 2.1.7. Let µk be a sequence in SY 2([0, T ],D; Ξ). Suppose that there exist a
dense set Θ ⊂ [0, T ] containing 0 and µ ∈ SY 2

−([0, T ],D; Ξ), such that

µk
F ⇀ µF 2-weakly∗

for every nonempty finite subset F in Θ; then

VarH(µ; 0, T ) ≤ lim inf
k→∞

VarH(µk; 0, T )

for every positively one homogeneous function H : Ξ → [0,+∞) satisfying the triangle
inequality.

Definition 2.1.8. Fix a finite sequence 0 = t1 < · · · < tm = T in [0, T ]. For ev-
ery µ ∈ Y 2(D; Ξm), it is possible to define the piecewise constant interpolation µpwc ∈
SY 2([0, T ],D; Ξ) in the following way. For every finite sequence τ1 < · · · < τn of elements
of [0, T ] let ρτ1...τn : D × Ξm × R → D × Ξn × R be defined by

ρτ1...τn(x, ξt1 , . . . , ξtm) := (x, ξτ1 , . . . , ξτn),

with ξτi = ξtj , where j is the largest index such that tj ≤ τi. The compatible system of
Young measures with finite second moments µpwc is then defined by

µpwc
τ1...τn

:= ρτ1...τn(µ).

Lemma 2.1.9. Let (µn)n be a sequence in SY 2([0, T ],D; Ξ1) and (νn)n a sequence in
SY 2([0, T ],D; Ξ1 × Ξ2). Assume that they satisfy π̃Ξ1(ν

n
t ) = µn

t , for every t ∈ [0, T ], that

sup
t∈[0,T ]

sup
n

∫

D×Ξ1×Ξ2

|(ξ1, ξ2)|2 dνn
t (x, ξ1, ξ2) ≤ C, (2.1.9)

for a positive constant C, and that there exist a subset Θ of [0, T ], containing 0, with
L1([0, T ] \ Θ) = 0, and µ ∈ SY 2

−([0, T ],D; Ξ1) with

µn
t1...tm ⇀ µt1...tm , 2-weakly*,

for every t1 < · · · < tm in Θ. For every t ∈ Θ let (nt
k)k be an increasing sequence of

integers; then there exists ν ∈ SY 2([0, T ],D; Ξ1 × Ξ2), such that π̃Ξ1(νt) = µt, for every
t ∈ [0, T ] and satisfying the following properties:

(1) for every t ∈ Θ, there exists a subsequence ν
nt

k,i

t of ν
nt

k
t such that

ν
nt

k,i

t ⇀ νt 2-weakly*; (2.1.10)
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(2) for every t ∈ [0, T ] \ Θ, there exists a sequence sj in Θ, converging to t, with
sj ≤ t, such that

νsj ⇀ νt 2-weakly*. (2.1.11)

The proof of this Lemma was contained in a preliminary version of [12].

Proof. Fix t ∈ Θ; thanks to (2.1.9), we can deduce that there exist ν0
t ∈ Y 2(D; Ξ1 ×

Ξ2) and a subsequence (ν
nt

k,i

t )i of (ν
nt

k
t )k, satisfying (2.1.10). Thanks to Remark 1.3.4 and

Lemma 1.3.5, for every t ∈ Θ we have
∫

D×Ξ1×Ξ2

|(ξ1, ξ2)|2 dν0
t (x, ξ1, ξ2) ≤ C (2.1.12)

and π̃Ξ1(ν
0
t ) = µt.

Consider now the sets Bt defined in the following way:

• if t ∈ Θ, Bt denotes the collection of all ν ∈ SY 2([0, T ],D; Ξ1 × Ξ2) such that
the second moments of νs are bounded by the constant C appearing in (2.1.9),
for every s ∈ [0, T ], and satisfying νt = ν0

t ;
• if t /∈ Θ, Bt is the collection of all ν ∈ SY 2([0, T ],D; Ξ1 × Ξ2), such that the

second moments of νs are bounded by the constant C appearing in (2.1.9), for
every s ∈ [0, T ], and for which there exists a sequence sj in Θ, converging to t
with sj ≤ t, such that ν0

sj ⇀ νt, weakly*.

For every t ∈ [0, T ], Bt 6= ∅: indeed, if t ∈ Θ it comes immediately from Remark 2.1.2

applied to (νs)s∈[0,T ] ∈ Y 2(D; Ξ)[0,T ] defined by νs := ν0
t for every s ∈ [0, T ]; if t /∈ Θ,

thanks to (2.1.12), there exist sj, with sj ∈ Θ, sj → t and sj ≤ t, and µ ∈ Y 2(D; Ξ1×Ξ2),
such that ν0

sj ⇀ µ 2-weakly*, hence the second moment of µ is bounded by C and we can

apply Remark 2.1.2 to (νs)s∈[0,T ] ∈ Y 2(D; Ξ)[0,T ] defined by νs := µ, for every s ∈ [0, T ],
and find an element of Bt. Using Remark 1.3.2 we can see that the set of all Young
measures µ for which there exists a sequence sj → t with sj ≤ t and ν0

sj ⇀ µ weakly* is
sequentially closed with respect to the weak* topology (thanks to (2.1.12)); moreover we
observe that the set of all ν ∈ SY 2([0, T ],D; Ξ) with the second moments equibounded
by the constant C is closed in the weak* topology of SY 2([0, T ],D; Ξ), therefore, using
again Remark 1.3.2, we can conclude that, for every t ∈ [0, T ], Bt are closed subsets
of SY 2([0, T ],D; Ξ1 × Ξ2), endowed with the weak* topology. Moreover the family has
the finite intersection property (for every finite sequence t1 < · · · < tm in [0, T ], using
Definition 2.1.8, we can find an element belonging to Bt1 ∩ · · · ∩Btm) and is contained in
the set of all ν ∈ SY 2([0, T ],D; Ξ1×Ξ2) for which the second moments of νt are uniformly
bounded by the constant C appearing in (2.1.9); since, thanks to Tychonoff’s Theorem,
this is a compact subset of SY 2([0, T ],D; Ξ1 ×Ξ2), endowed with the weak* topology, we
can conclude that there exists ν belonging to Bt, for every t ∈ [0, T ]. By construction ν

satisfies (1) and (2) and from the left continuity of µ we can deduce that π̃Ξ1(νt) = µt,
for every t ∈ [0, T ], as required. �

2.2. The probabilistic formulation

In the first part of this section we want to point out that Young measures can be
presented using a probabilistic language, and precisely the notion of random variable.
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While for a single Young measure this probabilistic presentation does not introduce rele-
vant simplifications, it will be very useful in the case of families of time-dependent Young
measures.

For simplicity, in this section we assume |D| = 1.
Probability spaces of the form (D × Ω,B(D) ⊗ F , P ), where Ω is a measurable space,

B(D) denotes the Borel σ-algebra on D, F is a σ-algebra on Ω and P a probability measure
with the property πD(P ) = Ld, will be called (D,Ld)-probability spaces.

We can associate to every Young measure µ on D with values in Ξ a random variable
Y defined on a (D,Ld)-probability space with values in Ξ, in such a way that

∫

D×Ξ
f(x, ξ) dµ(x, ξ) =

∫

D×Ω
f(x, Y (x, ω)) dP (x, ω), (2.2.1)

for every bounded Borel function f : D × Ξ → R. Indeed it is enough to take as Ω
the space Ξ itself, as Y the projection on Ξ, and as P the measure µ itself, which is
a probability measure thanks to the assumption on |D| and (1.3.2). Conversely, given
any Ξ-valued random variable Y on a (D,Ld)-probability space, formula (2.2.1) defines a
Young measure µ, which will be denoted by (πD, Y )(P ), since it coincides with the image
of the measure P under the map (πD, Y ) : D × Ω → D × Ξ.

We say that a random variable Y on a (D,Ld)-probability space (D × Ω, P ) has finite
p-moment if

∫

D×Ω
|Y (x, ω)|p dP (x, ω) <∞.

Hence a Young measure has finite p-moment if and only if the associated random variable
does.

In the particular case of µ = δu ∈ Y p(D; Ξ) with u ∈ Lp(D; Ξ), for every (D,Ld)-
probability space we can associate to δu the random variable Y : D × Ω → Ξ, defined
by Y (x, ω) := u(x) for Ld-a.e. x ∈ D and for every ω ∈ Ω; we will denote this random
variable simply by u.

In the more general case of a measure µ ∈ Y p(D; Ξ) which is not associated to a
function, there always exists a bounded sequence of functions uk ∈ Lp(D; Ξ) such that

δuk
⇀ µ p-weakly*,

as k → ∞ (see [43, Theorem 7.7 pg. 126]). In probabilistic language this means that the
random variable Y ∈ Lp(D × Ω;Ξ) satisfies the following property:

(πD, uk)(P ) ⇀ (πD, Y )(P ) p-weakly*,

as k → ∞, or equivalently

Ld({x ∈ B uk(x) ∈ A})
Ld(B)

→ P ({(x, ω) ∈ B × Ω : Y (x, ω) ∈ A})
P (B × Ω)

, (2.2.2)

as k → ∞, for every Borel sets B ⊂⊂ D and A ⊂⊂ R with P (∂({(x, ω) : x ∈
B, Y (x, ω) ∈ A})) = 0. Hence the dependence of Y on the variable ω plays the role
of describing the statistics of the oscillations of the sequence uk.

As we have seen, if we deal with a single random variable the association to a Young
measure is immediate; more complicated is the case of a stochastic process (Y t)t∈T on a
(D,Ld)-probability space in a time set T : indeed the family of measures ((πD,Y t)(P ))t∈T
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gives an insufficient information on the stochastic process, since in general we cannot go
back to (πD,Y t1 , . . . ,Y tn)(P ), for an increasing sequence of time instants t1 < · · · < tn,
just using (πD,Y ti)(P ), i = 1, . . . , n.

In the second part of this section, using a modification of Kolmogorov Theorem (see [26,
pg. 29]), we want to show that the correct correspondence is between stochastic processes
and compatible systems of Young measures.

Given a stochastic process (Y t)t∈T on a (D,Ld)-probability space, with

Y t ∈ Lp(D × Ω;Ξt),

we can define a family of Young measures on D, indexed by the nonempty finite subsets
F of T , as

µF := (πD, (Y t)t∈F )(P ). (2.2.3)

It is immediate to see that every µF has finite p-moment and that this family satisfies the
compatibility condition (2.1.1).

The following remark is technical and will be used to prove the correspondence between
compatible systems and stochastic processes.

Remark 2.2.1. If µ satisfies the compatibility condition, for every nonempty finite
subsets G ⊂ F of T there exists a set NF

G of D with Ld(NF
G ) = 0, such that

πF
G(µx

F ) = µx
G for every x ∈ D \NF

G . (2.2.4)

Conversely, if (2.2.4) holds for a.e. x ∈ D, then µ satisfies the compatibility condition
(2.1.1).

Hence, up to subsets of D with zero measure, the compatibility condition commutes in
some sense with the disintegration.

In the next Theorem we will show that to every compatible system of Young mea-
sures with finite p-moments we can associate a stochastic process on a suitable (D,Ld)-
probability space.

Theorem 2.2.2. Given a set of indices T and a compatible system µ ∈ SY p(D;
∏

t∈T Ξt),

there exist a (D,Ld)-probability space and a stochastic process (Xt)t∈T with

X t ∈ Lp(D × Ω;Ξt), (2.2.5)

for every t ∈ T , such that

(πD, (X t)t∈F )(P ) = µF , (2.2.6)

for every nonempty finite subset F of T .

Proof. Let t∞ be an index such that t∞ /∈ T . Set T̂ := {t∞} ∪ T and let Ξt∞ := D.

We want to construct a system of finite dimensional distributions indexed on T̂ , satis-
fying the hypotheses of Kolmogorov Theorem.

Let F be a nonempty finite subset of T̂ ; we distinguish three cases. If t∞ ∈ F and
F \ {t∞} 6= ∅ we set

νF = µF\{t∞}. (2.2.7)

If t∞ /∈ F , we set

νF := π Q

τ∈F
Ξτ

(µF ), (2.2.8)
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where πQ

τ∈F Ξτ
: D × ∏

τ∈F Ξτ → ∏

τ∈F Ξτ denotes the usual projection. Finally, if F =

{t∞}, we set

νF := Ld. (2.2.9)

The system of finite dimensional distributions ν satisfies the following compatibility
condition: for every nonempty finite subsets G ⊂ F of T̂ , we have

πF
G(νF ) = νG. (2.2.10)

Indeed, in the case t∞ ∈ F and F \ {t∞} 6= ∅, it follows from compatibility condition for
µ if t∞ ∈ G and G \ {t∞} 6= ∅, it comes from (1.3.2) if G = {t∞}, and it easily follows
from (2.2.8) if t∞ /∈ G.In case t∞ /∈ F , (2.2.10) can be proved using the construction in
(2.2.8) and the analysis of the previous case.

By (2.2.10), ν satisfies the hypotheses of Kolmogorov Theorem; therefore it is enough to
choose Ω :=

∏

t∈T Ξt, F the product of the Borel σ-algebras of Ξt, for t ∈ T , X t : Ω → Ξt,
for t ∈ T , the usual projections, and Kolmogorov Theorem guarantees the existence of a
probability measure P on (D×Ω,B(D)×F) with πD(P ) = Ld which satisfies (2.2.6). �

Using the previous result we will prove that we can associate to a pair of two compatible
systems, connected by a further compatibility condition, a pair of stochastic processes on
the same probability space.

Lemma 2.2.3. Let V and W finite dimensional Hilbert spaces, µ ∈ Y p(D;V ) and
ν ∈ Y p(D;V ×W ) be such that

π̃V (ν) = µ. (2.2.11)

Then for Ld-a.e. x ∈ D we have

(νx)v = ν(x,v),

for µx-a.e. v ∈ V , where (νx)v is the disintegration of νx with respect to µx and ν(x,v) the
disintegration of ν with respect to µ.

Proof. It is easy to see, as for Remark 2.2.1, that there exists a set N ⊆ D, with
Ld(N) = 0, such that for every x ∈ D \N

πV (νx) = µx. (2.2.12)

Hence for every bounded Borel function f : D × V ×W → R,
∫

D×V ×W
f(x, v,w) dν(x, v,w) =

∫

D

(

∫

V ×W
f(x, v,w) dνx(v,w)

)

dx =

=

∫

D

(

∫

V

(

∫

W
f(x, v,w) d(νx)v(w)

)

dµx(v)
)

dx.

On the other hand, thanks to (2.2.11),
∫

D×V ×W
f(x, v,w) dν(x, v,w) =

∫

D×V

(

∫

W
f(x, v,w) dν(x,v)(w)

)

dµ(x, v) =

=

∫

D

(

∫

V

(

∫

W
f(x, v,w) dν(x,v)(w)

)

dµx(v)
)

dx.

This concludes the proof. �
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Theorem 2.2.4. Let T a set of indices, Vt and Wt finite dimensional Hilbert spaces,
for every t ∈ T . Let µ ∈ SY p(D; (Vt)t∈T ) and ν ∈ SY p(D; (Vt ×Wt)t∈T ). Assume that

π̃Vt(νt) = µt,

for every t ∈ T . Then there exist a (D,Ld)-probability space (D × Ω,B(D) ⊗F , P ) and a
stochastic process (Zt,Y t)t∈T with

Zt ∈ Lp(D × Ω;Vt),

Y t ∈ Lp(D × Ω;Wt),

for every t ∈ T , such that

(πD, (Zt)t∈F )(P ) = µF , (2.2.13)

for every nonempty finite subset F of T , and

(πD,Zt,Y t)(P ) = νt, (2.2.14)

for every t ∈ T .

Proof. We want to construct from µ and ν a unique compatible system and to apply
to it Theorem 2.2.2.

Fix a nonempty finite subset F of T . Denote by (µx
F )x∈D, (νx

t )x∈D the disintegrations

with respect to Ld of µF , and νt, t ∈ F , respectively. As observed in (2.2.12), πVt(ν
x
t ) =

µx
t , for a.e. x ∈ D, for every t ∈ F . Hence, for a.e. x ∈ D, we can write

νx
t =

∫

Vt

(νx
t )vt dµx

t (vt).

Using the fact that the disintegration is a measurable family, a Dynkin class argument,
and Lemma 2.2.3, we can deduce that

(x, (vt)t∈F ) 7→ ( ⊗
t∈F

(νx
t )vt)(B) (2.2.15)

is a Borel measurable function, for every Borel subset B of
∏

t∈F Wt. In particular for a.e.
x ∈ D the function (vt)t∈F 7→ (⊗t∈F (νx

t )vt)(B) is Borel measurable; hence, for every Borel
sets A ⊆ ∏

t∈F Vt and B ⊆ ∏

t∈F Wt, we can define a measure ν̃x
F on

∏

t∈F (Vt ×Wt) by

ν̃x
F (A×B) :=

∫

A
( ⊗
t∈F

(νx
t )

vt)(B) dµx
F ((vt)t∈F ), (2.2.16)

for a.e. x ∈ D.
By construction, for a.e. x ∈ D, ν̃x

F is a probability measure with the properties

π Q

t∈F
Vt

(ν̃x
F ) = µx

F , (2.2.17)

πVt×Wt(ν̃
x
F ) = νx

t , (2.2.18)

for every t ∈ F .
The Borel measurability of the function in (2.2.15) guarantees that (ν̃x

F )x∈D is a mea-
surable family of probability measures on

∏

t∈F (Vt ×Wt) and we can define

ν̃F :=

∫

D
ν̃x

F dx.



2.2. THE PROBABILISTIC FORMULATION 35

It is easy to check that, for F running over all nonempty finite subsets of T , ν̃F ∈
Y p(D;

∏

t∈F (Vt × Wt)) and satisfies the compatibility condition; hence we have ν̃ ∈
SY p(D; (Vt ×Wt)t∈T ). Moreover, thanks to (2.2.17) and (2.2.18),

π̃Q

t∈F Vt
(ν̃F ) = µF , (2.2.19)

for every nonempty finite subset F of T and

π̃Vt×Wt(ν̃t) = νt, (2.2.20)

for every t ∈ T .
Applying Theorem 2.2.2 to ν̃, we obtain a (D,Ld)-probability space (D × Ω,B(D) ⊗

F , P ) and a stochastic process (Zt,Y t)t∈T , with (Zt,Y t) : D × Ω → Vt ×Wt, such that

(πD, (Y t,Zt)t∈F )(P ) = ν̃F , (2.2.21)

for every nonempty finite subset F of T . Using the construction of (Zt,Y t) and (2.2.19),
(2.2.20), we can obtain the thesis. �

If the time set is an interval [0, T ] ⊂ R and Ξt ≡ Ξ for every t ∈ [0, T ], the notion
of variation of a stochastic process (Y t)t∈[0,T ] on a (D,Ld)-probability space, with Y t ∈
L1(D × Ω;Ξ), is defined in the usual way: for every time interval [a, b] ⊆ [0, T ] we set

Var(Y , P ; a, b) := sup
k

∑

i=1

∫

D×Ω
|Y ti(x, ω) − Y ti−1(x, ω)| dP (x, ω) =

= sup

k
∑

i=1

‖Y ti − Y ti−1‖1,

where the supremum is taken over all finite partitions a = t0 < · · · < tk = b of the interval
[a, b] (with the convention Var(Y , P ; a, b) = 0, if a = b).

Therefore, if µ is the compatible system associated to the stochastic process Y we have
Var(Y , P ; a, b) = Var(µ; a, b).

Before closing this section, we rephrase the notions introduced in Definition 2.1.3 and
Definition 2.1.4 in terms of stochastic processes.

Definition 2.2.5. A stochastic process (X t)t∈[0,T ] defined on a (D,Ld)-probability
space (D × Ω,B(D) ⊗ F , P ) is said to be p-weakly* left continuous if for every finite
sequence t1 < · · · < tn in [0, T ] we have

(πD,Xsj
1
, . . . ,X

sj
n
)(P ) ⇀ (πD,X t1 , . . . ,X tn)(P ) p-weakly*

as j → ∞, whenever sj
i → ti and sj

i ≤ ti for i = 1, . . . , n.

Definition 2.2.6. Given a subset Θ of [0, T ] satisfying L1([0, T ] \Θ) = 0, a stochastic
process (X t)t∈[0,T ] defined on a (D,Ld)-probability space (D×Ω,B(D)⊗F , P ) is said to
be Θ-p-weakly* approximable from the left if for every t ∈ [0, T ]\Θ there exists a sequence
sj in Θ converging to t, with sj ≤ t and

(πD,Xsj)(P ) ⇀ (πD,Xt)(P ) p-weakly* (2.2.22)

as j → ∞.
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2.3. The discrete case

Let Z be a finite subset of R
m.

The space of Young measures on D with values in Z is indicated with Y (D;Z) and
the space of compatible systems on D with time set A and values in Z is denoted by
SY (A,D;Z).

It is easy to see that µ ∈ Y (D;Z) if and only if its disintegration (µx)x∈D can be
written as

µ =

q
∑

α=1

bαδθα , (2.3.1)

where bα are functions in L∞(D; [0, 1]) satisfying the condition

q
∑

α=1

bα(x) = 1, for a.e. x ∈ D. (2.3.2)

In disintegrated form, formula (2.3.1) can be written as

µx =

q
∑

α=1

bα(x)δθα for a.e. x ∈ D.

Therefore Y (D;Z) can be identified with the set of all families b = (bα)qα=1 in L∞(D; [0, 1])
satisfying condition (2.3.2).

Set A
n
q := {1, . . . , q}n. If µ ∈ SY (A,D;Z), then for every t1 < · · · < tn in A there

exists a finite family bt1...tn = (bt1...tn
α1...αn

)(α1,...,αn)∈A
q
n

in L∞(D; [0, 1]), satisfying the property

∑

(α1,...,αn)∈A n
q

bt1...tn
α1...αn

(x) = 1, for a.e. x ∈ D, (2.3.3)

and such that

µt1...tn =
∑

(α1,...,αn)∈A n
q

bt1...tn
α1...αn

δ(θα1 ,...,θαn), (2.3.4)

for every finite sequence t1 < · · · < tn in A.
The projection property of compatible systems can be formulated in a simpler way

using this language: given any finite sequence t1 < · · · < tn in A ,we have

b
t1...ti−1ti+1...tn
α1...αi−1αi+1...αn =

q
∑

β=1

b
t1...ti−1titi+1...tn
α1...αi−1βαi+1...αn

, (2.3.5)

a.e. in D, for every (α1, . . . , αi−1, αi+1, . . . , αn) ∈ A
n−1
q and every i = 1, . . . , n. There-

fore we can identify the space SY (A,D;Z) with the set S(A,D, q) of all families b =
(bt1...tn)t1<···<tn , with t1 < · · · < tn varying in A, such that bt1...tn = (bt1...tn

α1...αn
)(α1,...,αn)∈A n

q

satisfy properties (2.3.3) and (2.3.5).
Let A = [0, T ]. Using the previous identification, we can rewrite the H-variation of a

compatible system µ ∈ SY (A,D;Z) in the interval (c, d) ⊆ [0, T ] (see (2.1.8)) in terms of
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the family b corresponding to µ: VarH(µ; c, d) = DissH(b; c, d), where

DissH(b; c, d) := sup

k
∑

i=1

∑

αβ

H(θβ, θα)

∫

D
b
ti−1ti
αβ (x) dx, (2.3.6)

where the supremum is taken over all finite partitions c = t0 < · · · < tk = d of the interval
[c, d] (with the convention DissH(b; c, d) = 0, if c = d).

It is easy to see that given a sequence (µk)k = (
∑q

α=1 b
k
αδθα)k in Y (D;Z), µk ⇀ µ =

∑q
α=1 bαδθα weakly* in Y (D;Z) if and only if bkα ⇀ bα L

∞-weakly*, for every α = 1, . . . , q.
Therefore a compatible system µ ∈ SY ([0, T ],D;Z) is left continuous if and only if the
correspondent b ∈ S([0, T ],D, q) satisfies the following property: for every finite sequence
t1 < · · · < tn in [0, T ]

bs1...sn
α1...αn

⇀ bt1...tn
α1...αn

L∞-weakly*, (2.3.7)

as si → ti, with si ∈ [0, T ] and si ≤ ti, for every (α1, . . . , αn) ∈ A
n
q . We denote the set of

all b ∈ S([0, T ],D, q) satisfying (2.3.7) by S−([0, T ],D, q).

Definition 2.3.1. Fixed a sequence 0 = t1 < · · · < tm = T in [0, T ], and given a family
(bα1...αm)(α1,...,αm)∈A m

q
in L∞(D; [0, 1]) with

∑

(α1,...,αm) bα1...αm = 1 a.e. in D, we define

bpwc ∈ S([0, T ],D, q) as the family corresponding to the piecewise constant interpolation
of the measure µ =

∑

(α1...αm) bα1...αmδ(θα1 ,...,θαm), as defined in (2.1.8).

More in details, for every finite sequence τ1 < · · · < τn in [0, T ] such that for every
j = 1, . . . ,m there exists i = 1, . . . , n with tj ≤ τi < tj+1, we have

(bpwc)τ1...τn
β1...βn

:=











0 if βi 6= βi+1 with tj ≤ τi < τi+1 < tj+1

for some i and j

bα1...αm otherwise,

for every (β1, . . . , βn) ∈ A
n
q .

We can reformulate Helly’s Theorem for compatible systems of Young measures (see
Theorem 2.1.6) in the discrete setting as follows.

Theorem 2.3.2. Let (bk)k be a sequence in S([0, T ],D, q) such that DissH(bk; 0, T ) ≤
C, for a finite constant C > 0 independent of k. Then there exist a subsequence, still de-
noted by (bk)k, a set T ⊆ [0, T ] containing 0 and at most countable, and b ∈ S−([0, T ],D, q)
with DissH(b; 0, T ) ≤ C, such that

(bk)t1...tn
α1...αn

⇀ bt1...tn
α1...αn

L∞-weakly*, (2.3.8)

as k → ∞, for every finite sequence t1 < · · · < tn in T , and every (α1, . . . , αn) ∈ A
n
q .

Now we state a lemma to describe the canonical form of the space Y p(D;Z×R
N×d) of

all Young measures on D with values in Z×R
N×d and finite p-moments, for 2 ≤ p < +∞.

Lemma 2.3.3. A measure ν is an element of Y p(D;Z × R
N×d) if and only if it can be

written as

ν =

q
∑

α=1

bα(δθα ⊗ λα), (2.3.9)
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where (bα)qα=1 is a family in L∞(D; [0, 1]) satisfying (2.3.2) and, for every α = 1, . . . , q,
λα is a Young measure on D with values in R

N×d such that
∫

D×RN×d

bα(x)|F |p dλα(x, F ) <∞, (2.3.10)

for every α = 1, . . . , q.

Proof. For every α = 1, . . . , q, let us consider bα ∈ L∞(D; [0, 1]) and a Young measure
λα ∈ Y (D; RN×d), satisfying (2.3.2) and (2.3.10). It is immediate to see that the measure
defined by (2.3.9) is an element of Y p(D;Z × R

N×d).
On the other hand, if ν belongs to ∈ Y p(D;Z×R

N×d) and (νx)x∈D is its disintegration,
for a.e. x ∈ D and every α = 1, . . . , q we define

bα(x) := νx({θα} × R
N×d); (2.3.11)

let us fix a probability measure ω on R
N×d; for α = 1, . . . , q and for a.e. x ∈ D let us

define a probability measure λx
α on R

N×d by setting for every Bα ∈ B(RN×d)

λx
α(Bα) :=

{

νx({θα}×Bα)
bα(x) if bα(x) 6= 0

ω(Bα) if bα(x) = 0
(2.3.12)

By construction bα is measurable with nonnegative values for every α,
∑q

α=1 bα(x) =

νx(Z×R
N×d) = 1 for a.e. x ∈ D, and (λx

α)x is a measurable family of probability measures
satisfying (2.3.10), for every α . It is now immediate to see that the measure ν̃ whose
disintegration is given by

ν̃x =

q
∑

α=1

bα(x)(δθα ⊗ λx
α) for a.e. x ∈ D, (2.3.13)

is exactly ν. Indeed every Borel subset B of Z × R
N×d can be written as the union of

disjoint sets of the form {θα}×Bα, for suitable Bα ∈ B(RN×d), for α = 1, . . . , q; hence we
have

ν̃x(B) =

q
∑

α=1

bα(x)λx
α(Bα) =

=

q
∑

α=1

bα(x)
νx({θα} ×Bα)

bα(x)
= νx(B).

�

Remark 2.3.4. The functions bα and the measures bαλα satisfying the properties de-
scribed in the previous lemma are uniquely determined by ν. In particular if we consider
the disintegration of λα, (λx

α)x∈D, we obtain that λx
α is uniquely determined for a.e. x in

{x ∈ D : bα(x) > 0}.
Remark 2.3.5. Let νk =

∑

α b
k
α(δθα ⊗ λk

α), ν =
∑

α bα(δθα ⊗ λα) belong to Y p(D;Z ×
R

N×d). A simple computation shows that a sequence (νk)k in Y p(D;Z×R
N×d) p-weakly*

converges to ν ∈ Y p(D;Z × R
N×d) if and only if

bkαλ
k
α ⇀ bαλα p-weakly* (2.3.14)

for every α = 1, . . . , q.
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We can rewrite Remark 1.3.4 in terms of (bα, λα)α as follows.

Remark 2.3.6. For every α = 1, . . . , q, let (bhα, λ
h
α)h be a sequence in L∞(D; [0, 1]) ×

Y (D; RN×d), satisfying (2.3.2) for every h, and

sup
h

∫

D×RN×d

bhα(x)|F |p dλh
α(x, F ) ≤ C,

for every α, for a suitable positive constant C. Then there exists (bα, λα) ∈ L∞(D; [0, 1])×
Y (D; RN×d), for α = 1, . . . , q, satisfying (2.3.2) and (2.3.10), and such that, up to a
subsequence,

bhα ⇀ bα L∞-weakly*

bhαλ
h
α ⇀ bαλα p-weakly*,

as h→ ∞.





CHAPTER 3

Globally stable quasistatic evolution

3.1. Introduction

In this chapter we propose an approach to the quasistatic evolution problem considered
in [21], which does not require any assumption on the convexity/quasiconvexity of the
energy functional and does not need any regularizing term.

We adapt the standard construction of approximate solutions via time-discretized min-
imum problems to the more general setting of Young measures.

Given an initial value of the variables (z0, v0) and a partition of the time interval [0, T ]
in which we study the evolution

0 = t0 < t1 < · · · < tk = T,

the approximate solution should be defined inductively by solving the following incremental
minimum problem:

inf {W(z, v) − 〈l(ti), v〉 + H(z − z(ti−1))} (3.1.1)

among all (z, v) which make the energy finite and satisfy the boundary condition at time ti.
As anticipated in the introduction, these problems are not well-posed in Sobolev spaces
and we will present an explicit example in which (3.1.1) has actually no solution (see
Remark 3.4.3).

To obtain lower semicontinuity and coercivness of the energy functional we place the
problem in a suitable space of Young measures and solve the incremental minimum prob-
lems in this extended setting.

The next step is the study of the convergence of the approximate solutions as the
time step ti − ti−1 tends to 0. Up to careful choices of subsequences, we can obtain
the convergence of the approximations to a pair (ν,µ), with ν a time-dependent family of
Young measures with finite second moments and values in R

m×R
N×d, and µ a compatible

system of Young measures with finite second moments and values in R
m, connected to ν

by a suitable projection property.
The main result is Theorem 3.3.15, which shows that this pair satisfies a global stability

condition and an energy inequality, suitably reformulated in Young measure language (see
Definition 3.3.14); therefore it can be considered as a solution of the quasistatic evolution
problem in the framework of Young measures.

This result is formulated in terms of stochastic processes too. Thanks to Theorem 2.2.4,
the pair (ν,µ) representing the solution can be described by a unique stochastic process
(Zt,Y t)t∈[0,T ] with values in R

m × R
N×d.

In the last section we give an alternative proof of the main theorem under the special
assumption that the stored energy density is quasiconvex with respect to its second ar-
gument; we use the result in [21, Section 4] to obtain solutions of spatially regularized

41
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problems, and prove that we can pass to the limit as the regularization parameter van-
ishes, to obtain a globally stable quasistatic evolution in terms of Young measures in the
sense of Definition 3.3.14.

3.2. The mechanical model

The reference configuration D is a bounded connected open subset of R
d with Lipschitz

boundary ∂D = Γ0 ∪Γ1, where Γ0 is assumed to be a nonempty closed subset of ∂D with
Hd−1(Γ0) 6= 0, and Γ1 = ∂D \Γ0. Without loss of generality, we also assume for simplicity
that

Ld(D) = 1. (3.2.1)

We will indicate the deformation by v and the internal variable by z. We will denote

the stored energy density by W : R
m × R

N×d → [0,+∞) and the dissipation rate density

by H : R
m → [0,+∞). For every θ, θ̃ ∈ R

m and F ∈ R
N×d, we will make the following

assumptions:

(W.1) there exist positive constants c, C such that

c(|θ|2 + |F |2) − C ≤W (θ, F ) ≤ C(1 + |θ|2 + |F |2);
(W.2) W (θ, ·) is of class C2,

∣

∣

∣

∂W

∂F
(θ, F )

∣

∣

∣
≤ C(1 + |θ| + |F |),

and

|W (θ + θ̃, F ) −W (θ, F )| ≤ C|θ̃|(1 + |θ| + |θ̃| + |F |);

(H.1) H is positively homogeneous of degree one and convex;

(H.2) there exists a positive constant λ, such that 1
λ |θ| ≤ H(θ) ≤ λ|θ|.

Let W be the functional W(z, v) :=
∫

D W (z(x),∇v(x)) dx, for every z ∈ L2(D; Rm)

and every v ∈ H1(D; RN ), and H the functional H(z) :=
∫

D H(z(x)) dx, for every z ∈
L1(D; Rm).

Given two distinct times s < t, the global dissipation of a possibly discontinuous func-
tion z : [0, T ] → L2(D; Rm) in the interval [s, t] will be

VarH(z; s, t) := sup

k
∑

i=1

H(z(τi) − z(τi−1)),

where the supremum will be taken among all finite partitions s = τ0 < τ1 < · · · < τk = t.
The external load at time t and the prescribed boundary condition on Γ0 at time t

are denoted by l(t) and ϕ(t), respectively; we assume l ∈ AC([0, T ];H1(D; RN )∗) and
ϕ ∈ AC([0, T ];H1(D; RN )).

The kinematically admissible values at time t for z and v are those which make the
total energy finite and satisfy the boundary condition, i.e., v = ϕ(t) on Γ0 Hd−1-a.e.
(in the sense of traces). From the previous assumption it follows that the kinematically
admissible values at time t are contained in L2(D; Rm) ×A(t), where

A(t) = H1
Γ0

(ϕ(t)) := {v ∈ H1(D; RN ) : v = ϕ(t) Hd−1-a.e. on Γ0}.
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3.3. Globally stable quasistatic evolution for Young measures

3.3.1. Admissible set in terms of stochastic processes. Now we describe the
set of admissible stochastic processes in which we look for a solution of our quasistatic evo-
lution problem: the definition takes into account approximation properties with functions
which satisfy the boundary condition.

Definition 3.3.1. Given A ⊂ R and w : A→ H1(D; RN ), we define AYsp(A,w) as the

set of all stochastic processes (Zt,Y t)t∈A on a (D,Ld)-probability space (D × Ω,B(D) ⊗
F , P ) with

Zt ∈ L2(D × Ω; Rm),

Y t ∈ L2(D × Ω; RN×d),

satisfying the following property: for every finite sequence t1 < · · · < tn in A there exist
sequences (zk

i )k ⊂ L2(D; Rm), (vk
i )k ⊂ H1

Γ0
(w(ti)), for i = 1, . . . , n such that

(apsp1) we have

(πD, z
k
1 , . . . , z

k
n)(P ) ⇀ (πD,Zt1 , . . . ,Ztn)(P )

2-weakly* as k → ∞;

(apsp2) for every i = 1, . . . , n, there exist a subsequence, possibly depending on i, (z
ki

j

i , v
ki

j

i )j ,
such that

(πD, z
ki

j ,∇vki
j )(P ) ⇀ (πD,Zti ,Y ti)(P )

2-weakly* as j → ∞.

3.3.2. Admissible set in terms of Young measures. The notion of admissible
set is now presented in terms of Young measures.

Definition 3.3.2. Given A ⊂ R and w : A → H1(D; RN ), we define AY (A,w) as the
set of all pairs (ν,µ) ∈ Y 2(D; Rm × R

N×d)A × SY 2(A,D; Rm) satisfying the following
property: for every finite sequence t1 < · · · < tn in A there exist sequences (zk

i )k ⊂
L2(D; Rm), (vk

i )k ⊂ H1
Γ0

(w(ti)), for i = 1, . . . , n such that

(ap1) we have

δ(zk
1 ,...,zk

n) ⇀ µt1...tn , (3.3.1)

2-weakly* as k → ∞;

(ap2) for every i = 1, . . . , n, there exists a subsequence, possibly depending on i,

(z
ki

j

i , v
ki

j

i )j , such that

δ
(z

ki
j

i ,∇v
ki
j

i )
⇀ νti (3.3.2)

2-weakly* as j → ∞.

Remark 3.3.3. If (ν,µ) ∈ AY (A,w), then π̃Rm(νt) = µt, for every t ∈ A. Indeed,
fixed t ∈ A, by definition there exist (zk)k ⊂ L2(D; Rm), (vk)k ⊂ H1

Γ0
(w(t)) such that

δ(zk,∇vk) ⇀ νt 2-weakly* and δzk ⇀ µt 2-weakly*; in particular π̃Rm(δ(zk,∇vk)) ⇀ π̃Rm(νt)

2-weakly* and this prove the claim.
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Remark 3.3.4. If (Zt,Y t)t∈A ∈ AYsp(A,w), we can define (ν,µ) ∈ AY (A,w) as

νt := (πD,Zt,Y t)(P ) for every t ∈ A

µt1...tn := (πD,Zt1 , . . . ,Ztn)(P ) for every finite sequence t1 < · · · < tn in A.

On the other side, thanks to Remark 3.3.3 and Theorem 2.2.4, for every (ν,µ) ∈
AY (A,w) there exists a stochastic process (Zt,Y t)t∈A ∈ AYsp(A,w) such that, for every
finite sequence t1 < · · · < tn in A,

(πD,Zt1 , . . . ,Ztn)(P ) = µt1...tn

(πD,Zti ,Y ti)(P ) = νti for every i = 1, . . . , n.

Remark 3.3.5. Thanks to Decomposition Lemma 1.3.8 and Lemma 1.3.9, given (ν,µ) ∈
AY (A,w) and a finite sequence t1 < · · · < tm in A, we can always choose zk

i ∈ L2(D; Rm)
and vk

i ∈ H1
Γ0

(w(ti)), for i = 1, . . . ,m, in such a way that |zk
i |2 are equiintegrable, satisfy

(3.3.1), and for every i there exists a subsequence (z
ki

j

i , v
ki

j

i )j satisfying (3.3.2), such that

|∇vki
j

i |2 are equiintegrable with respect to j. Hence, by Theorem 1.3.10, we can always
assume that

‖(zk
1 , . . . z

k
n)‖2

2 →
∫

D×(Rm)n

|(θ1, . . . , θn)|2 dµt1...tn(x, θ1, . . . , θn), (3.3.3)

‖(zki
j

i ,∇v
ki

j

i )‖2
2 →

∫

D×Rm×RN×d

|(θ, F )|2 dνti(x, θ, ξ), (3.3.4)

as j → ∞, for i = 1, . . . ,m. This allows us to assume, without loss of generality, that

sup
k

‖zk
i ‖2

2 ≤ C1 + 1, (3.3.5)

sup
j

‖(zki
j

i ,∇v
ki

j

i )‖2
2 ≤ C2 + 1, (3.3.6)

with

C1 := sup
i=1,...,n

∫

D×Rm

|θ|2 dµti(x, θ),

C2 := sup
i=1,...,n

∫

D×Rm×RN×d

|(θ, F )|2 dνti(x, θ, F ).

In the following two Lemmas we want to point out some closure properties of AY (A,w).

Lemma 3.3.6. Let (ν,µ) ∈ Y 2(D; Rm×R
N×d)A×SY 2(A,D; Rm), and assume that for

every finite sequence t1 < · · · < tn in A there exists a sequence (νj,µj)j in AY ({t1, . . . , tn},w),
such that

µ
j
t1...tn ⇀ µt1...tn 2-weakly*, (3.3.7)

as j → ∞, and such that for every i there exists a subsequence, possibly depending on i,

(νji
h)h, satisfying

(νji
h)ti ⇀ νti , 2-weakly*, (3.3.8)

as h→ ∞. Then (ν,µ) ∈ AY (A,w).
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Proof. Fix a finite sequence t1 < · · · < tn in A. By definition of AY ({t1, . . . , tn},w),

for every j and every i = 1, . . . , n, there exist (zj,k
i )k ∈ L2(D; Rm) and (vj,k

i )k ∈ H1
Γ0

(w(ti))
satisfying (3.3.1) for µj and such that for every i and j there exists an increasing sequence

of integers (ki,j
l )l for which (z

j,ki,j
l

i , v
j,ki,j

l
i )l satisfies (3.3.2) for νj ; thanks to Remark 3.3.5

we can assume, without loss of generality, that

‖zj,k
i ‖2

2 ≤
∫

D×Rm

|θ|2 dµj
ti
(x, θ) + 1, for every k,

and

‖∇vj,ki,j
l

i ‖2
2 ≤

∫

D×Rm×RN×d

|(θ, F )|2 dνj
ti
(x, θ, F ) + 1, for every l;

hence thanks to (3.3.7) and (3.3.8) there exists a positive constant C such that

‖zj,k
i ‖2

2 ≤ C + 1, (3.3.9)

for every i, j, k, and

sup
h

sup
l

‖∇vji
h,k

i,ji
h

l
i ‖2

2 ≤ C + 1, . (3.3.10)

for every i, h, l. Thanks to Remark 1.3.2, we can find a metric d1 on Y (D; (Rm)n) and a
metric d2 on Y (D; Rm × R

N×d) which induce the weak* topologies of Y (D; (Rm)n) and
Y (D; Rm × R

N×d), respectively; therefore, for every j we can find an integer κ(j) such
that, for every k ≥ κ(j) it holds

d1(δ(zj,k
1 ,...,zj,k

n )
,µj

t1...tn) <
1

j
; (3.3.11)

analogously, for every i = 1, . . . , n, there exists an integer κi(j) such that,

d2(δ
(z

j,k
i,j
l

i ,∇v
j,k

i,j
l

i )
,νj

ti
) <

1

j
(3.3.12)

whenever ki,j
l ≥ κi(j).

By taking, if needed, a larger value of κ(j), we may assume that (3.3.11) and (3.3.12)

are satisfied whenever k ≥ κ(j) and ki,j
l ≥ κ(j), respectively. Another slight modification

allows us to assume that, for every i = 1, . . . , n and for every j, there exists ki,j
li,j

with

κ(j) < ki,j
li,j

≤ κ(j + 1). (3.3.13)

Let (α(k))k>κ(1) be the unique sequence such that κ(α(k)) < k ≤ κ(α(k)+1), for every
k > κ(1). This implies

d1(δ(z
α(k),k
1 ,...,z

α(k),k
n )

,µ
α(k)
t1...tn) ≤ 1

α(k)
, (3.3.14)

which, together with (3.3.7) and (3.3.9), implies that

δ
(z

α(k),k
1 ,...,z

α(k),k
n )

⇀ µt1...tn , (3.3.15)

2-weakly* as k → ∞.
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Now, for every i = 1, . . . , n we can choose an integer βi(j) in such a way that

βi(j) = ki,j
li,j
, (3.3.16)

for every j, so that we have κ(j) < βi(j) ≤ κ(j + 1), for every j, by(3.3.13). This implies
that α(βi(j)) = j and βi(j) > κ(j) so that, by (3.3.12)

d2(δ(z
j,βi(j)
i ,∇v

j,βi(j)
i )

,νj
ti
) <

1

j
.

Therefore, thanks to (3.3.8) and (3.3.10) we can conclude that

δ
(z

α(βi(j
i
h
)),βi(j

i
h
)

i ,∇v
α(βi(j

i
h
)),βi(j

i
h
)

i )
⇀ νti , (3.3.17)

as h → ∞, for every i = 1, . . . , n. Since for every i the sequence (βi(j
i
h))h is increasing,

(3.3.15) and (3.3.17) show that conditions (ap1) and (ap2) in Definition 3.3.2 are satisfied.
�

The following lemma consider the case of varying boundary conditions.

Lemma 3.3.7. Let wj be a sequence of functions from A into H1(D,Rm), such that
wj(t) → w(t) strongly in H1, for every t ∈ A and let (ν,µ) ∈ Y 2(D; Rm × R

N×d)A ×
SY 2(A,D; Rm). Assume that for every finite sequence t1 < · · · < tn in A there exists a
sequence (νj ,µj) ∈ AY ({t1, . . . , tn},wj) such that

µ
j
t1...tn ⇀ µt1...tn 2-weakly*, (3.3.18)

as j → ∞, and such that for every i there exists a subsequence, possibly depending on i,

(νji
h)h, satisfying

(νji
h)ti ⇀ νti , 2-weakly*, (3.3.19)

as h→ ∞. Then (ν,µ) ∈ AY (A,w).

Proof. Fixed t1 < · · · < tn in [0, T ], thanks to Lemma 1.3.7 from (3.3.19) we can
deduce that for every i = 1, . . . , n

T̃ 2

∇w(ti)−∇w
ji
h (ti)

(νji
h)ti ⇀ νti 2-weakly*

as h → ∞, where T̃ 2

∇w(ti)−∇w
ji
h (ti)

is the map defined by T̃ 2

∇w(ti)−∇w
ji
h (ti)

(x, θ, F ) :=

(x, θ, F +∇w(ti)−∇wji
h(ti)). Thanks to Lemma 1.3.6 it is easy to see that the hypotheses

of Lemma 3.3.6 are satisfied with (νji
h)ti replaced by T̃ 2

∇w(ti)−∇w
ji
h (ti)

((νji
h)ti).

�

Remark 3.3.8. If (ν,µ) ∈ AY (A,w), for every t ∈ A there exists a unique function
v(t) ∈ H1

Γ0
(w(t)) such that ∇v(t) = bar(π̃RN×d(νt)). Indeed, by definition of AY (A,w),

for every t ∈ A there exists a sequence vk ∈ H1
Γ0

(w(t)) such that δ∇vk ⇀ π̃RN×d(νt),

2-weakly*; thanks to a variant of Lemma 1.3.11 with H1
0 replaced by H1

Γ0
(w(t)), there

exists a unique function v(t) ∈ H1(D; R), such that vk ⇀ v(t) weakly in H1 and ∇v(t) =
bar(π̃RN×d(νt))

Translating the previous remark in terms of stochastic processes we obtain the following
result.
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Remark 3.3.9. If (Zt,Y t)t∈[0,T ] ∈ AYsp([0, T ],ϕ), for every t ∈ A there exists a unique

function v(t) ∈ H1
Γ0

(w(t)) such that ∇v(t) = bar((πD,Y t)(P )).

Remark 3.3.10. If (ν,µ) ∈ AY (A,w), for every t ∈ A we define

σ(t, x) :=

∫

Rm×RN×d

∂W

∂F
(θ, F ) dνx

t (θ, F ), (3.3.20)

for a.e. x ∈ D. For every t ∈ A we have that σ(t) ∈ L2(D; RN×d): this comes immediately
from (W.2), (1.3.2), and from the fact that νt ∈ Y 2(D; Rm × R

N×d). In the language of
stochastic processes σ(t) can be characterized as the unique element of L2(D; RN×d) such
that

∫

D
σ(t, x)g(x) dx =

∫

D×Ω

∂W

∂F

(

Zt(x, ω),Y t(x, ω)
)

g(x) dP (x, ω), (3.3.21)

for every g ∈ L2(D; RN×d), where (Zt,Y t)t∈[0,T ] is the stochastic process corresponding
to (ν,µ).

Remark 3.3.11. Since ϕ ∈ AC([0, T ];H1(D; RN )) and l ∈ AC([0, T ];H1(D; RN )∗),

the time derivative ϕ̇ and l̇ are well defined for a.e. t ∈ [0, T ] and belong to the space
L1([0, T ];H1(D; RN )) and L1([0, T ];H1(D; RN )∗), respectively. Moreover the fundamental
Theorem of Calculus holds (see, e.g., [6, Appendice]).

3.3.3. Main result. We are now in the position to define the notion of globally stable
quasistatic evolution of stochastic processes.

Definition 3.3.12. Given ϕ ∈ AC([0, T ];H1(D; RN )), l ∈ AC([0, T ];H1(D; RN )∗),
z0 ∈ L2(D; Rm), v0 ∈ A(0), and T > 0, a globally stable quasistatic evolution of stochastic
processes with boundary datum ϕ, external load l, and initial condition (z0, v0), in the
time interval [0, T ], is a stochastic process (Zt,Y t)t∈[0,T ] ∈ AYsp([0, T ],ϕ), such that for
every finite sequence t1 < · · · < tn in [0, T ] we have

(πD,Zsj
1
, . . . ,Z

sj
n
)(P ) ⇀ (πD,Zt1 , . . . ,Ztn)(P )

2-weakly*, as sj
i → ti with sj

i ≤ ti, and satisfying the following conditions:

(ev0) initial condition: (Z0,Y 0) = (z0,∇v0);
(ev1) partial-global stability : for every t ∈ [0, T ], we have

∫

D×Ω
W (Zt(x, ω),Y t(x, ω)) dP (x, ω) ≤

≤
∫

D×Ω
W (Zt(x, ω) + z̃(x),Y t(x, ω) + ∇ũ(x)) dP (x, ω) − 〈l(t), ũ〉 + H(z̃),

for every z̃ ∈ L2(D; Rm) and every ũ ∈ H1
Γ0

(0);

(ev2) energy inequality : for every t ∈ [0, T ] we have

VarH(Z, P ; 0, t) := sup
k

∑

i=1

∫

D×Ω
H(Zti(x, ω) − Zti−1(x, ω)) dP (x, ω) <∞,(3.3.22)
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where the supremum is taken over all finite partitions 0 = t0 < · · · < tk = t, and
the map

t 7→ [〈σ(t),∇ϕ̇(t)〉 − 〈l̇(t),v(t)〉]

is integrable on [0, T ], where σ(t) is the function defined in (3.3.21) and v(t) that
one defined in Remark 3.3.9; moreover
∫

D×Ω
W (Zt(x, ω),Y t(x, ω)) dP (x, ω) − 〈l(t),v(t)〉 + VarH(Z, P ; 0, t) ≤

≤ W(z0, v0) − 〈l(0), v0〉 +

∫ t

0
〈σ(s),∇ϕ̇(s)〉 ds+

−
∫ t

0
[〈l(s), ϕ̇(s)〉 + 〈l̇(s),v(s)〉] ds.

We now state the main existence theorem in terms of stochastic processes.

Theorem 3.3.13. Let ϕ ∈ AC([0, T ];H1(D; RN )), l ∈ AC([0, T ];H1(D; RN )∗), T > 0,
z0 ∈ L2(D; Rm) and v0 ∈ A(0) be such that

W(z0, v0) ≤ W(z0 + z̃, v0 + ũ) − 〈l(0), ũ〉 + H(z̃), (3.3.23)

for every z̃ ∈ L2(D; Rm) and every ũ ∈ H1
Γ0

(0). Then there exists a globally stable qua-
sistatic evolution for stochastic processes with boundary datum ϕ, external load l, and
initial condition (z0, v0), in the time interval [0, T ].

Thanks to Remark 3.3.4, we can translate the definition of globally stable quasistatic
evolution of stochastic processes in terms of globally stable quasistatic evolution of Young
measures.

Definition 3.3.14. Given ϕ ∈ AC([0, T ];H1(D; RN )), l ∈ AC([0, T ];H1(D; RN )∗),
z0 ∈ L2(D; Rm), v0 ∈ A(0), and T > 0, a globally stable quasistatic evolution of Young
measures with boundary datum ϕ, external load l and initial condition (z0, v0), in the time
interval [0, T ], is a pair (ν,µ) ∈ AY ([0, T ],ϕ), with µ ∈ SY 2

−([0, T ],D; Rm), satisfying the
following conditions:

(ev0) initial condition: ν0 = δ(z0,∇v0);

(ev1) partial-global stability : for every t ∈ [0, T ], we have
∫

D×Rm×RN×d

W (θ, F ) dνt(x, θ, F ) ≤

≤
∫

D×Rm×RN×d

W (θ + z̃(x), F + ∇ũ(x)) dνt(x, θ, F ) − 〈l(t), ũ〉 + H(z̃),

for every z̃ ∈ L2(D; Rm) and every ũ ∈ H1
Γ0

(0);

(ev2) energy inequality : for every t ∈ [0, T ] we have that VarH(µ; 0, t) < ∞, (see
(2.1.8)), and the map

t 7→ [〈σ(t),∇ϕ̇(t)〉 − 〈l̇(t),v(t)〉] (3.3.24)



3.4. PROOF OF THE MAIN THEOREM 49

is integrable on [0, T ], where σ(t) is the function defined in (3.3.20) and v(t) that
one defined in Remark 3.3.8; moreover

∫

D×Rm×RN×d

W (θ, F ) dνt(x, θ, F ) − 〈l(t),v(t)〉 + VarH(µ; 0, t) ≤

≤ W(z0, v0) − 〈l(0), v0〉 +

∫ t

0
〈σ(s),∇ϕ̇(s)〉 ds+

−
∫ t

0
[〈l(s), ϕ̇(s)〉 + 〈l̇(s),v(s)〉] ds,

where V arH(µ; 0, t) is defined as in (2.1.8).

Thanks to Theorem 2.2.4, to obtain the main theorem it is enough to prove the following
version for Young measures.

Theorem 3.3.15. Let ϕ ∈ AC([0, T ];H1(D; RN )), l ∈ AC([0, T ];H1(D; RN )∗), T > 0,
z0 ∈ L2(D; Rm), and v0 ∈ A(0) be such that

W(z0, v0) ≤ W(z0 + z̃, v0 + ũ) − 〈l(0), ũ〉 + H(z̃), (3.3.25)

for every z̃ ∈ L2(D; Rm) and every ũ ∈ H1
Γ0

(0). Then there exists a globally stable qua-
sistatic evolution for Young measures with boundary datum ϕ, external load l, and initial
condition (z0, v0), in the time interval [0, T ].

Remark 3.3.16. In the proof of Theorem 3.3.15 we will obtain, in particular, a globally
stable quasistatic evolution (ν,µ) such that ν is Θ-2-weakly* approximable from the left
(see Definition 2.1.4), for a suitable subset Θ of [0, T ].

3.4. Proof of the main theorem

The proof is obtained via time discretization, resolution of incremental minimum prob-
lems, and passing to the limit as the discretization step tends to 0.

3.4.1. The incremental minimum problem. Let us fix a sequence of subdivisions

of [0, T ], 0 = t0n < t1n < · · · < t
k(n)
n = T , such that supi=1,...,k(n) τ

i
n → 0, as n → ∞, where

τ i
n := tin − ti−1

n , for every i = 1, . . . , k(n).
For every i = 0, 1, . . . , k(n) we set lin := l(tin) and ϕi

n := ϕ(tin).
We will define (νi

n,µ
i
n) ∈ AY ({t0n, . . . , tin},ϕ) by induction on i: set (ν0

n,µ
0
n) :=

δ(z0,∇v0), and for i > 0 we define (νi
n,µ

i
n) as a minimizer (see Lemma 3.4.2 below) of

the functional
∫

D×Rm×RN×d

W (θ, F ) dνtin
(x, θ, F ) − 〈lin,v(tin)〉 +

+
∫

D×(Rm)2 H(θi − θi−1) dµti−1
n tin

(x, θi−1, θi), (3.4.1)

in the set Ai
n of all (ν,µ) ∈ AY ({t0n, . . . , tin},ϕ), satisfying

µt0n...ti−1
n

= (µi−1
n )t0n...ti−1

n
(3.4.2)

ν
tjn

= (νi−1
n )

tjn
, for every j < i, (3.4.3)

where the function v(tin) appearing in (3.4.1) is that one defined in Remark 3.3.8.
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Lemma 3.4.1. The set Ai
n is nonempty, for every i > 1.

Proof. Fixed (νi−1
n ,µi−1

n ), we consider the map

T̃ 2
∇ϕi

n−∇ϕi−1
n

: (x, θ, F ) 7→ (x, θ, F + ∇ϕi
n(x) −∇ϕi−1

n (x)),

and the map pi(i) : D × (Rm)i → D × (Rm)i+1 defined by

π(i)(x, θ1, . . . , θi−1) := (x, θ1, . . . , θi−1, θi−1);

let ν ∈ Y 2(D; Rm){t
0
n,...,tin} be defined by

ν
tjn

:= (νi−1
n )

tjn
, for j < i, (3.4.4)

νtin
:= T̃ 2

∇ϕi
n−∇ϕi−1

n
((νi−1

n )ti−1
n

),

and µ the unique element of SY 2({t0n, . . . , tin},D; Rm) satisfying µt0n...tin
= π(i)((µi−1

n )t0n...ti−1
n

).

It is evident that ν and µ so defined satisfy the projection properties (3.4.2) and (3.4.3).
Moreover it is easy to prove that (ν,µ) ∈ AY ({t0n, . . . , tin},ϕ): since π(i)(δ(z0,...,zi−1)) =

δ(z0,...,zi−1,zi−1) and T̃ 2
∇ϕi

n−∇ϕi−1
n

(δ(z,∇v)) = δ(z,∇v+∇ϕi
n−∇ϕi−1

n ), with v+ϕi
n −ϕi−1

n ∈ A(tin)

whenever v ∈ A(ti−1
n ), applying Lemma 1.3.6 we can obtain the approximation properties

(3.3.1) and (3.3.2). �

Lemma 3.4.2. For every i the functional (3.4.1) has a minimizer over Ai
n.

Proof. Let (νh,µh)h ⊂ Ai
n be a minimizing sequence. By the bounds on W and the

assumption on l, using Poincaré inequality we have

c

∫

D××RN×d

[|θ|2 + |F |2] dνh
tin

(x, θ, F ) − C ′(1 + ‖∇vh(tin)‖2) ≤

≤
∫

D×Rm×RN×d W (θ, F ) dνh
tin

(x, θ, F ) − 〈lin,vh(tin)〉 ≤ C ′,

for every h, for positive constants c, C ′. Since by Remark 3.3.8

‖∇vh(tin)‖2 ≤
(

∫

D×Rm×RN×d

|F |2 dνh
tin

(x, θ, F )
)1/2

, (3.4.5)

we can deduce that

sup
h

∫

D×Rm×RN×d

|(θ, F )|2 dνh
tin

(x, θ, F ) ≤ C ′. (3.4.6)

Since, thanks to Remark 3.3.3

∫

D×(Rm)i+1

|(θ0, . . . , θi)|2 dµh
t0n...tin

(x, θ0, . . . , θi) =

i+1
∑

j=0

∫

D×Rm

|θj|2 dµh
tjn

(x, θj) =

=

i+1
∑

j=0

∫

D×Rm×RN×d

|θj |2 dνh
tjn

(x, F, θj),

the projection property (3.4.3) and (3.4.6) imply that the second moments of µh
t0n...tin

are

bounded uniformly with respect to h. From this and from (3.4.6) we can deduce that, up
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to a subsequence, there exist µ̄ ∈ Y 2(D; (Rm)i+1) and ν̄ ∈ Y 2(D; Rm × R
N×d) such that

µh
t0n...tin

⇀ µ̄ 2-weakly*, (3.4.7)

νh
tin
⇀ ν̄ 2-weakly*. (3.4.8)

Hence defining ν̄
tjn

:= (νi−1
n )

tjn
, for every j < i, ν̄tin

:= ν̄, and µ̄ as the unique element

of SY 2({t0n, . . . , tin},D; Rm) such that µ̄t0n...tin
= µ̄, we obtain

(ν̄, µ̄) ∈ Y 2(D; Rm × R
N×d){t

0
n,...,tin} × SY 2({t0n, . . . tin},D; Rm).

Since the hypotheses of Lemma 3.3.6 are satisfied, we deduce that (ν̄, µ̄) ∈ AY ({t0n, . . . , tin},ϕ).
Moreover, by construction, (ν̄, µ̄) satisfies also the projection properties (3.4.2) and (3.4.3),
so we can conclude that (ν̄, µ̄) ∈ Ai

n.
By (1.3.3) the terms of (3.4.1) containing W and H are lower semicontinuous with

respect to the 2-weak* convergence; on the other hand a variant of Lemma 1.3.11, with
H1

0 replaced by A(tin), shows that the term of (3.4.1) containing lin is continuous with
respect to the 2-weak* convergence, therefore the functional (3.4.1) is 2-weakly* lower
semicontinuous and this implies that (ν̄, µ̄) is a minimizer for it in Ai

n. �

Remark 3.4.3. Even if W (θ, ·) : R
N×d → [0,+∞) is convex for every θ ∈ R

m, it
may happen that the incremental minimum problems have no solutions representable by
functions.

We give an example in which this happens even for the first time step. By defi-
nition of A1

n, there exists a solution of the first incremental minimum problem repre-
sentable by function if and only if there exist z1 ∈ L2(D; Rm) and v1 ∈ A(t1n) such that
((δ(z0,∇v0), δ(z1,∇v1)), δ(z0,z1)) realizes the minimum of the functional (3.4.1) on A1

n. Con-

sider the following case: D = (0, 1)2 and N = m = 1, T = 1, l ≡ 0 and ϕ(t, (x1, x2)) :=
(1 − t)x1, for every t ∈ [0, 1] and every (x1, x2) ∈ (0, 1)2. We consider

W (θ, (F1, F2)) := |F1 − a(θ)|2 + |F2|2 + b(θ) + c, (3.4.9)

where a is a C1 function satisfying a(0) = a(1) = 1 and a(−1) = −1, while b a C1 function

such that b̃(θ) := b(θ) + |θ| is positive and vanishes only at 0, 1, and −1, and c := − inf b.
It can be easily verified that (W.1) and (W.2) are satisfied by suitable choices of a
and b compatible with the requirements above. Now choose H(θ) := |θ|, z0 ≡ 0 and
v0(x1, x2) := x1. It is immediate to check that (z0, v0) satisfy the boundary conditions
and (3.3.25). Moreover, by standard arguments, it can be easily shown that the infimum
of functional in (3.4.1), for i = 1, is c and cannot be attained by functions which satisfy
the boundary conditions. A minimizer of (3.4.1) on A1

n is defined by

(ν1
n)t1n := t1n

2 δ(−1,(−1,0)) + (1 − t1n
2 )δ(1,(1,0)),

(µ1
n)t0n,t1n

:= t1n
2 δ(0,−1) + (1 − t1n

2 )δ(0,1).

Set τn(s) := tin, whenever tin ≤ s < ti+1
n .

For every i and n we set

σi
n(x) :=

∫

Rm×RN×d

∂W

∂F
(θ, F ) d(ν i

n)xtin
,
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and define

σn(t, x) := σi
n(x), (3.4.10)

for a.e. x ∈ D, whenever tin ≤ t < ti+1
n .

We define νn ∈ Y 2(D; Rm × R
N×d)[0,T ] by

(νn)s := (νi
n)tin , (3.4.11)

whenever tin = τn(s), for every s ∈ [0, T ]; we define also µn ∈ SY 2([0, T ],D; Rm) as the

piecewise constant interpolation of µ
k(n)
n , as in Definition 2.1.8.

Note that (νn,µn) ∈ AY ([0, T ],ϕ(τn(·))) by construction.

3.4.2. A priori estimates. First of all we want to deduce a discrete version of the
energy inequality for (νn,µn).

Using the competitor defined in the proof of Lemma 3.4.1 and the fact that

bar(π̃RN×d(T̃ 2
∇ϕi

n−∇ϕi−1
n

((νi
n)tin))) = bar(π̃RN×d((ν i

n)tin)) + ∇ϕi
n −∇ϕi−1

n ,

for every i and n, we have
∫

D×Rm×RN×d

W (θ, F ) d(νi
n)tin(x, θ, F ) − 〈lin,vi

n(tin)〉 +

+

∫

D×(Rm)2
H(θi − θi−1) d(µ

i
n)ti−1

n tin
(x, θi−1, θi) ≤

≤
∫

D×Rm×RN×d

W (θ, F + ∇ϕi
n(x) −∇ϕi−1

n (x)) d(νi−1
n )ti−1

n
(x, θ, F ) +

−〈lin,vi
n(ti−1

n ) + ϕi
n − ϕi−1

n 〉 +

+

∫

D×(Rm)i+1

H(θi − θi−1) d(π
(i)((µi−1

n )t0n...ti−1
n

))(x, θ0, . . . , θi−1, θi).

We deduce that
∫

D×Rm×RN×d

W (θ, F ) d(νi
n)tin(x, θ, F ) − 〈lin,vi

n(tin)〉 +

+

∫

D×(Rm)2
H(θi − θi−1) d(µ

i
n)ti−1

n tin
(x, θi−1, θi) ≤

≤
∫

D×Rm×RN×d

W (θ, F ) d(ν i−1
n )ti−1

n
(x, θ, F ) − 〈li−1

n ,vi−1
n (ti−1

n )〉 +

+

∫

D×Rm×RN×d

[W (θ, F + ∇ϕi
n(x) −∇ϕi−1

n (x)) −W (θ, F )] d(ν i−1
n )ti−1

n
(x, θ, F ) +

−〈lin,vi−1
n (ti−1

n ) + ϕi
n − ϕi−1

n 〉 + 〈li−1
n ,vi−1

n (ti−1
n )〉.

Let us fix t ∈ [0, T ] such that tjn ≤ t < tj+1
n ; using

∫

D×Rm×RN×d

[W (θ, F + ∇ϕi
n(x) −∇ϕi−1

n (x)) −W (θ, F )] d(ν i−1
n )ti−1

n
(x, θ, F ) =

=

∫ tin

ti−1
n

(

∫

D×Rm×RN×d

∂W

∂F
(θ, F + εn(s, x))∇ϕ̇(s, x) d(νn)s(x, θ, F )

)

ds,
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where εn(s, x) := ∇ϕ(s, x) −∇ϕ(τn(s), x), for every s ∈ [0, T ] and every x ∈ D, and

〈lin,vi−1
n (ti−1

n ) + ϕi
n − ϕi−1

n 〉 − 〈li−1
n ,vi−1

n (ti−1
n )〉 =

=

∫ tin

ti−1
n

[〈l(s), ϕ̇(s)〉 + 〈l̇(s),vi−1
n (ti−1

n ) − ϕ(τn(s)) + ϕ(s)〉] ds,

and iterating from 0 to j, we obtain
∫

D×Rm×RN×d

W (θ, F ) d(νn)t(x, θ, F ) − 〈l(τn(t)),vn(t)〉 + VarH(µn; 0, t) ≤

≤ W(z0, v0) − 〈l(0), v0〉 +

∫ τn(t)

0
〈σn(s),∇ϕ̇(s)〉 ds+

−
∫ τn(t)

0
[〈l̇(s),vn(s)〉 + 〈l(s), ϕ̇(s)〉] ds+ (3.4.12)

+

∫ τn(t)

0

(

∫

D×Rm×RN×d

[∂W

∂F
(θ, F + εn(s, x)) − ∂W

∂F
(θ, F )

]

∇ϕ̇(s) d(νn)s(x, θ, F )
)

ds+

+

∫ τn(t)

0
〈l̇(s),ϕ(τn(s)) − ϕ(s)〉 ds.

From (3.4.12), we can deduce the following a priori estimates on (νn,µn).

Lemma 3.4.4. There exists a positive constant C, such that

sup
n

sup
t∈[0,T ]

∫

D×Rm×RN×d

|(θ, F )|2 d(νn)t(x, θ, F ) ≤ C, (3.4.13)

sup
n

VarH(µn; 0, T ) ≤ C. (3.4.14)

Proof. Using the fact that supt∈[0,T ] ‖l(t)‖(H1)∗ ,
∫ T
0 ‖l̇(t)‖(H1)∗ dt, and

∫ T
0 ‖ϕ̇(t)‖H1 dt

are finite, the hypotheses on W and the inequality

sup
s∈[0,T ]

∫

D×Rm×RN×d

(|(θ, F )|2 d(νn)s(x, θ, F ) <∞,

(since νn are piecewise constant interpolations of Young measures with finite second mo-
ments), we can deduce from (3.4.12) that, for n sufficiently large,

∫

D×Rm×RN×d

(|(θ, F )|2 d(νn)t(x, θ, F ) ≤ (3.4.15)

≤ C̃ + C̃ sup
s∈[0,T ]

(

1 + c̃

∫

D×Rm×RN×d

|(θ, F )|2 d(νn)s(x, θ, F )
)1/2

,

for suitable positive constants C̃ and c̃ independent of t and n (to estimate the terms in
the third line in (3.4.12) we use (3.4.5), while the term in the fourth line of (3.4.12) can
be treated using πD((νn)s) = Ld and Hölder inequality).

Since this can be repeated for every t ∈ [0, T ], we deduce (3.4.13). Inequality (3.4.14)
comes now from (3.4.13) and (3.4.12). �

We can also deduce the following energy inequality for (νn,µn).
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Lemma 3.4.5. For every t ∈ [0, T ] we have

∫

D×Rm×RN×d

W (θ, F ) d(νn)t(x, θ, F ) − 〈l(τn(t)),vn(t)〉 + VarH(µn; 0, t) ≤

≤ W(z0, v0) − 〈l(0), v0〉 +

∫ τn(t)

0
〈σn(s),∇ϕ̇(s)〉 ds+ (3.4.16)

−
∫ τn(t)

0
[〈l̇(s),vn(s)〉 + 〈l(s), ϕ̇(s)〉] ds+ ρn,

where ρn → 0 as n→ ∞.

Proof. Thanks to (3.4.12) it is enough to prove that

ρ1
n :=

∫ τn(t)

0

(

∫

D×Rm×RN×d

[
∂W

∂F
(θ, F + εn(s, x)) − ∂W

∂F
(θ, F )]∇ϕ̇(s, x) d(νn)s(x, θ, F )

)

ds

and

ρ2
n :=

∫ τn(t)

0
〈l̇(s),ϕ(τn(s)) − ϕ(s)〉 ds

tend to 0 as n→ ∞. Since ϕ is uniformly continuous on [0, T ] with values in H1(D; RN ),
it is immediate to see that ρ2

n → 0 as n→ ∞. It remains to prove that, fixed δ > 0, ρ1
n < δ

for n sufficiently large.
We recall that, since ∇ϕ̇ ∈ L1([0, T ];L2(D; RN×d)), we can find a sequence vj ∈

C([0, T ]; C(D̄; RN )) such that
∫ T
0 ‖vj(t) −∇ϕ̇(t)‖2 dt→ 0, as j → ∞.

Since πD((νn)s) = Ld, using (W.2), we can deduce for everyM > 1 and every s ∈ [0, T ]

∫

{(x,θ,F ):|θ|+|F |>M}

[∂W

∂F
(θ, F + εn(s, x)) − ∂W

∂F
(θ, F )

]

∇ϕ̇(s) d(νn)s(x, θ, F ) ≤

≤ C

∫

{(x,θ,F ):|θ|+|F |>M}

2(1 + |θ| + |F |)|∇ϕ̇(s, x) − vj(s, x)| d(νn)s(x, θ, F ) +

+C

∫

{(x,θ,F ):|θ|+|F |>M}

2(1 + |θ| + |F |)|vj(s, x)| d(νn)s(x, θ, F ) +

+C‖εn(s)‖2‖∇ϕ̇(s)‖2;
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therefore, thanks to Lemma 3.4.4, for every j we have

∫ τn(t)

0

(

∫

{(x,θ,F ):|θ|+|F |>M}

[∂W

∂F
(θ, F + εn(s, x)) − ∂W

∂F
(θ, F )

]

∇ϕ̇(s) d(νn)s(x, θ, F )
)

ds ≤

≤ 8C
[

sup
s∈[0,T ]

sup
n

∫

D×Rm×RN×d

|(θ, F )|2 d(νn)s(x, θ, F )
]1/2

∫ t

0
‖∇ϕ̇(s) − vj(s)‖2 ds+

+4T sup
s∈[0,T ]

sup
n

∫

D×Rm×RN×d

|(θ, F )|2 d(νn)s(x, θ, F )
‖vj‖∞
M

+

+C sup
s∈[0,T ]

‖εn(s)‖2

∫ T

0
‖∇ϕ̇(s)‖2 ds.

Since s 7→ ϕ(s) is continuous from [0, T ] into H1(D; RN ), the term in the last line tends
to 0 as n→ ∞. Therefore there exist j̄ and M̄ such that

∫ τn(t)

0

(

∫

{(x,θ,F ):|θ|+|F |>M̄}

[∂W

∂F
(θ, F + εn(s, x)) − ∂W

∂F
(θ, F )

]

∇ϕ̇(s) d(νn)s(x, θ, F )
)

ds ≤

≤ δ

2
, (3.4.17)

for n sufficiently large.
We now consider the contribution of the integral on {(x, θ, F ) : |θ| + |F | ≤ M̄}.
For every M > 0 and r > 0, define

ωM (r) := sup
|(θ,F )|≤M,|(θ′,F ′)|≤r

∣

∣

∣

∂W

∂F
(θ + θ′, F + F ′) − ∂W

∂F
(θ, F )

∣

∣

∣
.

Thanks to the continuity properties of ∂W
∂F , for every M we have ωM (r) → 0 as r tends to

0; moreover it is ωM (r) ≤ 2C(M + 1) + Cr.
In particular, for M̄ chosen before, it is immediate that

∫ τn(t)

0

(

∫

{(x,θ,F ):|θ|+|F |≤M̄}

[∂W

∂F
(θ, F + εn(s, x)) − ∂W

∂F
(θ, F )

]

∇ϕ̇(s) d(νn)s(x, θ, F )
)

ds ≤

∫ t

0

(

∫

D
ωM̄ (|εn(s, x)|)|∇ϕ̇(s, x)| dx

)

ds;

by the Dominated Convergence Theorem, we have

‖ωM̄ (|εn(s)|)‖2 → 0,

for a.e. s ∈ [0, T ], as n tends to ∞; since we have the estimate

‖ωM̄ (|εn(s)|)‖2‖∇ϕ̇(s)‖2 ≤ C‖∇ϕ̇(s)‖2(2M̄ + 2 + ‖εn(s)‖2),
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for every s ∈ [0, T ] and sups∈[0,T ] ‖εn(s)‖2 → 0 as n → ∞, we can apply again the
Dominated Convergence Theorem and obtain

∫ τn(t)

0

(

∫

{(x,θ,F ):|θ|+|F |≤M̄}

[∂W

∂F
(θ, F + εn(s, x)) − ∂W

∂F
(θ, F )

]

∇ϕ̇(s) d(νn)s(x, θ, F )
)

ds ≤

≤ δ

2
, (3.4.18)

for n sufficiently large. Therefore (3.4.17) and (3.4.18) give the thesis. �

3.4.3. Passage to the limit. Thanks to (3.4.13), (3.4.14), and hypothesis (H.2), we
can apply our version of Helly’s Theorem (Theorem 2.1.6) to the sequence µn and obtain a
subsequence, still indicated by µn, a subset Θ of [0, T ], containing 0, with L1([0, T ]\Θ) = 0,
and µ ∈ SY 2

−([0, T ],D; Rm), such that, for every finite sequence t1 < · · · < tl in Θ, we
have

(µn)t1...tl ⇀ µt1...tl , 2-weakly*. (3.4.19)

For every t ∈ Θ we choose an increasing sequence of integers nt
k, possibly depending

on t, such that

lim sup
n

[〈σn(t),∇ϕ̇(t)〉 + 〈l̇(t),vn(t)〉] = lim
k

[〈σnt
k
(t),∇ϕ̇(t)〉 + 〈l̇(t),vnt

k
(t)〉],(3.4.20)

where vn(t) is defined as in Remark (3.3.8). Thanks to (3.4.13) and Lemma 2.1.9, there

exists ν ∈ Y 2(D; Rm × R
N×d)[0,T ], such that π̃Rm(νt) = µt for every t ∈ [0, T ], ν is

Θ-2-weakly*-approximable from the left, and satisfies the following property:

(conv) for every t ∈ Θ, there exists a subsequence of (νnt
k
)k, still denoted by (νnt

k
)k,

such that

(νnt
k
)t ⇀ νt, 2-weakly*. (3.4.21)

Note that the map (3.3.24) is measurable on [0, T ] since

〈σ(t),∇ϕ̇(t)〉 − 〈l̇(t),v(t)〉 = lim sup
n

[〈σn(t),∇ϕ̇(t)〉 − 〈l̇(t),vn(t)〉], (3.4.22)

for every t ∈ Θ, thanks to (3.4.20), (W.2), Lemma 1.3.5, and Remark 3.3.8. Moreover,
thanks to Lemma 3.4.4, we have

|〈σn(t),∇ϕ̇(t)〉 − 〈l̇(t),vn(t)〉| ≤
C ′[‖∇ϕ̇(t)‖2 + ‖l̇(t)‖(H1)∗ ];

therefore, thanks to the hypotheses on l and ϕ, and to (3.4.22), the map (3.3.24) is
integrable on [0, T ].

It can be shown that (ν,µ) ∈ AY ([0, T ],ϕ). Indeed, thanks to (3.4.19) and (3.4.21),
we can apply Lemma 3.3.7 to get

(ν,µ) ∈ AY (Θ,ϕ). (3.4.23)
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Let now t1 < · · · < tl be a finite sequence in [0, T ]. Since µ is left continuous and ν

is Θ-2-weakly*-approximable from the left, for every i = 1, . . . , l, there exist a sequence,

sj
i → ti as j → ∞, with sj

i ≤ ti and sj
i ∈ Θ, such that

µ
sj
1...sj

n
⇀ µt1...tn , 2-weakly*, (3.4.24)

ν
sj
i
⇀ νti , 2-weakly*, for every i = 1, . . . , n (3.4.25)

as j → ∞. If we define ϕj : {t1, . . . , tl} → H1(D; RN ) by ϕj(ti) := ϕ(sj
i ), for every

i = 1, . . . , n, we have that ϕj(ti) → ϕ(ti) strongly in H1(D; RN ), for every i = 1, . . . , n; if

we define (ν̃j, µ̃j) ∈ Y 2(D; Rm × R
N×d){t1,...,tl} × SY 2({t1, . . . , tl},D; Rm) by

ν̃
j
ti

:= ν
sj
i
, for every i = 1, . . . , n,

µ̃
j
t1...tl

:= µ
sj
1...sj

l
,

thanks to (3.4.23), we have that (ν̃j , µ̃j) ∈ AY ({t1, . . . , tn},ϕj) and

(µ̃j)t1...tl ⇀ µt1...tl
, 2-weakly*

(ν̃j)ti ⇀ νti , 2-weakly* for every i = 1, . . . , l,

as j → ∞. Hence we are again in the hypotheses of Lemma 3.3.7 and we can conclude
that (ν,µ) ∈ AY ([0, T ],ϕ).

By construction, (ν,µ) satisfies (ev0).

Now we want to prove that (ν,µ) satisfies (ev1).
Let z̃ ∈ L2(D; Rm), ũ ∈ H1

Γ0
(0); for every n and for every i = 1, . . . , k(n), let consider

the pair (ν̂, µ̂), where ν̂ := ((ν i
n)t0n , . . . , (ν

i
n)ti−1

n
,T(z̃,∇ũ)((ν

i
n)tin)) and µ̂ is the unique

compatible system in SY 2({t0n, . . . , tin},D; Rm) satisfying µ̂t0n...tin
= T̃ i+1

z̃ ((µi
n)t0n...tin

), with

T(z̃,∇ũ)(x, θ, F ) = (x, θ + z̃(x), F + ∇ũ(x))
and

T̃ i+1
z̃ (x, θ0, . . . , θi) = (x, θ0, . . . , θi−1, θi + z̃(x)).

This is an element of AY ({t0n, . . . , tin},ϕ) and satisfies (3.4.2) and (3.4.3), hence we can
use it as a competitor to obtain

∫

D×Rm×RN×d

W (θ, F ) d(νi
n)tin(x, θ, F ) − 〈lin,vi

n(tin)〉 +

+

∫

D×(Rm)i+1

H(θi − θi−1) d(µ
i
n)t0n...tin

≤
∫

D×Rm×RN×d

W (θ + z̃(x), F + ∇ũ(x)) d(ν i
n)tin(x, θ, F ) − 〈lin,vi

n(tin) + ũ〉 +

+

∫

D×(Rm)i+1

H(θi + z̃(x) − θi−1) d(µ
i
n)t0n...tin

.

Thanks to the triangular inequality for H (which follows from (H.1)), this implies that
∫

D×Rm×RN×d

[W (θ, F ) −W (θ + z̃(x), F + ∇ũ(x))] d(ν i
n)tin(x, θ, F ) ≤

H(z̃) − 〈lin, ũ〉.
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By definition of νn, for every t ∈ Θ we obtain
∫

D×Rm×RN×d

[W (θ, F ) −W (θ + z̃(x), F + ∇ũ(x))] d(νn)t(x, θ, F ) ≤

H(z̃) − 〈l(τn(t)), ũ〉

Since

|W (θ, F ) −W (θ + z̃(x), F + ∇ũ(x))| ≤
C̃[(|z̃(x)| + |∇ũ(x)|)2 + 1] + C̃(|z̃(x)| + |∇ũ(x)|)(|θ| + |F |),

for a suitable positive constant C̃, and (νnt
k
)t ⇀ νt 2-weakly*, for a suitable subsequence

((νnt
k
)t)k, we can deduce from Lemma 1.3.5 that

∫

D×Rm×RN×d

[W (θ, F ) −W (θ + z̃(x), F + ∇ũ(x))] d(νnt
k
)t(x, θ, F ) →

∫

D×Rm×RN×d

[W (θ, F ) −W (θ + z̃(x), F + ∇ũ(x))] dνt(x, θ, F ),

as n → ∞. Since l(τn(t)) → l(t), strongly in H1(D; RN )∗, for every t ∈ [0, T ], we obtain
(ev1) for t ∈ Θ.

Let now t ∈ [0, T ] \ Θ. We can find a sequence sj → t, with sj ≤ t and sj ∈ Θ, such
that νsj ⇀ νt 2-weakly*; as before we have that

∫

D×Rm×RN×d

[W (θ, F ) −W (θ + z̃(x), F + ∇ũ(x))] dνsj (x, θ, F ) →
∫

D×Rm×RN×d

[W (θ, F ) −W (θ + z̃(x), F + ∇ũ(x))] dνt(x, θ, F ),

as j → ∞. Again, since l(sj) → l(t) strongly in H1(D; RN )∗, using (ev1) for sj, we obtain
(ev1) for every t ∈ [0, T ].

Now we want to prove (ev2). Fix t ∈ Θ and let (νnt
k
)t be a subsequence satisfying

(3.4.20) and such that (νnt
k
)t ⇀ νt 2-weakly* as k → ∞; then, thanks to (3.4.19),

µnt
k
⇀ µ, (3.4.26)

weakly* in SY 2([0, T ],D; Rm); since the term containing l is continuous with respect to
2-weak* convergence, the term containing W is weakly lower semicontinuous and the
variation is weakly lower semicontinuous thanks to (3.4.26) and Lemma 2.1.7, we have

∫

D×Rm×RN×d

W (θ, F ) dνt(x, θ, F ) − 〈l(t),v(t)〉 +

+VarH(µ; 0, t) ≤

≤ lim inf
k

[

∫

D×Rm×RN×d

W (θ, F ) d(νnk
t
)t(x, θ, F ) − 〈l(τnt

k(t)),vnt
k
(t)〉 +

+VarH(µnt
k
; 0, t)

]

.
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Using (3.4.16) of Lemma 3.4.5, we can deduce that
∫

D×Rm×RN×d

W (θ, F ) dνt(x, θ, F ) − 〈l(t),v(t)〉 +

+VarH(µ; 0, t) ≤

≤ W(z0, v0) − 〈l(0),v(0)〉 −
∫ t

0
〈l(s), ϕ̇(s)〉 ds+

+ lim inf
k

∫ τnt
k (t)

0
[〈σnt

k
(s),∇ϕ̇(s)〉 − 〈l̇(s),vnt

k
(s)〉] ds.

Since sups∈[0,T ] supn ‖σn(s)‖2 and sups∈[0,T ] supn ‖vn(s)‖2 are finite, we can deduce, using
Fatou Lemma, that

lim inf
k

∫ τnt
k (t)

0
[〈σnt

k
(s),∇ϕ̇(s)〉 − 〈l̇(s),vnt

k
(s)〉] ds ≤

≤ lim sup
n

∫ τn(t)

0
[〈σn(s),∇ϕ̇(s)〉 − 〈l̇(s),vn(s)〉] ds ≤

≤
∫ t

0
lim sup

n
[〈σn(s),∇ϕ̇(s)〉 − 〈l̇(s),vn(s)〉] ds.

Thanks to (3.4.22) this implies that

lim inf
k

∫ τnt
k (t)

0
[〈σnt

k
(s),∇ϕ̇(s)〉 − 〈l̇(s),vnt

k
(s)〉] ds ≤

≤
∫ t

0
[〈σ(s),∇ϕ̇(s)〉 − 〈l̇(s),v(s)〉] ds.

This implies (ev2) for t ∈ Θ.
Let now t ∈ [0, T ] \ Θ and let sj → t, sj ≤ t and (2.1.2); it is easy to verify, using

Lemma 2.1.7, that

VarH(µ; 0, t) ≤ lim inf
j

VarH(µ; 0, sj),

hence (ev2) for t can be deduced from (ev2) for sj.

3.5. An alternative proof of the existence result in the quasiconvex case

In this section we focus on the particular case of W (θ, ·) quasiconvex, which can be
treated using a spatial regularization depending on the gradient of the internal variable,
as proposed in [21].

We assume that W (θ, ·) is quasiconvex for every θ ∈ R
m.

Definition 3.5.1. Let η > 0, ϕ ∈ AC([0, T ];H1(D; RN )), l ∈ AC([0, T ];H1(D; RN )∗),
z0 ∈ H1(D; Rm), v0 ∈ A(0), and T > 0. A solution of the η-regularized problem with
external load l, boundary datum ϕ, and initial condition (z0, v0), in the time interval
(0, T ], is a pair (zη,vη), with zη : [0, T ] → H1(D; Rm) and vη : [0, T ] → H1(D; RN ),
satisfying the following properties:

(ev0)reg initial condition: (zη(0),vη(0)) = (z0, v0);
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(ev1)reg kinematic admissibility: vη(t) ∈ A(t) for every t ∈ [0, T ];

(ev2)reg global stability : for every t ∈ (0, T ] and (ẑ, v̂) ∈ H1(D; Rm) ×A(t) we have

W(zη(t),vη(t)) − 〈l(t),vη(t)〉 + η
2‖∇zη(t)‖2

2 ≤
≤ W(ẑ, v̂) − 〈l(t), v̂〉 + η

2‖∇ẑ‖2
2 + H(ẑ − zη(t));

(ev3)reg energy inequality: VarH(zη; 0, T ) <∞, the map t 7→ [〈ση(t),∇ϕ̇(t)〉−〈l̇(t),vη(t)〉]
is measurable on [0, T ], and for every t ∈ [0, T ] we have

W(zη(t),vη(t)) − 〈l(t),vη(t)〉 + η
2‖∇zη(t)‖2

2 + VarH(zη; 0, t) ≤

≤ W(z0, v0) − 〈l(0), v0〉 + η
2‖∇z0‖2

2 −
∫ t

0
〈l(s), ϕ̇(s)〉 ds +

+

∫ t

0
[〈ση(s),∇ϕ̇(s)〉 − 〈l̇(s),vη(s)〉] ds,

where ση(s) := ∂W
∂F (zη(s),∇vη(s)) for every s ∈ [0, T ].

The proof of Theorem 4.1 in [21] can be repeated in our case to obtain the following
result.

Theorem 3.5.2. Let η, ϕ, l, (z0, v0), and T be as in Definition 3.5.1. Then there exists
a solution of the η-regularized problem with external load l, boundary datum ϕ, and initial
condition (z0, v0), in the time interval (0, T ]. Moreover there exists a positive constant Kη

such that

sup
t∈[0,T ]

‖zη(t)‖2 ≤ Kη, (3.5.1)

sup
t∈[0,T ]

‖vη(t)‖H1 ≤ Kη. (3.5.2)

Lemma 3.5.3. Let ϕ, l, v0, and T be as in Definition 3.5.1, and let (zη
0 )η>0 be a family

of functions in H1(D; Rm), such that

sup
η

‖zη
0‖2 ≤M, (3.5.3)

sup
η
η‖∇zη

0‖2
2 ≤M, (3.5.4)

for a suitable positive constant M . Then there exists a positive constant K such that the
solutions (zη,vη) of the η-regularized problems with initial condition (zη

0 , v0) satisfy the
following conditions

sup
t∈[0,T ]

sup
η

‖zη(t)‖2 ≤ K, sup
t∈[0,T ]

sup
η

‖∇vη(t)‖2 ≤ K, (3.5.5)

sup
η

VarH(zη; 0, T ) ≤ K, sup
t∈[0,T ]

η
2‖∇zη(t)‖2

2 ≤ K. (3.5.6)

Proof. Using the fact that supt∈[0,T ] ‖l(t)‖(H1)∗ ,
∫ T
0 ‖l̇(t)‖(H1)∗ dt, and

∫ T
0 ‖ϕ̇(t)‖H1 dt

are finite, the hypotheses on W , the hypotheses (3.5.3) and (3.5.4), and the inequalities
(3.5.1) and (3.5.2), we can deduce from (ev3)reg that, for every η > 0,

c(‖zη(t)‖2
2 + ‖∇vη(t)‖2

2) − C ≤ C̃ + c̃ sup
s∈[0,T ]

(‖zη(s)‖2 + ‖vη(s)‖H1),
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for suitable positive constants c̃, C̃ independent of t and η. Since this can be repeated for
every t ∈ [0, T ], Poincaré inequality implies (3.5.5). Inequalities (3.5.6) come now from
(ev3)reg and (3.5.5). �

Remark 3.5.4. From (3.5.6) we can deduce that

ηn∇zηn(t) → 0

strongly in L2(D; Rm×d), for every positive sequence ηn → 0 and every t ∈ [0, T ].

Definition 3.5.5. Given an external load l ∈ AC([0, T ];H1(D; RN )∗), a boundary
datum ϕ ∈ AC([0, T ];H1(D; RN )), an initial condition (z0, v0) ∈ L2(D; Rm) ×A(0), and
T > 0, a quasistatic evolution obtained by spatial regularizations in the time interval [0, T ]

is a pair (ν,µ) ∈ Y 2(D; Rm × R
N×d)[0,T ] × SY 2

−([0, T ],D; Rm) with

π̃Rm(νt) = µt, for every t ∈ [0, T ], (3.5.7)

for which there exist:

• a sequence (zn
0 )n ⊂ H1(D; Rm), with

zn
0 → z0 strongly in L2(D; Rm), (3.5.8)

• a positive sequence ηn converging to 0, with

ηn‖∇zn
0 ‖2

2 → 0, (3.5.9)

• a subset Θ of [0, T ], with 0 ∈ Θ and L1([0, T ] \ Θ) = 0,

such that ν is Θ-2-weakly* approximable from the left and the solutions (zηn ,vηn) of the
ηn-regularized problems with initial conditions (zn

0 , v0) in the time interval (0, T ] satisfy
the following conditions:

(conv1)reg for every finite sequence t1 < · · · < tl in Θ

δ(zηn (t1),...,zηn (tl)) ⇀ µt1...tl
2-weakly*, (3.5.10)

as n→ ∞;

(conv2)reg for every t ∈ Θ there exists a subsequence (zη
nt

k

,vη
nt

k

)k of (zηn ,vηn)n, possibly

depending on t, with

lim sup
n

[〈σηn(t),∇ϕ(t)〉 − 〈l̇(t),vηn(t)〉] = (3.5.11)

= lim
k

[〈ση
nt

k

(t),∇ϕ(t)〉 − 〈l̇(t),vη
nt

k

(t)〉],

and

δ(zη
nt

k

(t),∇vη
nt

k

(t)) ⇀ νt 2-weakly*, (3.5.12)

as k → ∞.

In the next theorem we will show that the quasistatic evolution obtained by spatial
regularizations fulfils the requirements of Definition 3.3.14.

Theorem 3.5.6. Let l ∈ AC([0, T ];H1(D; RN )∗), ϕ ∈ AC([0, T ];H1(D; RN )), (z0, v0),
and T > 0 be as in Definition 3.5.5, and assume that

W(z0, v0) ≤ W(ẑ, v̂) − 〈l(0), v̂ − v0〉 + H(ẑ − z0), (3.5.13)
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for every ẑ ∈ L2(D; Rm) and every v̂ ∈ A(0). Then a quasistatic evolution obtained by
spatial regularizations in the time interval [0, T ] is a globally stable quasistatic evolution
of Young measures with the same data in the time interval [0, T ].

Proof. Let (ν,µ) ∈ Y 2(D; Rm × R
N×d)[0,T ] × SY 2

−([0, T ],D; Rm) be a quasistatic
evolution obtained by spatial regularizations.

First of all we show that (ν,µ) ∈ AY ([0, T ],ϕ): thanks to (3.5.10) and (3.5.12), it is
immediate to see that (ν,µ) ∈ AY (Θ,ϕ); as in the proof of the main theorem, since ν

is Θ-2-weakly*-approximable from the left and µ is left continuous, we are able to prove
that (ν,µ) ∈ AY ([0, T ],ϕ). In particular, for every t ∈ [0, T ] there exists a function
v(t) ∈ A(t) such that ∇v(t) = bar(π̃RN×d(νt)), thanks to Remark 3.3.8.

Let ηn and zn
0 be the sequences appearing in Definition 3.5.5, and let (zηn ,vηn) be the

solutions of the ηn-regularized problems in the time interval (0, T ]; (ev0) comes immedi-
ately from (ev0)reg, (3.5.8), and (3.5.12).

Now we prove that (ν,µ) satisfies (ev1).
For t = 0 it comes immediately from (3.5.13).
For t 6= 0, we first show that (ev1) holds for test functions z̃ ∈ H1(D; Rm). Let t ∈ Θ\0,

(ηnt
k
)k be the sequence appearing in (conv2)reg, and (z̃, ũ) ∈ H1(D; Rm) × H1

Γ0
(0). By

(ev1)reg, we have

W(zηnt
k

(t),vηnt
k

(t)) +
η

nt
k

2 ‖∇zηnt
k

(t)‖2
2 ≤

≤ W(zη
nt

k

(t) + z̃,vη
nt

k

(t) + ũ) − 〈l(t), ũ〉 +
ηnt

k

2
‖∇zη

nt
k

(t) + ∇z̃‖2
2 + H(z̃).

Thanks to Remark 3.5.4,

ηnt
k

2
‖∇zη

nt
k

(t) + ∇z̃‖2
2 −

η
nt

k
2 ‖∇zη

nt
k

(t)‖2
2 =

ηnt
k

2
‖∇z̃‖2

2 + 〈ηnt
k
∇zη

nt
k

(t),∇z̃〉,→ 0,

as k → ∞. On the other hand we have

W(zη
nt

k

(t) + z̃,vη
nt

k

(t) + ũ) −W(zη
nt

k

(t),vη
nt

k

(t)) =

=

∫

D×Rm×RN×d

[W (θ + z̃(x), F + ∇ũ(x)) −W (θ, F )] dδ(zη
nt

k

(t),∇vη
nt

k

(t))(x, θ, F );

since

|W (θ + z̃(x), F + ∇ũ(x)) −W (θ, F )| ≤ (3.5.14)

C̃[(|z̃(x)| + |∇ũ(x)|)2 + 1] + C̃(|z̃(x)| + |∇ũ(x)|)(|θ| + |F |),

thanks to Lemma 1.3.5 and (3.5.12) we can deduce that

∫

D×Rm×RN×d

[W (θ + z̃(x), F + ∇ũ(x)) −W (θ, F )] dδ(zη
nt

k

(t),∇vη
nt

k

(t))(x, θ, F ) →
∫

D×Rm×RN×d

[W (θ + z̃(x), F + ∇ũ(x)) −W (θ, F )] dνt(x, θ, F ),
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and hence we can conclude that
∫

D×Rm×RN×d

W (θ, F ) dνt(x, θ, F ) ≤ (3.5.15)

≤
∫

D×Rm×RN×d

W (θ + z̃(x), F + ∇ũ(x)) dνt(x, θ, F ) − 〈l(t), ũ〉 + H(z̃).

Using the fact that ν is Θ-2-weakly*-approximable from the left, it is easy to extend
the previous inequality to t ∈ [0, T ] \ Θ reasoning as in the proof of the main theorem.

Now we prove that (3.5.15) holds also for test functions z̃ ∈ L2(D; Rm). Let t ∈ (0, T ],
z̃ ∈ L2(D; Rm), ũ ∈ H1

Γ0
(0), and assume that (z̃h)h is a sequence in H1(D; Rm) with

z̃h → z̃ strongly in L2(D; Rm); then we have

H(z̃h) → H(z̃),

and
∫

D×Rm×RN×d

[W (θ + z̃(x), F + ∇ũ(x)) −W (θ + z̃h(x), F + ∇ũ(x))] dνt(x, θ, F ) → 0,

thanks to the hypotheses on H, and to (W.2) and (1.3.2), respectively; hence (ev1) for
test functions z̃ and ũ can be deduce from (3.5.15) applied to z̃h and ũ.

Finally we prove (ev2).
Thanks to (3.5.8) and (3.5.9), we have

W(zn
0 , v0) + ηn

2 ‖∇zn
0 ‖2

2 → W(z0, v0),

as n→ ∞; therefore we can argue as in the proof of the main theorem using (ev2)reg and
the approximation properties of (ν,µ). �

Theorem 3.5.7. Let l ∈ AC([0, T ];H1(D; RN )∗), ϕ ∈ AC([0, T ];H1(D; RN )), T >
0, and (z0, v0) ∈ L2(D; Rm) × A(0). Then there exists a quasistatic evolution obtained
by spatial regularizations with external load l, boundary datum ϕ, and initial condition
(z0, v0), in the time interval [0, T ].

Proof. Fix a sequence (zn
0 )n in H1(D; Rm) satisfying (3.5.8) and a positive sequence

ηn → 0 satisfying (3.5.9); let (zηn ,vηn) be the solutions of the ηn-regularized prob-
lems with external load l, boundary datum ϕ, and initial condition (zn

0 , v0). Thanks
to (3.5.5), (3.5.6), and (H.2), we can apply Theorem 2.1.6 to obtain a subset Θ of [0, T ]
with 0 ∈ Θ and L1([0, T ] \ Θ) = 0, a compatible system µ ∈ SY 2

−([0, T ],D; Rm), and
a subsequence still indicated by (ηn)n satisfying (conv1)reg. For every t ∈ Θ we select
a subsequence (ηnt

k
)k of (ηn)n, possibly depending on t, satisfying (3.5.11). Thanks to

(3.5.5), we can apply Lemma 2.1.9 to obtain another subsequence still denoted by (ηnt
k
)k

and ν ∈ Y 2(D; Rm × R
N×d)[0,T ] which is Θ-2-weakly*-approximable from the left and

fulfils conditions (conv2)reg and (3.5.7). �





CHAPTER 4

A vanishing viscosity approach

4.1. Introduction

In the previous chapter we have highlighted that the nonconvexity of the energy func-
tional is responsible for the ill-posedness of the incremental minimum problems used in
the construction of approximate solutions to the quasistatic evolution problem.

Moreover, since the lack of convexity allows the functional to have multiple wells, a
quasistatic evolution driven by global minimizers, if they would exist, could prescribe
abrupt jumps from one well to another one; therefore it is preferable to follow a path
composed by local minimizers rather than global minimizers.

To this end, in the present chapter we propose a notion of quasistatic evolution in which
the stability condition is weakened, it is indeed substituted by a stationarity condition.
Moreover, we propose a selection criterion based on a sort of viscous approximation,
among the evolutions satisfying the stationarity condition and the energy inequality. The
underlying idea is that an evolution obtained in this way does not jump over potential
barriers.

We consider viscously-regularized problems and prove an existence and uniqueness
result for their solutions in H1([0, T ];L2(D : R

m) ×H1(D; RN )).
Then, we send the regularizing parameter to zero and analyze the limit of the solutions

to the regularized problems, in the framework of Young measures: due to the nonconvexity
of the problem, the regularized solutions may develop stronger and stronger oscillations
in space as the parameter goes to zero, and this prevents the passage to the limit of the
stationarity condition and the energy inequality in the usual function spaces. Therefore,
a weaker formulation of these conditions in terms of Young measures, or equivalently
in terms of stochastic processes, is provided; we prove that the limit of the regularized
solutions satisfies these properties, and hence it can be considered as a solution of our
quasistatic evolution problem.

Finally, we compare the notion of approximable quasistatic evolution considered in the
present chapter with the quasistatic evolution based on global minimization defined in the
previous one. More precisely we study an example in which the approximable quasistatic
evolution is unique and is a classical function which can be described explicitely. Theorem
4.7.2 proves that this evolution cannot be a globally stable quasistatic evolution, since it
does not satisfy the stability condition.

4.2. The mechanical model

The reference configuration D satisfies the same assumptions as in Section 3.2. As
before, v denotes the deformation, z is the internal variable, W : R

m × R
N×d → [0,+∞)

65
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is the stored energy density, H : R
m → [0,+∞) the dissipation rate density, and W and

H represent the integral functionals associated to W and H, respectively.
We assume that H satisfies the same assumptions (H.1) and (H.2) as in Section 3.2,

while W is required to fulfil condition (W.1) of Section 3.2 and the following condition,
which is quite stronger than (W.2):

(W.3) W is of class C2 and there exists a positive constant M such that
∣

∣

∣

∂2W

∂(θ, F )2
(θ, F )

∣

∣

∣
≤M,

for every θ ∈ R
m and every F ∈ R

N×d, where ∂2W
∂(θ,F )2

denotes the matrix of all

second derivatives with respect to (the components of) θ and F .

The global dissipation VarH(z; s, t) of a possibly discontinuous function z : [0, T ] → L2(D; Rm)
in the interval [s, t] is defined as in Section 3.2. Note that for z ∈ H1([0, T ];L2(D; Rm))
we have

VarH(z; s, t) =

∫ t

s
H(ż(τ)) dτ (4.2.1)

(see, e.g., [9, Theorem 7.1]).

The external load at time t and the prescribed boundary datum on Γ0 at time t are
denoted by l(t) and ϕ(t), respectively; we assume that l ∈ H1([0, T ];H1(D; RN )∗), where
H1(D; RN )∗ is the dual of H1(D; RN ), and ϕ ∈ H1([0, T ];H1(D; RN )). As before, the
kinematically admissible values at time t are contained in L2(D; Rm) ×A(t), where

A(t) = H1
Γ0

(ϕ(t)) := {v ∈ H1(D; RN ) such that v = ϕ(t) Hd−1-a.e. on Γ0}.

4.3. Regularized evolution

In this section we give the definition and an existence result for the solution of the
ε-regularized evolution problem.

We will assume that the initial condition (z0, v0) ∈ L2(D; Rm) × A(0) satisfies the
following condition

〈σ0,∇ũ〉 = 〈l(0), ũ〉 for every ũ ∈ H1
Γ0

(0), (4.3.1)

ζ0 ∈ ∂H(0), (4.3.2)

where σ0(x) := ∂W
∂F (z0(x),∇v0(x)), ζ0(x) := −∂W

∂θ (z0(x),∇v0(x)), for a.e. x ∈ D.

Definition 4.3.1. Let ε > 0, l ∈ H1([0, T ];H1(D; RN )∗), ϕ ∈ H1([0, T ];H1(D; RN )),
(z0, v0) ∈ L2(D; Rm)×A(0), and T > 0. Assume that (z0, v0) satisfies (4.3.1) and (4.3.2).
A solution of the ε-regularized problem in the time interval [0, T ], with external load l,
boundary datum ϕ, and initial condition (z0, v0) is a pair (zε,vε) ∈ H1([0, T ];L2(D; Rm)×
H1(D; RN )), satisfying the following conditions:

(ev0)ε initial condition: (zε(0),vε(0)) = (z0, v0);

(ev1)ε kinematic admissibility: vε(t) ∈ A(t), for every t ∈ [0, T ];

(ev2)ε equilibrium condition: for a.e. t ∈ [0, T ] and for every ũ ∈ H1
Γ0

(0),

〈σε(t) + ε∇v̇ε(t),∇ũ〉 = 〈l(t), ũ〉, (4.3.3)

where σε(t) := ∂W
∂F (zε(t),∇vε(t));
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(ev3̂)ε regularized flow rule: for a.e. t ∈ [0, T ],

żε(t) = N ε
K(ζε(t)) a.e. in D, (4.3.4)

where ζε(t) := −∂W
∂θ (zε(t),∇vε(t)).

Remark 4.3.2. If l can be written in the form

〈l(t), ṽ〉 =

∫

D
f(t, x) · ṽ(x) dx+

∫

∂D
g(t, x) · ṽ(x) dHd−1(x),

with f(t) ∈ L2(D; RN ) and g(t) ∈ L2(∂D; RN ), for every ṽ ∈ H1(D; RN ), then (ev2)ε
takes the form

−divσε(t) − ε∆v̇ε(t) = f(t), (4.3.5)

[σε(t) + ε∇v̇ε(t)] · ν = g(t) Hd−1-a.e. on Γ1, (4.3.6)

where ν is the outer unit normal to ∂D. Indeed, choosing first ũ ∈ H1
0 (D; RN ) in (ev2)ε,

we obtain (4.3.5) and this ensures that −divσε(t) − ε∆v̇ε(t) ∈ L2(D; RN ); hence we can
apply integration by parts to get (4.3.6).

Remark 4.3.3. Let us fix t ∈ [0, T ] such that żε(t) and v̇ε(t) exist. Then the following
conditions are equivalent

żε(t) = N ε
K(ζε(t)) a.e. in D, (4.3.7)

ζε(t) ∈ ∂Hε(żε(t)), (4.3.8)

ζε(t) − εżε(t) ∈ ∂H(żε(t)). (4.3.9)

Indeed, by (1.1.5), ∂H∗
ε(ζε(t)) = N ε

K(ζε(t)), so that (4.3.7) and (4.3.8) are equivalent by
standard property of conjugate functions (see, e.g., [16, Corollary I.5.2]). The equivalence
of (4.3.8) and (4.3.9) comes from the definition of Hε.

In the following Theorem we prove that the modified flow rule (ev3̂)ε can be replaced
by a suitable constraint on ζε and an energy equality.

Theorem 4.3.4. Let l, ϕ, z0, v0, ε, and T be as in Definition (4.3.1).
Then (zε,vε) ∈ H1([0, T ];L2(D; Rm) × H1(D; RN )) is a solution of the ε-regularized

problem in the time interval [0, T ], with external load l, boundary datum ϕ, and initial
condition (z0, v0) if and only if it satisfies the initial condition (ev0)ε, the kinematic ad-
missibility (ev1)ε, the equilibrium condition (ev2)ε, and the following conditions:

(ev3)ε relaxed dual constraint: ζε(t) − εżε(t) ∈ ∂H(0), for a.e. t ∈ [0, T ];

(ev4)ε energy equality: for every t ∈ [0, T ],

W(zε(t),vε(t)) − 〈l(t),vε(t)〉 +

∫ t

0
H(żε(s)) ds + ε

∫ t

0
‖żε(s)‖2

2 ds+

+ ε

∫ t

0
〈∇v̇ε(s),∇v̇ε(s) −∇ϕ̇(s)〉 ds = W(z0, v0) − 〈l(0), v0〉 +

+

∫ t

0
〈σε(s),∇ϕ̇(s)〉 ds −

∫ t

0
[〈l̇(s),vε(s)〉 + 〈l(s), ϕ̇(s)〉] ds.
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Remark 4.3.5. Since we are dealing with the ε-regularized problem, in the energy
equality there are two extra terms proportional to ε and depending on the time derivatives
of zε and ∇vε; they represent a sort of viscous dissipation.

Proof of Theorem 4.3.4. Suppose that (zε,vε) satisfies (ev0)ε, (ev1)ε, (ev2)ε and

(ev3̂)ε. As H is positively homogeneous of degree one, by a general property of integral
functionals (see, e.g., [16, Proposition IX.2.1])

∂H(żε(t)) ⊂ ∂H(0) = {ζ ∈ L2(D; Rm) : ζ(x) ∈ ∂H(0) for a.e. x ∈ D}, (4.3.10)

for a.e. t ∈ [0, T ]. Hence from (4.3.9) we derive (ev3)ε.
Since H is positively homogeneous of degree one, we have 〈ζ, z〉 = H(z), for every

z ∈ L2(D; Rm) and ζ ∈ ∂H(z). Therefore, by (4.3.9),

H(żε(t)) = 〈ζε(t) − εżε(t), żε(t)〉, (4.3.11)

for a.e. t ∈ [0, T ].
Choosing ũ = v̇ε(t) − ϕ̇(t) in (ev2)ε and using (4.3.11) we obtain

〈∂W
∂θ (zε(t),∇vε(t)), żε(t)〉 + 〈∂W

∂F (zε(t),∇vε(t)),∇v̇ε(t) −∇ϕ̇(t))〉 +

−〈l(t), v̇ε(t) − ϕ̇(t)〉 + H(żε(t)) + (4.3.12)

+ε‖żε(t)‖2
2 + ε〈∇v̇ε(t),∇v̇ε(t) −∇ϕ̇(t))〉 = 0,

for a.e. t ∈ [0, T ]. By integration of (4.3.12) from 0 to t, we obtain (ev4)ε.
Conversely, suppose that (zε,vε) satisfies (ev0)ε, (ev1)ε, (ev2)ε, (ev3)ε and (ev4)ε. Then,

by derivation with respect to t of (ev4)ε, we obtain (4.3.12), which gives (4.3.11), thanks
to (ev2)ε. Combining (4.3.11) with (ev3)ε, it immediately follows (4.3.9) for a.e. t ∈ [0, T ],
and hence (ev3̂)ε. �

We conclude by stating the existence theorem for the solutions of the ε-regularized
problems, which will be proved in the next section.

Theorem 4.3.6. Let ε, l, ϕ, z0, v0, and T as in Definition 4.3.1. Then there exists a
unique solution of the ε-regularized problem in the time interval [0, T ] with external load
l, boundary datum ϕ and initial condition (z0, v0).

4.4. Proof of Theorem 4.3.6

The proof is obtained via time-discretization, resolution of incremental minimum prob-
lems, and passing to the limit as the time step tends to 0.

4.4.1. The incremental minimum problem. In this section we study the incre-
mental minimum problem used in the discrete-time formulation of the evolution problem.

Let us fix a sequence of subdivisions of [0, T ], 0 = t0n < t1n < · · · < t
k(n)
n = T , such that

τn := supi=1,...,k(n) τ
i
n → 0, as n→ ∞, where τ i

n := tin − ti−1
n , for every i = 1, . . . , k(n). We

assume that τn <
ε
M for every n, where M is the constant appearing in (W.3).

For every i = 0, 1, . . . , k(n) we set lin := l(tin) and ϕi
n := ϕ(tin).

For every n, we define (zi
n, v

i
n) ∈ L2(D; Rm) ×A(tin) by induction on i: set (z0

n, v
0
n) :=

(z0, v0), and for i > 0 we define (zi
n, v

i
n) as the solution (see Lemma 4.4.1 below) to the

incremental minimum problem

min {W(z, v) − 〈lin, v〉 + H(z − zi−1
n ) + ε

2τ i
n
‖z − zi−1

n ‖2
2 + ε

2τ i
n
‖∇v −∇vi−1

n ‖2
2},(4.4.1)
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among all z ∈ L2(D; Rm) and all v ∈ A(tin).

Lemma 4.4.1. Let ε > 0, then for every n and every i > 0 there exists a unique solution
to (4.4.1) in L2(D; Rm) ×A(tin).

Proof. Let (zk, vk) ∈ L2(D; Rm) ×A(tin) be a minimizing sequence. By the bounds
on W and the assumption on l, we have

c(‖zk‖2
2 + ‖∇vk‖2

2) − C ′(1 + ‖vk‖H1) ≤ W(zk, vk) − 〈lin, vk〉 ≤ C ′, (4.4.2)

for suitable positive constants c, C ′. Since vk ∈ A(tin), using Poincaré inequality we can
deduce from (4.4.2) that (zk, vk)k is a bounded sequence in L2(D; Rm) ×H1(D; RN ).

From the boundedness of the second derivative of W , guaranteed by (W.3), and since
τn ∈ (0, ε/M) by our assumption on τn, it easily follows that the functional in (4.4.1) is
strictly convex, and hence weakly lower semicontinuous on L2(D; Rm)×H1(D; RN ). Now
the existence of minimizers comes from the direct methods of the Calculus of Variations;
the uniqueness is a consequence of the strict convexity of the functional. �

Now we derive Euler conditions for the minimizers.

Theorem 4.4.2. Let ε > 0, then for every n and every i > 0 we have

H(z̃ + zi
n − zi−1

n ) −H(zi
n − zi−1

n ) − 〈lin, ũ〉 ≥
≥ 〈−∂W

∂θ (zi
n,∇vi

n), z̃〉 − 〈∂W
∂F (zi

n,∇vi
n),∇ũ〉 + (4.4.3)

− ε
τ i
n
〈zi

n − zi−1
n , z̃〉 − ε

τ i
n
〈∇vi

n −∇vi−1
n ,∇ũ〉,

for every z̃ ∈ L2(D; RN ) and ũ ∈ H1
Γ0

(0).
Hence we can deduce the following Euler conditions:

−∂W
∂θ (zi

n,∇vi
n) − ε

τ i
n
(zi

n − zi−1
n ) ∈ ∂H(zi

n − zi−1
n ), (4.4.4)

〈∂W
∂F (zi

n,∇vi
n) + ε

τ i
n
(∇vi

n −∇vi−1
n ),∇ũ〉 = 〈lin, ũ〉 for every ũ ∈ H1

Γ0
(0). (4.4.5)

Conversely, conditions (4.4.4) and (4.4.5) imply that (zi
n, v

i
n) is a solution of (4.4.1).

Proof. Since for every z̃ ∈ L2(D; Rm), ũ ∈ H1
Γ0

(0) and s ≥ 0, zi
n + sz̃ ∈ L2(D; Rm)

and vi
n + sũ ∈ A(tin), the minimality property of (zi

n, v
i
n) leads to

W(zi
n, v

i
n) − 〈lin, vi

n〉 + H(zi
n − zi−1

n ) + ε
2τ i

n
‖zi

n − zi−1
n ‖2

2 + ε
2τ i

n
‖∇vi

n −∇vi−1
n ‖2

2 ≤
≤ W(zi

n + sz̃, vi
n + sũ) − 〈lin, vi

n + sũ〉 + H(zi
n + sz̃ − zi−1

n ) + (4.4.6)

+ ε
2τ i

n
‖zi

n + sz̃ − zi−1
n ‖2

2 + ε
2τ i

n
‖∇vi

n + s∇ũ−∇vi−1
n ‖2

2.

Hence from the convexity of H we can deduce for every s ∈ [0, 1]

s
[

H(zi
n + z̃ − zi−1

n ) −H(zi
n − zi−1

n )
]

≥ W(zi
n, v

i
n) +

−W(zi
n + sz̃, vi

n + sũ) − 〈lin, vi
n〉 + 〈lin, vi

n + sũ〉 + ε
2τ i

n
‖zi

n − zi−1
n ‖2

2 + (4.4.7)

− ε
2τ i

n
‖zi

n + sz̃ − zi−1
n ‖2

2 + ε
2τ i

n
‖∇vi

n −∇vi−1
n ‖2

2 − ε
2τ i

n
‖∇vi

n + s∇ũ−∇vi−1
n ‖2

2.

Taking the derivative of (4.4.7) with respect to s at s = 0 we obtain (4.4.3). For ũ = 0,
(4.4.3) is

H(zi
n + z̃ − zi−1

n ) −H(zi
n − zi−1

n ) ≥ 〈−∂W
∂θ (zi

n,∇vi
n) − ε

τ i
n
(zi

n − zi−1
n ), z̃〉,
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for every z̃ ∈ L2(D; Rm), i.e. (4.4.4). Taking z̃ = 0 in (4.4.3) we obtain (4.4.5).
Conversely, (4.4.4) and (4.4.5) imply the minimality of (zi

n, v
i
n), thanks to the strict

convexity of the functional. �

Remark 4.4.3. (4.4.4) is equivalent to

1
τ i
n
(zi

n − zi−1
n ) = ∂H∗

ε(−∂W
∂θ (zi

n,∇vi
n)). (4.4.8)

Indeed, since ∂H is positively homogeneous of degree 0, (4.4.4) can be rewritten as

−∂W
∂θ (zi

n,∇vi
n) − ε

τ i
n
(zi

n − zi−1
n ) ∈ ∂H( 1

τ i
n
(zi

n − zi−1
n )),

which is equivalent to

−∂W
∂θ (zi

n,∇vi
n) ∈ ∂Hε(

1
τ i
n
(zi

n − zi−1
n )).

This is equivalent to (4.4.8), thanks to a general duality formula (see, e.g., [16, Corol-
lary I.5.2]).

Since A(tin) = ϕi
n + H1

Γ0
(0), for every n and every i = 0, 1, . . . , k(n), there exists

ui
n ∈ H1

Γ0
(0) such that vi

n = ϕi
n + ui

n.
Set, for every n and every i = 0, 1, . . . , k(n),

ζi
n := −∂W

∂θ (zi
n,∇ui

n + ∇ϕi
n),

σi
n := ∂W

∂F (zi
n,∇ui

n + ∇ϕi
n).

Let define the piecewise constant interpolations (zn,un) : [0, T ] → L2(D; Rm) × H1
Γ0

(0)

and (ζn,σn) : [0, T ] → L2(D; Rm) × L2(D; RN×d) as

zn(t) := zi
n, un(t) := ui

n, ζn(t) := ζi
n, σn(t) := σi

n, for tin ≤ t < ti+1
n ,

where we set t
k(n)+1
n = T + 1

n . Set τn(t) := tin whenever tin ≤ t < ti+1
n . We introduce

also the piecewise affine interpolations z△

n : [0, T ] → L2(D; Rm), u△

n : [0, T ] → H1
Γ0

(0),

ϕ△

n : [0, T ] → H1(D; RN ), l△n : [0, T ] → H1(D; RN )∗, defined by

z△

n (t) := zi
n + (t− tin)zi+1

n −zi
n

ti+1
n −tin

,

u△

n (t) := ui
n + (t− tin)ui+1

n −ui
n

ti+1
n −tin

,

ϕ△

n (t) := ϕi
n + (t− tin)ϕi+1

n −ϕi
n

ti+1
n −tin

,

l△n (t) := lin + (t− tin) li+1
n −lin

ti+1
n −tin

(4.4.9)

for tin ≤ t ≤ ti+1
n .

Observe that, thanks to Remark 4.4.3 and to (1.1.5), we can obtain from (4.4.4) that

zi
n−zi−1

n

tin−ti−1
n

= N ε
K(ζi

n). (4.4.10)

Analogously we can deduce from (4.4.5) that

〈σi
n + ε(∇ui

n−∇ui−1
n

tin−ti+1
n

+ ∇ϕi
n−ϕi−1

n

tin−ti−1
n

),∇ũ〉 = 〈li−1
n , ũ〉, (4.4.11)

for every ũ ∈ H1
Γ0

(0).
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4.4.2. A priori estimates. Now we obtain an a priori bound on the piecewise con-
stant interpolations, from an energy estimate for the solutions of the incremental problems.

Since ui−1
n + ϕi

n ∈ A(tin), from the minimum property of (zi
n, u

i
n + ϕi

n) we deduce the
following inequality:

W(zi
n, u

i
n + ϕi

n) − 〈lin, ui
n + ϕi

n〉 + H(zn
i − zi−1

n ) +

+ ε
2τ i

n
‖zi

n − zi−1
n ‖2

2 + ε
2τ i

n
‖∇ui

n −∇ui−1
n + ∇ϕi

n −∇ϕi−1
n ‖2

2 ≤

≤ W(zi−1
n , ui−1

n + ϕi−1
n ) − 〈li−1

n , ui−1
n + ϕi−1

n 〉 + (4.4.12)

+ ε
2τ i

n
‖∇ϕi

n −∇ϕi−1
n ‖2

2 −
∫ tin

ti−1
n

〈l̇(s), ui−1
n + ϕ(s)〉 ds+

−
∫ tin

ti−1
n

〈l(s), ϕ̇(s)〉 ds+

∫ tin

ti−1
n

〈∂W
∂F (zi−1

n ,∇ui−1
n + ∇ϕ(s)),∇ϕ̇(s)〉 ds.

Fixed t ∈ [0, T ], iterating (4.4.12) we obtain

W(zn(t),un(t) + ϕ(τn(t))) − 〈l(τn(t)),un(t) + ϕ(τn(t))〉 + VarH(zn; 0, t) +

+ ε
2

∫ τn(t)

0
‖ż△

n (s)‖2
2 ds+ ε

4

∫ τn(t)

0
‖∇u̇△

n (s)‖2
2 ds ≤

≤ W(z0, v0) − 〈l(0), v0〉 + ε

∫ τn(t)

0
‖∇ϕ̇(s)‖2

2 ds+ (4.4.13)

+

∫ τn(t)

0
〈∂W

∂F (zn(s),∇un(s) + ∇ϕ(s)),∇ϕ̇(s)〉 ds+

−
∫ τn(t)

0
[〈l̇(s), un(s) + ϕ(s)〉 + 〈l(s), ϕ̇(s)〉] ds,

where we have used the identity

ε
τ i
n
‖∇ϕi

n −∇ϕi−1
n ‖2

2 = ε
τ i
n
‖
∫ tin

ti−1
n

∇ϕ̇(t) dt‖2
2, (4.4.14)

for every i = 1, . . . , k(n).

Using the fact that supt∈[0,T ] ‖l(t)‖(H1)∗ , supt∈[0,T ] ‖∇ϕ(t)‖2,
∫ T
0 ‖l̇(t)‖(H1)∗ dt and

∫ T
0 ‖∇ϕ̇(t)‖2 dt

are bounded, the growth hypothesis onW , (W.1), and the fact that zn ∈ L∞([0, T ];L2(D; Rm)),
un ∈ L∞([0, T ];H1(D; RN )) (since they are piecewise constant functions), (4.4.13) leads
to

c̃(‖zn(t)‖2 + ‖∇un(t)‖2)
2 ≤ C̃ sup

s∈[0,T ]
(1 + ‖zn(s)‖2 + ‖∇un(s)‖2),

for suitable positive constants c̃, C̃. Since this can be repeated for every t ∈ [0, T ], we can
conclude that there exists a positive constant Cε, depending on ε but independent of n,
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such that

sup
t∈[0,T ]

‖zn(t)‖2 ≤ Cε, VarH(zn; 0, T ) ≤ Cε,

∫ T

0
‖ż△

n (t)‖2
2 dt ≤ Cε; (4.4.15)

sup
t∈[0,T ]

‖∇un(t)‖2 ≤ Cε,

∫ T

0
‖∇u̇△

n (t)‖2
2 dt ≤ Cε, (4.4.16)

for every t ∈ [0, T ].

4.4.3. Passage to the limit. To establish the convergence of the interpolations we
need the following Lemma, based on Gronwall’s inequality.

Lemma 4.4.4. The sequences (zn)n, (un)n satisfy

sup
t∈[0,T ]

‖zn(t) − zm(t)‖2 → 0,

sup
t∈[0,T ]

‖un(t) − um(t)‖H1 → 0,

as n,m→ ∞.

Proof. From the construction of zi
n, u

i
n, and using (4.4.10), (4.4.11), we can deduce

that, for every z̃ ∈ L2(D; RN ), ũ ∈ H1
Γ0

(0),

〈∇uj
n + ∇ϕj

n,∇ũ〉 − 〈∇uj−1
n + ∇ϕj−1

n ,∇ũ〉 + 〈zj
n, z̃〉 − 〈zj−1

n , z̃〉 =

= − τ j
n
ε [〈σj

n,∇ũ〉 − 〈ljn, ũ〉] + τ j
n〈N ε

K(ζj
n), z̃〉.

Fixed t ∈ [0, T ], for every n, there exists i such that tin ≤ t < ti+1
n ; summing for j from 1

to i we obtain

〈zn(t), z̃〉 − 〈z0, z̃〉 + 〈∇un(t) + ∇ϕ(τn(t)),∇ũ〉 − 〈∇u0 + ∇ϕ(0),∇ũ〉 =

= 1
ε

i
∑

j=1

τ j
n

[

ε 〈N ε
K(ζj−1

n ), z̃〉 − 〈σj−1
n , ũ〉 + 〈lj−1

n , ũ〉 + (4.4.17)

+ ε〈N ε
K(ζj

n) −N ε
K(ζj−1

n ), z̃〉 − 〈σj
n − σj−1

n ,∇ũ〉 + 〈ljn − lj−1
n , ũ〉

]

=

= 1
ε

∫ t

0

[

ε 〈N ε
K(ζn(s)), z̃〉 − 〈σn(s),∇ũ〉 + 〈l(τn(s), ũ〉

]

ds+Rn(t),

where

Rn(t) := −1
ε

∫ t

τn(t)

[

ε 〈N ε
K(ζn(s)), z̃〉 − 〈σn(s),∇ũ〉 + 〈l(τn(s)), ũ〉

]

ds+

+ 1
ε

i
∑

j=1

τ j
n

[

ε〈N ε
K(ζj

n) −N ε
K(ζj−1

n ), z̃〉 − 〈σj
n − σj−1

n ,∇ũ〉 + 〈ljn − lj−1
n , ũ〉

]

.

Observe that, since ∂W
∂θ , ∂W

∂F are M -Lipschitz thanks to (W.3),

‖ζn(s)‖2 ≤ M̃(1 + ‖zn(s)‖2 + ‖∇un(s) + ∇ϕ(τn(s))‖2), (4.4.18)

‖σn(s)‖2 ≤ M̃(1 + ‖zn(s)‖2 + ‖∇un(s) + ∇ϕ(τn(s))‖2), (4.4.19)
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for a suitable positive constant M̃ and for every s ∈ [0, T ]. Hence from (4.4.15) and
(4.4.16), we can deduce that

∫ t

τn(t)
‖ζn(s)‖2 ds ≤ M̃C̃ετn, (4.4.20)

∫ t

τn(t)
‖σn(s)‖2 ds ≤ M̃C̃ετn. (4.4.21)

Since N ε
K is 1/ε-Lipschitz, and ∂W/∂θ, ∂W/∂F are M -Lipschitz, thanks to (4.4.20) and

(4.4.21) we can estimate Rn(t) in the following way

|Rn(t)| ≤ 1
εβετn(‖z̃‖2 + ‖∇ũ‖2), (4.4.22)

for a suitable positive constant βε, depending on ε but independent of t and n.
Let n,m be two different indexes. Subtracting term by term the equations correspond-

ing to (4.4.17), we obtain, for every z̃ ∈ L2(D; Rm) and ũ ∈ H1
Γ0

(0),

〈zn(t) − zm(t), z̃〉 + 〈∇un(t) −∇um(t) + ∇ϕ(τn(t)) −∇ϕ(τm(t)),∇ũ〉 =

= 1
ε

∫ t

0

[

ε〈N ε
K(ζn(s)) −N ε

K(ζm(s)), z̃〉 − 〈σn(s) − σm(s),∇ũ〉
]

ds+ (4.4.23)

+

∫ t

0
〈l(τn(s)) − l(τm(s)), ũ〉 ds+Rn(t) −Rm(t).

Now using again the fact that N ε
K , ∂W/∂θ and ∂W/∂F are Lipschitzian, and the estimate

(4.4.22), we can deduce that

〈zn(t) − zm(t), z̃〉 + 〈∇un(t) −∇um(t) + ∇ϕ(τn(t)) −∇ϕ(τm(t)),∇ũ〉 ≤

≤ γε

ε

{

∫ t

0

[

‖zn(s) − zm(s)‖2 − ‖∇un(s) −∇um(s)‖2 + (4.4.24)

+ ‖∇ϕ(τn(s)) −∇ϕ(τm(s))‖2 + ‖ln(s) − lm(s)‖(H1)∗
]

ds+

+ βε(τn + τm)
}

(‖z̃‖2 + ‖∇ũ‖2),

for a suitable positive constant γε.
Since ϕ ∈ H1([0, T ];H1(D; RN )) and l ∈ H1([0, T ];H1(D; RN )∗), there exists a positive

constant α, such that

‖∇ϕ(t1) −∇ϕ(t2)‖2 ≤ α|t1 − t2|1/2, (4.4.25)

‖l(t1) − l(t2)‖(H1)∗ ≤ α|t1 − t2|1/2, (4.4.26)

for every t1, t2 ∈ [0, T ].
It follows that

‖∇ϕ(τn(t)) −∇ϕ(τm(t))‖2 ≤ α((τn)1/2 + (τm)1/2) (4.4.27)

‖l(τn(t)) − l(τm(t)‖(H1)∗ ≤ α((τn)1/2 + (τm)1/2), (4.4.28)

for every t ∈ [0, T ] and every n,m.
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If we choose z̃ = zn(t)−zm(t) and ũ = un(t)−um(t), taking into account (4.4.27) and
(4.4.28), (4.4.24) gives

‖zn(t) − zm(t)‖2 + ‖∇un(t) −∇um(t)‖2 ≤

= γε

ε

∫ t

0

[

‖zn(s) − zm(s)‖2 + ‖∇un(s) −∇um(s)‖2

]

ds+ α̃((τn)1/2 + (τm)1/2),

for a suitable positive constant α̃ independent of t, m and n.
Applying Gronwall’s inequality we conclude that

sup
t∈[0,T ]

‖zn(t) − zm(t)‖2 → 0,

sup
t∈[0,T ]

‖∇un(t) −∇um(t)‖2 → 0,

for n,m tending to ∞. Since un(t) − um(t) ∈ H1
Γ0

(0), applying Poincaré inequality we
obtain

sup
t∈[0,T ]

‖un(t) − um(t)‖H1 → 0 (4.4.29)

as n,m tend to ∞. �

From Lemma (4.4.4), we can deduce that there exist

z : [0, T ] → L2(D; Rm),

u : [0, T ] → H1(D; RN ),

bounded, such that

sup
t∈[0,T ]

‖zn(t) − z(t)‖2 → 0, (4.4.30)

sup
t∈[0,T ]

‖un(t) − u(t)‖H1 → 0. (4.4.31)

Moreover u(t) ∈ H1
Γ0

(0), for every t ∈ [0, T ].
Set

ζ(t) := −∂W
∂θ (z(t),∇u(t) + ∇ϕ(t)) (4.4.32)

σ(t) := ∂W
∂F (z(t),∇u(t) + ∇ϕ(t)). (4.4.33)

Thanks to (4.4.25) and to the convergence of zn, un, we have

sup
t∈[0,T ]

‖ζn(t) − ζ(t)‖2 → 0, (4.4.34)

sup
t∈[0,T ]

‖σn(t) − σ(t)‖2 → 0, (4.4.35)

as n tends to ∞.
Thanks to (4.4.15) and (4.4.16), we have that (z△

n )n and (u△

n )n are bounded sequences
in H1([0, T ];L2(D; Rm)) and H1([0, T ];H1(D; RN )), respectively; hence there exist ẑ, û

such that, up to subsequences, z△

n ⇀ ẑ and u△

n ⇀ û weakly in H1([0, T ];L2(D; Rm)) and
H1([0, T ];H1(D; RN )), respectively.
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Moreover using the identities

z△

n (t) = zn(t) +

∫ t

τn(t)
ż△

n (s) ds,

∇u△

n (t) = ∇un(t) +

∫ t

τn(t))
∇u̇△

n (s) ds,

for every t ∈ [0, T ], we deduce that

sup
t∈[0,T ]

‖z△

n (t) − zn(t)‖2 → 0,

sup
t∈[0,T ]

‖∇u△

n (t) −∇un(t)‖2 → 0.

Hence we can conclude that ẑ = z, ∇û = ∇u and the whole sequences z△

n and u△

n satisfy

z△

n ⇀ z weakly in H1([0, T ];L2(D; Rm)), (4.4.36)

u△

n ⇀ u weakly in H1([0, T ];H1(D; RN )). (4.4.37)

It is immediate to see that (ev0)ε follows from the construction of (zn,vn) and from
(4.4.30), (4.4.31).

Since u(t) ∈ H1
Γ0

(0) for every t ∈ [0, T ] also (ev1)ε is immediate.

We prove now (ev2)ε. From the construction of u△

n and (4.4.11), it follows that

〈σn(t) +Ru
n(t) + ε(∇u̇△

n (t) + ∇ϕ̇△

n (t)),∇ũ〉 = 〈l(τn(t)) +Rl
n(t), ũ〉, (4.4.38)

for every ũ ∈ H1
Γ0

(0), where Ru
n(t) := σi+1

n − σi
n and Rl

n(t) := li+1
n − lin, for tin < t < ti+1

n .
Thanks to (4.4.26),

sup
t∈[0,T ]

‖Rl
n(t)‖(H1)∗ → 0.

Using the fact thatN ε
K is 1/ε-Lipschitz, (W.3), the hypothesis on ϕ, and (4.4.15), (4.4.16),

we deduce that

sup
t∈[0,T ]

‖Ru
n(t)‖2 → 0.

From (4.4.14) we deduce that
∫ T
0 ‖∇ϕ̇△

n (t)‖2
2 dt is uniformly bounded with respect to

n and then ∇ϕ̇△

n ⇀ ∇ϕ̇ weakly in L2([0, T ];L2(D; RN×d)).
Thus, t 7→ σn(t)+Ru

n(t)+ε(∇u̇△

n (t)+∇ϕ̇△

n (t)) weakly converges in L2([0, T ];L2(D; RN×d)
to t 7→ σ(t)+ε(∇u̇(t)+∇ϕ̇(t)); t 7→ l(τn(t))+Rl

n(t) strongly converges in L2([0, T ];H1(D; RN )∗)
to l(t) as n→ +∞.

Therefore from (4.4.38) we can obtain (ev2)ε.

Finally we prove (ev3)ε. From the construction of z△

n and (4.4.10), it follows that

ż△

n (t) = N ε
K(ζn(t)) +Rz

n(t) a.e. in D,

where Rz
n(t) := N ε

K(ζi+1
n ) −N ε

K(ζi
n), for tin < t < ti+1

n .
Repeating the previous argument we deduce that supt∈[0,T ] ‖Rz

n(t)‖2 → 0, as n→ +∞,

so that, taking into account (4.4.34), we conclude that

sup
t∈[0,T ]

‖ż△

n (t) −N ε
K(ζ(t))‖2 → 0. (4.4.39)
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In particular this implies that ż△

n converges strongly in L∞([0, T ];L2(D; Rm)) and the
limit must coincide with ż, thanks to (4.4.36); hence from (4.4.39) we obtain

ż(t) = N ε
K(ζ(t)), a.e. in D,

for a.e. t ∈ [0, T ].

4.4.4. Uniqueness. It remains to show that the solution of the ε-regularized problem
is unique.

Let (z1,v1), (z2,v2) be two solutions of the ε-regularized problem in the time interval
[0, T ] with external load l, boundary datum ϕ, and initial condition (z0, v0), and set

ζi(t) := −∂W
∂θ (zi(t),∇vi(t)),

σi(t) := ∂W
∂F (zi(t),∇vi(t)),

for i = 1, 2.
In particular the following equations hold for a.e. t ∈ [0, T ]:

żi(t) = N ε
K(ζi(t)) a.e. in D,

〈σi(t) + ε∇v̇i(t),∇ũ〉 = 〈l(t), ũ〉 for every ũ ∈ H1
Γ0

(0),

for i = 1, 2.
Hence, for a.e. t ∈ [0, T ], for every z̃ ∈ L2(D; Rm), and every ũ ∈ H1

Γ0
(0), we have

〈∇v̇1(t) −∇v̇2(t),∇ũ〉 + 〈ż1(t) − ż2(t), z̃〉 =

= −1
ε 〈σ1(t) − σ2(t),∇ũ〉 + 〈N ε

K(ζ1(t)) −N ε
K(ζ2(t)), z̃〉.

Therefore, by integration and (ev0)ε, we obtain

〈∇v1(t) −∇v2(t),∇ũ〉 + 〈z1(t) − z2(t), z̃〉 = (4.4.40)
∫ t

0

[

− 1
ε 〈σ1(s) − σ2(s),∇ũ〉 + 〈N ε

K(ζ1(s)) −N ε
K(ζ2(s)), z̃〉

]

ds.

We observe that v1(t) − v2(t) ∈ H1
Γ0

(0), for every t ∈ [0, T ]. Hence we can take
z̃ = z1(t) − z2(t), ũ = v1(t) − v2(t), and we derive from (4.4.40) the following estimate:

‖z1(t) − z2(t)‖2 + ‖∇v1(t) −∇v2(t)‖2 ≤
M ′

ε

∫ t

0

[

(‖z1(s) − z2(s)‖2 + ‖∇v1(s) −∇v2(s)‖2)
]

ds,

for a suitable positive constant M ′ and for a.e. t ∈ [0, T ].
Hence Gronwall’s inequality guarantees that z1(t) = z2(t) and v1(t) = v2(t), for a.e.

t ∈ [0, T ]; since, for i = 1, 2, zi and vi are absolutely continuous functions from [0, T ] into
L2(D; Rm) and H1(D; RN ), respectively, we have the thesis.

4.5. Some properties of the solutions of the regularized problems

In this section we want to point out some useful properties satisfied by the solutions of
the ε-regularized problems.

Remark 4.5.1. In the special case of l ≡ 0, Γ0 = ∂Ω, ϕ(t, x) = F (t)x, for F (t) ∈
H1([0, T ]; RN×d), for every t ∈ [0, T ] and a.e. x ∈ D, and v0(x) = F (0)x, z0 ≡ θ0 ∈ R

m,
the solution (vε,zε) of the ε-regularized problems satisfies the following properties:
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(1) vε = ϕ

(2) x 7→ zε(t, x) is a.e. constant on D, for a.e. t ∈ [0, T ].

Indeed the Cauchy problem
{

θ̇ε(t) = N ε
K(−∂W

∂θ (θε(t), F (t)))
θε(0) = θ0

has a unique solution θε : [0, T ] → R
m, since the right hand side is Lipschitz.

The function (zε(t),vε(t)) = (θε(t),ϕ(t)) satisfies conditions (ev0)ε, (ev1)ε, (ev2)ε,
(ev3)ε, and (ev4)ε, hence by uniqueness it is the solution of the ε-regularized problem.

Using the energy equality, we can prove the following bounds on the solution of the
ε-regularized problems.

Lemma 4.5.2. Let ϕ, l, z0, v0, and T > 0 be as in Definition (4.3.1). Then there exists
a positive constant C ′, independent of ε, such that

sup
t∈[0,T ]

‖zε(t)‖2 ≤ C ′, VarH(zε; 0, T ) ≤ C ′, ε

∫ T

0
‖żε(s)‖2

2 ds ≤ C ′, (4.5.1)

sup
t∈[0,T ]

‖∇vε(t)‖2 ≤ C ′, ε

∫ T

0
‖∇v̇ε(s)‖2

2 ds ≤ C ′. (4.5.2)

Proof. The proof can be obtained from the energy equality for (zε,vε) reasoning as
in the second step of the proof of Theorem 4.3.6.

�

Remark 4.5.3. From (4.5.1) and (4.5.2) we can deduce that, for every sequence εk → 0,
we have εkżεk

→ 0 and εk∇v̇εk
→ 0 strongly in L2([0, T ];L2(D; Rm)) and L2([0, T ];L2(D; RN×d)),

respectively. In particular

εkżεk
(t) → 0 strongly in L2(D; Rm), (4.5.3)

εk∇v̇εk
(t) → 0 strongly in L2(D; RN ), (4.5.4)

for a.e. t ∈ [0, T ].

4.6. Approximable quasistatic evolution

In this section we give the definition of approximable quasistatic evolution in terms
both of stochastic processes and of compatible systems of Young measures. We prove an
existence result and that this evolution satisfies suitable properties of equilibrium, dual
constraint and an energy inequality, so that it can be considered as a solution of our
evolution problem.

4.6.1. Approximable quasistatic evolution in terms of stochastic processes.
Here we give the definition using a probabilistic language.

Definition 4.6.1. Given a boundary datum ϕ ∈ H1([0, T ];H1(D; RN )), an external
load l ∈ H1([0, T ];H1(D; RN )∗), an initial condition (z0, v0) ∈ L2(D; Rm)×A(0) satisfying
(4.3.1) and (4.3.2), and T > 0, an approximable quasistatic evolution of stochastic processes
in the time interval [0, T ] is a pair of stochastic processes (Zt,Y t)t∈[0,T ] on a (D,Ld)-

probability space (D × Ω,B(D) ⊗ F , P ), with Zt ∈ L2(D × Ω; Rm) and 2-weakly* left
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continuous and Y t ∈ L2(D × Ω; RN×d), for which there exist a positive sequence εk → 0
and a subset Θ of [0, T ] with 0 ∈ Θ and L1([0, T ]\Θ) = 0, such that the solutions (zεk

,vεk
)

of the εk-regularized problems satisfy the following conditions:

(a) for every finite sequence t1 < · · · < tn in Θ, we have

(πD,zεk
(t1), . . . ,zεk

(tn))(P ) ⇀ (πD,Zt1 , . . . ,Ztn)(P ) 2-weakly*

as k → ∞;
(b) for every t ∈ Θ, there exists a subsequence (εkt

j
)j of (εk)k, possibly depending on

t, with

(πD,zε
kt
j

(t),∇vε
kt
j

(t))(P ) ⇀ (πD,Zt,Y t)(P ) 2-weakly*,

as j → ∞ and

lim sup
εk

[〈σεk
(t),∇ϕ̇(t)〉 − 〈l(t),vεk

(t)〉] =

= lim
ε
kt
j

[〈σε
kt
j

(t),∇ϕ̇(t)〉 − 〈l(t),vε
kt
j

(t)〉];

(c) (Zt,Y t)t∈[0,T ] is Θ-2-weakly* approximable from the left, for every t ∈ Θ (4.5.3)
and (4.5.4) hold, and for every t ∈ Θ \ 0 (4.3.3) and (4.3.4) hold for every εk.

In Theorem (4.6.8) we will prove that the evolution defined in this way satisfies the
stationarity conditions (4), (5), and the energy inequality (3). Since the proof will be
given using the language of Young measures, we translate the previous definition in terms
of Young measures.

4.6.2. Approximable quasistatic evolution in terms of Young measures. The
definition of approximable quasistatic evolution is now presented in terms of Young mea-
sures.

Definition 4.6.2. Given a boundary datum ϕ ∈ H1([0, T ];H1(D; RN )), an external
load l ∈ H1([0, T ];H1(D; RN )∗), an initial condition (z0, v0) ∈ L2(D; Rm)×A(0) satisfying
(4.3.1) and (4.3.2), and T > 0, an approximable quasistatic evolution of Young measures

in the time interval [0, T ] is a pair (ν,µ) ∈ Y 2(D; Rm × R
N×d)[0,T ] × SY 2

−([0, T ],D; Rm),
for which there exist a positive sequence εk → 0 and a subset Θ of [0, T ] with 0 ∈ Θ and
L1([0, T ] \Θ) = 0, such that the solutions (zεk

,vεk
) of the εk-regularized problems satisfy

the following conditions:

(a) for every finite sequence t1 < · · · < tn in Θ we have

δ(zεk
(t1),...,zεk

(tn)) ⇀ µt1...tn 2-weakly*,

as k → ∞;
(b) for every t ∈ Θ, there exists a subsequence (εkt

j
)j of (εk)k, possibly depending on

t, with

δ(zε
kt
j

(t),∇vε
kt
j

(t)) ⇀ νt 2-weakly*, (4.6.1)
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as j → ∞ and

lim sup
εk

[〈σεk
(t),∇ϕ̇(t)〉 − 〈l(t),vεk

(t)〉] =

= lim
ε
kt
j

[〈σεkt
j

(t),∇ϕ̇(t)〉 − 〈l(t),vεkt
j

(t)〉]; (4.6.2)

(c) ν is Θ-2-weakly*-approximable from the left, for every t ∈ Θ (4.5.3) and (4.5.4)
hold, and for every t ∈ Θ \ 0 (4.3.3) and (4.3.4) hold for every εk.

In the next subsection we will show that an evolution defined in this way, besides
fulfiling the selection criterion mentioned in the introduction, satisfies also the stationarity
condition and the energy inequality. In particular the technical condition (4.6.2) will be
crucial to apply the argument in [13, Section 7].

Before stating this result, we clarify in which sense the notions of evolution given in
terms of stochastic processes and in terms of Young measures are equivalent, and we make
some technical remarks which will be useful in the proof of the main theorem.

Remark 4.6.3. As in Section 3.4.3, we can deduce that an approximable quasistatic
evolution of Young measures belongs to AY ([0, T ],ϕ); analogously, an approximable qua-
sistatic evolution of stochastic processes is in AYsp([0, T ],ϕ). In particular, if (ν,µ) is an
approximable quasistatic evolution, then πD×Rm(νt) = µt, for every t ∈ [0, T ].

Remark 4.6.4. If (Zt,Y t)t∈[0,T ] is an approximable quasistatic evolution of stochastic

processes, the pair (ν,µ) ∈ Y 2(D; Rm × R
N×d)[0,T ] × SY 2

−([0, T ],D; Rm) defined by

νt := (πD,Zt,Y t)(P ) for every t ∈ [0, T ]

µt1...tn := (πD,Zt1 , . . . ,Ztn)(P ) for every finite sequence t1 < · · · < tn in [0, T ],

is an approximable quasistatic evolution of Young measures.
On the other side, thanks to Remark 4.6.3 and Theorem 2.2.4, given an approx-

imable quasistatic evolution of Young measures (ν,µ) there exists a stochastic process
(Zt,Y t)t∈[0,T ] such that

(πD,Zt,Y t)(P ) = νt for every t ∈ [0, T ]

(πD,Zt1 , . . . ,Ztn)(P ) = µt1...tn for every finite sequence t1 < . . . tn in [0, T ];

in particular (Zt,Y t)t∈[0,T ] is an approximable quasistatic evolution of stochastic processes.

Remark 4.6.5. If (ν,µ) ∈ Y 2(D; Rm × R
N×d)[0,T ] × SY 2

−([0, T ],D; Rm) is an approx-
imable quasistatic evolution of Young measures, for every t ∈ [0, T ] there exists a unique
function v(t) ∈ A(t) such that ∇v(t) = bar(π̃

RN×d(νt)), where bar(π̃
RN×d(νt)) denotes

the barycentre of the Young measure π̃
RN×d(νt). This follows from Remark 4.6.3 and

Remark 3.3.8.

Translating the previous remark in terms of stochastic processes we obtain the following
result.

Remark 4.6.6. If (Zt,Y t)t∈[0,T ] is an approximable quasistatic evolution of stochastic
processes, for every t ∈ [0, T ] there exists a unique function v(t) ∈ A(t) such that ∇v(t) =
bar((πD,Y t)(P )).
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Remark 4.6.7. If (ν,µ) ∈ Y 2(D; Rm × R
N×d)[0,T ] × SY 2

−([0, T ],D; Rm) is an approx-
imable quasistatic evolution of Young measures, for every t ∈ [0, T ] we define

σ(t, x) :=

∫

Rm×RN×d

∂W

∂F
(θ, F ) dνx

t (θ, F ), (4.6.3)

ζ(t, x) :=

∫

Rm×RN×d

−∂W
∂θ

(θ, F ) dνx
t (θ, F ), (4.6.4)

for a.e. x ∈ D. For every t ∈ [0, T ] we have that σ(t) ∈ L2(D; RN×d) and ζ(t) ∈
L2(D; Rm): this comes immediately from (W.3), from πD(νt) = Ld, and from the fact
that νt ∈ Y 2(D; Rm×R

N×d). In the language of stochastic processes σ(t) and ζ(t) can be
characterized as the unique elements of L2(D; RN×d) and L2(D; Rm), respectively, such
that

∫

D
σ(t, x)g(x) dx =

∫

D×Ω

∂W

∂F

(

Zt(x, ω),Y t(x, ω)
)

g(x) dP (x, ω), (4.6.5)

∫

D
ζ(t, x)h(x) dx =

∫

D×Ω
−∂W
∂θ

(

Zt(x, ω),Y t(x, ω)
)

h(x) dP (x, ω), (4.6.6)

for every g ∈ L2(D; RN×d), h ∈ L2(D; Rm), where (Zt,Y t)t∈[0,T ] is the stochastic process
corresponding to (ν,µ).

4.6.3. Properties of an approximable quasistatic evolution. The next theorem
shows that an approximable quasistatic evolution of stochastic processes satisfies suitable
properties of equilibrium, dual constraint, and energy inequality.

Theorem 4.6.8. Let ϕ, l, (z0, v0), εk, and T > 0 be as in the Definition (4.6.1). If
(Zt,Y t)t∈[0,T ] is an approximable quasistatic evolution of stochastic processes, then the
following conditions are satisfied:

(ev0) initial condition : (Z0,Y 0) = (z0, v0);
(ev1) kinematic admissibility : for every t ∈ [0, T ], there exists a unique function v(t) ∈

A(t) such that ∇v(t) = bar((πD,Y t)(P ));
(ev2) equilibrium condition : for every t ∈ [0, T ] and every ũ ∈ H1

Γ0
(0),

〈σ(t),∇ũ〉 = 〈l(t), ũ〉;
(ev3) dual constraint : ζ(t) ∈ ∂H(0), for every t ∈ [0, T ];
(ev4) energy inequality: for every t ∈ [0, T ] the map

t 7→ [〈σ(t),∇ϕ̇(t)〉 − 〈l̇(t),v(t)〉],
where v(t) is the function appearing in (ev1), is integrable on [0, T ], and we have
∫

D×Ω
W (Zt(x, ω),Y t(x, ω)) dP (x, ω) − 〈l(t),v(t)〉 + VarH(Z, P ; 0, t) ≤

≤ W(z0, v0) − 〈l(0), v0〉 +

∫ t

0
〈σ(s),∇ϕ̇(s)〉 ds+

−
∫ t

0
[〈l(s), ϕ̇(s)〉 + 〈l̇(s),v(s)〉] ds,

where VarH(Z, P ; 0, t) is defined as in (3.3.22).
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Thanks to Remark 4.6.4, to prove the previous theorem it is enough to prove the
equivalent version for Young measures.

Theorem 4.6.9. Let ϕ, l, (z0, v0), εk, and T > 0 be as in the Definition (4.6.2).

If (ν,µ) ∈ Y 2(D; Rm × R
N×d)[0,T ] × SY 2

−([0, T ],D; Rm) is an approximable quasistatic
evolution of Young measures, then the following conditions are satisfied:

(ev0) initial condition : ν0 = δ(z0,v0);
(ev1) kinematic admissibility : for every t ∈ [0, T ], there exists a unique function v(t) ∈

A(t) such that

∇v(t) = bar(πD×RN×d(νt)); (4.6.7)

(ev2) equilibrium condition : for every t ∈ [0, T ] and every ũ ∈ H1
Γ0

(0),

〈σ(t),∇ũ〉 = 〈l(t), ũ〉; (4.6.8)

(ev3) dual constraint : ζ(t) ∈ ∂H(0), for every t ∈ [0, T ];
(ev4) energy inequality: for every t ∈ [0, T ] the map

t 7→ [〈σ(t),∇ϕ̇(t)〉 − 〈l̇(t),v(t)〉], (4.6.9)

where v(t) is the function appearing in (ev1), is integrable on [0, T ], and we have
∫

D×Rm×RN×d

W (θ, F ) dνt(x, θ, F ) − 〈l(t),v(t)〉 + VarH(µ; 0, t) ≤

≤ W(z0, v0) − 〈l(0), v0〉 +

∫ t

0
〈σ(s),∇ϕ̇(s)〉 ds+

−
∫ t

0
[〈l(s), ϕ̇(s)〉 + 〈l̇(s),v(s)〉] ds,

where VarH(µ; 0, t) is defined as in (2.1.8).

Proof. Let (ν,µ) be an approximable quasistatic evolution of Young measures.
Condition (ev0) follows immediately from condition (b) of Definition (4.6.2) and (ev0)ε

k0
j

.

Condition (ev1) has been proved in Remark 4.6.5.
We now prove (ev2); we observe that condition (b) and (W.3) imply that

σε
kt
j

(t) ⇀ σ(t) weakly in L2(D; RN×d), (4.6.10)

for every t ∈ Θ, where (εkt
j
)j is the sequence appearing in (b). Hence, for every t ∈ Θ \ 0

(4.6.8) follows from (ev2)εkt
j

, (4.6.10), and condition (c) of Definition 4.6.2, while for t = 0

is a direct consequence of (4.3.1), (ev0)ε
k0
j

, and (4.6.10). If t ∈ [0, T ] \ Θ, let sj ≤ t be

a sequence satisfying (2.1.2); from (4.6.8) for sj, we can obtain (4.6.10) for t, using the
continuity of the map l : [0, T ] → H1(D; RN )∗.

We show now (ev3). As for σ it is easy to see that

ζε
kt
j

(t) ⇀ ζ(t) weakly in L2(D; Rm), (4.6.11)
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for every t ∈ Θ, where (εkt
j
)j is the sequence in (b). Thanks to (c), (4.6.11) implies that

ζεkt
j

(t)− εkt
j
żεkt

j

(t) ⇀ ζ(t) weakly in L2(D; Rm), for every t ∈ Θ, and thus, since ∂H(0) is

sequentially weakly closed in L2(D; Rm), we obtain from (c) and (ev3)εkt
j

that

ζ(t) ∈ ∂H(0), (4.6.12)

for every t ∈ Θ\0, while for t = 0 it comes immediately from (4.3.2), (ev0)ε
k0
j

, and(4.6.11).

For t ∈ [0, T ] \ Θ, (4.6.12) follows now easily from (c).

Finally we want to prove (ev4). First of all we observe that if (εkt
j
)j is the sequence

appearing in (b), we have

vε
kt
j

(t) ⇀ v(t) weakly in H1(D; RN ); (4.6.13)

hence

〈σ(t),∇ϕ̇(t)〉 − 〈l̇(t),v(t)〉 = (4.6.14)

= lim sup
k

[〈σεk
(t),∇ϕ̇(t)〉 − 〈l̇(t),vεk

(t)〉]

for every t ∈ Θ, thanks to (4.6.10), (4.6.13), and (4.6.2). Therefore the map (4.6.9) is
measurable on [0, T ]. Moreover, from Lemma 4.5.2 we deduce that

|〈σε(t),∇ϕ̇(t)〉 − 〈l̇(t),vε(t)〉| ≤ (4.6.15)

≤ C ′[‖∇ϕ̇(t)‖2 + ‖l̇(t)‖(H1)∗ ];

hence, thanks to the hypotheses on ϕ and l and to (4.6.14), the map (4.6.9) is integrable
on [0, T ].

Fix t ∈ Θ and let (εkt
j
)j be the sequence appearing in (b); since the term containing

W is weakly lower semicontinuous and the variation is weakly lower semicontinuous too,
thanks to condition (a) of Definition 4.6.2, we have

∫

D×Rm×RN×d

W (θ, F ) dνt(x, θ, F ) − 〈l(t),v(t)〉 + VarH(µ; 0, t) ≤

≤ lim inf
j

[

W(zεkt
j

(t),vεkt
j

(t)) − 〈l(t),vεkt
j

(t)〉 + VarH(zεkt
j

; 0, t)
]

.

Using (ev4)εkt
j

and (4.2.1), we deduce that

∫

D×Rm×RN×d

W (θ, F ) dνt(x, θ, F ) − 〈l(t),v(t)〉 +

VarH(µ; 0, t) ≤

≤ W(z0, v0) − 〈l(0), v0〉 −
∫ t

0
〈l(s), ϕ̇(s)〉 ds+

+ lim sup
j

∫ t

0
[〈σεkt

j

(s),∇ϕ̇(s)〉 − 〈l̇(s),vεkt
j

(s)〉] ds.
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We can deduce, using Fatou Lemma thanks to (4.6.15), that

lim sup
j

∫ t

0
[〈σε

kt
j

(s),∇ϕ̇(s)〉 − 〈l̇(s),vε
kt
j

(s)〉] ds ≤

≤ lim sup
k

∫ t

0
[〈σεk

(s),∇ϕ̇(s)〉 − 〈l̇(s),vεk
(s)〉] ds ≤

≤
∫ t

0
lim sup

k
[〈σεk

(s),∇ϕ̇(s)〉 − 〈l̇(s),vεk
(s)〉] ds.

Thanks to (4.6.2) this implies that
∫

D×Rm×RN×d

W (θ, F ) dνt(x, θ, F ) − 〈l(t),v(t)〉 +

VarH(µ; 0, t) ≤ (4.6.16)

≤ W(z0, v0) − 〈l(0), v0〉 −
∫ t

0
〈l(s), ϕ̇(s)〉 ds+

+

∫ t

0
[〈σ(s),∇ϕ̇(s)〉 − 〈l̇(s),v(s)〉] ds.

Let now t ∈ [0, T ] \Θ and let sj → t be a sequence satisfying (2.1.2); it is easy to verify
that

VarH(µ; 0, t) ≤ lim inf
j

VarH(µ; 0, sj),

hence (ev2) for t can be deduced from (4.6.16) for sj. �

The following result is an existence theorem for approximable quasistatic evolution of
stochastic processes.

Theorem 4.6.10. Given an external load l ∈ H1([0, T ];H1(D; RN )∗), a boundary da-
tum ϕ ∈ H1([0, T ];H1(D; RN )), an initial condition (z0, v0) ∈ L2(D; Rm)×A(0) satisfying
(4.3.1) and (4.3.2), and T > 0, there exists an approximable quasistatic evolution of sto-
chastic processes (or of Young measures) in the time interval [0, T ].

Proof. Thanks to Remark (4.6.4), it is enough to prove that there exists an approx-
imable quasistatic evolution of Young measures. Fixed a positive sequence εk → 0, let
(zεk

, vεk
) be the solution of the εk-regularized problem in the time interval [0, T ], with

external load l, boundary datum ϕ and initial condition (z0, v0). Thanks to (4.4.15) and
(H.2) we are in the hypothesis of Helly’s Theorem for compatible systems of Young mea-
sures (see Theorem 2.1.6). Therefore, by passing to a subsequence still denoted by (εk)k,
we can conclude that there exist Θ ⊂ [0, T ], with 0 ∈ Θ and L1([0, T ] \ Θ) = 0, and
µ ∈ SY 2

−([0, T ],D; Rm), which satisfy condition (a) of Definition 4.6.2.
Thanks to Remark 4.5.3, we can assume that (4.5.3), (4.5.4) hold for every t ∈ Θ, by

choosing a subset of Θ if necessary; analogously we can assume that (4.3.3) and (4.3.4)
hold for every t ∈ Θ \ 0 and every εk. For every t ∈ Θ select a subsequence (εkt

j
)j of (εk)k

which satisfies (4.6.2); thanks to (4.4.15) and (4.4.16), we can apply Lemma 2.1.9 to the
sequence of compatible systems (δ(zεk

,∇vεk
))k and we obtain a family of Young measures
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ν ∈ Y 2(D; Rm×R
N×d)[0,T ], which is Θ-2-weakly* approximable from the left and satisfies

(4.6.1), for a suitable subsequence of (εkt
j
)j . This proves (b) and (c).

�

4.7. A finite dimensional example

In this section we will propose the complete analysis of the approximable quasistatic
evolution for a concrete case, in which the hypotheses of Remark 4.5.1 are fulfiled and
hence the internal variable and the gradient of the deformation are functions from [0, T ]
into a finite dimensional space.

Let consider the case d = N = m = 1, D = (0, 1), and Γ0 = {0, 1}. We assume H = | · |,
l ≡ 0, and

W (θ, y) := 1
10 [η(y)(y − a(θ))2 + (1 − η(y))y2] + b(θ) for every θ, y ∈ R, (4.7.1)

where a ∈ C2(R) is bounded with its first and second derivative and a(θ) = θ if |θ| ≤ 2,
η ∈ C2

c (R) is a cut off-function with η(y) = y if |y| ≤ 7 + 5 b′(2), and b is a C2 function
satisfying the following properties, for every θ ∈ R (see Figure 1):

(b.1) b(θ) ≥ cθ2 + d, for suitable positive constant c, d;
(b.2) b(θ) + |θ + 1| > 2, for every θ 6= −1;
(b.3) b has a local minimum at −1, with b(−1) = 2, a global minimum at 1, with

b(1) < 1, and a local maximum in 0, and there are no other local extrema;
(b.4) 5 b′′ + 1 is bounded and has exactly two zeros, −1 < θ1 < 0 < θ2 < 1, with

b′(θ1) < b′(2).

−1 θ1 θ2 1 θ

b(θ)

Figure 1. The function b

It is immediate to verify that such a W satisfies hypotheses (W.1) and (W.3).
Let us fix T such that 6+θ1 +5 b′(θ1) < T < 8+5 b′(2); we will study the approximable

quasistatic evolution in the time interval [0, T ] with ϕ(t, x) := (t− 1)x for every t ∈ [0, T ]
and every x ∈ [0, 1] (which corresponds to the boundary condition v(t, 0) = 0 and v(t, 1) =
t− 1), and initial condition (z0, v0) = (−1,ϕ(0)).
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Theorem 4.7.1. Let W , l, H, ϕ, T , and (z0, v0) satisfy the assumptions at the begin-
ning of this section. Then the unique approximable quasistatic evolution corresponding to
this data is given by

v(t, x) = ϕ(t, x) for every t ∈ [0, T ];

z(t, x) = z(t) :=











−1 for 0 ≤ t ≤ 5

z1(t) for 5 < t ≤ t1

z2(t) for t1 < t ≤ T

(4.7.2)

where t1 := 6+ θ1 +5 b′(θ1), for every t ∈ [5, t1] z1(t) is the unique solution in the interval
[−1, θ1] of the equation

1
5(t− 1 − θ(t)) − b′(θ(t)) = 1, (4.7.3)

and for t ∈ (t1, T ] z2 is the unique solution of (4.7.3).

Proof. We are in the case of Remark 4.5.1, hence the solution (vε,zε) of the ε-
regularized problem is

vε(t, x) := ϕ(t, x), (4.7.4)

zε(t, x) = zε(t), (4.7.5)

where zε is the solution of the Cauchy problem
{

żε(t) = 1
ε

[

−Wθ(zε(t), t− 1) − P[−1,1]

(

−Wθ(zε(t), t− 1)
)]

zε(0) = −1,
(4.7.6)

where P[−1,1] is the projection on the interval [−1, 1]. By the upper bound on T , −Wθ(θ, t−
1) takes the form

g(t, θ) := 1
5(t− 1 − θ) − b′(θ),

for every t ∈ [0, T ] and for every |θ| ≤ 2. Hence the equation in (4.7.6) becomes

εżε(t) =











g(t, zε(t)) − 1 if g(t, zε(t)) > 1

0 if |g(t, zε(t))| ≤ 1

g(t, zε(t)) + 1 if g(t, zε(t)) < −1

(4.7.7)

until |zε(t)| ≤ 2. For every ε let tε be the greatest time in [0, T ] such that |zε(t)| ≤ 2 for
every t ∈ [0, tε]. In particular zε(tε) = 2. Since 0 ≤ g(t,−1) = 1

5 t ≤ 1 for t ∈ [0, 5], we have
zε(t) = −1, for every t ≤ 5 and every ε. In particular we have g(5, zε(5)) = 1 and tε > 5.
It is easy to see that g(t, zε(t)) ≥ 1 for t > 5. Indeed let Uε be the open set {t ∈ (5, tε) :
g(t, zε(t)) < 1} and let (α, β) be any connected component of Uε. Since g(α, zε(α)) = 1,
there exists 0 < δε < β−α such that 0 < g(t, zε(t)) < 1 for every t ∈ (α,α+ δε); therefore
żε(t) = 0 for every t ∈ (α,α + δε), in particular zε(t) = zε(α). Since g(·, zε(α)) is strictly

increasing (indeed ∂g
∂t (t, θ) = 1

5 ), we have 1 = g(α, zε(α)) < g(t, zε(α)) = g(t, zε(t)) for
every t ∈ (α,α + δε), which contradicts g(t, zε(t)) < 1. Hence Uε = ∅ and g(t, zε(t)) ≥ 1
for every t ∈ [5, tε]. Thanks to the upper bound on T we have g(T, 2) < 1, but, if tε < T ,
we have 1 ≤ g(tε, zε(tε)) = g(tε, 2) < g(T, 2) which contradicts g(T, 2) < 1. Therefore
tε = T for every ε, and g(t, zε(t)) ≥ 1 for every t ∈ [5, T ].

Hence we can conclude that, for t ∈ (5, T ], zε is the unique solution of the equation

εżε(t) = g(t, zε(t)) − 1. (4.7.8)
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Note that

∂g

∂θ
(t, θ) = −1

5(1 + 5 b′′(θ)),

for every t and θ. Therefore from (b.4) we know that ∂g/∂θ has exactly two zeros θ1 and
θ2 with −1 < θ1 < 0 < θ2 < 1.

First of all we want to show that there exists a unique solution z1(t) ∈ (−1, θ1) to the
equation

g(t, z(t)) = 1, (4.7.9)

for t ∈ (5, t1) where t1 = 6 + θ1 + 5 b′(θ1). Note that g(t1, θ1) = 1; since g(·, θ) is strictly
increasing for every θ, we have g(t,−1) > g(5,−1) = 1 = g(t1, θ1) > g(t, θ1) for every
t ∈ (5, t1); hence for every t ∈ (5, t1) there exists a unique z1(t) ∈ (−1, θ) solving (4.7.9)

(because ∂g
∂θ (t, ·) never vanishes on (−1, θ1)). By the Inverse Function Theorem the map

t 7→ z1(t) is C1 and we can deduce that limt→t−1
z1(t) = θ1 (indeed if not, let θ∗ be this

limit; we have −1 ≤ θ∗ < θ1 and g(t1, θ
∗) = 1, which contradicts the fact that g(t1, ·) is

strictly decreasing on (−1, θ1)).
It is easy to see that for t > t1 the equation (4.7.9) has a unique solution: indeed we

can write

g(t, θ) − 1 = 1
5 (t− 1) − ψ(θ),

where ψ(θ) := 1
5θ+b

′(θ)+1; since, for every t > t1, ψ(θ) ≤ ψ(θ1) = 1
5 (t1−1) < 1

5(t−1), for

every θ ≤ θ2, and limθ→+∞ ψ(θ) = +∞, we deduce that the zeros of 1
5(t− 1) − ψ(θ) exist

and are contained in (θ2,+∞); since in this interval ∂g
∂θ never vanishes, we can apply again

the Inverse Function Theorem to obtain the existence of a unique continuous function
z2 : (t1, T ] → R solving (4.7.9).

We want now to show that z1 is the unique approximable quasistatic evolution in [5, t1].
First of all we observe that, since zε(5) = z1(5) = −1 and εż1(t) > 0 = g(t, z1(t))−1 while
εżε(t) = g(t, zε(t)) − 1, by the comparison principle z1(t) ≥ zε(t) for every t ∈ [5, t1).Let
now fix η > 0 and t̄ ∈ (5, t1); if we show that there exists ε0 such that for every ε ≤ ε0
we have zε(t) ∈ [z1(t) − η, z1(t)] for every t ∈ (5, t̄), we can conclude that z(t) = z1(t) on
(5, t̄). Let

cη := min
t∈[5,t̄]

g(t, z1(t) − η) − 1

m := max
t∈[5,t̄]

ż1(t);

we have m < +∞ by continuity of ż1, and cη > 0 because g(t, z1(t) − η) > g(t, z1(t)) = 1.
Therefore we can find ε0 > 0 such that ε0m < cη, and for every ε ≤ ε0 we have z1(5)−η <
zε(5), εż1(t) < g(t, z1(t) − η) − 1 while εżε(t) = g(t, zε(t)) − 1, hence zε(t) ≥ z1(t) − η for
every t ∈ (5, t̄).

Since z is left continuous by definition we can conclude that z(t) = z1(t) for every
t ∈ [5, t1].

Finally we show that z must coincide with z2 on (t1, T ].
As |zε(t)| ≤ 2 for every t ∈ [0, T ] and every ε, condition (ev3) satisfied by z can be

written as

g(t, z(t)) ∈ [−1, 1]. (4.7.10)
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Since we have proved that g(t, zε(t)) ≥ 1, for every t > t1, it follows that z satisfies (4.7.9),
for t > t1. As this equation has a unique solution z2 defined on (t1, T ), we can conclude
that z(t) = z2(t) for every t ∈ (t1, T ]. �

We prove now that the approximable quasistatic evolution described in Theorem 4.7.1
does not fulfil the requirements of the definition of globally stable quasistatic evolution
given in Definition 3.3.12.

Theorem 4.7.2. The datum (−1,ϕ(0)) is stable for the considered problem, but the
approximable quasistatic evolution described in Theorem 4.7.1 does not satisfies partial-
global stability, i.e. there exists t ∈ [0, T ], z̃ ∈ L2((0, 1)), and ũ ∈ H1

0 (0, 1) with

W (z(t), t− 1) >

∫ 1

0
W (z(t) + z̃(x), t− 1 + ũ′(x)) dx+ ‖z̃‖1. (4.7.11)

Proof. First of all we have to verify that the initial condition satisfies the minimality
condition requested in Definition 3.3.12. To this aim we have to check that

W (−1,−1) ≤
∫ 1

0
W (−1 + z̃(x),−1 + ũ′(x)) dx+ ‖z̃‖1,

for every z̃ ∈ L2((0, 1)) and ũ ∈ H1
0 (0, 1); this is immediate because W (−1,−1) = 2, while

∫ 1

0
W (−1 + z̃(x),−1 + ũ′(x)) dx+ ‖z̃‖1 ≥

≥
∫ 1

0
[b(−1 + z̃(x)) + |z̃(x)|] dx ≥ 2,

thanks to assumption (b.2).
Let now consider t ∈ (4, 5], z̃ = 2, and ũ = 0. We have W (z(t), t − 1) = 1

10(t2 + 20),
while thanks to (b.3)

∫ 1

0
W (z(t) + z̃(x), t− 1 + ũ′(x)) dx+ ‖z̃‖1 =

= W (1, t− 1) + 2 = 1
10(t− 2)2 + b(1) + 2 < 1

10(t− 2)2 + 3 =
1
10 (t2 − 4t+ 34) < 1

10 (t2 + 18).

�





CHAPTER 5

Globally stable quasistatic evolution in the discrete case

5.1. Introduction

In this chapter we analyze the particular case in which Z is a finite set {θα : α =
1, . . . , q}, representing the different phases (or phase variants) of the crystal, and the
internal variable z : D → Z represents the phase distribution of the material.

As before, v denotes the deformation, the stored energy of the system can be written
as

W(z, v) :=

∫

D
W (z(x),∇v(x)) dx,

while the energy dissipation associated to a phase transition is represented by

∫

D
H(znew(x), zold(x)) dx,

where H is a distance on Z, zold is the old phase distribution and znew the new one. We
require that the admissible deformations satisfy a prescribed time-dependent boundary
condition ϕ(t), which we impose on the whole boundary ∂D to avoid some technical
difficulties; for the same reason, we neglect any contribution due to external forces.

Also in this case, the lack of convexity of the energy functional gives rise to many tech-
nical difficulties, making unsolvable in usual functional spaces the incremental minimum
problems. We follow the same approach of Chapter 3, and set the problem in a suitable
space of Young measures, where the incremental minimum problems can be solved.

The discrete setting allows to describe more explicitly Young measures and compatible
systems, as explained in Section 2.3. The aim of the present chapter is to prove an
existence result for the quasistatic evolution in a time interval [0, T ], defined as a pair
(b,λ) = (b, (λt)t∈[0,T ]) satisfying an admissibility condition and suitably reformulated
stability condition and energy inequality. The notion of evolution considered here seems to
be better than the one proposed in Chapter 3: the partial-global stability is a minimality
condition with respect to a quite large class of competitors and the energy inequality
involves any pair of time instants.

The proof of the existence theorem (Theorem 5.4.2) follows the classical scheme of
time-discretization, resolution of incremental minimum problems, and passage to the limit
of the approximate solutions.

The new feature concerns the choice of the solutions to the discretized minimum prob-
lems: the regularity results for quasi-minima of integral functional are used to prove a
uniform bound over the moments of order 2r > 2 of the selected minimizers, and conse-
quently of the approximate solutions (bt

n,λ
t
n). As a by-product of this selection, we get

89
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the continuity of the functional

(bt
n,λ

t
n) 7→

∫

D×RN×d

∑

α

(bt
n)α(x)W (θα, F ) d(λt

n)α(x, F ),

which is crucial in order to prove the existence result.

5.2. The mechanical model

The reference configuration D satisfies all the assumptions in Section 3.2, except for
condition (3.2.1), which is not necessary here.

We indicate the deformation with v and the internal variable with z. We denote the

stored energy density by W : Z × RN×d → [0,+∞), while the dissipation rate density
will be a metric on Z2, denoted by H : Z2 → [0,+∞). The energy density W satisfies
the assumption (W.1) of Section 3.2, while (W.2) is substituted by the following weaker
condition:

(W.4) W (θ, ·) is of class C2 and
∣

∣

∣

∂W

∂F
(θ, F )

∣

∣

∣
≤ C(1 + |F |).

The integral functional associated to W and H are denoted by W and H, respectively.
Given two distinct times s < t, the global dissipation of a function z : [0, T ] → L∞(D;Z)

in the interval [s, t] will be

VarH(z; s, t) := sup

k
∑

i=1

H(z(τi),z(τi−1)),

where the supremum will be taken among all finite partitions s = τ0 < τ1 < · · · < τk = t.
The prescribed boundary datum on ∂D at time t is denoted by ϕ(t); we assume ϕ ∈

AC([0, T ];W 1,p(D; RN )), with 2 < p < +∞.
The kinematically admissible values for the deformation at time t are contained in A(t),

where A(t) := ϕ(t) +H1
0 (D; RN ).

5.3. Admissible set in terms of Young measures

Definition 5.3.1. Given A ⊂ R and w : A → H1(D; RN ), we define the admissible
set for the time set A and the boundary datum w, Ad(A, q,w), as the set of all pairs
(b,λ) ∈ S(A,D, q) × (Y (D; RN×d)q)A such that property (2.3.10) (for p = 2) is satisfied
by bt

αλt
α, for every α and t, and the following condition holds: for every finite sequence

t1 < · · · < tn in A, for every i = 1, . . . , n, and every k ∈ N, there exist a measurable

partition (Di,k
α )qα=1 of D and a function vk

i ∈ w(ti) +H1
0 (D; RN ) such that:

(1) for every (α1, . . . , αn) ∈ A
q
n

1
D1,k

α1
· · · 1

Dn,k
αn

⇀ bt1...tn
α1...αn

L∞-weakly*, as k → ∞;

(2) for every i = 1, . . . , n there exists a subsequence (ki
j)j , possibly depending on i,

such that

1
D

i,ki
j

α

δ∇vi
ki
j

⇀ bti
αλti

α 2-weakly*, as j → ∞

for every α = 1, . . . , q.



5.3. ADMISSIBLE SET IN TERMS OF YOUNG MEASURES 91

The following remark compares the notion of Ad(A, q,w) with the notion of admissible
set in terms of Young measures AY (A,Z,w), as defined in Section 3.3.2.

Remark 5.3.2. Given A ⊂ R and w : A → H1(D; RN ), let us consider (b,λ) ∈
S(A,D, q) × (Y (D; RN×d)q)A, with (bt,λt) satisfying (2.3.10) for p = 2, and (ν,µ) ∈
Y 2(D;Z × R

N×d)A × SY (A,D;Z) defined by

νti =

q
∑

α=1

bti
α (δθα ⊗ λti

α ), for every t ∈ A

µt1...tn =
∑

(α1,...,αn)

bt1...tn
α1...αn

δ(θα1 ,...,θαn) for every t1 < · · · < tn in A.

Then (b,λ) ∈ Ad(A, q,w) if and only if (ν,µ) ∈ AY (A,Z,w), i.e. for every finite sequence
t1 < · · · < tn in A there exist sequences (zk

i )k ∈ L∞(D;Z), (vk
i )k ⊂ w(ti) +H1

0 (D; RN ),
for i = 1, . . . , n such that

(app1)Z we have

δ(zk
1 ,...,zk

n) ⇀ µt1...tn weakly*, (5.3.1)

as k → ∞;
(app2)Z for every i = 1, . . . , n, there exists a sequence of integers (ki

j)j , possibly depending
on i, such that

δ
(z

ki
j

i ,∇v
ki
j

i )
⇀ νti 2-weakly*, (5.3.2)

as j → ∞.

Indeed, given (Di,k
α )α satisfying the approximation property for bti

α , we can define zk
i by

zk
i (x) = θα whenever x ∈ Di,k

α , or equivalently, given zk
i satisfying the approximation

property for νti , we can consider Di,k
α := {x ∈ D : zk

i (x) = θα}, for α = 1, . . . , q.

The closure properties of Ad(A, q,w) are described by the following lemma, which is
the formulation in our discrete setting of Lemma 3.3.7.

Lemma 5.3.3. Let (wj)j be a sequence of functions from A into H1(D,Rm), such that

wj(t) → w(t) strongly in H1, for every t ∈ A and let (b,λ) ∈ S(A,D, q)×(Y (D; RN×d)q)A

with (bt,λt) satisfying (2.3.10) for p = 2, for every t ∈ A. Assume that for every finite
sequence t1 < · · · < tn in A there exists a sequence (bj,λj) ∈ Ad({t1, . . . , tn}, q,wj) such
that

(bj)t1...tn
α1...αn

⇀ bt1...tn
α1...αn

L∞-weakly *, (5.3.3)

as j → ∞ for every (α1, . . . , αn) ∈ A
q
n , and such that for every i there exists a sequence

of integers (jih)h, possibly depending on i, satisfying

((bji
h)tiα (λji

h)tiα ) ⇀ bti
αλti

α , 2-weakly*, (5.3.4)

as h→ ∞ for every α = 1, . . . , q. Then (b,λ) ∈ Ad(A, q,w).

The following lemma will be used in order to provide a class of competitors for the
discretized minimum problem in Section 5.5.1.
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Lemma 5.3.4. Let 0 ≤ t1 < · · · < tm ≤ T be a finite sequence in A. For every

j = 1, . . . ,m, consider vj ∈ w(tj) + H1
0 (D; RN ) and a measurable partition (Dj

α)qα=1 of

D. Let M : D → M
q×q
St , x 7→ (Mβα(x))βα be a measurable map, and ũ an element of

H1
0 (D; RN ).

Let (ν,µ) ∈ Y 2(D;Z × R
N×d){t1,...,tm} × SY 2({t1, . . . , tm},D;Z) be defined by

νtm :=
∑

α,β

Mβα1Dm
α

δ(θβ ,∇vm+∇ũ),

νtj :=

q
∑

α=1

1
Dj

α
δ(θα,∇vj) for every j < m,

µt1...tm :=
∑

α1,...,αm−1,α,β

Mβα1D1
α1

· · · · · 1Dm−1
αm−1

· 1Dm
α

δ(θα1 ,...,θαm−1 ,θβ).

Then (ν,µ) ∈ AY ({t1, . . . , tm}, Z,w).

Proof. Let us consider first the particular case of M : D → Mq×q
St constant.

Fix α ∈ {1, . . . , q} and define a measure να
tm on D × Z × R

N×d by

να
tm :=

∑

β

Mβα1Dm
α

δ(θβ ,∇ṽm),

where ṽm := vm + ũ. Consider a measurable partition (Sα
β )β of the unitary cube [0, 1]d,

with |Sα
β | = Mβα for every β (it is possible to find such a partition since 0 ≤ Mβα ≤ 1

and
∑

β Mβα = 1, by the hypotheses on M). Let us define now a measurable function

z̃α : [0, 1]d → Z by setting

z̃α(x) = θβ for a.e. x ∈ Sα
β ,

for every β = 1, . . . , q, and extend it by periodicity to all R
d. For every δ > 0, the function

z̃α
δ : Rd → Z defined by z̃α

δ (x) := z̃α(x
δ ), for a.e. x ∈ Rd, is δ-periodic. By Lemma 1.1.2,

we have

1{x∈Rd : z̃α
δ (x)=θβ}

⇀Mβα L∞-weakly*,

as δ → 0. Let now ψ ∈ C0(D × Z × R
N×d) = C0(D × R

N×d)Z ; we have

1Dm
α

(x)ψ(x, z̃α
δ (x),∇ṽm(x)) = 1Dm

α
(x)

q
∑

β=1

ψ(x, θβ ,∇ṽm(x))1{x∈Rd :z̃α
δ (x)=θβ}

(x),
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for a.e. x ∈ D, and the function x 7→ 1Dm
α

(x)ψ(x, θβ ,∇ṽm(x)) is in L1(D) for every β.
Hence we can deduce that

∫

D×Z×RN×d

ψ(x, θ, F ) d(1Dm
α

δ(z̃α
δ ,∇ṽm))(x, θ, F ) =

=

∫

D
1Dm

α
(x)ψ(x, z̃α

δ (x),∇ṽm(x)) dx =

=
∑

β

∫

Rd

1Dm
α

(x)ψ(x, θβ ,∇ṽm(x))1{x∈Rd :z̃α
δ (x)=θβ}

(x) dx
δ→0−→

∑

β

∫

Rd

Mβα1Dm
α

(x)ψ(x, θβ ,∇ṽm(x)) =

=

∫

D×Z×RN×d

ψ(x, θ, F ) d(να
tm)(x, θ, F ).

Defined z̃δ : D → Z by z̃δ(x) := z̃α
δ (x) if x ∈ Dm

α , we can conclude that δ(z̃δ,ṽm) ⇀ νtm

2-weakly*, as δ → 0.
We observe that

µt1...tm :=
∑

α1,...,αm−1,α,β

Mβα1D1
α1

· · · · · 1Dm−1
αm−1

· 1Dm
α

δ(θα1 ,...,θαm−1 ,θβ) =

∑

αβ

Mβα1Dm
α

δ(z1,...,zm−1,θβ),

where zj(x) := θγ whenever x ∈ Dj
γ , for j = 1, . . . ,m− 1. Hence we can apply the same

argument used for νtm to µt1...tm and deduce that δ(z1,...,zm−1,z̃δ) ⇀ µt1...tm weakly* as

δ → 0. Hence it is enough to consider a sequence δk → 0, and, for every k, zk
j = zj for

j < m, zk
m = z̃δk , vk

j = vj for j < m, and vk
m = ṽm to obtain the required approximation

properties considered in Remark 5.3.2.

Consider now the case of Mβ,α in C1(D). Fixed a positive parameter ε, consider a finite

family (Qi
ε)

I(ε)
i=1 of disjoint cubes in R

d, with diameter ε, covering D, and set

(Mβα)iε := (Mβα)Qi
ε∩D = 1

|Qi
ε∩D|

∫

Qi
ε∩D

Mβα(x) dx,

for every i = 1, . . . , I(ε), and every α, β. For a fixed α, we can define a measure να
ε on

R
d × Z × R

N×d by setting

να
ε :=

I(ε)
∑

i=1

q
∑

β=1

(Mβα)iε1Qi
ε
1Dm

α
δ(θβ ,∇ṽm).

Let us fix i = 1, . . . , I(ε) and reproduce the arguments used in the constant case: consider a
measurable partition ((Si

ε)
α
β)β of the unitary cube [0, 1]d, with |(Si

ε)
α
β | = (Mβα)iε, for every β

(it is possible to find such a partition since
∑

β(Mβα)iε = 1
|Qi

ε∩D|

∫

Qi
ε∩D(

∑

β Mβα)(x) dx =

1, by the hypotheses on M), and define (z̃α)iε : R
d → Z as the 1-periodic measurable

function satisfying

(z̃α)iε(x) = θβ for a.e. x ∈ (Si
ε)

α
β ,
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for every β = 1, . . . , q. For every δ > 0, consider the function (z̃α)iε,δ : R
d → Z defined by

(z̃α)iε,δ(x) := (z̃α)iε(
x
δ ), for a.e. x ∈ R

d. Fixed ε, we obtain as before that

1Dm
α

δ(z̃α
ε,δ,ṽm) ⇀ να

ε 2-weakly*, (5.3.5)

as δ → 0, where z̃α
ε,δ : R

d → Z is the function defined by z̃α
ε,δ :=

∑I(ε)
i=1 1Qi

ε
(z̃α)iε,δ.

Now we want to show that να
ε ⇀ να

tm 2-weakly* as ε→ 0.

For every ψ ∈ C0(D × Z × R
N×d), we have

∣

∣

∣

∫

D×Z×RN×d

ψ(x, θ, F ) dνα
tm(x, θ, F ) −

∫

D×Z×RN×d

ψ(x, θ, F ) dνα
ε (x, θ, F )

∣

∣

∣
=

=
∣

∣

∣

∑

β

∫

Dm
α

[

(Mβα(x) −
I(ε)
∑

i=1

1Qi
ε
(x)(Mβα)iε(x)

]

ψ(x, θβ ,∇ṽm(x)) dx
∣

∣

∣
;

Since for every x ∈ Dm
α there exists a unique ix = 1, . . . , I(ε) with x ∈ Qix

ε , we have

|Mβα(x) −
I(ε)
∑

i=1

1Qi
ε
(x)(Mn

βα)iε| = |Mn
βα(x) − (Mβα)ixε | ≤ ‖∇Mβα‖∞ε,

for every x ∈ Dm
α and every β = 1, . . . , q. Therefore we have

∣

∣

∣

∫

D×Z×RN×d

ψ(x, θ, F ) dνα
tm(x, θ, F ) −

∫

D×Z×RN×d

ψ(x, θ, F ) dνα
ε (x, θ, F )

∣

∣

∣
≤

≤
∑

β

‖∇Mβα‖∞‖ψ‖∞|D|ε,

(5.3.6)

which tends to 0 as ε→ 0.
Since Y (D;Z × R

N×d) is contained in a bounded subset of the dual of a separable
Banach space, it is metrizable with respect to the weak* topology. Let us denote by d a
metric inducing on Y (D;Z × R

N×d) the weak* topology, so that we have

• d(να
ε ,ν

α
tm) → 0 as ε→ 0;

• for every fixed ε, d(1Dm
α

δ(z̃α
ε,δ ,∇ṽ),ν

α
ε ) → 0 as δ → 0.

Applying, as before, the same argument to µt1...tm , we deduce, using a diagonalization
argument, that there exist sequences δk → 0 and εk → 0 such that

(1) for every α, 1Dm
α

δ(z̃α
εk,δk

,∇vm+∇ũ) ⇀ να
tm 2-weakly* as k → ∞;

(2) for every α, we have

1Dm
α

δ(z1,...,zm,z̃α
εk,δk

) ⇀
∑

α1,...,αm−1,β

Mβα1D1
α1

· · · 1Dm−1
αm−1

· 1Dm
α

δ(θα1 ,...,θαm−1 ,θβ)

weakly*, as k → ∞.

Now it is enough to define z̃ε,δ : D → Z, by z̃ε,δ :=
∑

α 1Dm
α
z̃α
ε,δ, to prove the thesis.

It remains only to treat the general case of Mβα ∈ L∞(D). We can reproduce the
same construction proposed in the C1-case; the only difference is that we have to use an
approximation argument to show that να

ε ⇀ να
tm . Indeed it is enough to consider, for
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every β, a sequence (Mn
βα)n in C1(D), with Mn

αβ → Mβα strongly in L1(D), as n → ∞,

and let (Mn
βα)iε := (Mn

βα)Qi
ε∩D. For every ψ ∈ C0(D × Z × R

N×d), we have
∣

∣

∣

∫

D×Z×RN×d

ψ(x, θ, F ) dνα
tm(x, θ, F ) −

∫

D×Z×RN×d

ψ(x, θ, F ) dνα
ε (x, θ, F )

∣

∣

∣
≤

≤
∣

∣

∣

∫

Dm
α

∑

β

Mβα(x)ψ(x, θβ ,∇ṽm(x)) dx−
∫

Dm
α

∑

β

Mn
βα(x)ψ(x, θβ ,∇ṽm(x)) dx+

−
∫

Dm
α

I(ε)
∑

i=1

1Qi
ε
(x)

∑

β

(Mβα)iεψ(x, θβ ,∇ṽm(x)) dx+

∫

Dm
α

I(ε)
∑

i=1

1Qi
ε
(x)

∑

β

(Mn
βα)iεψ(x, θβ ,∇ṽm(x)) dx

∣

∣

∣
+

+
∣

∣

∣

∫

Dm
α

∑

β

Mn
βα(x)ψ(x, θβ ,∇ṽm(x)) dx−

∫

Dm
α

I(ε)
∑

i=1

1Qi
ε
(x)

∑

β

(Mn
βα)iεψ(x, θβ ,∇ṽm(x)) dx

∣

∣

∣
≤

≤
∣

∣

∣

∑

β

∫

Dm
α

[

(Mβα −Mn
βα)(x) −

I(ε)
∑

i=1

1Qi
ε
(x)(Mβα −Mn

βα)iε

]

ψ(x, θβ ,∇ṽm(x)) dx
∣

∣

∣
+

+
∣

∣

∣

∑

β

∫

Dm
α

[

(Mn
βα(x) −

I(ε)
∑

i=1

1Qi
ε
(x)(Mn

βα)iε(x)
]

ψ(x, θβ ,∇ṽm(x)) dx
∣

∣

∣
.

We know that

|Mn
βα(x) −

I(ε)
∑

i=1

1Qi
ε
(x)(Mn

βα)iε| = |Mn
βα(x) − (Mn

βα)ixε | ≤ ‖∇Mn
βα‖∞ε,

for every x ∈ Dm
α and every β = 1, . . . , q. On the other hand, using Lemma 1.1.1, we can

deduce that
∫

Dm
α

|(Mβα −Mn
βα)(x) −

I(ε)
∑

i=1

1Qi
ε
(x)(Mβα −Mn

βα)iε)| dx ≤
∫

Dm
α

|Mβα −Mn
βα(x)| dx.

Let us fix η > 0; choosing n̄ such that
∑

β ‖Mβα −M n̄
βα‖1‖ψ‖∞ ≤ η/2, we have

∣

∣

∣

∫

D×Z×RN×d

ψ(x, θ, F ) dνα
tm(x, θ, F ) −

∫

D×Z×RN×d

ψ(x, θ, F ) dνα
ε (x, θ, F )

∣

∣

∣
≤ η,

for every ε ≤ εη := η(2
∑

β ‖∇M n̄
βα‖∞‖ψ‖∞|D|)−1; therefore we obtain that να

ε ⇀ να
tm as

ε→ 0 and we can prove the thesis as in the previous case.
�

Remark 5.3.5. If (b,λ) ∈ Ad(A, q,w), for every t ∈ A there exists a unique function
v(t) ∈ w(t) + H1

0 (D; RN ) such that ∇v(t) =
∑

α bt
αbar(λt

α); moreover, for every t ∈ A,
the function σ(t) representing the stress and defined by

σ(t, x) :=

q
∑

α=1

bt
α(x)

∫

RN×d

∂W

∂F
(θα, F ) d(λt

α)x(F ) for a.e. x ∈ D

belongs to L2(D; RN×d).
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5.4. Definition of quasistatic evolution and main result

First of all we give the definition of quasistatic evolution in the discrete setting.

Definition 5.4.1. Given ϕ ∈ AC([0, T ];W 1,p(D; RN )), for 2 < p < +∞, T > 0, z0 ∈
L∞(D;Z), and v0 ∈ A(0), a quasistatic evolution of Young measures with boundary datum
ϕ and initial condition (z0, v0), in the time interval [0, T ], is a pair (b,λ) ∈ Ad([0, T ], q,ϕ),
with b ∈ S−([0, T ],D, q), satisfying the following conditions:

(ev0) initial condition: defined D0
α := {x ∈ D : z0(x) = θα}, we have b0

α = 1D0
α

and

(λ0
α)x = δ∇v0(x) if x ∈ D0

α, for every α;
(ev1) partial-global stability: for every t ∈ [0, T ], we have

q
∑

α=1

∫

D
bt

α(x)
(

∫

RN×d

W (θα, F ) d(λt
α)x(F )

)

dx ≤

≤
q

∑

α,β=1

∫

D
Mβα(x)bt

α(x)
(

∫

RN×d

W (θβ, F + ∇ũ(x)) d(λt
α)x(F )

)

dx+

+

q
∑

α,β=1

H(θβ, θα)

∫

D
Mβα(x)bt

α(x) dx,

for every ũ ∈ H1
0 (D; RN ), and every measurable map

M : D → M
q×q
St x 7→ (Mβα(x))βα;

(ev2) energy inequality: if σ is the function defined in Remark (5.3.5), then the map

t 7→ 〈σ(t),∇ϕ̇(t)〉 (5.4.1)

is integrable on [0, T ], and for every t1 < t2 ∈ [0, T ] we have

q
∑

α=1

∫

D
bt2

α (x)
(

∫

RN×d

W (θα, F ) d(λt2
α )x(F )

)

dx+ DissH(b; t1, t2) ≤

≤
q

∑

α=1

∫

D
bt1

α (x)
(

∫

RN×d

W (θα, F ) d(λt1
α )x(F )

)

dx+

∫ t2

t1

〈σ(s),∇ϕ̇(s)〉 ds, (5.4.2)

where DissH(b; t1, t2) is defined by (2.3.6).

Theorem 5.4.2. Let ϕ ∈ AC([0, T ];H1(D; RN )) and T > 0. Assume that the partial-
global stability condition is satisfied by (z0, v0) ∈ L∞(D;Z) × A(0) . Then there exists
a quasistatic evolution of Young measures with boundary datum ϕ and initial condition
(z0, v0) in the time interval [0, T ].

5.5. Proof of the main theorem

The proof is obtained via time-discretization, resolution of incremental minimum prob-
lems, and passing to the limit.
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5.5.1. The incremental minimum problem. The first step of the proof consists
in the definition of an approximate solution via an inductive minimization process.

Let us fix a sequence of subdivisions of [0, T ], 0 = t0n < t1n < · · · < t
k(n)
n = T , such that

supi=1,...,k(n) τ
i
n → 0, as n→ ∞, where τ i

n := tin − ti−1
n , for every i = 1, . . . , k(n).

For every i = 0, 1, . . . , k(n) we set ϕi
n := ϕ(tin).

We define (bi
n,λ

i
n) ∈ Ad({t0n, . . . , tin}, q,ϕ) by induction on i: set

(b0
n)α(λ̄

0
n)α := 1D0

α
δ∇v0 ,

where D0
α := {x ∈ D : z0(x) = θα}; for i > 0 we define (bi

n,λ
i
n) as a pair satisfying the

following properties:

(min) (bi
n,λ

i
n) is a minimizer of the functional

∑

α

∫

D
btin

α (x)
(

∫

RN×d

W (θα, F ) d(λtin
α )x(F )

)

dx+

+
∑

α,β

H(θβ, θα)

∫

D
b

ti−1
n tin

αβ (x) dx, (5.5.1)

over the set Ai
n(bi−1

n ,λi−1
n ) of all (b,λ) ∈ Ad({t0n, . . . , tin}, q,ϕ) satisfying

∑

β

b
t0n...tin
α0...αi−1β = (bi−1

n )t
0
n...ti−1

n
α0...αi−1

a.e. in D, for every (α0, . . . , αi−1) ∈ A
q
i (5.5.2)

λtjn
α = (λi−1

n )t
j
n

α , for every j < i and every α; (5.5.3)

(reg) there exist constants r > 1 and γ > 0, both independent of i and n, such that
q

∑

α=1

∫

D×RN×d

(bi
n)t

i
n

α (x)|F |2r d(λi
n)t

i
n

α (x, F ) ≤

≤ γ
[

1 +
(

q
∑

α=1

∫

D×RN×d

(bi
n)t

i
n

α (x)|F |2 d(λi
n)t

i
n

α (x, F )
)r]

. (5.5.4)

The existence of such a pair (bi
n,λ

i
n) is proved in Lemma 5.5.2 below.

Lemma 5.5.1. For every i > 1 and every (bi−1,λi−1) ∈ Ad({t0n, . . . , ti−1
n }, q,ϕ), the set

Ai
n(bi−1,λi−1) is nonempty.

Proof. Fixed (bi−1,λi−1) ∈ Ad({t0n, . . . , ti−1
n }, q,ϕ), we consider the map

T̃ 2
∇ϕi

n−∇ϕi−1
n

: (x, F ) 7→ (x, F + ∇ϕi
n(x) −∇ϕi−1

n (x));

let b be the unique element of S({t0n, . . . , tin},D, q) satisfying

bt0n...ti−1
n tin

α0...αi−1αi
:=

{

(bi−1)
t0n...ti−1

n
α0...αi−1 if αi = αi−1

0 otherwise;
(5.5.5)

for every (α0, . . . , αi) ∈ A
q
i+1; define λ ∈ ((Y (D; RN×d)q){t

0
n,...,tin} by

λtjn
α := (λi−1)t

j
n

α if j < i, for every α,

λtin
α := T̃ 2

∇ϕi
n−∇ϕi−1

n
((λi−1)t

i−1
n

α ). (5.5.6)
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It is immediate to see that (b,λ) satisfy the properties (5.5.2) and (5.5.3). By construction

btjn
α λtjn

α ∈ Y 2(D; RN×d), for every α and every j = 0, . . . , i: indeed for j < i it is obvious,
while for i we have

btin
α =

∑

(α0...αi−1)

bt0n...ti−1
n tin

α0...αi−1α =

∑

(α0...αi−2)

(bi−1)t
0
n...ti−1

n
α0...αi−2α = (bi−1)t

i−1
n

α ,

for every α, therefore
∫

D
btin

α (x)
(

∫

RN×d

|F |2 d(λtin
α )x(F )

)

dx =

=

∫

D
(bi−1)t

i−1
n

α (x)
(

∫

RN×d

|F + ∇ϕi
n(x) −∇ϕi−1

n (x)|2 d((λi−1)t
i−1
n

α )x(F )
)

dx ≤

≤
∫

D
(bi−1)t

i−1
n

α (x)
(

∫

RN×d

|F |2 d((λi−1)t
i−1
n

α )x(F )
)

dx+ ‖∇ϕi
n‖2

2 + ‖∇ϕi−1
n ‖2

2 < +∞,

for every α. It is now easy to prove the approximations properties (1) and (2) of Definition
5.3.1 for (b,λ) defined by (5.5.5) and (5.5.6). Suppose that for every k and every j =

0, . . . , i − 1, ((Di−1)j,kα )α is a measurable partition of D and (vi−1)j,k is a function in

ϕj
n +H1

0 (D; RN ), which satisfy conditions (1) and (2) for (bi−1,λi−1). Then (Dj,k
α )α and

vj,k, defined by

Dj,k
α := (Di−1)j,kα for j < i

Di,k
α := (Di−1)i−1,k

α

vj,k := (vi−1)j,k for j < i

vi,k := (vi−1)i−1,k + ϕi
n − ϕi−1

n ,

for every α and every k, satisfy (1) and (2) for (b,λ). �

Lemma 5.5.2. There exist constants γ > 0 and r > 1, such that for every n, every
i = 1, . . . , k(n), and every (bi−1,λi−1) ∈ Ad({t0n, . . . , ti−1

n , q,ϕ), the functional (5.5.1) has
a minimizer over Ai

n(bi−1,λi−1), which satisfies (5.5.4).

Proof. Let (bh,λh)h be a minimizing sequence. By the bounds on W we have

c
∑

α

∫

D
(bh)t

i
n

α (x)
(

∫

RN×d

|F |2 d((λh)t
i
n

α )x(F )
)

dx− C ≤ (5.5.7)

≤
∑

α

∫

D
(bh)t

i
n

α (x)
(

∫

RN×d

W (θα, F ) d((λh)t
i
n

α )x(F )
)

≤ C ′,

for every h, for a positive constant C ′ independent of h. Moreover, we have

sup
h

‖(bh)t
0
n...tin

α0...αi
‖∞ ≤ 1,

for every (α0, . . . , αi) ∈ A
q
i+1. Therefore, we can deduce that there exist (b(α0...αi))(α0...αi) ∈

(L∞(D; [0, 1]))q
i+1

satisfying (2.3.3) and

(bh)t
0
n...tin

α0...αi
⇀ bα0...αi L∞-weakly*,
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as h→ ∞, up to a subsequence. In particular,

(bh)t
i
n

α ⇀
∑

(α0...αi−1)

L∞-weakly*. (5.5.8)

From (5.5.7), we can deduce using Remark 2.3.6 and (5.5.8) that there exists λ ∈ Y (D; RN×d)q

satisfying with
∑

(α0,...,αi−1) bα0...αi−1α condition (2.3.10)(with p = 2), such that

(bh)t
i
n

α (λh)t
i
n

α ⇀
∑

(α0...αi−1)

bα0...αi−1αλα 2-weakly*,

as h→ ∞, up to a subsequence.
We now define

λtjn
α := (λi−1)t

j
n

α , for every j < i and every α,

λtin
α := λα for every α,

and b as the unique element in S({t0n, . . . , tin},D, q) satisfying

bt0n...tin
α0...αi

:= bα0...αi for every (α0 . . . αi) ∈ A
q
i+1.

It is immediate to see that the hypotheses of Lemma 5.3.3 are satisfied by (b,λ), hence
(b,λ) ∈ Ad({t0n, . . . , tin}, q,ϕ). Moreover (b,λ) satisfies (5.5.2) and (5.5.3), by construc-
tion; hence (b,λ) ∈ Ai

n(bi−1,λi−1).
The term of (5.5.1) containing W is 2-weakly* lower semicontinuous, while the one

containing H is L∞-weakly* continuous; therefore, the functional (5.5.1) is lower semi-
continuous with respect to the convergence we are considering, this implies that (b,λ) is
a solution of our minimum problem.

Now we want to construct from (b,λ) a new minimizer (b, λ̄) satisfying property (5.5.4).
Let us set

(νi
n)tin :=

q
∑

α=1

(bi
n)t

i
n

α (δθα ⊗ (λi
n)t

i
n

α ),

(µi
n)t0n...tin

:=
∑

(α0,...,αi)

(bi
n)t

0
n...tin

α0...αi
δ(θα0 ,...,θαi)

.

From the definition of Ai
n(bi−1,λi−1) it follows that (νi

n,µ
i
n) ∈ AY ({t0n, . . . , tin}, Z,ϕ);

in particular there exist sequences (zi−1
n,k )k, ((zi

n,k)k in L∞(D;Z), and (vi
n,k)k in A(tin)

satisfying

δ(zi−1
n,k ,zi

n,k) ⇀ (µi
n)ti−1

n tin
weakly*,

δ(zi
n,k ,∇vi

n,k) ⇀ (νi
n)tin 2-weakly*,

as k → ∞. Thanks to Lemma 1.3.8, we can assume, without loss of generality, that
(|∇vi

n,k|2)k are equiintegrable; hence by Theorem 1.3.10 we may assume that

sup
k

‖∇vi
n,k‖2

2 ≤
∫

D×Z×RN×d

|F |2 d(ν i
n)tin(x, θ, F ) + 1, (5.5.9)

∫

D
W (zi

n,k(x),∇vi
n,k(x)) dx→

∫

D×Z×RN×d

W (θ, F ) d(ν i
n)tin(x, θ, F ). (5.5.10)
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Denote by Ii
n the minimum value of (5.5.1) over Ai

n(bi−1,λi−1). Thanks to (5.5.10), we
can deduce that

lim
k

[

∫

D
W (zi

n,k(x),∇vi
n,k(x)) dx+

∫

D
H(zi

n,k(x), z
i−1
n,k (x)) dx

]

=

=

∫

D×Z×RN×d

W (θ, F ) d(ν i
n)tin(x, θ, F ) +

+

∫

D×Z2

H(θi, θi−1) d(µ
i
n)ti−1

n tin
(x, θi−1, θi) = Ii

n. (5.5.11)

Now we want to consider the following auxiliary minimum problem, for every k:

Ii
n,k := inf

v∈ϕi
n+H1

0

∫

D
W (zi

n,k(x),∇v(x)) dx+

∫

D
H(zi

n,k(x), z
i−1
n,k (x)) dx. (5.5.12)

For every k, we choose v̂i
n,k ∈ ϕi

n +H1
0 (D; RN×d) such that

∫

D
W (zi

n,k(x),∇v̂i
n,k(x)) dx+

∫

D
H(zi

n,k(x), z
i−1
n,k (x)) dx ≤ Ii

n,k + 1
k . (5.5.13)

Using vi
n,k as competitor in (5.5.12), we can easily deduce, from (5.5.13) and the growth

hypothesis on W , that

‖∇v̂i
n,k‖2

2 ≤ Ĉ(1 + ‖∇vi
n,k‖2

2),

for a suitable positive constant Ĉ, independent of n. Hence, thanks to (5.5.9), supk ‖∇v̂i
n,k‖2

2

is bounded; in particular there exists ν̄i
n ∈ Y 2(D;Z × R

N×d) such that, up to a subse-
quence, δ(zi

n,k ,∇v̂i
n,k) ⇀ ν̄i

n 2-weakly* as k → ∞. Thanks to Lemma 1.3.8 we can assume,

up to a subsequence, that |∇v̂i
n,k|2 is equiintegrable in k.

Since πD×Z(ν̄i
n) =

∑

α(bi
n)

tin
α δθα , by Remark 2.3.4 there exists a family of Young mea-

sures λ̄i
n = ((λ̄i

n)α)α such that it holds

ν̄i
n =

q
∑

α=1

(bi
n)t

i
n

α (δθα ⊗ (λ̄i
n)α); (5.5.14)

since ν̄i
n ∈ Y 2(D;Z × R

N×d), (bi
n)

tin
α (λ̄i

n)α satisfies (2.3.10) for p = 2. We have
∫

D×Z×RN×d

W (θ, F ) dν̄i
n(x, θ, F ) +

∫

D×Z2

H(θi, θi−1) d(µ
i
n)ti−1

n tin
(x, θi−1, θi) ≤

≤ lim inf
k

[

∫

D
W (zi

n,k(x),∇v̂i
n,k(x)) dx+

∫

D
H(zi

n,k(x), z
i−1
n,k (x)) dx

]

≤

≤ lim inf
k

[Ii
n,k + 1/k] ≤ (5.5.15)

≤ lim inf
k

[

∫

D
W (zi

n,k(x),∇vi
n,k(x)) dx+

∫

D
H(zi

n,k(x), z
i−1
n,k (x)) dx

]

= Ii
n.

The construction of ν̄i
n implies that the pair (b, λ̄), with

λ̄ := (λt0n , . . . ,λti−1
n , λ̄i

n) =

= ((λi−1)t
0
n , . . . , (λi−1)t

i−1
n , λ̄i

n),
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is an element of Ad({t0n, . . . , tin}, q,ϕ); moreover it satisfies the “memory properties” (5.5.2)
and (5.5.3), required to be in Ai

n(bi−1,λi−1). Hence

Ii
n ≤

∫

D×Z×RN×d

W (θ, F ) dν̄i
n(x, θ, F ) +

∫

D×Z2

H(θi, θi−1) d(µ
i
n)ti−1

n tin
(x, θi−1, θi);(5.5.16)

we can deduce from (5.5.15) and (5.5.16) that (b, λ̄) minimizes (5.5.1) over Ai
n(bi−1,λi−1).

Now we want to apply Ekeland Principle in order to construct a more regular sequence
(v̄i

n,k)k which, together with zi
n,k, generates ν̄i

n.

We define ûi
n,k as the function v̂i

n,k − ϕi
n ∈ H1

0 (D; RN ). Consider the functional E
defined on the Banach space W 1,1

0 (D; RN ) by

E(u) :=

{

∫

D W (zi
n,k(x),∇ϕi

n(x) + ∇u(x)) dx if u ∈ H1
0 (D; RN );

+∞ otherwise;

This functional is strongly lower semicontinuous with respect to the W 1,1
0 topology, it

is positive and not infinite everywhere: hence we apply Ekeland’s Principle (see [16,

Corollary 6.1, p.30]) toW 1,1
0 (D; RN ) endowed with the norm ‖u‖W 1,1

0
:= ‖∇u‖1; we deduce

that there exists ūi
n,k ∈ H1

0 (D; RN ) satisfying the following properties:
∫

D
W (zi

n,k(x),∇ϕi
n(x) + ∇ūi

n,k(x)) dx ≤ Ii
n,k +

1

k
; (5.5.17)

‖∇ūi
n,k −∇ûi

n,k‖1 ≤ 1√
k
; (5.5.18)

∫

D
W (zi

n,k(x),∇ϕi
n(x) + ∇ūi

n,k(x)) dx ≤ (5.5.19)

∫

D

[

W (zi
n,k(x),∇ϕi

n(x) + ∇u(x)) +
1√
k
|∇u−∇ūi

n,k|
]

dx,

for every u ∈ H1
0 (D; RN ).

In particular these properties imply that

sup
k

‖∇ūi
n,k‖2

2 ≤ C̄(1 + sup
k

‖∇ûi
n,k‖2

2), (5.5.20)

for a suitable positive constant C̄ independent of k, n, and i, and

δ(zi
n,k ,∇ϕi

n+∇ūi
n,k) ⇀ ν̄i

n 2-weakly*,

as k → ∞.
Using the growth hypotheses on W , it is easy to deduce from (5.5.19) that, for k

sufficiently large, v̄i
n,k is a Q-quasi-minimum of the functional F : H1(D; RN ) → R defined

by F(v) =
∫

D(1+ |∇v(x)|2) dx, for a suitable positive constant Q independent of k, n, and
i. We can now apply Theorem 1.2.4, and conclude that there exist two constants γ > 0
and r > 1, both independent of k, n, and i, such that

∫

D
|∇v̄i

n,k(x)|2r dx ≤ γ
[

1 +
(

∫

D
|∇v̄i

n,k(x)|2 dx
)r

]

,
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for every k. In particular, thanks to (5.5.20), we have
∫

D
|∇v̄i

n,k(x)|2r dx ≤ γ
[

1 + ‖∇v̄i
n,k‖2r

2

]

≤

≤ γ̃
[

(1 + ‖∇v̂i
n,k‖2r

2

]

, (5.5.21)

for a suitable constant γ̃ > 0 independent of k, n, and i. Thanks to the equiintegrability
of |∇v̂i

n,k|2, using Theorem 1.3.10 we can deduce that

q
∑

α=1

∫

D×RN×d

btin
α (x)|F |2r dλ̄i

n(x, F ) ≤

≤ lim inf
k

∫

D
|∇v̄i

n,k(x)|2r dx ≤

≤ γ̃[1 + (lim
k

∫

D
|∇v̂i

n,k|2 dx)r] =

= γ̃[1 + (
∑

α

∫

D×RN×d

btin
α (x)|F |2 dλ̄i

n(x, F ))r].

This concludes the proof. �

Using the minimization process described so far, it is possible to construct inductively
(bi

n,λ
i
n), for every i = 1, . . . , k(n) and every n.

Set τn(s) := tin, whenever tin ≤ s < ti+1
n , where we set t

k(n)+1
n := T + 1

n .
For every i and n we set

σi
n(x) :=

q
∑

α=1

∫

RN×d

(bi
n)t

i
n

α (x)
∂W

∂F
(θα, F ) d((λi

n)t
i
n

α )x(F ),

and define

σn(t, x) := σi
n(x), (5.5.22)

for a.e. x ∈ D, whenever tin ≤ t < ti+1
n .

For every α = 1, . . . , q, we define (λn)α ∈ Y (D; RN×d)[0,T ] by

(λn)sα := (λi
n)t

i
n

α , (5.5.23)

whenever tin = τn(s), for every s ∈ [0, T ]; we define also bn ∈ S([0, T ],D; Rm) as the

piecewise constant interpolation of b
k(n)
n (see Definition 2.3.1).

Note that (bn,λn) ∈ Ad([0, T ], q,ϕ(τn(·))) by construction.

5.5.2. A priori estimates. Set

(ν i
n)tin :=

q
∑

α=1

(bi
n)t

i
n

α (δθα ⊗ (λi
n)t

i
n

α ),

(µi
n)t0n...tin

:=
∑

(α0,...,αi)

(bi
n)t

0
n...tin

α0...αi
δ(θα0 ,...,θαi)

,
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for every i = 1, . . . , k(n), and

(νn)t =

q
∑

α=1

(bn)tα(δθα ⊗ (λn)tα),

(µn)t0...tm :=
∑

(α0,...,αm)

(bn)t0...tm
α0...αn

δ(θα0 ,...,θαm),

for every t ∈ [0, T ] and every t0 < · · · < tm in [0, T ].
As in Section 3.4.2, we want to deduce a discrete version of the energy inequality for

(bn,λn). We briefly recall the arguments for the reader’s convenience.
Using the competitor defined in the proof of Lemma 5.5.1, we have

∫

D×Z×RN×d

W (θ, F ) d(ν i
n)tin(x, θ, F ) +

+

∫

D×(Z)2
H(θi − θi−1) d(µ

i
n)ti−1

n tin
(x, θi−1, θi) ≤

≤
∫

D×Z×RN×d

W (θ, F ) d(ν i−1
n )ti−1

n
(x, θ, F ) +

+

∫

D×Z×RN×d

[W (θ, F + ∇ϕi
n(x) −∇ϕi−1

n (x)) −W (θ, F )] d(ν i−1
n )ti−1

n
(x, θ, F ).

Let us fix t1 < t2 in [0, T ] such that tln ≤ t1 < tl+1
n ≤ tjn ≤ t2 < tj+1

n , for suitable
l, j = 0, . . . , k(n); using

∫

D×Z×RN×d

[W (θ, F + ∇ϕi
n(x) −∇ϕi−1

n (x)) −W (θ, F )] d(ν i−1
n )ti−1

n
(x, θ, F ) =

=

∫ tin

ti−1
n

(

∫

D×Z×RN×d

∂W

∂F
(θ, F + εn(s, x))∇ϕ̇(s, x) d(νn)s(x, θ, F )

)

ds,

where εn(s, x) := ∇ϕ(s, x) − ∇ϕ(τn(s), x), for every s ∈ [0, T ] and every x ∈ D, and
iterating from l to j, we obtain

∫

D×Z×RN×d

W (θ, F ) d(νn)t2(x, θ, F ) + VarH(µn; t1, t2) ≤

≤
∫

D×Z×RN×d

W (θ, F ) d(νn)t1(x, θ, F ) +

∫ τn(t2)

τn(t1)
〈σn(s),∇ϕ̇(s)〉 ds + (5.5.24)

+

∫ τn(t2)

τn(t1)

(

∫

D×Z×RN×d

[∂W

∂F
(θ, F + εn(s, x)) − ∂W

∂F
(θ, F )

]

∇ϕ̇(s) d(νn)s(x, θ, F )
)

ds;
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in particular for t1 = 0 we have
∫

D×Z×RN×d

W (θ, F ) d(νn)t2(x, θ, F ) + VarH(µn; 0, t2) ≤

≤ W(z0, v0) +

∫ τn(t2)

0
〈σn(s),∇ϕ̇(s)〉 ds + (5.5.25)

+

∫ τn(t2)

0

(

∫

D×Z×RN×d

[∂W

∂F
(θ, F + εn(s, x)) − ∂W

∂F
(θ, F )

]

∇ϕ̇(s) d(νn)s(x, θ, F )
)

ds.

From (5.5.25), we can deduce the following a priori estimates on (νn,µn).

Lemma 5.5.3. There exists a positive constant C, such that

sup
n

sup
t∈[0,T ]

∫

D×Z×RN×d

|(θ, F )|2r d(νn)t(x, θ, F ) ≤ C, (5.5.26)

sup
n

VarH(µn; 0, T ) ≤ C. (5.5.27)

Proof. Using the fact that
∫ T
0 ‖ϕ̇(t)‖H1 dt is finite, the hypotheses on W and the

inequality

sup
s∈[0,T ]

∫

D×Z×RN×d

|F |2 d(νn)s(x, θ, F ) <∞,

(since νn are piecewise constant interpolations of Young measures with finite second mo-
ments), we can deduce from (5.5.25) that, for n sufficiently large,

∫

D×Z×RN×d

|F |2 d(νn)t(x, θ, F ) ≤ (5.5.28)

≤ C̃ + C̃ sup
s∈[0,T ]

(

1 + c̃

∫

D×Z×RN×d

|F |2 d(νn)s(x, θ, F )
)1/2

,

for suitable positive constants C̃ and c̃ independent of t and n.
Since this can be repeated for every t ∈ [0, T ], we deduce

sup
n

sup
t∈[0,T ]

∫

D×Z×RN×d

|(θ, F )|2 d(νn)t(x, θ, F ) ≤ C, . (5.5.29)

Inequality (5.5.26) comes now from (5.5.29) and (5.5.4), while inequality (5.5.27) follows
from (5.5.29) and (5.5.24). �

Using Lemma 5.5.3 and adapting the proof of Lemma 3.4.5, we can deduce the following
discrete version of the energy inequality: for every t1 < t2 in [0, T ]

∫

D×Z×RN×d

W (θ, F ) d(νn)t2(x, θ, F ) + VarH(µn; t1, t2) ≤

≤
∫

D×Z×RN×d

W (θ, F ) d(νn)t1(x, θ, F ) +

∫ τn(t2)

τn(t1)
〈σn(s),∇ϕ̇(s)〉 ds+ ρn, (5.5.30)

where ρn → 0 as n→ ∞.
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5.5.3. Passage to the limit. Thanks to (5.5.27), we can apply Helly’s Theorem
(Theorem 2.3.2) to the sequence (bn)n and obtain a subsequence, still indicated with
(bn)n, a subset T of [0, T ], containing 0, with L1([0, T ] \ T ) = 0, and b ∈ S−([0, T ],D, q),
such that, for every finite sequence t1 < · · · < tl in T , we have

(bn)t1...tl
α1...αl

⇀ bt1...tl
α1...αl

L∞-weakly*, (5.5.31)

as n → ∞, for every (α1, . . . , αl) ∈ A
l
q . Denote by µ the element of SY−([0, T ],D;Z)

corresponding to b.
Let T ′ be a dense countable subset of T containing 0. Thanks to (5.5.26) and Remark

2.3.6, we can find with a diagonalization process a subsequence of (λn)n, still indicated
by (λn)n, and λt = (λt

α)α ∈ Y (D; RN×d)q for every t ∈ T ′, such that

∫

D×RN×d

bt
α(x)|F |2r dλt

α(x, F ) ≤ C, (5.5.32)

and

(bn)tα(λn)tα ⇀ bt
αλt

α 2r-weakly*, as n→ ∞, (5.5.33)

for every t ∈ T ′. Note that the family of coefficients b appearing here is the same as in
(5.5.31), because πD×Z((νn)t) = (µn)t for every t ∈ [0, T ] and thanks to Remark 2.3.4;
moreover, by construction of (νn,µn) we have

b0
α = (bn)0α = 1D0

α
, (5.5.34)

(λ0
α)x = ((λn)0α)x = δ∇v0(x) for a.e. x ∈ D0

α, (5.5.35)

(5.5.36)

where D0
α := {x ∈ D : z0(x) = θα}.

For every t ∈ T \ T ′, let us choose an increasing sequence of integers nt
k, possibly

depending on t, such that

lim sup
n

〈σn(t),∇ϕ̇(t)〉 = lim
k
〈σnt

k
(t),∇ϕ̇(t)〉 (5.5.37)

(this choice is crucial in order to apply the argument in [13, Section 7]). Again by (5.5.26)
and Remark 2.3.6, we can extract a further subsequence, still denoted by (λnt

k
)k, satisfying

(5.5.37) and such that there exists λt ∈ Y (D; RN×d)q with
∫

D×RN×d

bt
α(x)|F |2r dλt

α(x, F ) ≤ C, (5.5.38)

(bnt
k
)tα(λnt

k
)tα ⇀ bt

αλt
α 2r-weakly*, as k → ∞. (5.5.39)

Note that, thanks to (W.4), we have

lim sup
n

〈σn(t),∇ϕ̇(t)〉 = 〈σ(t),∇ϕ̇(t)〉, (5.5.40)

where

σ(t, x) :=
∑

α

bt
α(x)

∫

RN×d

∂W
∂F (θα, F ) d(λt

α)x(F ),
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for every t ∈ T . This implies that the map (5.4.1) is measurable on [0, T ]; moreover for
every t ∈ T ′ we have

lim sup
n

〈σn(t),∇ϕ̇(t)〉 = lim
n
〈σn(t),∇ϕ̇(t)〉.

The family ν will denote the element of Y 2r(D;Z × R
N×d)T corresponding to (b,λ).

Let t ∈ [0, T ] \ T , and fix a sequence sj in T converging to t with sj < t; by (5.5.32), and
(5.5.38), we have

sup
j

∫

D
b

sj
α (x)

(

∫

RN×d

|F |2r d(λ
sj
α )x(F )

)

dx ≤ C,

for every j; again by Remark 2.3.6, we can find a subsequence, not relabeled, and λt ∈
Y (D; RN×d), such that

∫

D×RN×d

bt
α(x)|F |2r dλt

α(x, F ) ≤ C, (5.5.41)

and

b
sj
α λ

sj
α ⇀ bt

αλt
α 2r-weakly*, as j → ∞. (5.5.42)

Note that, since πD×Z(νt) = µt for every t ∈ T , the left continuity of b defined in (5.5.31
ensures that the family of coefficients appearing in (5.5.42) is the same as in (5.5.31).

In this way we have defined λ ∈ (Y (D; RN×d)q)[0,T ], and consequently ν ∈ Y 2r(D;Z ×
R

N×d)[0,T ]. It can be shown that (b,λ) ∈ Ad([0, T ], q,ϕ) using Lemma 5.3.3 and adapting
the argument in Section 3.4.3.

By construction (b,λ) satisfies (ev0).

5.5.4. Stability. Fix n and i = 1, . . . , k(n). Let

M : D → M
q×q
St

x 7→ (Mβα(x))βα,

be a measurable map, and let ũ ∈ H1
0 (D; RN ). We define (ν̃i

n, µ̃
i
n) ∈ Y 2(D;Z×R

N×d){t
0
n,...,tin}×

SY ({t0n, . . . , tin},D,Z) by

(ν̃i
n)

tjn
:= (νi

n)
tjn

if j < i

(ν̃i
n)tin :=

∑

α,β

Mβα(bi
n)t

i
n

α (δθβ
⊗ τ∇ũ(λi

n)t
i
n

α ),

(µ̃i
n)t0n...tin

:=
∑

α,β

Mβα(bi
n)t

0
n...tin

α0...αi−1αδ(θα0 ,...,θαi−1 ,θβ),

where τ∇ũ : D × R
N×d → D × R

N×d is the map sending (x, F ) into (x, F + ∇ũ(x)).

Lemma 5.5.4. The pair (ν̃i
n, µ̃

i
n) is in AY ({t0n, . . . , tin}, Z,ϕ).

Proof. Consider (νi
n,µ

i
n) ∈ AY ({t0n, . . . , tin}, Z,ϕ): for every j = 0, . . . , i, there exist

a sequence (vj
k)k contained in ϕ(tjn) +H1

0 (D; RN ), and a sequence ((Dj
α)k)α, indexed by

k, of measurable partitions of D, such that
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(1) we have
∑

α0,...,αi

1(D0
α0

)k
· · · · · 1(Di

αi
)k

δ(θα0 ,...,θαi )
⇀ (µi

n)t0n...tin
weakly*,

as k → ∞;

(2) for every j = 0, . . . , i, there exists a subsequence (kj
l )l, possibly dependent on j,

such that
q

∑

α=1

1
(Dj

α)
k

j
l

δ
(θα,∇vj

k
j
l

)
⇀ (νi

n)
tjn

2-weakly*,

as l → ∞.

In particular, by Lemma 1.3.6 this implies that
∑

α0,...,αi−1,α,β

Mβα1(D0
α0

)k
· · · · · 1(Di−1

αi−1
)k
· 1(Di

α)k
δ(θα0 ,...,θαi−1 ,θβ) ⇀ (µ̃i

n)t0n...tin
weakly*, as k → ∞;

∑

α,β

Mβα1(Di
α)

ki
l

δ(θβ ,∇vi
ki
l

+∇ũ) ⇀ (ν̃i
n)tin 2-weakly*, as l → ∞;

q
∑

α=1

1
(Dj

α)
k

j
l

δ
(θα,∇vj

k
j
l

)
⇀ (ν̃i

n)
tjn

2-weakly*, as l → ∞, for every j < i.

Thanks to Lemma 5.3.4, the pair (ν̃k, µ̃k) ∈ Y 2(D;Z×R
N×d){t

0
n,...,tin}×SY 2({t0n, . . . , tin},D;Z),

defined by

(ν̃k)tin :=
∑

α,β

Mβα1(Di
α)k

δ(θβ ,∇vi
k+∇ũ),

(ν̃k)
tjn

:=

q
∑

α=1

1
(Dj

α)k
δ

(θα,∇vj
k)

for every j < i,

(µ̃k)t0n...tin
:=

∑

α0,...,αi−1,α,β

Mβα1(D0
α0

)k
· · · · · 1(Di−1

αi−1
)k
· 1(Di

α)k
δ(θα0 ,...,θαi−1 ,θβ),

is an element of AY ({t0n, . . . , tin}, Z,ϕ), for every k. Therefore, the thesis can be deduced
using Lemma 3.3.6. �

Set

(b̃
i
n)

t0n...ti−1
n tin

α0...αi−1β :=
∑

α

Mβα(bi
n)t

0
n...ti−1

n tin
α0...αi−1α,

(λ̃
i
n)t

j
n

β := (λi
n)

tin
β for every j < i,

((λ̃
i
n)

tin
β )x :=

∑

αMβα(x)(bi
n)

tin
α (x)τ̃∇ũ(x)(((λ

i
n)

tin
α )x)

∑

αMβα(x)(bi
n)

tin
α (x)

if
∑

α

Mβα(x)(bi
n)t

i
n

α (x) > 0

for a.e. x ∈ D, for every β, and every (α0, . . . , αi−1) ∈ A
i
q , where τ̃∇ũ(x) : R

N×d → R
N×d

is the map defined by F 7→ F + ∇ũ(x), for a.e. x ∈ D; since (b̃
i
n, λ̃

i
n) is the element
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corresponding to (ν̃i
n, µ̃

i
n), we immediate deduce from Lemma 5.5.4 that (b̃

i
n, λ̃

i
n) belongs

to Ai
n(bi−1

n ,λi−1
n ). The minimizing property of (bi

n,λ
i
n) implies that

∑

α

∫

D
(bi

n)t
i
n

α (x)
(

∫

RN×d

W (θα, F ) d((λi
n)t

i
n

α )x(F )
)

dx+

+
∑

αγ

H(θα, θγ)

∫

D
(bi

n)t
i−1
n tin

γα (x) dx ≤

≤
∑

α

∫

D
(b̃

i
n)t

i
n

α (x)
(

∫

RN×d

W (θα, F ) d((λ̃
i
n)t

i
n

α )x(F )
)

dx+

+
∑

βγ

H(θβ, θγ)

∫

D
(b̃

i
n)

ti−1
n tin

γβ (x) dx;

in other words

∑

α

∫

D
(bi

n)t
i
n

α (x)
(

∫

RN×d

W (θα, F ) d((λi
n)t

i
n

α )x(F )
)

dx ≤

≤
∑

αβ

∫

D
Mβα(x)(bi

n)t
i
n

α (x)
(

∫

RN×d

W (θβ, F + ∇ũ) d((λi
n)t

i
n

α )x(F )
)

dx+ (5.5.43)

≤
∑

αγβ

H(θβ, θγ)

∫

D
Mβα(x)(bi

n)t
i−1
n tin

γα (x) dx−
∑

αγ

H(θα, θγ)

∫

D
(bi

n)t
i−1
n tin

γα (x) dx.

Since
∑

β Mβα(x) = 1 for a.e. x ∈ D and every α, we can deduce, using the triangular
inequality, that

∑

αβγ

H(θβ, θγ)

∫

D
Mβα(x)(bi

n)t
i−1
n tin

γα (x) dx−
∑

αγ

H(θα, θγ)

∫

D
(bi

n)t
i−1
n tin

γα (x) dx =

≤
∑

αβγ

H(θβ , θγ)

∫

D
Mβα(x)(bi

n)t
i−1
n tin

γα (x) dx−
∑

αβγ

H(θα, θγ)

∫

D
Mβα(x)(bi

n)t
i−1
n tin

γα (x) dx ≤

≤
∑

αβ

H(θβ , θα)

∫

D
Mβα(x)

∑

γ

(bi
n)t

i−1
n tin

γα (x) dx =
∑

αβ

H(θβ, θα)

∫

D
Mβα(x)(bi

n)t
i
n

α (x) dx.

Hence we deduce from (5.5.43) that

∑

α

∫

D
(bi

n)t
i
n

α (x)
(

∫

RN×d

W (θα, F ) d((λi
n)t

i
n

α )x(F )
)

dx ≤

≤
∑

αβ

∫

D
Mβα(x)(bi

n)t
i
n

α (x)
(

∫

RN×d

W (θβ, F + ∇ũ(x)) d((λi
n)t

i
n

α )x(F )
)

dx+

+
∑

αβ

H(θβ , θα)

∫

D
Mβα(x)(bi

n)t
i
n

α (x) dx,
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for every n and i = 1, . . . , k(n); we can rewrite the previous inequality in the following
form

∑

α

∫

D
(bn)tα(x)

(

∫

RN×d

W (θα, F ) d((λn)tα)x(F )
)

dx ≤

≤
∑

αβ

∫

D
Mβα(x)(bn)tα(x)

(

∫

RN×d

W (θβ, F + ∇ũ(x)) d((λn)tα)x(F ) dx+ (5.5.44)

+
∑

αβ

H(θβ, θα)

∫

D
Mβα(x)(bn)tα(x) dx,

for every t ∈ T \ {0} and every n. From (5.5.31) we can deduce that

∑

αβ

H(θβ , θα)

∫

D
Mβα(x)(bn)tα(x) dx→

∑

αβ

H(θβ, θα)

∫

D
Mβα(x)bt

α(x) dx, (5.5.45)

as n→ ∞, for every t ∈ T \{0}. Consider (ν̄n)t :=
∑

αβ Mβα(bn)tα(δθβ
⊗ (λn)tα), for every

t ∈ (0, T ]; we have

sup
n

sup
t∈(0,T ]

∫

D×Z×RN×d

|(θ, F )|2r d(ν̄n)t(x, θ, F ) =

= sup
n

sup
t∈(0,T ]

∫

D

∑

αβ

Mβα(x)(bn)tα(x)
(

∫

RN×d

|(θβ , F )|2r d((λn)tα)x(F )
)

dx ≤

≤ sup
α

|θα|2r + q sup
n

sup
t∈(0,T ]

∫

D

∑

α

(bn)tα(x)
(

∫

RN×d

|(θα, F )|2r d((λn)tα)x(F )
)

dx =

= K + q sup
n

sup
t∈(0,T ]

∫

D×Z×RN×d

|(θ, F )|2r d(νn)t(x, θ, F ),

for K := supα |θα|2r; therefore we can deduce from (5.5.26) that

sup
n

sup
t∈[0,T ]

∫

D×Z×RN×d

|(θ, F )|2r d(ν̄n)t(x, θ, F ) ≤ K + qC.

In particular for every t ∈ T \ {0}, we deduce from (5.5.33) and (5.5.39) that

(ν̄nt
k
)t ⇀ ν̄t :=

∑

αβ

Mβαbt
α(δθβ

⊗ λt
α) 2r-weakly*, (5.5.46)

as k → ∞, where (b,λ) is the pair defined by (5.5.31), (5.5.33), and (5.5.39). Since
|W (θ, F + ∇ũ(x))| ≤ C(1 + |∇ũ(x)|2) + C|F |2, we can use Lemma 1.3.5 to deduce from
(5.5.46) that

∑

αβ

∫

D
Mβα(x)(bnt

k
)tα(x)

(

∫

RN×d

W (θβ, F + ∇ũ(x)) d((λnt
k
)tα)x(F )

)

dx→

→
∑

αβ

∫

D
Mβα(x)bt

α(x)
(

∫

RN×d

W (θβ, F + ∇ũ(x)) d(λt
α)x(F )

)

dx, (5.5.47)
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as k → ∞. Analogously, we deduce that

∑

α

∫

D
(bnt

k
)tα(x)

(

∫

RN×d

W (θα, F ) d((λnt
k
)tα)x(F )

)

dx→

→
∑

α

∫

D
bt

α(x)
(

∫

RN×d

W (θα, F ) d(λt
α)x(F )

)

dx, (5.5.48)

as k → ∞; therefore using (5.5.44), (5.5.48), (5.5.47), and (5.5.45), we can deduce imme-
diately (ev1), for every t ∈ T \ {0}, while for t = 0 it is an obvious consequence of (ev0)
and the hypothesis on the initial datum (z0, v0). For t ∈ [0, T ] \ T , (ev1) can be easily
proved using (5.5.42) and (ev1) for t ∈ T , as in Section 3.4.3.

5.5.5. Energy inequality. Let t1 < t2 be two time instants in T ; choose any t ∈
(t1, t2) ∩ T ′. Let (λn1

k
)k and (λn2

k
)k be two sequences satisfying (5.5.37) and (5.5.39) for

t1 and t2 respectively. We have

∑

α

∫

D
bt2

α (x)
(

∫

RN×d

W (θα, F ) d(λt2
α )x(F )

)

dx+ DissH(b; t1, t2) ≤

≤ lim inf
k

[

∑

α

∫

D
(bn2

k
)t2α (x)

(

∫

RN×d

W (θα, F ) d((λn2
k
)t2α )x(F )

)

dx+ DissH(bn2
k
; t, t2)

]

+

+DissH(b; t1, t);

using (5.5.30), we can deduce that

∑

α

∫

D
bt2

α (x)
(

∫

RN×d

W (θα, F ) d(λt2
α )x(F )

)

dx+ DissH(b; t1, t2) ≤

≤
∑

α

∫

D
bt

α(x)
(

∫

RN×d

W (θα, F ) d(λt
α)x(F )

)

dx+

+ lim sup
n

∫ τn(t2)

τn(t)
〈σn(s),∇ϕ̇(s)〉 ds+ DissH(b; t1, t);

since supt supn ‖σn(t)‖2 is finite, we have by Fatou Lemma

lim sup
n

∫ τn(t2)

τn(t)
〈σn(s),∇ϕ̇(s)〉 ds ≤

∫ T

0
lim sup

n
[1[τn(t),τn(t2)](s)〈σn(s),∇ϕ̇(s)〉] ds =

=

∫ t2

t
〈σ(s),∇ϕ̇(s)〉 ds.

Hence we have
∑

α

∫

D
bt2

α (x)
(

∫

RN×d

W (θα, F ) d(λt2
α )x(F )

)

dx+ DissH(b; t1, t2) ≤

≤
∑

α

∫

D
bt

α(x)
(

∫

RN×d

W (θα, F ) d(λt
α)x(F )

)

dx+ DissH(b; t1, t) + (5.5.49)

+

∫ t2

t
〈σ(s),∇ϕ̇(s)〉 ds;
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we now apply the same argument to the time interval [t1, t], i.e.,
∑

α

∫

D
bt

α(x)
(

∫

RN×d

W (θα, F ) d(λt
α)x(F )

)

dx+ DissH(b; t1, t) ≤

≤ lim inf
n

[

∑

α

∫

D
(bn)tα(x)

(

∫

RN×d

W (θα, F ) d((λn)tα)x(F )
)

dx+ DissH(bn; t1, t)
]

≤

≤ lim inf
k

[

∑

α

∫

D
(bn1

k
)t1α (x)

(

∫

RN×d

W (θα, F ) d((λn1
k
)t1α )x(F )

)

dx+ (5.5.50)

+

∫ τn1
k (t)

τ
n1

k (t1)
〈σn1

k
(s),∇ϕ̇(s)〉 ds

]

≤

≤
∑

α

∫

D
bt1

α (x)
(

∫

RN×d

W (θα, F ) d(λt1
α )x(F )

)

dx+

∫ t

t1

〈σ(s),∇ϕ̇(s)〉 ds.

From (5.5.49) and (5.5.50) we obtain
∑

α

∫

D
bt2

α (x)
(

∫

RN×d

W (θα, F ) d(λt2
α )x(F )

)

dx+ DissH(b; t1, t2) ≤

≤
∑

α

∫

D
bt1

α (x)
(

∫

RN×d

W (θα, F ) d(λt1
α )x(F )

)

dx+

∫ t2

t1

〈σ(s),∇ϕ̇(s)〉 ds.

We have proved (ev2) for t1 < t2 in T . Using (5.5.42) and the left continuity of b, the
same argument as in Section 3.4.3 proves (ev2) for t1 < t2 in [0, T ].

5.6. Euler conditions

In this section we derive the Euler equations for the partial-global stability condition.

Theorem 5.6.1. Let (b, λ) ∈ L∞(D; [0, 1])q ×Y (D; RN×d)q satisfy (2.3.2) and (2.3.10)
with p = 2. Assume that (b, λ) satisfies

q
∑

α=1

∫

D
bα(x)

(

∫

RN×d

W (θα, F ) dλx
α(F )

)

dx ≤

≤
q

∑

α,β=1

∫

D
Mβα(x)bα(x)

(

∫

RN×d

W (θβ, F + ∇ũ(x)) dλx
α(F )

)

dx+ (5.6.1)

+

q
∑

α,β=1

H(θβ, θα)

∫

D
Mβα(x)bα(x) dx,

for every ũ ∈ H1
0 (D; RN ) and every measurable map M : D → M

q×q
St , and denote by σ the

stress, i.e.,

σ(x) :=

q
∑

α=1

bα(x)

∫

RN×d

∂W

∂F
(θα, F ) dλx

α(F ), for a.e. x ∈ D.

Then the following conditions are satisfied:

(ec)1 equilibrium condition: divσ(t) = 0;
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(ec)2 optimality of active phases: for every α, β = 1, . . . , q and every t ∈ [0, T ], we
have

∫

RN×d

[W (θα, F ) −W (θβ, F )] dλx
α(F ) ≤ H(θβ, θα),

for a.e. x ∈ D with bα(x) > 0.

Remark 5.6.2. We say that a phase θα is active at x if bα(x) > 0. Hence the condition
(ec)2 can be rephrased as follows: if θα is active at x, then θα is a minimizer over Z of the
functional

θ 7→
∫

RN×d

W (θ, F ) dλx
α(F ) +H(θ, θα)

This is the reason why we call (ec)2 optimality of active phases.

Remark 5.6.3. Note that from (ec)2 it descends immediately that
∑

α,β

Mβαbα(x)

∫

RN×d

[W (θα, F ) −W (θβ, F ) −H(θβ , θα)] dλx
α(F ) ≤ 0,

for a.e. x ∈ D and every stochastic matrix M ∈ M
q×q
St .

Proof of Theorem 5.6.1. Let (b, λ) satisfy the prescribed hypotheses. Choosing in
(5.6.1) the map M associating to every x ∈ D the identity matrix I, we obtain

∑

α

∫

D
bα(x)

[

∫

RN×d

[

W (θα, F + ∇ũ(x)) −W (θα, F )
]

dλα)x(F )
]

dx ≥ 0,

for every ũ ∈ H1
0 (D; RN ), which implies immediately (ec)1.

Let us denote by (eγ)qγ=1 the canonical basis of the vector space R
q. Fixed α, β in

{1, . . . , q}, define M̄ ∈ M
q×q
St by

M̄eγ = eγ for every γ 6= α

M̄eα = eβ.

Let us choose now in (5.6.1) ũ = 0 and M := I(1− 1A) + M̄1A, for any measurable subset
A of D: we obtain

∫

A
bα(x)

[

∫

RN×d

[

W (θα, F ) −W (θβ, F )
]

dλx
α(F )

]

dx ≤

≤
∫

A
H(θβ, θα)bα(x) dx; (5.6.2)

By the free choice of A among all measurable subsets of D, from (5.6.2) we deduce imme-
diately (ec)2. �
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sincerità e schiettezza,
Alessio e Francesca C., per il loro autentico pessimismo che supera anche il mio, per la

loro ironia, e per avermi aiutato a sdrammatizzare nei momenti più difficili,
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per me di grande conforto e fonte di speranza per il futuro vedere che entrambi hanno
realizzato, in modo diverso ma in ugual misura, tutto quello che per me conta nella vita.

Infine, desidero ringraziare dal profondo del mio cuore Francesco, che riunisce in un
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