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Abstract. Carnot groups (connected simply connected nilpotent strat-
ified Lie groups) can be endowed with a complex (E∗0 , dc) of “intrinsic”
differential forms. In this paper we prove that, in a free Carnot group of
step κ, intrinsic 1-forms as well as their intrinsic differentials dc appear
naturally as limits of usual “Riemannian” differentials dε, ε > 0. More
precisely, we show that L2-energies associated with ε−κdε on 1-forms
Γ-converge, as ε→ 0, to the energy associated with dc.

1. Introduction

In the last few years, sub-Riemannian structures have been largely studied
in several respects, such as differential geometry, geometric measure theory,
subelliptic differential equations, complex variables, optimal control theory,
mathematical models in neurosciences, non-holonomic mechanics, robotics.
Roughly speaking, a sub-Riemannian structure on a manifold M is defined
by a subbundle H of the tangent bundle TM , that defines the “admissible”
directions at any point of M (typically, think of a mechanical system with
non-holonomic constraints). Usually, H is called the horizontal bundle. If
we endow each fiber Hx of H with a scalar product, there is a naturally
associated Carnot-Carathéodory (CC) distance d on M , defined as the Rie-
mannian length of the horizontal curves on M , i.e. of the curves γ such
that γ′(t) ∈ Hγ(t). In the spirit of the present paper, it is worth recalling
that CC-distances can be seen as limits of “Riemannian” distances (see e.g.
[17] and [23]). Basically, this is obtained by penalizing the directions of the
tangent bundle that are orthogonal to the horizontal bundle H.

Among sub-Riemannian spaces, a privileged role is played by Carnot
groups (see below for precise definition and [5] for a general survey), a
role akin to that of Euclidean spaces versus Riemannian manifolds, acting
in some sense as rigid “tangent” spaces to general sub-Riemannian spaces
(rigid because they are invariant under left translations and group dilations).
Roughly speaking, we can always think of a Carnot group G as of the Lie
group (Rn, ·), where · is a (non-commutative) multiplication such that its
Lie algebra g is nilpotent and admits a step κ stratification. This means

1991 Mathematics Subject Classification. 35R03, 58A10, 49J45 .
Key words and phrases. Carnot groups, differential forms, Γ-convergence.
The authors are supported by MURST, Italy, and by University of Bologna, Italy,

funds for selected research topics and by EC project GALA.
The authors are glad to thank Luigi Ambrosio and Gianni Dal Maso for several helpful

discussions.

1



that there exist linear subspaces V1, ..., Vκ (the layers of the stratification)
such that

g = V1 ⊕ ...⊕ Vκ, [V1, Vi] = Vi+1, Vκ 6= {0}, Vi = {0} if i > κ,

where [V1, Vi] is the subspace of g generated by the commutators [X,Y ]
with X ∈ V1 and Y ∈ Vi. We refer to the first layer V1 as to the horizontal
layer, which plays a key role in our theory, since it generates the all of g by
commutation.

The stratification of the Lie algebra induces a family of anisotropic dila-
tions δλ (λ > 0) on g and therefore, through exponential map, on G.

It is well known that the Lie algebra g of G can be identified with the
tangent space at the origin e of G, and hence the horizontal layer of g
can be identified with a subspace HGe of TGe. By left translation, HGe

generates a subbundle HG of the tangent bundle TG and eventually a sub-
Riemannian structure on Rn. We stress that Carnot-Carathéodory geometry
is not Riemannian at any scale (see [26]).

The first Heisenberg groups H1 provides the simplest example of noncom-
mutative Carnot groups (of step κ = 2). It can be identified with R3 with
variables (x, y, t). Set X := ∂x − 1

2y∂t, Y := ∂y + 1
2x∂t, T := ∂t. The strat-

ification of the algebra g is given by g = V1 ⊕ V2, where V1 = span {X,Y }
and V2 = span {T}.

From now on, we use the word “intrinsic” when we want to stress a
privileged role played by the horizontal layer and by group translations and
dilations.

Starting from de Rham complex (Ω∗, d) of differential forms in Rn, we look
for a complex of differential forms that has to be “intrinsic” for G in our
sense. On one side, since the “intrinsic” vector fields are naturally sections
of the horizontal bundle, and hence are vector fields of the first layer of g,
“intrinsic” 1-forms should be their dual forms (for instance, if G = H1, dx
and dy are dual of X and Y , respectively). On the other side, it is not so
evident how to choose a class of “intrinsic” forms of degree 2 or higher, but,
even more, the complex we are looking for can not be merely a subcomplex
of de Rham complex. Indeed, already in H1, consider a smooth function f :
H1 → R; as we have seen, a “natural” differential would be dHf := (Xf)dx+
(Y f)dy. Clearly, this is no more de Rham differential df = (Xf)dx +
(Y f)dy+(Tf)θ (here θ = dt+ 1

2(ydx−xdy) is the so-called contact form of
H1). In addition, if we iterate this “differential”, we get d2

Hf = [X,Y ]f dx∧
dy , that does not vanish precisely because of the lack of commutativity of
the group or, equivalently, of its Lie algebra. In other words, we do not have
anymore the structure of a complex. In fact, we need a more sophisticated
notion of “intrinsic” exterior differential to obtain a complex of differential
forms that reflects the lack of commutativity of the group. It turns out
that such a complex (E∗0 , dc) , with E∗0 ⊂ Ω∗, has been defined and studied
by M. Rumin in [24] and [22] ([21] for contact structures). Rumin’s theory
needs a quite technical introduction that is sketched in Section 3 to make
the paper self-consistent. For a more exhaustive presentation, we refer to
original Rumin’s papers, as well as to the presentation in [2]. The main
properties of (E∗0 , dc) can be summarized in the following points:
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• Intrinsic 1-forms are horizontal 1–forms, i.e. forms that are dual of
horizontal vector fields, where by duality we mean that, if v is a
vector field in Rn, then its dual form v\ acts as v\(w) = 〈v, w〉, for
all w ∈ Rn.
• The “intrinsic” exterior differential dc on a smooth function is its

horizontal differential (that is dual operator of the gradient along a
basis of the horizontal bundle).
• The complex (E∗0 , dc) is exact and self-dual under Hodge ∗-duality.

The first two properties above clearly fit our request for an “intrinsic” the-
ory. Another evidence is provided by Theorem 3.16 in [15], that proves
what we can call the “weak naturality” of the complex under homogeneous
homomorphisms of the group G. (notice homogeneous homomorphisms be-
tween Carnot groups appear naturally as Pansu differentials of maps between
Carnot groups, see [19]). In fact, let T be a homogeneous homomorphism
of G (where homogeneous means that T (δλx) = δλ(Tx)). In exponential
coordinates, T can be identified with linear map T : Rn → Rn. Suppose
now that also tT is a homogeneous homomorphism. Then the pull-back T#

maps E∗0 into E∗0 and the following diagram is commutative:

· · · dc−−−−→ Eh
0

dc−−−−→ Eh+1
0

dc−−−−→ · · ·

T#

y T#

y
· · · dc−−−−→ Eh

0
dc−−−−→ Eh+1

0
dc−−−−→ · · ·

Since the class of homogeneous homomorphisms well reflects both the
group structure and the stratification, the naturality of dc under homoge-
neous homomorphisms shows the intimate connection between the complex
and the Carnot group. On the other hand, the “artificial assumption” on
tT is extensively discussed in Remarks 3.13 and 3.17 of [15], and is basically
motivated by the fact that we are working with classes of “true differential
forms” and not with quotient classes.

Recently, Rumin’s theory has been fruitfully used for several questions in
differential geometry, as well as in pde’s theory in Carnot groups.

We stress now that a crucial property of dc relies on the fact that it is
generally a non-homogeneous higher order differential operator. In this per-
spective, let us give a gist of how non-homogeneous higher order horizontal
derivatives appear in dc. We need now the notion of weight of vectors in
g and, by duality, of covectors. Elements of the j-th layer of g are said to
have (pure) weight w = j; by duality, a 1-covector that is dual of a vector
of (pure) weight w = j will be said to have (pure) weight w = j.

This procedure can be extended to h-forms. Clearly, there are forms
that have no pure weight, but we can decompose Eh

0 in the direct sum of
orthogonal spaces of pure weight forms, and therefore we can find a basis of
Eh

0 given by orthonormal forms of increasing pure weights. We refer to such
a basis as to a basis adapted to the filtration of Eh

0 induced by the weight.
Then, once suitable adapted bases of h-forms and (h+1)-forms are chosen,

dc can be seen as a matrix-valued operator such that, if α has weight p, then
the component of weight q of dcα is given by an homogeneous differential
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operator in the horizontal derivatives of order q − p ≥ 1, acting on the
components of α.

In order to provide a concrete example of these phenomena, let us consider
again the case G = H1. We remind that X\ = dx, Y \ = dy, T \ = θ . In this
case

E1
0 = span {dx, dy};

E2
0 = span {dx ∧ θ, dy ∧ θ};

E3
0 = span {dx ∧ dy ∧ θ}.

The action of dc on E1
0 is the following ([21], [13], [3]): let α = α1dx+α2dy ∈

E1
0 be given. Then

dcα = (X2α2 − 2XY α1 + Y Xα1)dx ∧ θ
+ (2Y Xα2 − Y 2α1 −XY α2)dy ∧ θ.

We see that dc is a homogeneous operator of order 2 in the horizontal deriva-
tives, since 2-forms have weight 3 and 1-forms have weight 1.

In this paper we want to provide another evidence of the intrinsic charac-
ter of Rumin’s complex, in the spirit of the Riemannian approximation, like
in [17] and [23]. More precisely, we want to show that the intrinsic differen-
tial dc is a limit of suitably weighted usual first order de Rham differentials
dε. For this purpose, we notice preliminarily that the usual exterior differ-
ential d acting on a form α of pure weight splits as

dα = d0α+ d1α+ · · ·+ dκα,

where d0α does not increase the weight, d1α increases the weight by 1, and,
more generally, diα increases the weight by i when i = 0, 1, . . . , κ. Then,
we define the ε-differential weighting the different terms of d according to
their different actions with respect to the stratification of the Lie algebra g.
Therefore we set

dε = d0 + εd1 + ·+ εκdκ.

The issue now is to specify in what sense the dε (that is a first order operator)
converges to d, that is, in general, a higher order differential operator, as it
has already been pointed out. Keep in mind somehow similar phenomena in
elasticity theory, where, roughly speaking, the equations for vibrating plates
(that are 4th-order differential equations) can be seen as limits of usual lower
order equations for elastic materials. In these cases, the natural approach
relies in the use of De Giorgi’s Γ-convergence ([9], [8], and see also Section 4
below for precise definitions in our setting) for variational functionals (see,
for instance [7] and the references therein). Indeed, we are able to prove
that the L2-energies associated with ε−κdε on 1-forms Γ-converge, as ε→ 0,
to the energy associated with dc. We stress that intrinsic 1-forms in groups
appear in several applications, like H-convergence of elliptic operators on
groups ([3], [2]) and Maxwell’s equations in Carnot groups ([4], [14], [15]).

More precisely, the main theorem of the present paper reads as follows.
If we denote by W κ,2(G,

∧1 g) the space of differential 1-forms on G with
coefficients belonging to the Folland-Stein space W κ,2(G) (see Definition
2.2), we have:
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Theorem 1.1. Let G be a free Carnot group of step κ. If ω ∈W κ,2(G,
∧1 g),

we set
Fε(ω) =

1
ε2κ

∫
G
|dεω|2 dV,

where
dε = d0 + εd1 + ·+ εκdκ.

Then Fε sequentially Γ-coverges to F in the weak topology W κ,2(G,
∧1 g),

as ε→ 0, where

F (ω) =


∫

G
|dcω|2 dV if ω ∈W κ,2(G, E1

0)

+∞ otherwise.

We remind that the group G is said to be free if its Lie algebra is free, i.e.
the commutators satisfy no linear relationships other than antisymmetry
and the Jacobi identity. This is a large and relevant class of Carnot groups.
We remind also that Carnot groups can always be “lifted” to free groups
(see [20] and [5], Chapter 17). For our purposes, the main property of free
Carnot groups relies on the fact that intrinsic 1-forms and 2-forms on free
groups have all the same weight (see Theorem 3.10). This helps at several
steps of the proofs. Unfortunately, the same assertion fails to hold for higher
order forms (see Remark 3.11).

Finally, another point has to be put in evidence, i.e. the choice of the
topology. Indeed, we prove a Γ-limit result with respect to the sequential
weak convergence, and it is natural to ask whether we could get rid off
the restriction “sequential”. This would be possible if we had some kind
of coercitivity of the functionals (see [8], Chapter 8). However, this is not
the case, since our functionals contain only the L2-norm of the differential
and not of the codifferential, where it is well known that, already in the
classical Euclidean setting, the differential alone does not control the W 1,2-
norms (think of Gaffney’s inequality: see e.g. [25], Corollary 2.1.6). For the
same reasons our convergence result is not meant to derive a convergence of
minima, but only to show in what sense Rumin’s differential can be seen as
the limit of “Riemannian” differentials.

2. Carnot groups

Let (G, ·) be a Carnot group of step κ identified to Rn through exponential
coordinates (see [5] for details). By definition, the Lie algebra g has dimen-
sion n, and admits a step κ stratification, i.e. there exist linear subspaces
V1, ..., Vκ (the layers of the stratification) such that

(1) g = V1 ⊕ ...⊕ Vκ, [V1, Vi] = Vi+1, Vκ 6= {0}, Vi = {0} if i > κ,

where [V1, Vi] is the subspace of g generated by the commutators [X,Y ] with
X ∈ V1 and Y ∈ Vi. Setmi = dim(Vi), for i = 1, . . . , κ and hi = m1+· · ·+mi

with h0 = 0. Clearly, hκ = n. Choose now a basis e1, . . . , en of g adapted
to the stratification, i.e. such that

ehj−1+1, . . . , ehj
is a basis of Vj for each j = 1, . . . , κ.

We refer to the first layer V1 as to the horizontal layer. It plays a key role
in our theory, since it generates the all of g by commutation.
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Let X = {X1, . . . , Xn} be the family of left invariant vector fields such
that Xi(0) = ei. Given (1), the subset X1, . . . , Xm1 generates by commu-
tations all the other vector fields; we will refer to X1, . . . , Xm1 as to the
generating vector fields of the algebra, or as to the horizontal derivatives of
the group.

The Lie algebra g can be endowed with a scalar product 〈·, ·〉, making
{X1, . . . , Xn} be an orthonormal basis.

We can write the elements of G in exponential coordinates, identifying p
with the n-tuple (p1, . . . , pn) ∈ Rn and we identify G with (Rn, ·), where the
explicit expression of the group operation · is determined by the Campbell-
Hausdorff formula.

For any x ∈ G, the (left) translation τx : G→ G is defined as

z 7→ τxz := x · z.
For any λ > 0, the dilation δλ : G→ G, is defined as

(2) δλ(x1, ..., xn) = (λd1x1, ..., λ
dnxn),

where di ∈ N is called homogeneity of the variable xi in G (see [12] Chapter
1) and is defined as

(3) dj = i whenever hi−1 + 1 ≤ j ≤ hi,

hence 1 = d1 = ... = dm1 < dm1+1 = 2 ≤ ... ≤ dn = κ.
The Haar measure of G = (Rn, ·) is the Lebesgue measure Ln in Rn.
We denote also by Q the homogeneous dimension of G, i.e. we set

Q :=
κ∑

i=1

idim(Vi).

The Euclidean space Rn endowed with the usual (commutative) sum of
vectors provides the simplest example of Carnot group. It is a trivial exam-
ple, since in this case the stratification of the algebra consists of only one
layer, i.e. the Lie algebra reduces to the horizontal layer.

Definition 2.1. Let m ≥ 2 and κ ≥ 1 be fixed integers. We say that fm,κ

is the free Lie algebra with m generators x1, . . . , xm and nilpotent of step κ
if:

i) fm,κ is a Lie algebra generated by its elements x1, . . . , xm, i.e. fm,κ =
Lie(x1, . . . , xm);

ii) fm,κ is nilpotent of step κ;
iii) for every Lie algebra n nilpotent of step κ and for every map φ from

the set {x1, . . . , xm} to n, there exists a (unique) homomorphism of
Lie algebras Φ from fm,κ to n which extends φ.

The Carnot group G is said free if its Lie algebra g is isomorphic to a free
Lie algebra.

When G is a free group, we can assume {X1, . . . , Xn} a Grayson-Grossman-
Hall basis of g (see [16], [5], Theorem 14.1.10). This makes several compu-
tations much simpler. In particular, {[Xi, Xj ], Xi, Xj ∈ V1, i < j} provides
an orthonormal basis of V2.

From now on, following [12], we also adopt the following multi-index no-
tation for higher-order derivatives. If I = (i1, . . . , in) is a multi–index, we
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set XI = Xi1
1 · · ·Xin

n . By the Poincaré–Birkhoff–Witt theorem (see, e.g.
[6], I.2.7), the differential operators XI form a basis for the algebra of left
invariant differential operators in G. Furthermore, we set |I| := i1 + · · ·+ in
the order of the differential operator XI , and d(I) := d1i1 + · · · + dnin its
degree of homogeneity with respect to group dilations. From the Poincaré–
Birkhoff–Witt theorem, it follows, in particular, that any homogeneous lin-
ear differential operator in the horizontal derivatives can be expressed as a
linear combination of the operators XI of the special form above.

Since here we are dealing only with integer order Folland-Stein function
spaces, we can this simpler definition (for a general presentation, see e.g.
[11]).

Definition 2.2. If 1 < s < ∞ and m ∈ N, then the space Wm,s
G (G) is the

space of all u ∈ Ls(G) such that

XIu ∈ Ls(G) for all multi-index I with d(I) = m,

endowed with the natural norm.

We remind that

Proposition 2.3 ([11], Corollary 4.14). If 1 < s <∞ and m ≥ 0, then the
space Wm,s

G (G) is independent of the choice of X1, . . . , Xm1.

Proposition 2.4. If 1 < s <∞ and m ≥ 0, then S(G) and D(G) are dense
subspaces of Wm,s

G (G).

The dual space of g is denoted by
∧1 g. The basis of

∧1 g, dual of the basis
X1, · · · , Xn, is the family of covectors {θ1, · · · , θn}. We indicate by 〈·, ·〉 also
the inner product in

∧1 g that makes θ1, · · · , θn an orthonormal basis. We
point out that, except for the trivial case of the commutative group Rn, the
forms θ1, · · · , θn may have polynomial (hence variable) coefficients.

Following Federer (see [10] 1.3), the exterior algebras of g and of
∧1 g are

the graded algebras indicated as
∧

∗
g =

n⊕
h=0

∧
h
g and

∧∗
g =

n⊕
h=0

∧h
g

where
∧

0 g =
∧0 g = R and, for 1 ≤ h ≤ n,∧

h
g := span{Xi1 ∧ · · · ∧Xih : 1 ≤ i1 < · · · < ih ≤ n},∧h
g := span{θi1 ∧ · · · ∧ θih : 1 ≤ i1 < · · · < ih ≤ n}.

The elements of
∧

h g and
∧h g are called h-vectors and h-covectors.

We denote by Θh the basis {θi1 ∧ · · · ∧ θih : 1 ≤ i1 < · · · < ih ≤ n} of∧h g. We remind that dim
∧h g = dim

∧
h g =

(
n
h

)
.

The dual space
∧1(

∧
h g) of

∧
h g can be naturally identified with

∧h g.
The action of a h-covector ϕ on a h-vector v is denoted as 〈ϕ|v〉.

The inner product 〈·, ·〉 extends canonically to
∧

h g and to
∧h g making

the bases Xi1 ∧ · · · ∧Xih and θi1 ∧ · · · ∧ θih orthonormal.
Starting from

∧
∗ g and

∧∗ g, by left translation, we can define now two
families of vector bundles (still denoted by

∧
∗ g and

∧∗ g) over G (see [2] for
details). Sections of these vector bundles are said respectively vector fields
and differential forms.
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Definition 2.5. If 0 ≤ h ≤ n, 1 ≤ s ≤ ∞ and m ≥ 0, we denote by
Wm,s

G (G,
∧h g) the space of all sections of

∧h g such that their components
with respect to the basis Θh belong to Wm,s

G (G), endowed with its natural
norm. Clearly, this definition is independent of the choice of the basis itself.

Sobolev spaces of vector fields are defined in the same way.

We conclude this section recalling the classical definition of Hodge duality:
see [10] 1.7.8.

Definition 2.6. We define linear isomorphisms

∗ :
∧

h
g←→

∧
n−h

g and ∗ :
∧h

g←→
∧n−h

g,

for 1 ≤ h ≤ n, putting, for v =
∑

I vIXI and ϕ =
∑

I ϕIθI ,

∗v :=
∑

I
vI(∗XI) and ∗ ϕ :=

∑
I
ϕI(∗θI)

where
∗XI := (−1)σ(I)XI∗ and ∗ θI := (−1)σ(I)θI∗

with I = {i1, · · · , ih}, 1 ≤ i1 < · · · < ih ≤ n, XI = Xi1 ∧ · · · ∧ Xih ,
θI = θi1 ∧ · · · ∧ θih , I∗ = {i∗1 < · · · < i∗n−h} = {1, · · · , n} \ I and σ(I) is the
number of couples (ih, i∗`) with ih > i∗` .

The following properties of the ∗ operator follow readily from the defini-
tion: ∀v, w ∈

∧
h g and ∀ϕ,ψ ∈

∧h g

∗ ∗v = (−1)h(n−h)v, ∗ ∗ ϕ = (−1)h(n−h)ϕ,

v ∧ ∗w = 〈v, w〉X{1,··· ,n}, ϕ ∧ ∗ψ = 〈ϕ,ψ〉θ{1,··· ,n},

〈∗ϕ|∗v〉 = 〈ϕ|v〉.
(4)

We refer to dV := θ{1,··· ,n} as to the canonical volume form of G.
If v ∈

∧
h g we define v\ ∈

∧h g by the identity 〈v\|w〉 := 〈v, w〉, for all
w ∈

∧
h g, and analogously we define ϕ\ ∈

∧
h g for ϕ ∈

∧h g.

3. Differential forms in Carnot groups

The notion of intrinsic form in Carnot groups is due to M. Rumin ([24],
[22]). A more extended presentation of the results of this section can be
found in [2], [15].

The notion of weight of a differential form plays a key role.

Definition 3.1. If α ∈
∧1 g, α 6= 0, we say that α has pure weight p, and

we write w(α) = p, if α\ ∈ Vp. More generally, if α ∈
∧h g, we say that α

has pure weight p if α is a linear combination of covectors θi1 ∧· · ·∧θih with
w(θi1) + · · ·+ w(θih) = p.

In particular, the canonical volume form dV has weight Q (the homoge-
neous dimension of the group).

Remark 3.2. If α, β ∈
∧h g and w(α) 6= w(β), then 〈α, β〉 = 0. Indeed,

it is enough to notice that, if w(θi1 ∧ · · · ∧ θih) 6= w(θj1 ∧ · · · ∧ θjh
), with

i1 < i2 < · · · < ih and j1 < j2 < · · · < jh, then for at least one of the indices
` = 1, . . . , h, i` 6= j`, and hence 〈θi1 ∧ · · · ∧ θih , θj1 ∧ · · · ∧ θjh

〉 = 0.
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We have ([2], formula (16))

(5)
∧h

g =
Mmax

h⊕
p=Mmin

h

∧h,p
g,

where
∧h,p g is the linear span of the h–covectors of weight p and Mmin

h ,
Mmax

h are respectively the smallest and the largest weight of left-invariant
h-covectors.

Since the elements of the basis Θh have pure weights, a basis of
∧h,p g is

given by Θh,p := Θh ∩
∧h,p g. In other words, the basis Θh = ∪pΘh,p is a

basis adapted to the filtration of
∧h g associated with (5).

We denote by Ωh,p the vector space of all smooth h–forms in G of pure
weight p, i.e. the space of all smooth sections of

∧h,p g. We have

(6) Ωh =
Mmax

h⊕
p=Mmin

h

Ωh,p.

The following crucial property of the weight follows from Cartan identin-
tity: see [24], Section 2.1:

Lemma 3.3. We have d(
∧h,p g) ⊂

∧h+1,p g, i.e., if α ∈
∧h,p g is a left

invariant h-form of weight p with dα 6= 0, then w(dα) = w(α).

Definition 3.4. Let now α =
∑

θh
i ∈Θh,p αi θ

h
i ∈ Ωh,p be a (say) smooth form

of pure weight p. Then we can write

dα = d0α+ d1α+ · · ·+ dκα,

where
d0α =

∑
θh
i ∈Θh,p

αidθ
h
i

does not increase the weight,

d1α =
∑

θh
i ∈Θh,p

m1∑
j=1

(Xjαi)θj ∧ θh
i

increases the weight of 1, and, more generally,

diα =
∑

θh
i ∈Θh,p

∑
Xj∈Vi

(Xjαi)θj ∧ θh
i ,

when i = 0, 1, . . . , κ. In particular, d0 is an algebraic operator.

Definition 3.5 (M. Rumin). If 0 ≤ h ≤ n we set

Eh
0 := ker d0 ∩ ker δ0 = ker d0 ∩ (Im d0)⊥ ⊂ Ωh

In the sequel, we refer to the elements of Eh
0 as to intrinsic h-forms on

G. Since the construction of Eh
0 is left invariant, this space of forms can be

seen as the space of sections of a fiber subbundle of
∧h g, generated by left

translation and still denoted by Eh
0 . In particular Eh

0 inherits from
∧h g the

scalar product on the fibers.
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Moreover, there exists a left invariant orthonormal basis Ξh
0 = {ξj} of Eh

0

that is adapted to the filtration (5).
Since it is easy to see that E1

0 = span {θ1, . . . , θm}, where the θi’s are dual
of the elements of the basis of V1, without loss of generality, we can take
ξj = θj for j = 1, . . . ,m.

Finally, we denote by Nmin
h and Nmax

h respectively the lowest and highest
weight of forms in Eh

0 .

Definition 3.6. If 0 ≤ h ≤ n, 1 ≤ s ≤ ∞ and m ≥ 0, we denote by
Wm,s

G (G, Eh
0 ) the space of all sections of Eh

0 such that their components
with respect to the basis Ξh

0 belong to Wm,s
G (G), endowed with its natural

norm. Clearly, this definition is independent of the choice of the basis itself.
Moreover, as in Proposition 2.4, D(G, Eh

0 ) and S(G, Eh
0 ) are dense in

Wm,s
G (G).

Lemma 3.7 ([2], Lemma 2.11). If β ∈
∧h+1 g, then there exists a unique

α ∈
∧h g ∩ (ker d0)⊥ such that

d∗0d0α = d∗0β. We set α := d−1
0 β.

Here d∗0 :
∧h+1 g→

∧h g is the adjoint of d0 with respect to our fixed scalar
product. In particular

α = d−1
0 β if and only if d0α− β ∈ R(d0)⊥.

In particular
i) (ker d0)⊥ = R(d−1

0 );
ii) d−1

0 d0 = Id on (ker d0)⊥;
iii) d0d

−1
0 − Id :

∧h+1 g→ R(d0)⊥.

The following theorem summarizes the construction of the intrinsic dif-
ferential dc (for details, see [24] and [2], Section 2) .

Theorem 3.8. The de Rham complex (Ω∗, d) splits in the direct sum of two
sub-complexes (E∗, d) and (F ∗, d), with

E := ker d−1
0 ∩ ker(d−1

0 d) and F := R(d−1
0 ) +R(dd−1

0 ).

We have
i) Let ΠE be the projection on E along F (that is not an orthogonal

projection). Then for any α ∈ Eh,p
0 , if we denote by (ΠEα)j the

component of ΠEα of weight j, then

(ΠEα)p = α

(ΠEα)p+k+1 = −d−1
0

( ∑
1≤`≤k+1

d`(ΠEα)p+k+1−`

)
.(7)

Notice that α→ (ΠEα)p+k+1 is an homogeneous differential operator
of order k + 1 in the horizontal derivatives.

ii) ΠE is a chain map, i.e.

dΠE = ΠEd.

10



iii) Let ΠE0 be the orthogonal projection from Ω∗ on E∗0 , then

(8) ΠE0 = Id− d−1
0 d0 − d0d

−1
0 , ΠE⊥0

= d−1
0 d0 + d0d

−1
0 .

Notice that, since d0 and d−1
0 are algebraic, then formulas (8) hold

also for covectors.
iv) ΠE0ΠEΠE0 = ΠE0 and ΠEΠE0ΠE = ΠE.

Set now

dc = ΠE0 dΠE : Eh
0 → Eh+1

0 , h = 0, . . . , n− 1.

We have:

v) d2
c = 0;

vi) the complex E0 := (E∗0 , dc) is exact;
vii) with respect to the bases Ξ∗0 the intrinsic differential dc can be seen

as a matrix-valued operator such that, if α has weight p, then the
component of weight q of dcα is given by an homogeneous differential
operator in the horizontal derivatives of order q − p ≥ 1, acting on
the components of α.

Remark 3.9. Let us give a gist of the construction of E. The map d−1
0 d

induces an isomorphism from R(d−1
0 ) to itself. Thus, since d−1

0 d0 = Id on
R(d−1

0 ), we can write d−1
0 d = Id+D, where D is a differential operator that

increases the weight. Clearly, D : R(d−1
0 ) → R(d−1

0 ). As a consequence
of the nilpotency of G, Dk = 0 for k large enough, and therefore the Neu-
mann series of d−1

0 d reduces to a finite sum on R(d−1
0 ). Hence there exist a

differential operator

P =
N∑

k=1

(−1)kDk, N ∈ N suitable,

such that
Pd−1

0 d = d−1
0 dP = IdR(d−1

0 ).

We set Q := Pd−1
0 . Then ΠE is given by

ΠE = Id−Qd− dQ.

From now on, we restrict ourselves to assume G is a free group of step κ
(see Definition 2.1 above). The technical reason for this choice relies in the
following property.

Theorem 3.10 ([15], Theorem 5.9). Let G be a free group of step κ. Then
all forms in E1

0 have weight 1 and all forms in E2
0 have weight κ+ 1.

In particular, the differential dc : E1
0 → E2

0 can be identified, with re-
spect to the adapted bases Ξ1

0 and Ξ2
0, with a homogeneous matrix-valued

differential operator of degree κ in the horizontal derivatives.
Moreover, if ξ ∈

∧2,p g with p 6= κ+ 1, then ΠE0ξ = 0. Indeed, ΠE0ξ has
weight p, and therefore has to be zero, since ΠE0ξ ∈

∧2,κ+1 g.

11



Remark 3.11. Theorem 3.10 might suggest that in free groups all forms in
E∗0 have pure weight. Unfortunately, this assertion fails to hold, at least
in this näıf form. Indeed, A. Ottazzi showed us a counterexample for E3

0

in the free group of step 2 with 3 generators. Actually, this is a general
phenomenon, due to the fact that, denoting as usual by Q the homogeneous
dimension of the group, in this case n = 6 (even), so that E3

0 = ∗E3
0 , but

Q = 9 (odd), yielding a contradiction with w(∗α) = w(α) when α ∈ E3
0 ,

since w(∗α) = Q − w(α). Clearly, this situation occurs whenever n is even
and Q is odd.

Lemma 3.12. If G is a free group of step κ ≥ 2, then∧2,2
g ⊂ d0(

∧1,2
g) ⊂ R(d0),

or, equivalently,
Ω2,2 ⊂ d0(Ω1,2) ⊂ d0(Ω1).

Proof. Since a basis of
∧2,2 g is given by covectors θ of the form θ = θi ∧ θj ,

with θi = X\
i , θj = X\

j , Xi, Xj ∈ V1, i < j, we need only to prove that

d0([Xi, Xj ]\) = −θi ∧ θj .

Thus, if X,Y ∈ g, we are left to show that

〈d0([Xi, Xj ]\)|X ∧ Y 〉 = −〈θi ∧ θj |X ∧ Y 〉.

Since d0 preserves the weights, we may assume that X ∧ Y has weight 2.
Therefore, without loss of generality, we can take X = Xk, Y = Xh, with
Xk, Xh ∈ V1. Therefore

〈d0([Xi, Xj ]\)|Xk ∧Xh〉 = 〈d([Xi, Xj ]\)|Xk ∧Xh〉

= −〈[Xi, Xj ]\|[Xk, Xh]〉 = −〈[Xi, Xj ], [Xk, Xh]〉.

On the other hand, as pointed out in Definition 2.1,
• 〈[Xi, Xj ], [Xk, Xh]〉 = 0 if {i, j} 6= {k, h},
• 〈[Xi, Xj ], [Xk, Xh]〉 = 1 if (i, j) = (k, h), and
• 〈[Xi, Xj ], [Xk, Xh]〉 = −1 if (i, j) = (h, k),

whereas

〈θi ∧ θj |Xk ∧Xh〉 = det
(
〈θi|Xk〉 〈θi|Xh〉
〈θj |Xk〉 〈θj |Xh〉

)
.

This achieves the proof of the lemma.
�

4. Γ-convergence

Definition 4.1. Let X be a separated topological space, and let

Fε, F : X −→ [−∞,+∞]

with ε > 0 be functionals on X. We say that {Fε}ε>0 sequentially Γ-
converges to F on X as ε goes to zero if the following two conditions hold:
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1) for every u ∈ X and for every sequence {uεk
}k∈N with εk → 0 as

k →∞, which converges to u in X, there holds

(9) lim inf
k→∞

Fεk
(uεk

) ≥ F (u);

2) for every u ∈ X and for every sequence {εk}k∈N with εk → 0 as
k → ∞ there exists a subsequence (still denoted by {εk}k∈N) such
that {uεk

}k∈N converges to u in X and

(10) lim sup
k→∞

Fεk
(uεk

) ≤ F (u)

For a deep and detailed survey on Γ-convergence, we refer to the mono-
graph [8].

We recall the following reduction Lemma. The proof is only a minor
variant of the one given in [18], Lemma IV (see also [1]), hence we shall
omit such a proof.

Lemma 4.2. Let X be a separated topological space, let Fh, F : M −→
[−∞,+∞] with h ∈ N; consider D ⊂M and x ∈M . Let us suppose that

1) for every y ∈ D there exists a sequence (yh)h∈N ⊂ M such that
yh → y in M and lim sup

h→∞
Fh(yh) ≤ F (y);

2) there exists a sequence (xh)h∈N ⊂ D such that xh → x and lim sup
h→∞

F (xh) ≤

F (x);
then there exists a sequence (xh)h∈N ⊂M such that lim sup

h→∞
Fh(xh) ≤ F (x).

To avoid cumbersome notations, from now on we write systematically
limε→ 0 to mean a limit with ε = εk, where {εk}k∈N is any sequence with
εk → 0 as k →∞.

5. Intrinsic differential as a Γ-limit

Let ε > 0 be given. If ω ∈W κ,2(G,
∧1 g), we set

Fε(ω) =
1
ε2κ

∫
G
|dεω|2 dV,

where
dε = d0 + εd1 + ·+ εκdκ.

We stress that Fε(ω) is always finite, since the coefficients of diω contain
horizontal derivatives of order i ≤ κ of the coefficients of ω.

Theorem 5.1. Let G be a free Carnot group of step κ. Then

Fε sequentially Γ-coverges to F in the weak topology W κ,2(G,
∧1 g),

as ε→ 0, where

F (ω) =


∫

G
|dcω|2 dV if ω ∈W κ,2(G, E1

0)

+∞ otherwise.
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Proof. Let ωε → ω as ε → 0 weakly in W κ,2(G,
∧1 g). We want to show

that

(11) F (ω) ≤ lim inf
ε→0

Fε(ωε).

In particular, it follows that ω ∈ W κ,2(G, E1
0) provided lim infε→0 Fε(ωε) <

∞.
Keeping in mind (6), we write

ωε = ωε
1 + · · ·+ ωε

κ,

with ωε
i ∈ Ω1,i, i = 1, . . . , κ. Reordering the terms of dεωε according to their

weights, as in (6), we have the following orthogonal decomposition:

dεω
ε =

(
d0ω

ε
2 + εd1ω

ε
1)

+
(
d0ω

ε
3 + εd1ω

ε
2 + ε2d2ω

ε
1)

+ · · ·
+
(
d0ω

ε
κ + εd1ω

ε
κ−1 + · · · εκ−1dκ−1ω

ε
1)

+
(
εd1ω

ε
κ + · · ·+ εκdκω

ε
1)

+ · · ·
+
(
εκ−1dκ−1ω

ε
κ + εκdκω

ε
κ−1)

+ εκdκω
ε
κ

=
∑

2≤p≤κ

p−1∑
i=0

εidiω
ε
p−i

+
(
εd1ω

ε
κ + · · ·+ εκdκω

ε
1)

+
∑

κ+2≤p≤2κ

κ∑
i=p−κ

εidiω
ε
p−i.

(12)

Therefore we can write

Fε(ωε) = ε−2κ
∑

2≤p≤κ

∫
G

∥∥ p−1∑
i=0

εidiω
ε
p−i

∥∥2
dV

+ ε2(1−κ)

∫
G

∥∥d1ω
ε
κ + · · ·+ εκ−1dκω

ε
1

∥∥2
dV

+
∑

κ+2≤p≤2κ

ε2(p−2κ)

∫
G

∥∥ κ∑
i=p−κ

εi−p+κdiω
ε
p−i

∥∥2
dV.

(13)

Without loss of generality, we may assume lim infε→0 Fε(ωε) < ∞. This
implies that, if 2 ≤ p ≤ κ, then, if ε ∈ (0, 1),

(14) ε−κ
p−1∑
i=0

εidiω
ε
p−i is uniformly bounded in L2(G,

∧2 g)).

Moreover, again if ε ∈ (0, 1),

(15) ε1−κ
(
d1ω

ε
κ + · · ·+ εκ−1dκω

ε
1

)
is uniformly bounded in L2(G,

∧2 g)).
14



In particular,

(16)
p−1∑
i=0

εidiω
ε
p−i −→ 0 in L2(G,

∧2 g))

as ε→ 0, since we can write (16) as

(17) d0ω
ε
p + ε

p−1∑
i=1

εi−1diω
ε
p−i −→ 0

as ε→ 0. By assumption, we know that ωε
p → ωp weakly in L2(G,

∧1 g) for
p ≥ 1, and therefore

(18) d0ω
ε
p → d0ωp in L2(G,

∧1 g),

since d0 is algebraic.
Combining (17) with the boundedness of {ωε} in W κ,2(G,

∧1 g) and with
(18), it follows that

(19) d0ωp = 0 for p = 2, . . . , κ

(obviously, (19) holds also for p = 1 since d0(
∧1,1 g) = {0}). Hence ω ∈

ker d0 = E1
0 , and therefore ω = ω1.

Recall now that, by definition, dcω = ΠE0dΠEω. But, by Theorem 3.10,
ΠE0 vanishes on all 2-forms of weight p 6= κ+1. Therefore, the full expression
of dcω reduces to

(20) dc(ω) = ΠE0

( κ∑
`=1

d`(ΠEω)κ+1−`

)
.

Let us show now that

(21) dj(ΠEω)κ+1−` = lim
ε→0

ε`−κdjω
ε
κ+1−`,

in the sense of distributions for ` = 1, . . . , κ, j = 0, . . . , `, i.e.

(22)
∫
〈ε`−κdjω

ε
κ+1−`, ϕ〉 dV →

∫
〈dj(ΠEω)κ+1−`, ϕ〉 dV

for ` = 1, . . . , κ, j = 0, . . . , `, and for any ϕ ∈ D(G,
∧2 g). Notice (ΠEω)κ+1−` ∈

W `,2(G,
∧1 g), by Theorem 3.8 i), so that (21) follows straightforwardly if

we prove that

(23) ε`−κωε
κ+1−`

ε→0−→ (ΠEω)κ+1−`

in the sense of distributions for ` = 1, . . . , κ, j = 0, . . . , `. Indeed, denoting
by δj the formal adjoint of dj in L2(G,

∧∗ g),∫
〈ε`−κdjω

ε
κ+1−`, ϕ〉 dV =

∫
〈ε`−κωε

κ+1−`, δjϕ〉 dV

ε→0−→ −
∫
〈(ΠEω)κ+1−`, δjϕ〉 dV = −

∫
〈dj(ΠEω)κ+1−`, ϕ〉 dV.

(24)

In order to prove (23), we set p := κ+1− `, p = 1, . . . , κ. Thus, formulae
(23) and (21) become

(25) ε1−pωε
p

ε→0−→ (ΠEω)p
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in the sense of distributions, and

(26) ε1−pdjω
ε
p

ε→0−→ dj(ΠEω)p

in the sense of distributions, respectively.
To prove (25) and (26), we argue by iteration in p.

Step 1 (p = 1): the proof is trivial, since, by assumption,

(27) ωε
1 → ω1 := (ΠEω)1

weakly in L2(G,
∧2 g) as ε→ 0.

Step 2 (p = 2): by (14), we have

(28) d0ω
ε
2 + εd1ω

ε
1 = O(εκ) in L2(G,

∧2 g).

Remember now that, by Lemma 3.7, ii), d−1
0 d0ω

ε
2 = ωε

2, since ωε
2 has weight

2 and hence is orthogonal to Ω1,1 = ker d0. Thus, keeping in mind that d−1
0

is algebraic, it follows from (28) that

(29)
1
ε
ωε

2 + d−1
0 d1ω

ε
1 = O(εκ−1) in L2(G,

∧2 g)

Moreover, since d1 is an homogeneous differential operator in the horizontal
derivatives of order 1 ≤ κ and, again, d−1

0 is algebraic, then

(30) d−1
0 d1ω

ε
1 → d−1

0 d1ω1 weakly in L2(G,
∧2 g).

Combining (29) and (30), we obtain

(31) ε−1ωε
2 → −d−1

0 d1ω1 = (ΠEω)2,

weakly in L2(G,
∧2 g), as ε→ 0. This proves (25) for p = 2.

Step 3: suppose (25) and (26) have been proved for p = 1, . . . , q − 1 < κ,
with q > 1. Let us prove the assertion for p = q. We argue as follows: using
(14) with p = q, we get

1
εq−1

d0ω
ε
q+

1
εq−2

d1ω
ε
q−1 + · · ·+ 1

ε
dq−2ω

ε
2 + dq−1ω

ε
1

= O(εκ−q+1) = o(1)
(32)

as ε → 0. Remember now that, by Lemma 3.7, ii), d−1
0 d0ω

ε
q = ωε

q , since
ωε

q has weight q and hence is orthogonal to Ω1,1 = ker d0. Thus, keeping in
mind that d−1

0 is algebraic, it follows from (32) that
1

εq−1
ωε

q+
1

εq−2
d−1

0 d1ω
ε
q−1 + · · ·+ 1

ε
d−1

0 dq−2ω
ε
2 + d−1

0 dq−1ω
ε
1

= o(1)
(33)

as ε→ 0. Hence, by the inductive hypothesis and keeping in mind (7),
1

εq−1
ωε

q −→ −d−1
0

(
d1(ΠEω)q−1 + · · ·+ dq−2(ΠEω)2 + dq−1(ΠEω)1

)
= (ΠEω)q

(34)

in the sense of distribution, as ε→ 0.
This achieves the proof of (23) and hence of (21).

So far, we have used the equiboundedness of the first sum in (13) for ε
close to zero. We proceed now to estimate the lim inf of the second term in
(13).
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To this end, we take j = ` in (21)and we sum up for ` = 1, . . . , κ. We
obtain

(35)
1

εκ−1

(
d1ω

ε
κ + · · ·+ εκ−1dκω

ε
1

)
−→

κ∑
`=1

d`(ΠEω)κ+1−`

as ε → 0 in the sense of distributions. On the other hand, the limit∑κ
`=1 d`(ΠEω)κ+1−` belongs to L2(G,

∧2 g) (since d`(ΠEω)κ+1−` is an ho-
mogeneous differential operator in the horizontal derivatives of order κ, by
Theorem 3.8, i) and Definition 3.4), and

(36)
{ 1
εκ−1

(
d1ω

ε
κ + · · ·+ εκ−1dκω

ε
1

)}
ε>0

is equibounded in L2(G,
∧2 g),

as ε→ 0, by (15). Combining (36) and (35) we obtain that the limit in (35)
is in fact a weak limit in L2(G,

∧2 g). Thus, by (20), (13) and taking into
account that ΠE0 is an othogonal projection, we obtain eventually

F (ω) =
∫

G
‖ΠE0

( κ∑
`=1

d`(ΠEω)κ+1−`

)
‖2 dV

≤
∫

G
‖

κ∑
`=1

d`(ΠEω)κ+1−`‖2 dV

≤ lim inf
ε→0

ε2(1−κ)

∫
G

∥∥d1ω
ε
κ + · · ·+ εκ−1dκω

ε
1

∥∥2
dV ≤ lim inf

ε→0
Fε(ωε).

This proves (11).
We prove now that, if ω ∈ W κ,2(G, E1

0), then there exists a sequence
(ωε)ε>0 in W κ,2(G,

∧1 g) such that

i) ωε → ω weakly in W κ,2(G,
∧1 g);

ii) Fε(ωε)→ F (ω) as ε→ 0.

By Lemma 4.2, without loss of generality we may assume ω ∈ D(G, E1
0).

We choose

ωε = ω + ε(ΠEω)2 + · · ·+ εκ−1(ΠEω)κ(37)

I we write the identity d2 = 0 gathering all terms of the same weight, we get

0 =
κ∑

p=0

p∑
j=0

dp−jdj .

and therefore

(38)
p∑

j=0

dp−jdj = 0 for p = 0, . . . , κ,

since these terms are mutually orthogonal when applied to a form of pure
weight. In particular,

(39) d2
0 = 0, d0d1 = −d1d0, d0d2 = −d2d0 − d2

1, · · ·
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Thus,

Fε(ωε) =
1
ε2κ

∫
G
‖dε

( κ∑
i=1

εi−1(ΠEω)i

)
‖2 dV

=
1
ε2κ

(∫
G
‖ΠE0

(
dε

( κ∑
i=1

εi−1(ΠEω)i

))
‖2 dV

+
∫

G
‖ΠE⊥0

(
dε

( κ∑
i=1

εi−1(ΠEω)i

))
‖2 dV

)
.

(40)

Arguing as in (12), we can write

dε

( κ∑
i=1

εi−1(ΠEω)i

)
=
∑

2≤p≤κ

εp−1
p−1∑
i=0

di(ΠEω)p−i

+ εκ
(
d1(ΠEω)κ + · · ·+ dκ(ΠEω)1)

+
∑

κ+2≤p≤2κ

εp−1
κ∑

i=p−κ

di(ΠEω)p−i

:= I1 + I2 + I3.

Now, by Theorem 3.10,
ΠE0I1 = 0.

Let us prove that

(41) Π⊥
E0
I1 = Π⊥

E0
I2 = 0.

To this end, we have but to prove that

(42)
p−1∑
i=0

di(ΠEω)p−i ∈ E2
0 for 2 ≤ p ≤ κ+ 1.

Recalling that E2
0 = ker d0 ∩R(d0)⊥, we prove by induction that

i) d0

(
d0(ΠEω)p + d1(ΠEω)p−1 + · · ·+ dp−1(ΠEω)1

)
= 0

ii) d0(ΠEω)p + d1(ΠEω)p−1 + · · ·+ dp−1(ΠEω)1 ∈ R(d0)⊥,

for 2 ≤ p ≤ κ + 1. Obviously, by our choice of ω ∈ E1
0 , (42) holds also for

p = 1.
Step 1 (p = 2): by Lemma 3.12, d0d

−1
0 d1(ΠEω)1 = d1(ΠEω)1, since d1(ΠEω)1 ∈

Ω2,2. Hence we can write

d0(ΠEω)2 + d1(ΠEω)1 = d0

(
(ΠEω)2 + d−1

0 d1(ΠEω)1
)

= 0,

by (7). Trivially, i) and ii) hold.
Step 2 (if p then p + 1): first of all, we notice that p < κ + 1 (since
p+ 1 ≤ κ+ 1). Hence, by (42) and by Theorem 3.10, we get in particular

(43) d0(ΠEω)j + d1(ΠEω)j−1 + · · ·+ dj−1(ΠEω)1 = 0 for j ≤ p < κ+ 1.
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Now, using (39), we get

d0

(
d0(ΠEω)p+1 + d1(ΠEω)p + · · ·+ dp(ΠEω)1

)
= −d1d0(ΠEω)p −

(
d2d0(ΠEω)p−1 + d2

1(ΠEω)p−1

)
− · · · − (dpd0(ΠEω)1 + dp−1d1(ΠEω)1 + · · ·+ d1dp−1(ΠEω)1)

= −
p−1∑
i=1

di

p−i∑
j=0

dj(ΠEω)p+1−i−j = 0

by (43), and the assertion i) holds for p+ 1.
In order to prove ii), we remind that, by (7),

(ΠEω)p = −d−1
0

(
d1(ΠEω)p−1 + · · ·+ dp−1(ΠEω)1

)
,

so that, by Lemma 3.7, iii),

d0(ΠEω)p = −
(
d1(ΠEω)p−1 + · · ·+ dp−1(ΠEω)1

)
+ ξ,

with ξ ∈ R(d0)⊥. This proves ii) and eventually (42).
Coming back to (40) we get,

Fε(ωε) =
1
ε2κ

∫
G
‖ΠE0I2‖2 dV +

1
ε2κ

∫
G
‖ I3‖2 dV

=
∫

G
‖ΠE0

(
d1(ΠEω)κ + · · ·+ dκ(ΠEω)1

)
‖2 dV

+
1
ε2κ

∫
G
‖

∑
κ+2≤p≤2κ

εp−1
κ∑

i=p−κ

di(ΠEω)p−i‖2 dV ;

observing that the second term in previous expression goes to zero as ε→ 0,
we get limε→0 Fε(ωε) = F (ω) in D(G, E1

0). This achieves the proof of the
theorem.

�
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