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class of homeomorphisms f : Ω→ Ω′. If f ∈ Hom(Ω; Ω′) ∩W 1,n−1(Ω; Ω′) is a homeomor-

phism with finite inner distortion, we deduce regularity properties of the inverse f−1 from

the regularity of the distortion function of f .
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1 Introduction

In the last few years, homeomorphisms with finite distortion have attracted a
great interest thanks to their connection with relevant topics such as elliptic
partial differential equations, differential geometry and calculus of variations
(see [10] and the references therein).
Let Ω and Ω′ be bounded open sets in Rn, n ≥ 2, and let Hom(Ω; Ω′) the
class of homeomorphisms f : Ω→ Ω′.
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In [9], the class of bisobolev maps has been introduced as the class of home-
omorphisms f : Ω→ Ω′ such that

f ∈W 1,1
loc (Ω; Ω′) and f−1 ∈W 1,1

loc (Ω′; Ω)

Bisobolev maps have a close connection with homeomorphisms with finite
distortion.
Recall that a homeomorphism f ∈W 1,1

loc (Ω,Rn) has finite outer distortion if
its Jacobian Jf is strictly positive a.e. on the set where |Df | 6= 0. In case
Jf (x) ≥ 0 a.e., we define its outer distortion function as

KO,f (x) =

{ |Df(x)|n
Jf (x) for Jf (x) > 0

1 otherwise.
(1.1)

Similarly, we say that a homeomorphism f ∈ W 1,1
loc (Ω,Rn) has finite inner

distortion if its Jacobian is strictly positive a.e. on the set where the adjugate
adjDf of the differential matrix does not vanish. In case Jf (x) ≥ 0 a.e., we
define its inner distortion function as

KI,f (x) =

{ | adjDf(x)|n
Jf (x)n−1 for Jf (x) > 0

1 otherwise.

Obviously these two notions coincide in the planar case, while for n > 2
they are related by the inequality

KI,f (x) ≤ Kn−1
O,f (x).

The reverse estimate
KO,f (x) ≤ Kn−1

I,f (x)

holds when J(x, f) > 0.
In the planar case, i.e. for n = 2, it is known that each bisobolev map
has finite outer distortion ([7, 2]). Such a conclusion is not valid in higher
dimension. In fact, there exists a bisobolev map in Rn , n ≥ 3, such that
its Jacobian determinant is zero a.e. and the modulus of its differential
matrix is strictly positive on a set of positive measure ([9]). However in [9]
it is proven that bisobolev maps have finite inner distortion (see Theorem
below).
Obviously the question can be reversed, wondering what are the conditions
on a homeomorphism f in the Sobolev class W 1,1 that guarantee that it is
a bisobolev map.
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Recall that the inverse of a homeomorphism f ∈ W 1,n−1
loc (Ω,Ω′) belongs

to BVloc only ([2]). On the other hand, in [2], it has been proved that if
f ∈ W 1,n−1(Ω,Ω′) is a homeomorphism with finite outer distortion such
that |Df | belongs to the Lorentz space Ln−1,1 then the inverse map f−1

belongs to W 1,1(Ω′,Ω) and has finite distortion too.
Note that in case n = 2 the Lorentz space L1,1 coincides with L1, then for
planar homeomorphisms the result is true without any additional assump-
tion besides f ∈W 1(Ω,Ω′) ([7]).
A stronger result has been established in [4], where it is shown that homeo-
morphisms in the Sobolev class W 1,n−1

loc (Ω,Ω′) with finite inner distortion are
bisobolev maps, i.e. f−1 belongs to W 1,1(Ω′,Ω). The sharpness of previous
Theorem has been shown in [8].
We can summarize the connection between homeomorphisms f ∈ W 1,n−1

with finite distortion and bisobolev maps as follows

• n = 2 f bisobolev ⇐⇒ f has finite distortion

• n > 2 f bisobolev ⇐⇒ f has finite inner distortion

In the planar case, homeomorphisms with finite distortion and their in-
verses enjoy the same regularity in the scale of Sobolev class while in the
n-dimensional setting (n > 2) the inverses have a weaker degree of regularity.
In fact, as we already mentioned, the inverse of a Sobolev homeomorphism
f ∈W 1,n−1 with finite inner distortion belongs to W 1,1 only.
Here we show that if we assume some regularity on the inner distortion
function KI,f then the inverse of a Sobolev homeomorphism f ∈ W 1,n−1

with finite inner distortion belongs to W 1,n−1 too. More precisely we have
the following

Theorem 1.1. Let f ∈W 1,n−1(Ω,Ω′) be a homeomorphism with finite inner
distortion such that | adjDf | belongs to the space L1, 1

n−1 and that

KI,f ∈ L1,∞(Ω).

Then
|Df−1| ∈ Ln−1(Ω′).

We shall also prove by mean of a counterexample that Theorem 1.1
is sharp. More precisely, the assumption on KI can not be removed nor
weakened in the context of Lebesgue spaces. In fact, we shall construct a

3



mapping f ∈ W 1,n−1(Ω,Ω′) with finite distortion , such that | adjDf | ∈
L1,n−1 and KI,f 6∈ L1,∞(Ω) whose inverse f−1 6∈W 1,n−1(Ω,Ω′) (see Section
6).

Theorem 1.1 tells us that the regularity of the distortion function influ-
ences the regularity of the inverse mapping.

In the planar case, the L1- integrability of the distortion Kf of a home-
omorphism of the Sobolev class W 1,1 is a sufficient condition to the L2-
integrability of the differential matrix of the inverse mapping ([7]).
For n > 2 a similar result has been established in [17], under the stronger
assumption f ∈W 1,p(Ω,Ω′), for some p > n−1. In fact the analogous of the
quoted result of [7] should yield the same conclusion under the assumption
f ∈ W 1,n−1(Ω,Ω′). Here we are able to remove this stronger assumption,
showing that

Theorem 1.2. Let f ∈W 1,n−1(Ω,Ω′) be a homeomorphism with finite inner
distortion such that

KI,f ∈ L1(Ω).

Then
|Df−1| ∈ Ln(Ω′)

and ∫
Ω′
|Df−1(y)|n dy =

∫
Ω
KI,f (x) dx. (1.2)

Moreover we have that

log
(
e+

1
Jf

)
∈ L1

loc(Ω). (1.3)

It is worth pointing out that the regularity of the distortion influences the
regularity of the inverse mapping also in the scale of Orlicz spaces. More
precisely, we shall examine also the case in which the distortion is assumed
to belong to a Orlicz class of functions not too far from L1 and we shall
obtain results in case the distortion belongs to a class smaller than L1 and
in case it has a degree of summability less than L1. Previous results in this
direction have been obtained in [7, 5] for planar homeomorphisms.
Our proofs strongly rely on the validity of the area formula for homeomor-
phisms ([3]) and on a chain rule formula proved in [4] for Sobolev functions.
However, here we show that the area formula and the chain rule of [4] are
valid in the more general context of approximate differentiable homeomor-
phisms (see Section 3).
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2 Preliminaries

2.1 The area formula

Let Ω and Ω′ be bounded domains in Rn. We shall denote by Hom(Ω; Ω′)
the set of all homeomorphisms f : Ω → Ω′ = f(Ω), by |Df | the operator
norm of the differential matrix and by adjDf the adjugate of Df which is
defined by the formula

Df · adjDf = I · Jf , (2.1)

where, as usual, Jf = detDf and I is the identity matrix.
We will use the well known area formula for homeomorphisms in W 1,1

loc (Ω),
that is ∫

B
η(f(x)) |Jf (x)| dx ≤

∫
f(B)

η(y) dy (2.2)

where η is a nonnegative Borel measurable function on Rn and B ⊂ Ω is a
Borel set (for more details we refer to [3]). The equality∫

B
η(f(x)) |Jf (x)| dx =

∫
f(B)

η(y) dy (2.3)

is verified if f is a homeomorphism that satisfies the Lusin condition N,
i.e. the implication |E| = 0 =⇒ |f(E)| = 0 holds for any measurable set
E ⊂ Ω.
Note that the function defined in (1.1) satisfies the so-called distortion in-
equality

|Df(x)|n ≤ KO,f (x)Jf (x)

Moreover, by virtue of (2.2), we have that Jf ∈ L1(B). Hence, the definition
of homeomorphism with finite distortion coincides with the usual one, given
for mappings which are not homeomorphisms (see [10]).
In [6] the authors proved that mappings f ∈W 1,n(Ω,Rn) of finite distortion
satisfy the Lusin condition N . Here we are interested in mappings of finite
distortion whose differential matrices belong to spaces slightly different from
Ln. For this reason let us recall the definitions and some basic properties of
these spaces.

2.2 Orlicz spaces

Let P be an increasing function from P (0) = 0 to lim
t→∞

P (t) = ∞ and

continuously differentiable on (0,∞). The Orlicz space generated by the
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function P (t) will be denoted by LP (Ω) and it consists of the functions h
for which there exists a constant λ = λ(h) > 0 such that P

(
|h|
λ

)
∈ L1(Ω).

In particular we shall work with the Orlicz-Zygmund spaces Ls logα L, 1 ≤
s < ∞, α ∈ R, which are Orlicz spaces generated by the function P (t) =
ts logα(e+ t).
For α > 0, the dual Orlicz space to L logα L(Ω) is the space Exp 1

α
(Ω),

generated by the function Q(t) = exp(t
1
α ) − 1. The well known Young’s

inequality reads as

st ≤ s logα(e+ s) + exp(t
1
α )− 1 ∀s, t ≥ 0 (2.4)

Observe that if |g|β ∈ L1(Ω) for some β > 0, then

logα(e+ |g|) ∈ Exp 1
α

(Ω) (2.5)

for all α > 0. In fact, we have that∫
Ω

exp
(

logα(e+ |g|)
λ

) 1
α

dx =
∫

Ω
exp

(
log(e+ |g|)

λ
1
α

)
dx =

∫
Ω

(e+|g|)λ
− 1
α dx

Note that the last integral in previous equality is finite for every positive
constant λ verifying the inequality λ > 1

βα . Hence, by the definition, the
function logα(e + |g|) belongs to the space Exp 1

α
(Ω). For more details on

Orlicz spaces we refer to [12].

2.3 Lorentz Spaces

Let Ω be a bounded domain in Rn and g : Ω→ R be a measurable function.
For t ≥ 0 we denote by

Ωt = {x ∈ Ω : |g(x)| > t} (2.6)

For 1 < p, q < +∞ the Lorentz space L(p, q) consists of all measurable
function g defined on Ω such that

||g||qp,q = p

∫ +∞

0
|Ωt|

q
p tq−1 dt < +∞

where |Ωt| is the Lebesgue measure of Ωt, then || · ||p,q is equivalent to a
norm under which L(p, q) is a Banach space ([16]). For p = q, the space
L(p, p) coincides with the usual Lp space and if 1 < q < r < +∞, we have

L(p, 1) ⊂ L(p, q) ⊂ L(p, r)
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For q = ∞, the class L(p,∞) consists of all functions g defined on Ω such
that

||g||pp,∞ = sup
t>0

tp|Ωt| < +∞

and it is equivalent to the Marcinkiewicz class, weak-Lp.
For 1 < r < p, 1 < q <∞

L(p, q) ⊂ L(p,∞) ⊂ Lr

Whenever 1 < p < ∞, 1 ≤ q ≤ ∞ and 1
p + 1

p′ = 1, 1
q + 1

q′ = 1, f ∈ L(p, q),
g ∈ L(p′, q′) we have the Hölder-type inequality∫

Ω
|f(x)g(x)|dx ≤ ||f ||p,q||g||p′,q′ (2.7)

2.4 Bisobolev maps

Let us recall that a homeomorphism f : Ω onto−→ Ω′ is said to be a bisobolev
map if f belongs to the Sobolev spaceW 1,1

loc (Ω; Ω′) and its inverse f−1 belongs
to W 1,1

loc (Ω′; Ω). More specifically, if f ∈W 1,p
loc (Ω; Ω′) and f−1 ∈W 1,p

loc (Ω′; Ω),
1 ≤ p <∞, then we say that f is W 1,p- bisobolev.

The connection between bisobolev mappings and mappings with finite dis-
tortion is given by the following results.

Theorem 2.1. ([9]) Let f : Ω → Rn be a bisobolev map. Suppose that for
a measurable set E ⊂ Ω we have Jf = 0 a.e. on E. Then |adjDf | = 0 a.e.
on E. If we moreover assume that Jf ≥ 0 it follows that f has finite inner
distortion.

In the opposite direction, we have the following

Theorem 2.2. ([4]) Let f ∈W 1,n−1(Ω,Ω′) be a homeomorphism such that

| adjDf(x)|n ≤ K(x)Jn−1
f (x) (2.8)

for some Borel function K : Ω → [1,+∞). Then f−1 is a W 1,1(Ω′,Ω) map
of finite outer distortion. Moreover

|Df−1(y)|n ≤ K(f−1(y))Jf−1(y) a.e. in Ω

and ∫
Ω′
|Df−1(y)| dy =

∫
Ω
| adjDf(x)| dx
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3 The chain rule and the area formula

We need to recall the definition of approximate gradient of a Borel map. To
this aim, for a measurable function g : Ω→ R, we will define its approximate
limit as

aplim
y→x

g(y) = inf
{
t ∈ R : lim

r→0

|{g > t} ∩Br(x)|
rn

= 0
}

with the convention that

aplim
y→x

g(y) = +∞ if
{
t ∈ R : lim

r→0

|{g > t} ∩Br(x)|
rn

= 0
}

= ∅.

If f ∈ L1
loc(Ω; RN ), we will say that a point x ∈ Ω is a point of approximate

continuity if there exists z ∈ RN such that

lim
r→0

∫
Br(x)

|f(y)− z| dy = 0 (3.1)

The precise representative of f is the function f∗ : Ω → RN defined by
setting f∗(x) = z, where z is the vector appearing in (3.1), if x is a point of
approximate continuity of f and f∗(x) = 0 otherwise.

Let x a point of approximate continuity of f . We will say that f is
approximately differentiable at x if there exists a N × n matrix denoted by
Df(x) such that

lim
r→0

∫
Br(x)

|f(y)− f∗(x)−Df(x)(y − x)|
r

dy = 0 (3.2)

The approximate gradient Df(x) is uniquely determined by (3.2), the set

Df = {x ∈ Ω : f is approximately differentiable at x}

is a Borel set and the map Df : Df → RNn is a Borel map. Recall that if
f, g ∈ L1

loc(Ω; RN ) then

Df(x) = Dg(x) for a.e. x ∈ Df ∩ Dg ∩ {f = g} (3.3)

If f ∈ W 1,1
loc (Ω; RN ) then is approximately differentiable a.e. in Ω and its

approximate gradient coincides a.e. with the distributional gradient ([1]).
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Lemma 3.1. Let f ∈ L1
loc(Ω; RN ) and let x ∈ Df . Then we have

aplim sup
y→x

|f∗(y)− f∗(x)|
|y − x|

< +∞

Proof. Without loss of generality we can suppose that x = 0. Let t >
|Df(0)| and set

At =
{
y ∈ Ω :

|f∗(y)− f∗(0)|
|y|

> t

}
.

It suffices to prove that

lim
r→0

|At ∩Br|
rn

= 0 (3.4)

To this aim, we argue by contradiction supposing that there exists a sequence
rh → 0 such that

lim
h→∞

|At ∩Brh |
rnh

= l > 0 (3.5)

Since Df∗(0) = Df(0), we have∫
Brh

|f∗(y)− f∗(0)−Df(0) · y|
rn+1
h

dy

≥
∫
Brh∩At

|f∗(y)− f∗(0)−Df(0) · y|
rn+1
h

dy

≥
∫
Brh∩At

[
|f∗(y)− f∗(0)| − |Df(0) · y|

rn+1
h

]
dy

≥ t− |Df(0)|
rn+1
h

∫
Brh∩At

|y| dy. (3.6)

Let us consider ρh such that |Bρh | = |Brh ∩At| and so

ωnρ
n
h = |Brh ∩At| ⇒ ρh =

(
|Brh ∩At|

ωn

) 1
n

. (3.7)

Since the function y → |y| is radially symmetric, one easily gets∫
Brh∩At

|y| dy ≥
∫
Bρh

|y| dy =
∫ ρh

0
nωnr

n dr =
n

n+ 1
ωnρ

n+1
h . (3.8)

Inserting (3.8) in (3.6) and using (3.7), we obtain∫
Brh

|f(y)− f∗(0)−Df(0) · y|
rn+1
h

dy
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≥ t− |Df(0)|
rn+1
h

n

n+ 1
ωnρ

n+1
h

=
n[t− |Df(0)|]

(n+ 1)ω
1
n
n

(
|Brh ∩At|

rnh

)n+1
n

. (3.9)

Taking the limit as h → ∞ in estimate (3.9), using the assumption 0 ∈ Df
and (3.5), we have

l = 0

which is clearly a contradiction.

Combining Lemma 3.1 with the area formula for Lipscitz maps and The-
orem 3.1.8 in [3], as a particular case of Corollary 3.2.20 in [3], we have the
following Area Formula

Theorem 3.2. (Area Formula) For f ∈ L1
loc(Ω; RN ) and ψ : RN →

[0,+∞] a Borel function, we have∫
Df
ψ(x)|Jf (x)| dx =

∫
f∗(Df )

dy

∫
{(f∗)−1(y)}

ψ(x) dH0(x).

From the Area Formula we can derive the following

Corollary 3.3. Let f : Ω → RN be a one to one, continuous map and let
ϕ : RN → [0,+∞] be a Borel function. Then∫

Df
ϕ(f(x))|Jf (x)| dx =

∫
f(Df )

ϕ(y) dy.

Let us notice that, in general, if f : Ω→ RN is a one to one, continuous
map and ϕ : RN → [0,+∞] is a Borel function, one has∫

Ω
ϕ(f(x))|Jf (x)| dx ≤

∫
f(Ω)

ϕ(y) dy.

However, the equality is achieved when f satisfies the N property of Lusin.
More precisely we have the following
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Proposition 3.4. Let f : Ω → RN be a one to one, continuous map a.e.
approximately differentiable. Then∫

Ω
ϕ(f(x))|Jf (x)| dx =

∫
f(Ω)

ϕ(y) dy, (3.10)

for every Borel function ϕ : RN → [0,+∞], if and only if f satisfies the N
property of Lusin.

Proof. Suppose that f satisfies the N property of Lusin. Since f is ap-
proximately differentiable a.e. in Ω, the N property of Lusin yields that
|f(Ω \ Df )| = 0. Hence, Corollary 3.3 implies∫

Ω
ϕ(f(x))|Jf (x)| dx =

∫
Df
ϕ(f(x))|Jf (x)| dx =

∫
f(Df )

ϕ(y) dy =
∫
f(Ω)

ϕ(y) dy.

Conversely, let us suppose that equality (3.10) holds, for every Borel function
ϕ : RN → [0,+∞]. We need to show that, if E ⊂ Ω is a Borel set with
|E| = 0 then we have |f(E)| = 0. Note that, since f is a one to one
continuous map the image of a Borel set E is a Borel set and hence the
characteristic function χ

f(E)
is a Borel function. Since for χ

f(E)
, the equality

(3.10) holds, we obtain

0 =
∫
E
|Jf (x)| dx =

∫
Ω
χ
f(E)

(f(x))|Jf (x)| dx =
∫
f(Ω)

χ
f(E)

(y) dy = |f(E)|

which concludes the proof.

A key tool for our aim is the following chain rule formula, which has been
proved in [4] for bisobolev mappings. Actually the proof given in [4] works
under slightly weaker assumptions. We give it here for the sake of complete-
ness.

Lemma 3.5. Let f : Ω→ Ω′ be a homeomorphism such that f and f−1 are
approximately differentiable a.e.. Set

F = {y ∈ Df−1 : |Jf−1(y)| > 0}.

Then there exists a Borel set A ⊂ F such that |F \ A| = 0, f−1(A) ⊂ {x ∈
Df : |Jf (x)| > 0}, with the following property

Df−1(y) = [Df(f−1(y))]−1 ∀y ∈ A (3.11)
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Proof. The approximate differentiability of f−1 at any point of the Borel
set F implies (see 3.1.8 of [3]) that we can cover F by an increasing family
of Borel set Fi such that the restriction f|Fi is a Lipschitz map h. Hence,
for every ε > 0 there exists a Lipschitz map h and a set Fε ⊂ F such that
|F \ Fε| < ε and f−1(y) = h(y) for every y ∈ Fε. Thanks to (3.3) we also
have that Df−1(y) = Dh(y) and hence |Jh(y)| > 0 for all y ∈ Fε. Thus,
by the Lipschitz linearization Lemma, Fε can be decomposed, up to a set of
zero measure, into the union of countably many, pairwise disjoint, compact
set Hi such that, for every integer i, the map h|Hi is invertible, (h|Hi)

−1

is Lipschitz, h is differentiable, |Jh(y)| > 0 and Df−1(y) = Dh(y) for all
y ∈ Hi.
Now, let us denote by gi : Rn → Rn a Lipschitz function such that gi(x) =
(h|Hi)

−1(x) for all x ∈ h(Hi). The equalities

h(gi(x)) = x ∀x ∈ h(Hi) gi(h(y)) = y ∀y ∈ Hi

together with the a.e. differentiability of Lipschitz functions yield

Dh(gi(x)) = [Dgi(x)]−1 for a.e. x ∈ h(Hi)

Since gi(x) = f(x) for every x ∈ h(Hi), previous equality implies that there
exists a null Borel set Mi ⊂ h(Hi) = f−1(Hi) such that f is approximately
differentiable at every point x ∈ f−1(Hi) \Mi and

Dh(f(x)) = [Df(x)]−1 ∀x ∈ f−1(Hi) \Mi,

i.e.
Dh(y) = [Df(f−1(y))]−1 ∀y ∈ Hi \ f(Mi).

Since f(Mi) = gi(Mi) and gi is a Lipschitz map, we deduce that f(Mi) is a
Borel set of zero Lebesgue measure. Recalling that

Df−1(y) = Dh(y) ∀y ∈ ∪iHi

we have proven that the approximate gradient Df(x) exists for every x ∈⋃
i

(
f−1(Hi) \Mi

)
and

Df−1(y) = [Df(f−1(y))]−1 ∀y ∈
⋃
i

(
Hi \ f(Mi)

)
.

Since
⋃
i

(
Hi \ f(Mi)

)
is a Borel subset of Fε with full measure, the conclu-

sion easily follows from previous equality.
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4 Proof of Theorems 1.1 and 1.2

In this section we will give the proofs of the regularity results for the inverses
of homeomorphisms with finite distortion in the scale of Sobolev classes.

Proof of Theorem 1.2 . Since f ∈ W 1,n−1 has finite inner distortion, from
Theorem 2.2 it follows that Jf−1(y) ≥ 0 and f−1 ∈ W 1,1 is a homeomor-
phism with finite distortion. Hence f is approximately differentiable a.e. in
Ω and f−1 is approximately differentiable a.e. in Ω′. Lemma 3.5 yields that
there exists a subset A′ of Ω′, with full measure, such that chain rule holds
at any point of A′. Then, we have∫

Ω′
|Df−1(y)|n dy =

∫
A′
|Df−1(y)|n dy

=
∫
A′

| adjDf(f−1(y))|n

Jnf (f−1(y))
dy

≤
∫
A′
KI,f (f−1(y))Jf−1(y) ≤

∫
Ω
KI,f (x) dx (4.1)

where in the last line we applied area formula (2.2). Then the assumption
KI ∈ L1 implies that f−1 ∈ W 1,n(Ω′; Ω). It remains to prove the other
inequality in (1.2). To this aim, note that as a consequence of the weak
version of Sard Lemma we have

|f(Df ∩ J0
f )| = 0,

where we denoted by J0
f the zero set of the Jacobian determinant of f . Since

f−1 ∈W 1,n(Ω′; Ω) we have that f−1 satisfies N property. Hence we have

|Df ∩ J0
f | = 0,

i.e. Jf > 0 a.e. in Ω. Thus, using area formula and chain rule again, we get∫
Ω
KI,f (x) dx =

∫
Df
KI,f (x) dx

=
∫
Df\J0

f

| adjDf(x)|n

Jnf (x)
Jf (x) dx =

∫
A

| adjDf(x)|n

Jnf (x)
Jf (x) dx

=
∫
A
|Df−1(f(x))|nJf (x) dx ≤

∫
Ω′
|Df−1(y)|n dy (4.2)

where A the Borel set determined by Lemma 3.5. This concludes the proof
of the estimate (1.2).
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As already observed, by Theorem 2.2 it follows that Jf−1(y) ≥ 0 and f−1 ∈
W 1,1 and we just proved that f−1 ∈ W 1,n. Therefore, by a well known
result due to Müller ([15]), it is Jf−1 ∈ L logLloc(f(Ω)). By Lemma 3.5
there exists a Borel set A ⊂ Ω \ J0

f such that |A| = |Ω| and such that the
chain rule formula holds at every point of A. By the area formula and (3.11),
for x ∈ A and for every compact set E ⊂ Ω, we have∫

E
log
(
e+

1
Jf (x)

)
dx =

∫
E∩A

1
Jf (x)

log
(
e+

1
Jf (x)

)
Jf (x) dx

≤
∫
f(E∩A)

Jf−1(y) log(e+ Jf−1(y))dy <∞

and therefore the conclusion.

Proof of Theorem 1.1. Let A′ the set determined by Lemma 3.5. From The-
orem 2.2 it follows that Jf−1(y) ≥ 0 and f−1 ∈ W 1,1 is a homeomorphism
with finite distortion. Using the chain rule of Lemma 3.5∫

Ω′
|Df−1(y)|n−1 dy =

∫
A′
|Df−1(y)|n−1 dy

=
∫
A′

| adjDf(f−1(y))|n−1

Jn−1
f (f−1(y))

dy

≤
∫

Ω

| adjDf(x)|n−1

Jn−2
f (x)

dx (4.3)

where in the last line we applied area formula (2.2). Hence, by the definition
of the inner distortion function, it follows that∫

Ω′
|Df−1(y)|n−1 dy ≤

∫
Ω

| adjDf(x)|n−1

Jn−2
f (x)

dx

=
∫

Ω

(
| adjDf(x)|n

Jn−1
f (x)

)n−2
n−1

| adjDf(x)|
1

n−1 dx

=
∫

Ω
(KI,f (x))

n−2
n−1 | adjDf(x)|

1
n−1 dx (4.4)

By a simple use of Holder’s inequality in Lorentz spaces we get∫
Ω′
|Df−1(y)|n−1 dy

14



≤
∣∣∣∣∣∣(KI,f (x))

n−2
n−1

∣∣∣∣∣∣
L
n−1
n−2 ,∞

∣∣∣∣∣∣| adjDf(x)|
1

n−1

∣∣∣∣∣∣
Ln−1,1

≤ ||KI,f (x)||
n−1
n−2

L1,∞ ||| adjDf(x)|||
L

1, 1
n−1

(4.5)

i.e. the conclusion.

Note that in the case n = 2, estimate (4.4) reduces to∫
Ω′
|Df−1(y)| dy ≤

∫
Ω
|Df(x)| dx

and then no assumptions on the distortion function are needed to derive the
analogous conclusion.
Next result shoes that assuming more regularity on the adjugate of the
differential matrix allow to weaken the assumption on the regularity of the
distortion and have the same conclusion of previous theorem.

Proposition 4.1. Let f ∈ W 1,n−1(Ω,Ω′) be a homeomorphism with finite
inner distortion such that | adjDf | belongs to the space Lp for some p > 1
and that

Kε
I,f ∈ L1(Ω),

for ε = p(n−2)
p(n−1)−1 < 1. Then

|Df−1| ∈ Ln−1(Ω′).

Proof. We argue as in the proof of previous Theorem until we arrive at the
estimate∫

Ω′
|Df−1(y)|n−1 dy ≤

∫
Ω

(KI,f (x))
n−2
n−1 | adjDf(x)|

1
n−1 dx (4.6)

Since by assumption | adjDf | ∈ Lp, we can use Hölder’s inequality of expo-
nents p(n− 1) and p(n−1)

p(n−1)−1 thus having

∫
Ω′
|Df−1(y)|n−1 dy ≤

(∫
Ω

(KI,f (x))ε
) p(n−1)−1

p(n−1)
(∫

Ω
| adjDf(x)|p dx

) 1
p(n−1)

which concludes the proof.
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5 The regularity of the inverse in Orlicz spaces

In this section we shall examine how the regularity of the inner distortion
function of a homeomorphism f reflects on the regularity of the inverse f−1

in the scale of Orlicz spaces. We shall confine ourselves to the case of spaces
not too far from L1 and we shall face both the case of spaces smaller than
L1 and of space slightly larger than L1. Our first result is the following

Theorem 5.1. Let f ∈ W 1,n−1(Ω,Ω′) be an homeomorphism with finite
inner distortion such that

KI,f ∈ L logα L(Ω) (5.1)

for some α ≥ 0. Then

|Df−1| ∈ Ln logα logloc L(Ω′) (5.2)

Proof. Under our assumption KI,f ∈ L logα L(Ω) , we can apply Theorem
1.2 to deduce that

log
(
e+

1
Jf

)
∈ L1

loc(Ω). (5.3)

Since f is a homeomorphism with finite inner distortion, we know, by Theo-
rem 1.2, that f−1 is a homeomorphism of W 1,n with finite inner distortion.
Hence by the weak version of the Sard Lemma and by the Lusin property
of f−1 we get that Jf (x) > 0 a.e. in Ω. Therefore, denoted by A′ the set
determined by Lemma 3.5, if E is a compact subset of Ω, by (2.2), we get∫

f(E)
|Df−1(y)|n logα(e+ log(e+ |Df−1(y)|)) dy

=
∫
A′
|Df−1(y)|n logα(e+ log(e+ |Df−1(y)|)) dy

≤
∫
E

| adjDf(x)|n

Jn−1
f (x)

logα
(
e+ log

(
e+
| adjDf(x)|

Jf (x)

))
dx

=
∫
E∩{| adjDf |≥1}

KI,f (x) logα
(
e+ log

(
e+
| adjDf(x)|

Jf

))
dx

+
∫
E∩{| adjDf |<1}

KI,f (x) logα
(
e+ log

(
e+
| adjDf(x)|

Jf

))
dx

= I + II (5.4)
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Since | adjDf(x)| ≤ | adjDf(x)|n/n−1 on the set E ∩ {| adjDf | ≥ 1}, we
have

I ≤
∫
E∩{| adjDf |≥1}

KI,f (x) logα
(
e+ log

(
e+
| adjDf(x)|n/n−1

Jf

))
dx

≤ c

∫
E
KI,f logα(e+ log(e+KI,f )) dx < +∞ (5.5)

thanks to the assumption. In order to estimate II, we use Young’s inequality
at (2.4)

II ≤
∫
E∩{| adjDf |<1}

KI,f (x) logα
(
e+ log

(
e+

1
Jf

))
dx

≤
∫

Ω
KI,f (x) logα (e+KI,f (x)) dx+

∫
Ω
exp

(
logα

(
e+ log

(
e+

1
Jf

))) 1
α

dx

≤
∫

Ω
KI,f (x) logα(e+KI,f (x)) dx+

∫
Ω

(
e+ log

(
e+

1
Jf

))
dx

that is finite thanks to the assumption and (5.3), hence the conclusion.

Next result concerns homeomorphism whose inner distortion function
has a degree of integrability less than L1 and it is the analogous to the n-
dimensional setting of a result contained in [7]. More precisely we have the
following

Theorem 5.2. Let f ∈ W 1,n−1(Ω,Ω′) be an homeomorphism with finite
inner distortion such that | adjDf | ∈ Lp(Ω) for some p > 1. If

KI,f

log(e+ |KI,f |)
∈ L1(Ω)

then
|Df−1| ∈ Ln

logL
(Ω′).

Moreover we have that

log log(e+
1
Jf

) ∈ L1
loc(Ω).
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Proof. Since f ∈W 1,n−1(Ω,Ω′) is an homeomorphism with finite inner dis-
tortion by Theorem 2.2 we have that f−1 ∈ W 1,1(Ω′; Ω). Let A′ be the set
determined by Lemma 3.5. Then we can use the chain rule and the area
formula, thus getting∫

Ω′

|Df−1(y)|n

log(e+ |Df−1(y)|)
dy =

∫
A′

|Df−1(y)|n

log(e+ |Df−1(y)|)
dy

≤
∫

Ω

| adjDf(x)|n

Jf (x)n−1 log
(
e+ | adjDf(x)|

Jf (x)

) dx ≤ c∫
Ω

KI,f (x)

log
(
e+ KI,f (x)

| adjDf(x)|

) dx
=
∫
{KI,f≤| adjDf |p}

KI,f (x)

log
(
e+ KI,f (x)

| adjDf(x)|

) dx
+

∫
{KI,f>| adjDf |p}

KI,f (x)

log
(
e+ KI,f (x)

| adjDf(x)|

) dx
≤
∫

Ω
| adjDf(x)|p dx+

∫
Ω

KI,f (x)
log (e+KI,f (x))

dx (5.6)

Since, by our assumptions, the integrals in the right hand side of previous

estimate are finite we obtain that |Df−1| ∈ Ln

logL
(Ω′) .

At this point we can use a result of [14] to deduce that Jf−1 ∈ L log logLloc(Ω′).
Theorem A in [11] implies that f−1 satisfies condition (N) and hence |J 0

f | =
0. In fact, as we noticed before, Sard’s Lemma yields that |f(Df ∩J 0

f )| = 0
and hence the N- property of f−1 implies |Df ∩ J 0

f | = 0. So we can argue
analogously to before, having∫

E
log
(
e2 + log

(
e+

1
Jf (x)

))
dx

=
∫
E∩A

1
Jf (x)

log
(
e2 + log

(
e+

1
Jf (x)

))
Jf (x)dx

≤
∫
f(E∩A)

Jf−1(y) log
(
e2 + log(e+ Jf−1(y))

)
dy <∞

where A is the subset of Ω determined by Lemma 3.5.

We can weaken the regularity assumption on the adjugate matrix of the
differential of the homeomorphism f and we arrive at the same conclusion
of Theorem 5.2, slightly improving the regularity assumption on the inner
distortion function. In fact we have
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Theorem 5.3. Let f ∈W 1,n−1(Ω,Ω′) be a homeomorphism with finite inner
distortion such that | adjDf | belongs to the space L logL(Ω) and that

KI,f

log(e+ log(e+ |KI,f |))
∈ L1(Ω).

Then
|Df−1| ∈ Ln

logL
(Ω′).

Proof. Since f ∈ W 1,n−1(Ω,Ω′) is a homeomorphism with finite inner dis-
tortion by Theorem 2.2 we have that f−1 ∈ W 1,1(Ω′; Ω). Then we can use
the area formula, thus getting∫

Ω′

|Df−1(y)|n

log(e+ |Df−1(y)|)
dy

≤
∫

Ω

| adjDf(x)|n

Jf (x)n−1 log
(
e+ | adjDf(x)|

Jf (x)

) dx ≤ c∫
Ω

KI,f (x)

log
(
e+ KI,f (x)

| adjDf(x)|

) dx
=
∫
{KI,f≤| adjDf | log(e+KI,f )}

KI,f (x)

log
(
e+ KI,f (x)

| adjDf(x)|

) dx
+

∫
{KI,f>| adjDf | log(e+KI,f (x))}

KI,f (x)

log
(
e+ KI,f (x)

| adjDf(x)|

) dx
≤
∫

Ω
| adjDf(x)| log(e+KI,f (x)) dx

+
∫

Ω

KI,f (x)
log (e+ log(e+KI,f (x)))

dx (5.7)

Since the second integral in the right hand side of (5.7) is finite thanks to
the assumption, it remains to prove that the first integral is finite too. To
this aim observe that∫

Ω
| adjDf(x)| log(e+KI,f ) dx =

∫
Ω
| adjDf(x)| log

(
e+
| adjDf(x)|n

Jn−1
f

)
dx

≤ c

∫
Ω
| adjDf(x)| log(e+ | adjDf(x)|) dx+

∫
Ω
| adjDf(x)| log

(
e+

1
Jf

)
dx

≤ c

∫
Ω
| adjDf(x)| log(e+ | adjDf(x)|) dx+ c

∫
Ω

| adjDf(x)|
(Jf (x))

n−1
n

dx
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= c

∫
Ω
| adjDf(x)| log(e+ | adjDf(x)|) dx+

∫
Ω
Kf (x)

n−1
n dx (5.8)

where the first integral in the right hand side is finite by assumptions and
the second one is finite thanks to the Young’ inequality i.e.∫

Ω
Kf (x)

n−1
n dx ≤

∫
Ω

Kf (x)
log (e+ log(e+Kf (x)))

+ c(|Ω|) (5.9)

The proof is now complete.

This result has been established in case of planar homeomorphisms in
[5].

6 Construction of Counterexamples

The following general construction of examples of mappings of finite distor-
tion was introduced in [8] (see also [7]). Here we give only the brief overview
of the construction, for details see [8, Section 5].

6.1 Canonical transformation

If c ∈ Rn, a, b > 0, we use the notation

Q(c, a, b) := [c1 − a, c1 + a]× · · · × [cn−1 − a, cn−1 + a]× [cn − b, cn + b].

for the interval with center at c and halfedges a in the first n−1 coordinates
and b in the last coordinate. For Q = Q(c, a, b) we set

ϕQ(y) = (c1 + ay1, . . . , cn−1 + ayn−1, cn + byn).

Let P , P ′ be concentric intervals, P = Q(c, a, b), P ′ = Q(c, a′, b′), where
0 < a < a′ and 0 < b < b′. We set

ϕ
P,P ′

(t, y) = (1− t)ϕ
P

(y) + tϕ
P ′

(y), t ∈ [0, 1], y ∈ ∂Q0.

Now, we consider two rectangular annuli, P ′ \ P ◦, and P̃ ′ \ P̃ ◦, where
P = Q(c, a, b), P ′ = Q(c, a′, b′), P̃ = Q(c̃, ã, b̃) and P̃ ′ = Q(c̃, ã′, b̃′), The
mapping

h = ϕ
P̃ ,P̃ ′
◦ (ϕ

P,P ′
)−1

is called the canonical transformation of P ′ \ P ◦ onto P̃ ′ \ P̃ ◦.
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Fig. 1. The canonical transformation of P ′ \ P ◦ onto P̃ ′ \ P̃ ◦ for n = 2

6.2 Construction of a mapping

By V we denote the set of 2n vertices of the cube [−1, 1]n =: Q0. The sets
Vk = V× . . .×V, k ∈ N, will serve as the sets of indices for our construction.
If w ∈ Vk and v ∈ V, then the concatenation of w and v is denoted by w∧v.
The following two results are proven in [8].

Lemma 6.1. Let n ≥ 2. Suppose that we are given two sequences of positive
real numbers {ak}k∈N0, {bk}k∈N0,

a0 = b0 = 1;
ak < ak−1, bk < bk−1, for k ∈ N.

Then there exist unique systems {Qv}v∈⋃k∈N Vk , {Q′v}v∈⋃k∈N Vk of intervals

Qv = Q(cv, 2−kak, 2−kbk), Q′v = Q(cv, 2−kak−1, 2−kbk−1)

such that

Q′v, v ∈ Vk, are nonoverlaping for fixed k ∈ N,

Qw =
⋃
v∈V

Q′w∧v for each w ∈ Vk, k ∈ N,

cv =
1
2
v, v ∈ V,

cw∧v = cw +
n−1∑
i=1

2−kakviεi + 2−kbkvnεn,

w ∈ Vk, k ∈ N, v = (v1, . . . , vn) ∈ V.
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Fig. 2. Intervals Qv and Q′v for v ∈ V1 and v ∈ V2 for n = 2.

Theorem 6.2. Let n ≥ 2. Suppose that we are given four sequences of
positive real numbers {ak}k∈N0, {bk}k∈N0, {ãk}k∈N0, {b̃k}k∈N0,

a0 = b0 = ã0 = b̃0 = 1; (6.1)

ak < ak−1, bk < bk−1, ãk < ãk−1, b̃k < b̃k−1, for k ∈ N. (6.2)

Let the systems {Qv}v∈⋃k∈N Vk , {Q′v}v∈⋃k∈N Vk of intervals be as in Lem-

ma 6.1, and similarly systems {Q̃v}v∈⋃k∈N Vk , {Q̃′v}v∈⋃k∈N Vk of intervals

be associated with the sequences {ãk} and {b̃k}. Then there exists a unique
sequence {fk} of bilipschitz homeomorphisms of Q0 onto itself such that

(a) fk maps each Q′v \Qv, v ∈ Vm, m = 1, . . . , k, onto Q̃′v \ Q̃v canonically,

(b) fk maps each Qv, v ∈ Vk, onto Q̃v affinely.

Moreover,

|fk − fk+1| . 2−k, |(fk)−1 − (fk+1)−1| . 2−k. (6.3)

The sequence fk converges uniformly to a homeomorphism f of Q0 onto Q0.

6.3 Counterexamples

Let us note that the assumption KI ∈ L1,∞ in Theorem 1.1 can not be
removed nor weakened in the context of Lebesgue spaces. In fact, we have

Example 6.3. Let n ≥ 3. There exists a homeomorphism f : Q0 → Q0

of finite distortion such that f ∈ W 1,n−1(Q0, Q0), |adjDf | ∈ L1, 1
n−1 , KI 6∈

L1,∞ and f−1 6∈W 1,n−1(Q0, Q0).

Proof. We start by setting

ak =
1
kα

bk =
1
kβ
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ãk =
1
kγ

b̃k =
1
kδ

for
α = β = 1 δ = γ +

n

n− 2
for some 0 ≤ γ ≤ 1. Note that this choice is possible only for n ≥ 3. For
α ≥ β ≥ 0 and δ ≥ γ ≥ 0 one can check that

|Df | ∼ kα−γ

|Df−1| ∼ kδ−β

and
Jf ∼ k(α−γ)(n−1)+β−δ

(we refer to [2, 7] for more details). Therefore∫
Q0

|Df |n−1 ∼ C
∑
k∈N

k(α−γ)(n−1)

kα(n−1)+β+1

∫
Q0

|adjDf |a ∼ C
∑
k∈N

ka(α−γ)(n−1)

kα(n−1)+β+1∫
Q0

|Df−1|n−1 ∼ C
∑
k∈N

k(δ−β)(n−1)

kγ(n−1)+δ+1

that yields ∑
k∈N

k(α−γ)(n−1)

kα(n−1)+β+1
=
∑
k∈N

1
kγ(n−1)+2

<∞

for every γ ≥ 0, which means that f ∈W 1,n−1(Q0;Q0). Moreover

∑
k∈N

ka(α−γ)(n−1)

kα(n−1)+β+1
=
∑
k∈N

1
kn+1−a(1−γ)(n−1)

< +∞

for every 1 < a < n
n−1

1
1−γ , which implies that |adjDf | ∈ La. Now, let us

note that ∑
k∈N

k(δ−β)(n−1)

kγ(n−1)+δ+1
=
∑
k∈N

1
k(γ−δ)(n−1)+δ+n

= +∞

since

(γ − δ)(n− 1) + δ + n = γ +
n

n− 2
+ n− n(n− 1)

n− 2
= γ ≤ 1
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and hence f−1 6∈W 1,n−1(Q0;Q0). Then observe that

KI =
|adjDf |n

Jn−1
f

∼
k(α−γ)n(n−1)

k(α−γ)(n−1)2+(β−δ)(n−1)
= k(δ−γ)(n−1)

In order to have that KI 6∈ L1,∞ it suffices to show that K
n−2
n−1

I 6∈ L
n−1
n−2

,∞.

Since L
n−1
n−2

,∞ ⊂ L
n−1
n−2
−ε for every 0 < ε < 1

n−2 we will prove that there

exists 0 < ε < 1
n−2 such that K

n−2
n−1

I 6∈ L
n−1
n−2
−ε .

To this aim, we calculate∫
Q0

(
|KI |

n−2
n−1

)(n−1
n−2
−ε)

=
∫
Q0

|KI |(1−εn−2
n−1)

∼ C
∑
k∈N

k(δ−γ)(n−1)−ε(δ−γ)(n−2)

kn+1

Since
n− (δ − γ)(n− 1) + ε(δ − γ)(n− 2) = εn− n

n− 2

in order to have that K
n−2
n−1

I 6∈ L
n−1
n−2
−ε it suffices to choose

ε ≤ 1
n− 2

On the other hand, arguing as in Example 6.3 and choosing in a suitable
way δ, γ, we also have the following

Example 6.4. Let n ≥ 3 and 0 < σ < 1. There exists a homeomorphism
f : Q0 → Q0 of finite distortion such that f ∈ W 1,n−1(Q0, Q0), Kσ

I ∈ L1

but f−1 6∈W 1,n−1(Q0, Q0).
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[13] J. Malý & O. Martio, Lusin’s condition (N) and mappings of the
class W 1,n, J. Reine Angew. Math., 458 (1995), 19–36

25



[14] G.Moscariello, On the integrability of the Jacobian in Orlicz spaces,
Math. Japonica 40 (1992), 323–329.

[15] S.Müller , Higher integrability of determinants and weak convergence
in L1, J.Reine Angew. Math. 412 (1990), 20–34

[16] R. O’Neil , Integral transforms and tensor products on Orlicz spaces
and L(p, q) spaces. J. Analyse Math. 21 (1968), 1–276.

[17] J. Onninen, Differentiability of monotone Sobolev functions, Real
Anal. Exchange 26 no. 2 (2000), 761–772

[18] S. P. Ponomarev, An example of an ACTLp homeomorphism that
is not absolutely continuous in the sense of Banach, Dokl. Akad. Nauk
SSSR, 201 (1971), 1053-1054

[19] S. P. Ponomarev, Property N of homeomorphism in the class W 1,p,
Transl. Sibirskii Math., 28(2) (1987), 140-148

26


