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Abstract. Some variational models have been recently introduced to the aim
of modeling ramified structures, such as trees, rivers and so on. We introduce a
general scheme in which the notion of transport distance is introduced starting
from a general transport cost functional, through relaxation arguments. Then
we apply this general framework to the irrigation cost, which is a particular cost
functional depending on a parameter α ∈]0, 1[. We discuss the equivalence between
this abstract approach and the above models.
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Introduction

Recently, starting from [21], [17], a variant of the Monge-Kantorovitch transport
problem which leads to some variational models for ramified structures has been in-
vestigated. In [21] the functional is firstly defined on finite graphs and subsequently
extended to real flat 1-chains. The first step of this approach goes back to Gilbert
[14] who generalized the Steiner problem [15]. Therefore we shall refer to this formu-
lation as to Gilbert-Steiner approach or Xia approach. In [17], on the contrary, the
functional is proposed for families of curves parametrized on a set Ω equipped with
a probability measure or, equivalently, as remarked in [3], for measures defined on a
space of curves. The theory developed in these cases is based on the concavity prop-
erties of the model function |x|α, involved in all these functionals, with 0 < α < 1.
Actually the value of α plays an important role with respect to some particular
questions. More precisely, some problems are easy when α > 1

N ′ = 1 − 1
N

, if N is
the dimension of the euclidean space in which the problem is studied, (large α) and
much more subtle when 0 < α ≤ 1

N ′ (small α), in which new questions, like the irri-
gability problem ([9]), arise. The assumption of α being large is not always explicitly
remarked, since it is sometimes taken as implicitly assumed in this literature.

In this paper we moved from the idea of showing the equivalence of these various
approaches, attaining to a more general point of view which sees these functionals
as metrics induced by a transport cost defined on probability measures. By applying
this general framework to a particular cost functional, depending on a parameter α,
the irrigation cost, we consider besides the functional in [17] (in one of its equivalent
variants), the functional obtained by a relaxation procedure which induces a weak
lower semicontinuous metric (transport distance). Then we get the Gilbert-Steiner
functional as the result of a two steps relaxation which firstly induces a metric and
then its lower semicontinuous envelope. By using the appropriate version of the
Pruning Theorem stated in [8], we show that for any α the three functionals are the
same, getting in this way the equivalence of the two mentioned approaches and the
more abstract formulation of the transport distances introduced here.

More recently, other variational models for branching structures have been pro-
posed in literature (see [6]), these approaches exhibit similar structures to those
studied here but keeping substantial differences. Our equivalence proof does not
regard, for it could not, the model presented in [6].

The results in this paper do not answer completely the question of the equivalence
of the approaches in [17], [3] and in [14], [21], since the functional used here is a
variant of those in [17] and in [3], which are also different among themselves. A
final part, with a few regularity properties which lead to establish the equivalence of
all those variants of the functional in [17], had been planed as a conclusive part of
this paper. However, since it requires several arguments and concepts in a different
direction with respect to the theory developed here, we have preferred to leave it to
a subsequent note [18], which will make the analysis complete.
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In this paper we shall introduce a lot of definitions and, in order to avoid a too
heavy notation, in some cases we will use the same symbol to denote different things.
For instance, some microscopic objects induce their macroscopic counterparts and
we will often keep the same notation for the two descriptions. The different use of
the two objects and the different context in which they are employed should avoid
any possible misunderstanding and let us simplify the exposition.

The paper begins with an introduction to the transport problems according to a
kinematic interpretation, rather than the usual holes filling formulation. This allows
us to introduce in a natural way the variables employed in [17] and [3], as well as
any other concept which will be subsequently used. In the second section we shall
introduce the notion of transport distance induced by a transport cost and in Section
3 we shall prove some general theorems obtained under abstract assumptions on a
generic transport cost. In Section 4 we specialize these results by considering the
particular cost functional which we shall call irrigation cost.

Throughout this paper X and Y will denote closed convex subsets of RN . However
most of the arguments can be trivially extended to a more general setting which
includes Polish spaces where no linear structure is needed or dual Banach spaces
equipped with the weak∗ topology otherwise. We shall need to use some results
at this higher level of generality and in such cases the assumption that X is a
Polish space will be explicitly mentioned in the hypotheses, while in absence of any
specification the assumption that X and Y are closed convex subsets of RN will be
always implicitly assumed.

We shall denote by Γ any space of X valued curves defined on an interval I ⊂ R.
Moreover, we shall denote by P(X), P(Γ), P(RN) the spaces of the probability
measures defined respectively on X, Γ, RN . Though we shall refer to probability
measures, we essentially need to work with positive Radon measures with finite
total mass. Indeed, throughout the paper we will often use splitting operations or
decompositions of the measures and nevertheless we will continue to refer to them
as probability measures, by assuming that an underlying normalization operation
has been made. This choice avoids a useless further notation and fits the standard
setting adopted in the existing literature on the subject of this work.

The content of this paper was exposed by the second author during the School in
Nonlinear Analysis and Calculus of Variations held in Pisa in October 2005.

1. Mass transportation problems and kinematic interpretation

1.1. The Monge-Kantorovitch problem and basic kinematic tools. The
classical setting of the optimal mass transportation deals with the problem, orig-
inally posed by Monge ([19]), of the minimization of the cost needed to transport
a given mass of material from a starting placement to a final one (a pile of sand
to some holes). Then, if the two prescribed initial and final distributions of mass
are represented by two probability (by normalization) measures µ and ν, Monge
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problem relies in searching a transport map T : RN → RN which minimizes the
transport cost

(1.1) JM(T ) =

∫
RN

c(x, T (x))dµ(x),

among all the admissible maps T , i.e. such that T#µ = ν, where we denote by T#µ
the push-forward measure or image measure of µ through T , defined by

T#µ(B) = µ(T−1(B)) for every B.

As it is well known, (see e.g. [1], [11], [12] [20], [22]), without suitable assumptions
on the measures µ, ν and on the map c : RN × RN → R, the problem may fail to
admit any solution or this can be not unique or even the set of admissible maps
can be empty. Then a natural generalization of the problem was introduced by
Kantorovitch ([16]), whose main idea was to look for a measure on RN ×RN instead
of a map and thus the transport problem becomes a minimization problem for a cost
functional defined on the space of admissible probability measures in two variables,
i.e. probability measures with given marginals. Formally, let Π(µ, ν) ⊂ P(RN ×RN)
be the set of the probability measures on RN×RN with marginals µ and ν, i.e. p0

#π =

µ, p1
#π = ν, where p0 : (x1, x2) 7→ x1 and p1 : (x1, x2) 7→ x2 are the projections. A

measure π ∈ Π(µ, ν) is called a transport plan and Π(µ, ν) is the set of transport
plans between µ and ν. Let us notice that every transport map T induces a transport
plan πT through the formula πT = (Id, T )#µ, Id being the identity map of RN , and
in this sense the transport plans can be seen as a generalization of the functions.
This leads to the following weak formulation of the optimal mass transport, which is
called Monge-Kantorovich problem, and asks for the minimization of the functional

(1.2) JMK(π) =

∫
RN×RN

c(x, y)dπ(x, y),

among all the admissible measures π ∈ Π(µ, ν) (see [7], [20], [22]).
Here we shall pursue a line of thoughts which can be better explained by a dif-

ferent physical interpretation of the problems modeled in the framework of mass
transportation, as above introduced. More precisely, we can think to any proba-
bility (by normalization) measure as to an appropriate description of any material
body in any of its configurations in the physical space. Thus the measures µ and ν,
previously introduced, can be viewed as the initial and the final configurations of
a material body undergoing to a transplacement, generally intended as a change of
the density distribution. Obviously any µ ∈ P(X) can be thought as the placement
of a material body in X (but the physical interpretation is suited for X = RN and,
in particular, for N = 3). This point of view allows to deal with material points,
represented by Dirac masses, as well as with continuous distribution of matter in
their more general evolutions, regardless any topological restriction on the acces-
sible spatial configurations. The sand piles considered by Monge are, of course, a
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particular case of physical bodies and the holes represent potential future positions
(actually, in the Monge formulation, the mass density is replaced by a volume density
on a two dimensional projection). Summarizing, we can say that the placement of a
material body of normalized mass is represented by a probability measure, while a
(macroscopic) change of position (transplacement) is represented by a pair of proba-
bility measures, which can be taken, in general, in two Polish spaces X and Y . In the
Monge problem a macroscopic change of position (µ, ν) is assigned. The term macro-
scopic has been used in order to point out that we are just looking to the change of
mass distributions and not to the displacements of the single particles. For instance,
we consider null a macroscopic change of position if the mass density remains the
same while the particles change place, as it happens, for instance, in the case of a ro-
tation around the center of a spherical body of uniform density. On the other hand,
if we want to assign a microscopic change of position of a body we must specify the
change of position of every single particle, namely the density of mass which moves
from any given point x to any other given point y. So this description will need a
measure on the product space X × Y of the pairs (x, y) and this is precisely the
concept of transport plan, which can be therefore intended as a microscopic change
of position. Note that, roughly speaking, the passage from the macro description to
the micro description requires something like a change of the order in the use of the
concepts of measures and pairs, indeed a measure on pairs is used instead of a pair of
measures. The same circumstance will be present in the other passages macro-micro
which will be considered in the sequel. Clearly, every microscopic change of position
induces a macroscopic change of position since the knowledge of the displacement
of every particle allows to know the change of the global distribution of mass. This
fact is reflected in the operation which to any transport plan π associates the pair
of its marginals (µ, ν), which represent the macroscopic synthesis of the microscopic
change of position π. From this point of view, the Monge-Kantorovich problem con-
sists in searching the cheapest microscopic displacement, according to the cost (1.2),
which induces the macro displacement (µ, ν).

We can coherently define a macroscopic motion as a continuous change of place-
ments, namely as a narrowly continuous (see Section 1.6 below) curve µ : t 7→ µ(t) ∈
X, for t varying in a given interval I ⊂ R. In contrast, if we look at the micro de-
scription and we are interested in describing the motion of the elementary particles,
we need a tool able to deal with the individual trajectories of the particles during
the time interval I. This tool is just given by a measure on the space of trajectories.
Therefore, let Γ be the space of continuous curves γ : I → X equipped with the
topology of the local uniform convergence. Let us notice that although this notion
of convergence could appear as a metric concept because of the uniformity require-
ment, it is a topological concept which only depends on the topology on X. Indeed,
given any metric which induces the topology of X, we have that γn locally uniformly
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converges to γ if and only if

(1.3) for every tn → t ∈ I γn(tn) → γ(t).

Let P(Γ) be the space of probability measures on Γ, we define a microscopic motion
or, equivalently, a particle motion as any σ ∈ P(Γ).

Let us observe that, as one can expect, every microscopic motion induces a macro-
scopic motion. Indeed, for every t ∈ I, let pt : Γ → X be given by pt(γ) = γ(t) and
let σ ∈ P(Γ) be a given microscopic motion. Then for every t ∈ I, by setting, with
an evident but harmless abuse of notation,

(1.4) σ(t) = (pt)#σ,

we get the macroscopic motion σ : t 7→ σ(t) induced by the particle motion σ. It is
evident that, conversely, given a macroscopic motion σ we have, in general, many
possible microscopic motions which induce it.

For instance, in the simple case of a body made of a finite number n of material
points, each one of mass mi (i = 1, . . . , n), which describe orbits γi : t 7→ γi(t) ∈ RN ,
the particle motion is represented by the sum of n Dirac masses on Γ, placed on
the orbits γi and of masses mi; the position of the body at the time t is given by
the measure µ(t) equal to the sum of n Dirac masses in RN , located at the points
γi(t), with masses mi. The macroscopic description of such a motion is just given
by t 7→ µ(t) ∈ P(RN).

In this kinematic framework, in the case X = Y , we can also look at a trans-
port plan π ∈ Π(µ, ν) as to a special microscopic motion. Indeed, by interpolating
the pairs of points with the uniform rectilinear motions joining them, we can view
transport plans as the particle motions concentrated on uniform rectilinear orbits.
More precisely, let us take I = [0, 1] (or any other bounded interval) and, for ev-
ery x, y ∈ X, let i : (x, y) 7→ rxy, where rxy is the uniform rectilinear motion
rxy : t 7→ ty + (1− t)x. The map i is a bijection between the space of pairs X ×X
and the space of orbits of uniform rectilinear motions Γr defined on I = [0, 1], so if π
is a transport plan, i#π ∈ P(Γr). Conversely, given a particle motion concentrated
on the uniform rectilinear motions σ ∈ P(Γr), then i−1

# σ ∈ P(X ×X), namely it is
a transport plan. Therefore, in such a case we can identify the transport plans with
the particle motions in which every particle moves with a uniform rectilinear motion
and their marginals with the endpoints of the corresponding macroscopic motion.
Thus, every result established for particle motions can be referred, in particular, to
transport plans. In general, if X and Y are general Polish spaces, any transport plan
π ∈ P(X × Y ) can be only viewed as a discrete version of a particle motion.

If σ ∈ P(Γ) is a microscopic motion, we can consider the restriction σs of σ to the
constant orbits {γ ∈ Γ | γ(t) = const. ∀t ∈ I} and set σm = σ−σs as the restriction
of σ to the non constant orbits. With this notation we can split σ as

(1.5) σ = σs + σm.
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By applying (1.4), the macroscopic motion induced by the microscopic motion σ
can be decomposed as

σ(t) = σs(t) + σm(t), ∀t ∈ I

and, since σs is concentrated on the constant orbits, we have σs(t) = σs for every t,
then we can write

(1.6) σ(t) = σs + σm(t), ∀t ∈ I.

The splitting (1.5) obviously applies to any transport plan π ∈ P(X, X) since it can
be viewed as a particular microscopic motion. In this case we observe that πs is the
restriction of π to the diagonal set {(x, y) ∈ X ×X | x = y}.

Let π ∈ P(X × Y ) be any transport plan and let ϑ : X × Y → Y × X defined
by ϑ(x, y) = (y, x), we define the symmetryc transport plan πs ∈ P (X × Y ) as
πs = ϑ#π.

1.2. Restrictions and composition of microscopic motions. Let I ⊂ R and
let Γ be as above. If J ⊂ I is any given subinterval and ΓJ is the space of the
continuous curves defined on J , then the restriction map R : Γ → ΓJ is defined by
R(γ) = γ|J , where γ|J is the restriction of γ to J . Then, if σ ∈ P(Γ) is a particle
motion on I, we can define the restriction of σ to J defined as σJ = R#σ. We consider
a partition of I in two subintervals I = I1 ∪ I2 and we set t = max I1 = min I2. Let
Γ1 and Γ2 be the spaces of the continuous curves respectively defined on I1 and I2.
Given two particle motions σ1 and σ2 on the time intervals I1 and I2 respectively,
we say that a particle motion σ defined on the time interval I is a composition of
σ1 and σ2 if these ones are the restrictions of σ to I1 and I2 respectively. We ask
when two given σ1 and σ2 can be composed. Let us notice that two curves γ1 and
γ2 can be composed if γ1(t) = γ2(t) and we shall say that two curves satisfying this
condition are compatible. The set

C =
{
(γ1, γ2) ∈ Γ1 × Γ2 | γ1(t) = γ2(t)

}
is the set of the compatible pairs. We observe that a composition of microscopic mo-
tions induces the composition of the relative macroscopic motions, then the macro-
scopic compatibility condition σ1(t) = σ2(t), like the previous one stated for curves
in RN , is necessary for such a composition exist.

We define the double restriction map R : Γ → Γ1 × Γ2, R = (R1, R2), as follows:

R(γ) =
(
γ|I1 , γ|I2

)
,

for every γ ∈ Γ. Through the map R we can see that the compatibility condition
is also sufficient. Notice that R induces a bijection between Γ and C. We have that
for any σ ∈ P(Γ) π = R#σ ∈ P(Γ1 × Γ2) is a transport plan between Γ1 and
Γ2 concentrated on C. Conversely, if π ∈ P(Γ1 × Γ2) is concentrated on C, then
σ = R−1

# π ∈ P(Γ). Then, through the restriction map R, we have a canonical way
to pass from a microscopic motion on I to a transport plan which has its restrictions
(microscopic motions defined on the subintervals Ii) as marginals.
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Therefore, if we want, given σ1 ∈ P(Γ1) and σ2 ∈ P(Γ2), to find a composition σ,
we must look for a transport plan π between Γ1 and Γ2 with marginals σ1 and σ2, i.e
π ∈ Π(σ1, σ2), concentrated on C. Notice that the simplest way to take a transport
plan π having σ1 and σ2 as marginals is accomplished by taking π = σ1⊗ σ2 but, to
the aim of keeping the compatibility property, we must have such a π concentrated
on C and so we cannot simply take the tensor product. Then we proceed as follows:
firstly, let us use the compatibility condition σ1(t) = σ2(t) in order to set

(1.7) σ̂ = σ1(t) = σ2(t).

Now, let us take the disintegration (see [2, Theorem 6.4.1]) of σ1 and σ2 with respect
to σ̂, namely

σ1 =

∫
X

(σ1)xdσ̂, σ2 =

∫
X

(σ2)xdσ̂.

Then, for every x we have to find a transport plan in Π((σ1)x, (σ2)x) and this is
given, among the others, by (σ1)x ⊗ (σ2)x. Therefore, with this choice, a transport
plan in Π(σ1, σ2) concentrated on C is given by

π =

∫
X

(σ1)x ⊗ (σ2)xdσ̂.

So,
σ = R−1

# π ∈ P(Γ)

gives a microscopic motion on Γ starting from two compatible microscopic motions
on Γ1 and Γ2. This composition operation can be iterated to any finite or countable
set of compatible particle motions. Indeed, let I = ∪i[ti−1, ti], if for every index i
the compatibility condition

(1.8) σi(ti) = σi+1(ti)

is satisfied by the macroscopic motions t 7→ σi(t) induced by the microscopic motions
σi defined on Ii = [ti−1, ti], then we can define a microscopic motion on I by taking,
at each step k, the composition of the microscopic motions defined on ∪k

i=1[ti−1, ti].

1.3. Multiple plans. Whence a transport plan can be regarded as a microscopic
motion, the above composition operation can be carried out on transport plans,
provided the compatibility condition (1.8) is satisfied.

For every k ∈ N, let us call chain any finite ordered sequence (µ1, µ2, . . . , µk) ∈
P(X1) × . . . × P(Xk). A chain of transport plans π = (π1, π2, . . . , πk) ∈ P(X1 ×
Y1) × . . .P(Xk × Yk) will be said a compatible chain if, for i = 2, . . . , k, Xi = Yi−1

and p1
#(πi−1) = p0

#(πi). A compatible chain of transport plans represents a discrete
microscopic motion. If Xi = Yi for every i, we can regard the transport plans πi as
microscopic motions on intervals [ti−1, ti] and in such a case the chain turns out to
be compatible if and only if the compatibility condition (1.8) is satisfied.

Moreover, given a compatible chain of transport plans π = (π1, . . . , πk), we shall
say that the chain ξ = (ξ0, ξ1, . . . , ξk) is the chain of the marginals or of the vertices
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of π if for every i = 1, . . . , k, the component πi has ξi−1 and ξi respectively as
marginals. Given ξ, we shall denote by Π(ξ0, . . . , ξk) the set of the admissible chains
of transport plans corresponding to the chain of vertices ξ, i.e. the compatible chains
of transport plans which have ξ as the chain of vertices.

Given a compatible chain of transport plans π = (π1, . . . , πk), through the above
defined composition, we can take the composition π̃ of πi, i = 1, . . . , k which turns
out to be a microscopic motion concentrated on piecewise linear trajectories defined
on I. Moreover, since any piecewise linear curve can be uniquely identified by its
vertices, such a measure π̃ can be viewed as a measure on the set of ordered (k +1)-
ples of points in X and so π̃ ∈ P(X × · · · × X). The k + 1 marginals of such a
measure pi

#π̃, i = 1, . . . , k + 1 are the vertices ξi of the chain π and represent the
macroscopic synthesis of π or π̃. We shall call (following the terminology of [2]) the
measure π̃, so obtained, multiple plan. The above construction can be carried out on
any sequence of Polish spaces X0, X1, . . . , Xk, even if, in such a case, we do not fall in
the context of the previous section and we cannot speak of piecewise linear motion
but only of discrete motions, which can only be interpolated in a piecewise linear
way in presence of a vector structure. Indeed, in the kinematic picture, a sequence
of k measures represents a discrete macroscopic motion, while a multiple plan, or
equivalently, a measure on chains of points represents a discrete microscopic motion.

1.4. Scaled transport plans. When X = Y we focus on another point of view on
the transport plans, which will be involved in the sequel of this paper. As we have
observed, any transport plan π ∈ P(X ×X) can be viewed as a particle motion in
which each particle performs a rectilinear trajectory from the starting point x ∈ X
o the final one y ∈ X. In order to record the direction of this motion we introduce
the mapping d : X ×X → X × RN defined by

d : (x, y) 7→ (x,v), with v = (y − x),

which will be called displacement function. Let π ∈ P(X×X) be any transport plan,
the measure d#π is in P(X×RN) and gives a description of π in terms of the variables
(x,v). Whenever any transport plan is expressed in such a way we shall refer to it as
to a displacement plan to emphasize the displacement involved in it. Notice that the
displacement plan d#π uses the direction in which the mass located at x moves for
π. For every λ ≤ 1, we set sλ(x,v) = (x, λv) and we define the scaled displacement
plan πλ = (sλ)#π. Since every transport plan can be viewed as a displacement plan
and conversely, given a transport plan π, we can use the corresponding notion of
scaled transport plan by taking πλ = (s′λ)#π, where s′λ : (x, y) 7→ (x, x + λ(y − x)),
for λ ∈ R.

1.5. Lagrangian parameterizations. The description of the position of a mate-
rial body can be made by using a rest configuration of the body, so let (Ω, µΩ) be
a given probability space which, in this kinematic interpretation, can be viewed as
the reference configuration of a material body. If µ ∈ P(X) is any placement of
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the material body, we can refer it to the rest configuration by using the so called
lagrangian description.

Definition 1.1. Let µ be a positive measure on X. We shall say that f : Ω → X is
a lagrangian parametrization of µ if f#µΩ = µ.

Thus the mapping f can be thought as a weak version of what in the classical
setting of continuum mechanics is called a deformation. Note that a measure µ on
X is a Borel measure if and only if f is a measurable map. If f is a lagrangian
parametrization of µ we shall also say that f induces µ. By choosing a different
configuration of the body, we can get a new lagrangian parametrization of the same
placement µ. If two different lagrangian parameterizations f and g induce the same
placement, then f and g will be called equivalent lagrangian parameterizations.

Remark 1.1. If (Ω, µΩ) has no atom and µΩ = 1 we can find a lagrangian parametriza-
tion f : Ω → X of any given probability measure µ. The proof of this assertion, or
even more general versions, is an easy variant of [17, Lemma 9.1], anyway it can be
recovered by combining [17, Lemma 9.1] and [10, Theorem 11.7.5].

In particular, a lagrangian parametrization of a transport plan π ∈ P(X × Y )
is given by a measurable function g : Ω → X × Y , which amounts to assign two
measurable functions g1 : Ω → X and g2 : Ω → Y . More in general, for a multiple
plan π ∈ P(X1 × . . . ×Xk) a lagrangian parametrization is given by a measurable
function g : Ω → X1 ×Xk, which amounts to assign k measurable functions valued
in Xi, for i = 1 . . . k.

Analogously, in dealing with the microscopic motion σ of a material body we can
obtain a lagrangian parametrization by using a map χ̂ : Ω → Γ. Note that assigning
χ̂ is equivalent to give a map χ : Ω × I → χ(p, t) ∈ X such that for a.e. material
point p ∈ Ω, χp : t 7→ χ(p, t) is continuous. Indeed χ is induced by χ̂ by setting
χ(p, t) = [χ̂(p)](t) and, conversely, χ̂ is induced by χ as the map from Ω to Γ defined
by χ̂ : p → χp. Under this identification, we can consider the following definition as
a particular case of Definition 1.1.

Definition 1.2. Let σ be a positive measure on Γ. We shall say that χ : Ω× I → X
is a lagrangian parametrization of σ if χ̂#µΩ = σ.

As just previously observed, checking the Borel regularity of a measure is equiva-
lent to check the measurability of its lagrangian parameterizations χ̂. Furthermore,
in terms of the lagrangian parametrization χ, we state the following assertion.

Proposition 1.1. Let X be a Polish space, let σ be a positive measure on Γ and
let χ : Ω × I → X be any lagrangian parametrization of σ. Then the following
statements are equivalent:

i) σ is a Borel measure (i.e. σ is a microscopic motion);

ii) χ is a measurable map ;



TRANSPORT DISTANCES 11

iii) for every t ∈ I χ(·, t) is a measurable map.

Proof. i) ⇒ iii) Fix t ∈ I. The map pt : Γ → X, defined by pt : γ 7→ γ(t), is
continuous and then (pt)#σ is a Borel measure. Moreover,

(pt)#σ = (pt)#(χ̂#µΩ) = (pt ◦ χ̂)#µΩ = χ(·, t)#µΩ.

Therefore χ(·, t)#µΩ is a Borel measure and then χ(·, t) is a measurable map.
iii) ⇒ i) Let d : X ×X → R+ be a distance inducing the topology on X. Since

C(I) is separable, it is enough to show that, for K compact subset of I, r > 0 and
g ∈ C(I) fixed, the set

ΩK,r = {p ∈ Ω | d(g(t)− χ(p, t)) ≤ r, ∀t ∈ K}

is measurable. To this aim, let N ⊂ K be a countable set such that K ⊂ N and
for every t ∈ N let Ωt = {p ∈ Ω | d(χ(p, t) − g(t)) ≤ r}. By continuity we have
ΩK,r =

⋂
t∈N Ωt and, since for every t ∈ N Ωt is measurable, we get the claim.

ii) ⇒ iii) Since χ is measurable, by Fubini Theorem ([13, Theorem 6.46]) we have
that a.e. section of χ is measurable, namely for a.e. t ∈ I χ(·, t) is measurable. Since
χ is continuous with respect to the variable t, we obtain the claim.

iii) ⇒ ii) Fix n ∈ N and take a partition of I made of contiguous and disjoint
subintervals Ii having endpoints ai and bi = ai+1, with |ai − bi| ≤ 1

n
for every i. Let

us define χn(p, t) = χ(p, ai) for t ∈ Ii. Now, χn is a measurable map and, since the
fibers are continuous, we get χn → χ and so χ is measurable. �

Let us notice that, if Ω is a probability space with no atom and σ is a positive
measure on Γ, by Remark 1.1 there exists a lagrangian parametrization of σ, namely
χ̂ : Ω → Γ and so a lagrangian parametrization of σ given by the corresponding
χ : Ω× I → X.

Remark 1.2. We remark that in the following we shall use microscopic motions
or lagrangian parameterizations of microscopic motions by considering them as two
equivalent descriptions. That is, we can argue in terms of particle motions or la-
grangian parameterizations in interchangeable way. Therefore any statement regard-
ing one of these objects can be translated into a statement regarding the other one, as
we shall often explicitly do. However, we shall consider any result established for par-
ticle motions automatically translated in terms of lagrangian parameterizations and
conversely and we shall adopt one of the two descriptions instead of the other one
without any further justification, even in the train of the same argument, according
to the convenience of the exposition.

Definition 1.3. We shall say that a microscopic motion σ ∈ P(Γ) is regular if it is
concentrated on the set of the absolutely continuous curves.

Definition 1.4. We shall say that a lagrangian parametrization χ : Ω × I → X is
regular if for a.e. p ∈ Ω, χ(p, ·) is absolutely continuous with respect to t.



12 F. MADDALENA, S. SOLIMINI

Obviously, if a microscopic motion σ is regular then it only admits regular parame-
terizations.

Definition 1.5. Let µ, ν ∈ P(X) be two given measures. We shall say that a regular
σ ∈ P(Γ) is an admissible motion between µ and ν on the interval I = [a, b] if
σ(a) = µ, σ(b) = ν. Let ΣI(µ, ν) denote the set of the admissible σ and Σ(µ, ν) be
the union of ΣI(µ, ν) for all the closed bounded intervals I ⊂ R.

Proposition 1.2. Let σ ∈ P(Γ) be regular and let χ : Ω × I → X be a (regular)
lagrangian parametrization of σ. Then for a.e. t ∈ I χ is differentiable with respect
to t for a.e. p ∈ Ω.

Proof. Let us point out that the set A of the pairs (p, t) where χ is differentiable
with respect to t is a measurable set. Indeed, for every (p, t) ∈ Ω× I, let

χ′+(p, t) = lim sup
h→0

χ(p, t + h)− χ(p, t)

h
,

χ′−(p, t) = lim inf
h→0

χ(p, t + h)− χ(p, t)

h
,

with h ∈ Q. Since χ : Ω × I → X is measurable, it is easy to check that χ′+ and
χ′− are measurable and so also the set where they coincide is measurable. By the
continuity of χ in the t variable, this set is A. Then Ac = (Ω× I) \A is measurable
and thus we can apply Fubini Theorem to compute (µΩ ×H1)(Ac) in terms of the
sections Sp = {t ∈ I | (p, t) ∈ Ac} and St = {p ∈ Ω | (p, t) ∈ Ac}, that is

(µΩ ×H1)(Ac) =

∫
Ω

H1(Sp)dµΩ(p) =

∫
I

µΩ(St)dH1(t).

Since, for a.e. p, χp is a.e. differentiable with respect to t, we have H1(Sp) = 0 for
a.e. p and so, by the previous equation, we get µΩ(St) = 0 for H1 a.e. t, which is
just a restatement of the thesis. �

If σ ∈ P(Γ) is a microscopic motion and χ : Ω × I → X is any lagrangian
parametrization of σ, we set

(1.9) Ωs = {p ∈ Ω | χp(t) = const. ∀t ∈ I} , Ωm = Ω \ Ωs.

We denote by µs and µm the restrictions of µΩ to Ωs and Ωm respectively and finally
we set

χs = χ|Ωs×I , χm = χ|Ωm×I .

Thus, with the notation in (1.5), we have σs = χs#µs and σm = χm#µm.
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1.6. Convergence of measures. For the reader’s convenience we recall some re-
sults, which are well known in Probability Theory literature, about convergence of
measures. We state them, without proof, by using the terminology introduced here
and we refer to [2], [4], [10] for the proofs and more details.

Let X be a Polish space and let Cb(X) be the space of bounded and continuous
real-valued functions defined on X.

Definition 1.6. A sequence (νn)n∈N in P(X) is narrowly convergent to ν ∈ P(X),
in symbols νn ⇀ ν, if

lim
n→∞

∫
X

fdνn =

∫
X

fdν ∀f ∈ Cb(X).

Definition 1.7. A sequence (νn)n∈N in P(X) satisfies the tightness condition if

∀ε > 0 ∃ Kε compact in X such that νn(X \Kε) < ε, ∀n ∈ N.

Theorem 1.1. (Prokhorov) Let (νn)n∈N be a sequence in P(X) satisfying the
tightness condition. Then it has a narrowly convergent subsequence.

Theorem 1.2. (Skorohod) Let (µn)n∈N be any given sequence of probability mea-
sures on a Polish space X an let (Ω, µΩ) be a given probability space without atoms.
Then µn ⇀ µ narrowly if and only if there exists a sequence (fn)n∈N of lagrangian
parameterizations of µn on Ω and there exists f lagrangian parametrization of µ on
Ω such that fn converges to f a.e.

The previous result is essentially proved in [10, Theorem 11.7.2]. If X = Γ, Sko-
rohod Theorem can be rephrased for microscopic motions, as stated in the next
corollary. Then we say that χ̂n converges to χ̂, in symbols χ̂n → χ̂, if χ̂n converges
to χ̂ a.e. in the topology of Γ or, more explicitly, in terms of the map χ, as in the
next definition.

Definition 1.8. Let (χn)n∈N be a sequence of lagrangian parameterizations defined
on Ω×I of microscopic motions. We say that χn converges to χ fiberwise, in symbol
χn → χ, if for a-e. p ∈ Ω (χn)p → χp uniformly on compact subsets of I.

Corollary 1.3. Let (σn)n∈N ⊂ P(Γ) be any given sequence of microscopic mo-
tions. Then σn ⇀ σ narrowly if and only if, for every n, there exists a lagrangian
parametrization χn of σn such that χn → χ, where χ is a lagrangian parametrization
of σ.

2. Transport costs and transport distances

2.1. Macroscopic and microscopic transport costs. Let us introduce the no-
tion of transport cost as a positive functional defined on transplacements. More
specifically, we shall define a macroscopic transport cost as a positive functional
defined on macroscopic transplacements, namely on pairs of probability measures,

C : P(X)× P(X) → R+ ∪ {+∞}
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which satisfies the symmetry property C(µ, ν) = C(ν, µ) for every µ, ν in P(X)
and a microscopic transport cost as a positive functional defined on microscopic
transplacements, namely on transport plans,

c : P(X ×X) → R+ ∪ {+∞}

which satisfies the symmetry property c(π) = c(πs) for every π ∈ P(X ×X). Then,
the micro-macro relation, previously observed dually, reflects here the fact that every
macroscopic cost induces a microscopic cost. On the other hand, we can consider
the optimal macroscopic cost C induced by a given microscopic cost c, defined by

(2.10) C(µ, ν) = inf
π∈Π(µ,ν)

c(π).

Whenever the transport cost c will be defined on a restricted class of transport
plans we shall take c = +∞ out of this class.

Let C be a given macroscopic transport cost and let

AC = {(µ, ν) ∈ P(X)× P(X) | C(µ, ν) < +∞} ,

we shall denote by DC the domain of the relation AC .

2.2. Transport distances.

Definition 2.1. A macroscopic transport cost d : P(X)× P(X) → R+ ∪ {+∞} is
a transport distance if the following conditions hold true:

D1. d is weakly lower semicontinuous (w.l.s.c.), that is l.s.c. with respect to the
narrow convergence;

D2. d satisfies the triangle inequality, i.e. d(µ, ν) ≤ d(µ, ζ)+ d(ζ, ν), for every µ,
ν, ζ in P(X).

Some remarkable examples of transport costs and transport distances are listed
below.

Let p ≥ 1, for every π ∈ P(X ×X), we define the microscopic cost

‖π‖p =

(∫
X×X

d(x1, x2)
pdπ

) 1
p

.

Example 2.1. The p-Wasserstein distance Wp between the measures µ and ν is
defined as the optimal macroscopic cost induced by ‖π‖p, namely

(2.11) Wp(µ, ν) = min
π∈Π(µ,ν)

‖π‖p .
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It is worth to notice that the p-Wasserstein distance induces the Lp distance on
the space of the parameterizations defined on a given Ω. Indeed, if π = (f × g)#µΩ,
then ∫

X×X

|x− y|pdπ =

∫
Ω

|f(x)− g(x)|pdx.

Following [10, Section 11.3], let us consider another example of transport distance.
Let A ⊂ X and ε > 0, we set

Nε(A) = {x ∈ X | d(x, A) < ε}.

Example 2.2. Let µ, ν ∈ P(X), the Prohorov distance ρ between the measures µ
and ν is defined as

ρ(µ, ν) = inf{ε > 0 | µ(A) ≤ ν(Nε(A)) + ε for any Borel set A ⊂ X}.

Notice that if µ and ν have the same total mass then the symmetry property
ρ(µ, ν) = ρ(ν, µ) can be proved.

Let us remark that the Wasserstein distance metrizes the narrow topology on
P(X) for X bounded, while the Prohorov distance does the same without any useless
boundedness assumptions. In alternative we can employ the following distance which
will be used several times in the sequel.

Example 2.3. Let µ, ν ∈ P(X), we define the weak distance dW as

dW (µ, ν) = inf
α∈R

{µ = µ1 + µ2, ν = ν1 + ν2|W∞(µ1, ν1) ≤ α, µ2(X) ≤ α, ν2(X) ≤ α}.

We leave to the reader to check that dW satisfies the triangle inequality, this can
be proved, for instance, by using a disintegration argument as [2, Theorem 6.4.1].

2.3. Transport distance induced by a macroscopic cost and chain distance.

Definition 2.2. Let C be a given macroscopic transport cost and let DC be the set of
the transport distances d such that d ≤ C. We define the transport distance induced
by C, dC, as

(2.12) dC(µ, ν) = sup
d∈DC

d(µ, ν).

Then dC is defined as the relaxation of C in DC and so it is the greatest weakly
l.s.c. transport cost satisfying the triangle inequality and less or equal to C.

Let us point out that the relaxation in DC is achieved by taking simultaneously
two envelopes, indeed we take the greatest functional less or equal to C which, at
the same time, satisfies the triangle inequality and is weakly l.s.c.. If we relax the
function in two different steps by taking the envelope with respect to one of the
two properties and then the envelope of this new function with respect to the other
property, we may not get the same result. Indeed, in general the two properties are
not preserved under a relaxation made with respect to the other one, as we are going
to show in the following counterexamples.
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Example 2.4. Let us take the function d : R → R+ defined by

d(x, y) =

{
|x− y| if xy > 0 or x = y = 0
|x− y|+ 1 otherwise.

Let us note that d satisfies the triangle inequality but it is is not l.s.c., indeed let us fix
x < 0 and consider d(x, yn) with yn → 0−. We get d(x, yn) → |x| < d(x, 0) = |x|+1.
By relaxing, we get the function d∗ defined as

d∗(x, y) =

{
|x− y| if xy ≥ 0
|x− y|+ 1 otherwise.

Since d∗(−1, 1) = 3 > 2 = d(−1, 0)+d(0, 1), d∗ does not keep the triangle inequality,
which is therefore not preserved under the relaxation operation.

Example 2.5. Let us consider Q2 = [0, 1]2 endowed with the natural topology and
let us take the function d : Q2 → R+ given by

d(x, y) =

{
1 if x2 6= y2,
|x1 − y1|1+x2 if x2 = y2.

The function d is l.s.c. but it does not satisfy the triangle inequality, if we take
d̂ = supg∈D g(x, y), where D denotes the set of the functions less or equal than d
and satisfying the triangle inequality, we have

d̂(x, y) =

 1 if x2 6= y2,
0 if x2 = y2 6= 0,
|x1 − y1| if x2 = y2 = 0.

It is easy to see that d̂ is not l.s.c..

Let us remark that R and R2 can be embedded in P(RN) with each point identified
with a Dirac mass and the natural topology sent in the narrow topology. Therefore,
through this identification, the above counterexamples apply to our situation and
so the two steps envelope which we are just going to introduce gives, in general, a
different function.

Given a transport cost C, we denote by d∗C the metric envelope of C, that is the
greatest functional less or equal than C, satisfying the triangle inequality.

Definition 2.3. Let C be a transport cost and let d∗C be its metric envelope. We
define the chain distance induced by C, dC, as the l.s.c. envelope of d∗C.

Remark 2.1. In spite of its misleading name, the chain distance is not necessarily
a distance. Indeed, it does not need to satisfy the triangle inequality, as shown by
the above examples (Example 2.4, in particular). On the contrary, by definition, for
every µ, ν ∈ P(X), we have

(2.13) dC(µ, ν) ≤ dC(µ, ν)
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and the equality holds if and only if dC satisfies the triangle inequality. So dC is
really a distance only when it is just equal to dC.

Given any chain ξ = (ξ0, ξ1, . . . , ξk), we introduce the projections p+, p− such
that p+(ξ) = ξ0 and p−(ξ) = ξk, moreover, given a macroscopic transport cost C,
we define the cost of ξ as

(2.14) C∗(ξ) =
k∑

i=1

C(ξi−1, ξi).

Let us recall that, given a microscopic cost c, for any i we get by (2.10) the induced
optimal macroscopic cost C(ξi−1, ξi) = infπi∈Π(ξi−1,ξi) c(πi), from which a cost C∗ is
in turn induced by (2.14) on the chains. Alternatively, we define the microscopic
cost of an admissible chain of transport plans π̃ ∈ Π(ξ0, . . . ξk) as

c∗(π̃) =
k∑

i=1

c(πi)

and we can characterize the cost of a chain of measures ξ as

(2.15) C∗(ξ) = inf
π̃∈Π(ξ0,...ξk)

c∗(π̃).

Let P(X) be the space of the chains on X.

Proposition 2.1. Let C be a given macroscopic transport cost. Then for every
µ, ν ∈ P(X) the following property holds true.

(2.16)

dC(µ, ν) = lim inf
ξ ∈ P(X)

p+(ξ) ⇀ µ,
p−(ξ) ⇀ ν

C∗(ξ).

Proof. Firstly we note that

d∗C(µ, ν) = inf
ξ ∈ P(X)
p+(ξ) = µ,
p−(ξ) = ν

C∗(ξ).

Then by relaxing d∗C we get (2.16). �

Remark 2.2. From (2.16) we can see clearly why dC is not in general a distance.
Indeed, we cannot join a chain used to evaluate dC(µ, ζ) and a chain used to evaluate
dC(ζ, ν) in order to get a good chain for estimating dC(µ, ν) because all what we
know about the final point of the first chain and the initial point of the second chain
is that they are both close to ζ in the narrow topology, so they are close among
themselves. This does not allow, in general, to fill the gap between the two chains
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with a third chain with a small C∗ cost. If this is the case, dC turns out to be a
distance. Nevertheless, we shall see that dC can be a distance even if such a condition
is not satisfied.

2.4. Integral of the infinitesimal costs. Let c be any given microscopic cost on
X, in the sequel we define the notion of infinitesimal cost of a given π ∈ P(RN×RN),
which can be viewed as the derivative of c along the direction in which the transport
plan π moves the mass. To this aim, we employ the notion of scaled transport plan
πλ introduced in Section 1.4.

Definition 2.4. We define the infinitesimal cost c0 as the l.s.c. relaxed of the cost
c defined on P(RN × RN) as

c(π) = lim sup
λ→0

c(πλ)

λ
.

Remark 2.3. Note that we are defining c0 on all of P(RN ×RN) by assuming also
c defined for all the transport plans on RN by extending it by +∞ out of P(X×X),
as assumed in general. Note that c0 turns out to be valued +∞ out of the set T of
the transport plans π concentrated on the set

(2.17) T = {(x, y) ∈ RN × RN | y belongs to the tangent cone at X in x}.

So c0 can be thought as defined on T .

Given any regular microscopic motion σ ∈ P(Γ), for every t by taking the la-
grangian parametrization pt : Γ → X ×X defined σ-a.e. on Γ

pt : γ 7→ (γ(t), γ′(t)),

we can define the infinitesimal displacement plan at t as

πt = (pt)#σ ∈ T .

Analogously, if we take χ : Ω× I → X as a lagrangian parametrization of σ, for a.e.
t we set for a.e. p

ϕt : p 7→ (χ(p, t),
∂χ

∂t
(p, t))

and then the infinitesimal displacement plan at t is also given by

(2.18) πt = (ϕt)#µΩ.

Note that πt can be regarded as a transport plan on RN . Then, given any regular
microscopic motion σ ∈ P(Γ), for a.e. t we define the infinitesimal cost as c(t) =
c0(πt).

Lemma 2.1. The infinitesimal cost t 7→ c(t) is a measurable function.
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Proof. We can assume, without any restriction, I = R by extending every fiber by
constant values on the two sides of I. Let

fh : t 7→ πh
t =

(
χ(·, t), χ(·, t + h)− χ(·, t)

h

)
#

µΩ.

Observe that the continuity of χ implies that fh : I → P(X×RN), with P(X×RN)
endowed with the narrow topology, is continuous and so it is measurable. Since for
a.e. t ∈ I χ is differentiable with respect to t for a.e. p ∈ Ω, we get that fh a.e.
converges in the narrow topology to πt as h → 0. Therefore the map t 7→ πt is
measurable, as a pointwise limit of a sequence of measurable mappings valued in a
metrizable space. Moreover, the map π 7→ c0(π) is l.s.c. by definition and so it is
Borel measurable. So t 7→ c(t) turns out to be the composition of a measurable map
with a Borel measurable map and thus it is measurable. �

For any regular σ ∈ P(Γ) we put

(2.19) J(σ) =

∫
I

c(t)dt =

∫
I

c0(πt)dt.

We shall refer to J(σ) as to the integral of the infinitesimal costs and, by recalling
Remark 1.2, we shall use the notation J(χ) or J(π) when we argue in terms of
lagrangian parameterizations χ of microscopic motions or when, in particular, we are
considering microscopic motions π concentrated in the space of uniform rectilinear
orbits, which can be identified as transport plans.

Definition 2.5. Let C be a given transport cost and let J be the corresponding
integral of the infinitesimal costs. We define kinematic distance induced by C

(2.20) dJ(µ, ν) = inf
σ∈Σ(µ,ν)

J(σ).

It is easy to check that the kinematic distance dJ satisfies the triangle inequality.
Moreover, let us remark that, by the homogeneity of c0 with respect to the scaling
operation of transport plans, we can replace Σ(µ, ν) with ΣI(µ, ν) in the definition
of dJ and the value of dJ(µ, ν) does not depend on the choice of the interval I, since
we are free to reparametrize t, obtaining the same total cost.

3. A Priori bounds and compactness criteria

3.1. Cost assumptions. Now we are going to introduce a set of general conditions,
(CA0)− (CA4), involving a given microscopic transport cost functional c : P(X ×
X) → R+ and the corresponding functions C, C∗ and J constructed from c in
Section 2.

Weak continuity

(CA0) ∀ ε > 0 ∃δ > 0 s. t. ∀µ, ν ∈ DC s. t. dW (µ− ν) < δ : d∗C(µ, ν) ≤ ε.
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Coercivity

(CA1) ∃ p > 1 s. t. ∀π ∈ P(X ×X) : c(π) ≥ ‖π‖p .

Interpolation

(CA2) ∀ π ∈ P(X ×X) : J(π) ≤ c(π).

Lower semicontinuity

(CA3) ∀ σn ⇀ σ on I : J(σ) ≤ lim inf
n

J(σn).

Discretization

(CA4)
∀ σ ∈ Σ(µ, ν), ∀ε > 0 ∃ ξ = (ξ1, . . . , ξk) s.t.

dW (p+(ξ), µ) < ε, dW (p−(ξ), ν) < ε, C∗(ξ) < J(σ) + ε.

By virtue of Corollary 1.3 the lower semicontinuity condition (CA3) can be
rephrased in terms of lagrangian parameterizations of microscopic motions as fol-
lows.

(CA3′) ∀ χn → χ on Ω× I : J(χ) ≤ lim inf
n

J(χn).

Let us remark that if C is a macroscopic cost satisfying (CA0), by Proposition 2.1
we infer that dC is a metric. Indeed (CA0) is just the sufficient condition discussed
in Remark 2.2. So we can state the following assertion.

Lemma 3.1. If C is a macroscopic cost satisfying (CA0) then dC = dC.

We observe that (CA0) is in general not satisfied by the macroscopic costs in
applications. Indeed, in Section 4 we will see that the irrigation cost, which depends
on a parameter α ∈]0, 1[, satisfies (CA0) only if α > 1 − 1

N
. Nevertheless, we will

show the equality of the chain distance and the transport distance for the irrigation
cost for every α ∈]0, 1[.

Let us point out that, if C is a transport cost satisfying (CA1), then c0(π) ≥ ‖π‖p

for every transport plan π, since ‖π‖p is 1-homogeneous with respect to scalings and
w.l.s.c..

The coercivity condition (CA1) allows to get a control on the time derivatives of
a given microscopic motion σ in terms of the integral of the infinitesimal costs, as
stated in the following proposition.
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Proposition 3.1. Let C be a transport cost satisfying (CA1). Then for any la-
grangian parametrization of a microscopic motion χ and with p as in (CA1), the
following estimate holds true.

(3.21)

∫
I

∫
Ω

∣∣∣∣∂χ

∂t
(q, t))

∣∣∣∣p dµΩ dt ≤
∫

I

c(t)pdt.

Proof. Let us consider a lagrangian parametrization χ defined on Ω×I. At any t ∈ I
let πt be the infinitesimal transport plan, then we have by (CA1) that c0(πt) ≥ ‖πt‖p.

Moreover, by writing (in the displacement plan version) πt as in (2.18), we have

c(t) ≥ ‖πt‖p =

(∫
Ω

∣∣∣∣∂χ

∂t
(q, t))

∣∣∣∣p dµΩ

) 1
p

.

Therefore, after integrating with respect to t, the previous relation trivially leads to
(3.21). �

As an immediate consequence of the previous result we have that, if c is in Lp(I),
then by (3.21) the Sobolev norm of the trajectories χq is finite, for a.e. q, that is
χq ∈ Hp(I) and so we can immediately deduce the following statement.

Corollary 3.1. Let C be a transport cost satisfying (CA1) and let χ : Ω×I → X be
any lagrangian parametrization of a given microscopic motion σ. If the infinitesimal

cost function c ∈ Lp(I) and p is as in (CA1), then χq ∈ C1− 1
p (I), for a.e. q ∈ Ω.

3.2. Compactness Theorems.

Theorem 3.2. (Tightness) Let (σn)n∈N be a given sequence of particle motions.
Let C be a transport cost satisfying (CA1) and for every n ∈ N let cn(t) be the
infinitesimal cost at t ∈ I of σn. If, for p as in (CA1), (cn)n∈N is bounded in Lp(I),
then, for any given t ∈ I, (σn)n∈N is tight if and only if (σn(t))n∈N is tight.

Proof. If (σn)n∈N is tight, then, since σn(t) = (pt)#σn for every n ∈ N and for every
t ∈ I, we have the tightness of (σn(t))n∈N. To prove the other implication, we fix
ε > 0 and fix for every n a lagrangian parametrization χn of σn on Ω × I. Since
(σn(t))n∈N is tight, for any given ε > 0 we have a compact subset Kε ⊂ X such
that, for every n, [σn(t)](X \Kε) < ε

2
, that is for every n we have An ⊂ Ω such that

µΩ(An) < ε
2

and χn(q, t) ∈ Kε for every q ∈ Ω\An. Furthermore, by Proposition 3.1,
if ‖cn‖Lp(I) ≤ c, we can find another set Bn ⊂ Ω such that µΩ(Bn) ≤ ε

2
and the

following estimate holds

(3.22) ∀q ∈ Ω \Bn :

∫
I

∣∣∣∣∂χn

∂t
(q, t))

∣∣∣∣p dt ≤ 2cp

ε
.

Let Ωn = Ω \ (An ∪ Bn). Let Qn be the set of fibers corresponding to points in Ωn

Then σn(Γ \Qn) = µΩ(An ∪ Bn) < ε. By (3.22) and Sobolev Embedding Theorem,
we know that the fibers in Qn are uniformly Hölder continuous and their value in t
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is contained in the compact set Kε. So we can apply Ascoli-Arzelà Theorem and we
get that Qn is contained in a compact subset of Γ which does not depend on n. �

Theorem 3.2 has two remarkable corollaries which we are going to state and which
respectively follow by Prokhorov Theorem (Theorem 1.1) and by Skorohod Theorem
(Corollary 1.3).

Corollary 3.3. (Narrow compactness) Let (σn)n∈N be a given sequence of mi-
croscopic motions on RN . Let C be a transport cost satisfying (CA1) and for every
n ∈ N let cn(t) be the infinitesimal cost function of σn. If, for p as in (CA1), (cn)n∈N
is bounded in Lp(I) and there exists t ∈ I such that σn(t) ⇀ σ ∈ P(X), then (σn)n∈N
has a narrowly converging subsequence.

Corollary 3.4. (Fiberwise compactness modulo equivalence) Let (χn)n∈N be
a given sequence of lagrangian parameterizations on Ω × I of microscopic motions
on RN . Let C be a transport cost satisfying (CA1) and for every n ∈ N let cn(t) be
the infinitesimal cost function of χn. If, for p as in (CA1), (cn)n∈N is bounded in
Lp(I) and there exists t ∈ I such that χn(·, t) converges a.e. to a measurable function
χ, then for every n ∈ N there exists χ′n equivalent to χn such that (χ′n)n∈N has a
fiberwise converging subsequence.

3.3. Main abstract results. Now, in this abstract scheme of assumptions on a
general transport cost, we are in a position to prove the following result stating
the well posedness of the problem of minimizing the integral of the infinitesimal
costs in a given class Σ(µ, ν). This is achieved, thanks to the previous compactness
properties, by applying the direct methods of the calculus of variations.

Theorem 3.5. (Existence of minimizers) Let C be a transport cost satisfying
(CA1), (CA3) and let µ, ν ∈ P(X) be given. Then there exists σ ∈ Σ(µ, ν) such
that

dJ(µ, ν) = J(σ).

Proof. Fix I and let (σn)n∈N be any minimizing sequence for J in ΣI(µ, ν). If
dJ(µ, ν) < +∞, otherwise we have nothing to prove, we know that the sequence
of the infinitesimal costs (cn)n∈N turns out to be bounded in L1(I). Under a change
of variable t 7→ ϕ(t), we can get it bounded in Lp for p as in (CA1). Then we can
apply Corollary 3.3 and so we have a converging subsequence. By virtue of (CA3)
J is lower semicontinuous and so we get the thesis. �

Besides the previous existence result, we are going to prove the next theorem
concerning the equivalence of the distances between measures, introduced here, in
the abstract framework based on the cost assumptions before. This result will follow
after some lemmas and it constitutes the main goal of this work.

Lemma 3.2. Let c be a transport cost satisfying (CA1)− (CA3). Then

dJ ≤ dC .
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Proof. By (2.16) there exists a sequence of chains (ξn)n∈N such that p+(ξn) ⇀ µ,
p−(ξn) ⇀ ν and C∗(ξn) → dC(µ, ν). By (2.15) we know that for every n there exists
a chain of compatible transport plans π̃n whose vertices are the components of ξn

and such that

c∗(π̃n) ≤ C∗(ξn) +
1

n
.

We view every π̃n as a piecewise rectilinear microscopic motion σn on I = [0, 1] and
by (CA2) we have

J(σn) ≤ c∗(π̃n),

so if dC(µ, ν) < +∞, otherwise we have nothing to prove, then J(σn) is bounded.
We can make a change of variable t 7→ ϕ(t) in such a way the sequence of the
infinitesimal costs (cn)n∈N turns out to be bounded in Lp for p as in (CA1). Then
we can apply Corollary 3.3 and so we obtain a narrowly converging subsequence to
a microscopic motion σ ∈ Σ(µ, ν). Finally by (CA3)

dJ(µ, ν) ≤ J(σ) ≤ lim
n

J(σn) ≤ lim
n

c∗(π̃n) ≤ lim
n

(
C∗(ξn) +

1

n

)
= dC(µ, ν).

�

The following statement trivially follows by Definition 2.3 and Definition 2.5.

Lemma 3.3. Let c be a transport cost satisfying (CA4). Then

dC ≤ dJ .

Finally, we can prove the equivalence between the transport distance, the chain
distance and the kinematic distance for a general transport cost satisfying the pre-
vious cost assumptions.

Theorem 3.6. Let C be a transport cost satisfying (CA1)− (CA4). Then

dC = dC = dJ .

Proof. By the two previous lemmas we have dJ = dC . Thus dC is a distance and so,
as observed in Remark 2.1, we get dC = dC . �

4. Irrigation cost and irrigation distance

4.1. Irrigation cost and integral of the infinitesimal irrigation costs. Let i
be an index varying in a finite set, for every i let xi, yi ∈ RN , with (xi, yi) 6= (xj, yj)
for i 6= j. Let π =

∑
i miδxi

⊗ δyi
and α ∈]0, 1[, we define the irrigation cost of π as

(4.23) cα(π) =
∑

i

mα
i |xi − yi|.

Then we define the microscopic transport cost functional cα : P(X × X) → R+

defined as in (4.23) if the transport plan π is given by a finite sum of Dirac masses
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and, in accordance to Section 2, cα(π) = +∞ for all the other transport plans
π ∈ P(X ×X).

Let us compute the irrigation cost in terms of a lagrangian parametrization. Let
π =

∑
i miδxi

⊗δyi
, let (Ω, µΩ) be a measurable set and let g = (g1, g2) be a lagrangian

parametrization of π on Ω. For all i let Ωi = g−1(xi, yi), then µΩ(Ωi) = mi. For p ∈ Ω,
we set

[p] = {q ∈ Ω | g(q) = g(p)}
representing the equivalence class of material particles which have the same initial
and final positions, so p ∈ Ωi means [p] = Ωi. Moreover, we define the solidarity
function

sα(p) = µΩ([p])α−1,

so we have

(µΩ(Ωi))
α =

∫
Ωi

sα(p)dp

and therefore

mα
i |xi − yi| =

∫
Ωi

sα(p)|g1(p)− g2(p)|dp,

from which

(4.24) cα(π) =

∫
Ω

sα(p)|g1(p)− g2(p)| dp

follows. To the aim of computing the infinitesimal irrigation cost let us observe that
cα being 1-homogeneous with respect to scalings, the infinitesimal cost coincides with
the l.s.c. relaxed c0

α of cα on T and so we argue as follows. It is easy to see by using
(1.5) that if π ∈ T the l.s.c. relaxed is given by c0

α(π) =
∑

i m
α
i |xi−yi| when, with the

notation introduced in (1.6) and in the subsequent comments, πm =
∑

i miδxi
⊗ δyi

is countably discrete and c0
α(π) = +∞ otherwise. The finiteness of the integral in

(4.24) implies that sα is finite µΩ almost everywhere on Ωm, where Ωm is as defined in
(1.9), and therefore µΩ a.e. p ∈ Ωm satisfies µΩ([p]) > 0. Therefore Ωm is decomposed
in (countably many) equivalence classes [p] of positive measure, excepted for a µΩ-
negligible set. So

∫
Ω

sα(p)|g1(p)− g2(p)| dp gives the value of c0
α(π) when it is finite

and, obviously, when it is equal to +∞. So the equality

(4.25) c0
α(π) =

∫
Ω

sα(p)|g1(p)− g2(p)| dp.

holds for π = g#µΩ ∈ T in every case.
Let a particle motion σ be given and fix a lagrangian parametrization χ on Ω× I.

To compute the integral of the infinitesimal irrigation costs of σ, we just need to
apply (4.25) to πt for any t ∈ I, taking into account that πt ∈ T and that

g = (χ(·, t), χ(·, t) +
∂χ

∂t
(·, t))

gives a lagrangian parametrization of πt. So fix t ∈ I and let
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(4.26) [p]∗t =

{
q ∈ Ω | χ(q, t) = χ(p, t),

∂χ

∂t
(p, t) =

∂χ

∂t
(q, t)

}
and

(4.27) s∗α(p, t) = µΩ([p]∗t )
α−1.

By (4.25), we can write the infinitesimal irrigation cost at the time t as

(4.28) c0
α(πt) =

∫
Ω

s∗α(p, t)

∣∣∣∣∂χ(p, t)

∂t

∣∣∣∣ dp

and then, provided we check the measurability of s∗α, the integral of the infinitesimal
irrigation costs is

(4.29) Jα(χ) =

∫
Ω×I

s∗α(p, t)

∣∣∣∣∂χ(p, t)

∂t

∣∣∣∣ dp dt.

Let us show that (4.29) holds and also admits a simpler variant, to this aim we
define

(4.30) [p]t = {q ∈ Ω | χ(q, t) = χ(p, t)}
and

(4.31) sα(p, t) = µΩ([p]t)
α−1.

We shall prove that the integral of the infinitesimal irrigation costs takes the same
value for the solidarity functions given by (4.27) and (4.31).

Proposition 4.1. Let χ be any regular lagrangian parametrization of a microscopic
motion. Then the functions sα and s∗α are measurable and, for a.e. (p, t) ∈ Ω × I,
we have sα(p, t) = s∗α(p, t).

Proof. Let us consider the sets

E = {(p, q, t) ∈ Ω2 × I | χ(p, t) = χ(q, t)},

E∗ = {(p, q, t) ∈ Ω2 × I | χ(p, t) = χ(q, t),
∂χ(p, t)

∂t
=

∂χ(q, t)

∂t
}

and their (p, t)-sections

Ep,t = {q ∈ Ω | (p, q, t) ∈ E},

E∗
p,t = {q ∈ Ω | (p, q, t) ∈ E∗}.

Since E and E∗ are measurable sets for the measure µΩ × µΩ × H1, by Fubini
Theorem [13, Theorem 6.46] we have that the section maps (p, t) 7→ µΩ(Ep,t) and
(p, t) 7→ µΩ(E∗

p,t) are both measurable and so also the maps s and s∗ are measurable.

Then we shall prove that (µΩ×µΩ×H1)(E \E∗) = 0. To this aim we observe that,
for a.e. p, q ∈ Ω, since the maps χp and χq are a.e. differentiable, then for a.e. t where



26 F. MADDALENA, S. SOLIMINI

χp(t) = χq(t), we have ∂
∂t

χp(t) = ∂
∂t

χq(t). Then for almost every (p, q)-section Sp,q

of E \ E∗ we have H1(Sp,q) = 0 and so, by Fubini Theorem again, we can conclude

(µΩ × µΩ ×H1)(Ep \ E∗
p) =

∫
H1(Sp,q)dp dq = 0.

So the section maps, and therefore the maps s and s∗ agree for a.e. (p, t). �

4.2. Properties of the irrigation cost. We shall check now the abstract condi-
tions (CA0-4) for the irrigation cost cα.

Lemma 4.1. The irrigation cost cα satisfies the cost assumption (CA0) if and only
if α is large, (i.e. α > 1− 1

N
) and X is bounded.

Proof. The fact that, if α is large and X is bounded, cα satisfies (CA0) is essentially
proved in [21, Theorem 4.1], so we shall prove the reverse implication. If X is not
bounded, given any ε, δ > 0, we can find x, y ∈ X such that setting µ = δδx and
ν = δδy one has dW (µ, ν) ≤ δ and dcα(µ, ν) ≥ W1(µ, ν) = δ|x − y| > ε, so (CA0)
does not hold in such a case.

Let µ ∈ P(X) be a given atomic measure, we fix S ∈ X and denote by e(µ)
the infimum of the energy E(χ) defined on the irrigation patterns χ ∈ PS(Ω) with
µχ = µ (see [17]), that is µ is the irrigated measure. Let ν ∈ P(RN) be another
atomic measure, and let π ∈ Π(µ, ν). Then, by the definition of E in [17] and the
Pruning Theorem [8, Theorem 7.1] we can easily check that e(ν) ≤ e(µ)+ cα(π). By
iterating, we can pass to a chain of transport plans and so, for every µ, ν, we get

(4.32) e(ν) ≤ e(µ) + d∗C(µ, ν).

Let µ ∈ P(X) be any given measure, we take a sequence (µn)n∈N, made of atomic
measures, approximating µ, i.e. µn ⇀ µ. If (CA0) holds, since (µn)n∈N is a Cauchy
sequence for dW , then for every n ∈ N there exists mn ∈ N such that for every
h, k ≥ mn

(4.33) d∗C(µk, µh) ≤
1

2n
.

Set µ′n = µmn , for every n ∈ N, we have

d∗C(µ′n, µ
′
n+1) ≤

1

2n
.

By virtue of the l.s.c. of the functional E and by (4.32), (4.33), we get

e(µ) ≤ lim
n

e(µ′n) ≤ e(µ′1) + 1 < +∞,

then µ is an irrigable measure (see [9]). By [9, Corollary 1.2] and the arbitrariness
of µ this implies α > 1

N ′ . �

Lemma 4.2. For every α ∈]0, 1[, the irrigation cost cα satisfies the cost assumption
(CA1) for p = 1

α
.
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Proof. Let π =
∑

i miδxi
⊗ δyi

(otherwise cα(π) = +∞ and we have nothing to
prove). For every i we put di = |xi − yi|, then cα(π) =

∑
i m

α
i di. For every i

mα
i di ≤ cα(π),

from which we deduce

mα−1
i ≥ cα(π)

α−1
α

d
α−1

α
i

.

Therefore

cα(π) =
∑

i

mα−1
i midi ≥ cα(π)

α−1
α

∑
i

mid
1−α−1

α
i

and so

cα(π)
1
α ≥

∑
i

mid
1
α
i ,

which gives

cα(π) ≥

(∑
i

mid
1
α
i

)α

= ‖π‖ 1
α

.

�

Lemma 4.3. The irrigation cost cα satisfies the cost assumption (CA2).

Proof. Let π =
∑

i miδxi
⊗δyi

(otherwise cα(π) = +∞ and we have nothing to prove),
I = [0, 1] ⊂ R and χ be any lagrangian parametrization of π. We can compute by
(4.28) the infinitesimal cost at any t as

c(t) = c0
α(πt) =

∑
i

mα
i |yi − xi|.

Therefore,

Jα(χ) =

∫
I

c(t)dt =
∑

i

mα
i |yi − xi| = cα(π).

�

To the aim of proving that the irrigation cost cα satisfies the cost assumption
[CA3], we need the next result, for which we introduce the following notation.
If (χn)n∈N is any sequence of lagrangian parameterizations of microscopic motions
defined on Ω× I, for every n ∈ N we set

[p]nt = {q ∈ Ω | χn(q, t) = χn(p, t)} ,

sn
α(p, t) = µΩ([p]nt )α−1.

Lemma 4.4. If χn → χ, then for a.e. p in Ω

sα(p, ·) ≤ Γ−lim inf
n

sn
α(p, ·).
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Proof. Firstly we recall that by definition, for every p,

Γ−lim inf
n

sn
α(p, t) = inf

tn→t
(lim inf

n
sn

α(p, tn)).

We fix p ∈ Ω, t ∈ I and a sequence tn → t. We set m = lim supn µΩ([p]ntn) and
introduce the following sets:

An =
⋃
k≥n

[p]ktk , A =
⋂
n

An.

Notice that (An)n∈N is decreasing and, for every n ∈ N, µΩ(An) ≥ m and so µΩ(A) ≥
m. We claim that, for almost every choice of p, A ⊂ [p]t modulo a null set. To prove
this inclusion we proceed as follows. By hypotheses we have that for a.e. q ∈ Ω, (χq)n

locally uniformly converges to χq. We can assume that this property is enjoyed by
p and by a given point q ∈ A. Then q ∈ An for every n and so q ∈ [p]ntn for infinitely
many n and for such values of n we have χn(p, tn) = χn(q, tn). Since the convergence
is locally uniform and tn → t, we can conclude by (1.3) that χp(t) = χq(t), i.e.
q ∈ [p]t and so we get the claim A ⊂ [p]t. Therefore, we have

sα(p, t) = µΩ([p]t)
α−1 ≤ µΩ(A)α−1 ≤ mα−1 = lim inf

n
µΩ([p]ntn)α−1 = lim inf

n
sn

α(p, tn)

and so, by taking the infimum in the last bound among the sequences (tn)n∈N con-
verging to t, we get the thesis. �

Lemma 4.5. The irrigation cost cα satisfies the cost assumption [CA3].

Proof. We shall prove [CA3′], so let (χn)n∈N be any fiberwise converging sequence
to χ, we have to prove

(4.34) Jα(χ) ≤ lim inf
n→∞

Jα(χn).

For every n ∈ N and any given p, let µn be the measure on I whose density is given
by
∣∣∂χn

∂t
(p, t)

∣∣ and let µ be the measure on I whose density is given by
∣∣∂χ

∂t
(p, t)

∣∣.
Since χn → χ, then for a.e. p, ∂χn

∂t
(p, t) ⇀ ∂χ

∂t
(p, t) in the sense of distributions and

thus we have

µ(A) ≤ lim inf
n→+∞

µn(A)

for every open subset A ⊂ I. Now, the above estimate and Lemma 4.4 allow to
apply [5, Proposition 5.5] which states that, under these hypotheses, for a.e. p, the
following relation holds true∫

I

sα(p, t)dµ ≤ lim inf
n→+∞

∫
I

sn
α(p, t)dµn.

Finally, by integrating with respect to µΩ and by applying Fatou Lemma, we get
(4.34). �
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4.3. Pruning Theorem and Discretization Property. The proof that cα sat-
isfies the discretization property [CA4] is more complex and requires a result like
the Pruning Theorem, stated in [8] in the case of the irrigation patterns. Then we
proceed to state some preliminary lemmas which will allow us to prove the Pruning
Theorem below, which is suited for the context studied in this paper. The first result
we are going to prove says that a minimum of Jα in Σ(µ, ν) enjoys a property called
here no-cycle property, which is the variant of the analogous property established for
the irrigation patterns in [8, Theorem 6.17] needed in this section. We limit ourselves
to give a sketch of the proof and other related concepts and refer the reader to [18]
for a more detailed study of this kind of properties.

Definition 4.1. Let χ be a lagrangian parametrization defined on Ω × I of a mi-
croscopic motion. We shall say that χ satisfies the no-cycle property if, fixed any
t1, t2 ∈ I, t1 < t2, if A is the intersection of two equivalence classes of material
points at t1 and t2 respectively, for a.e. p, q ∈ A the equality χp(t) = χq(t) holds for
every t ∈ [t1, t2].

Let us call flow curve any measurable γ : J → RN , where J ⊂ I is an interval,
such that there is a set of material points p with strictly positive measure such that
χ(p, t) = γ(t) at every t ∈ J . Let D be the set of (p, t1, t2) such that χp coincides with
a flow curve γ in t1 and t2 but it does not coincide with γ in [t1, t2]. Since the flow
curves are continuous and on a fixed interval there are countably many flow curves,
it is easy to check that D is a measurable set. The no-cycle property implies that
every (t1, t2)-section of D is a µΩ-negligible set. Then, by applying Fubini Theorem
as in Proposition 1.2 and Proposition 4.1, we deduce that for a.e. p ∈ Ω the p-section
of D is a negligible set and so we can state the following property

(4.35) for a.e. t1, t2 ∈ I, t1 < t2 and ∀t ∈ [t1, t2] : [p]t1 ∩ [p]t2 ⊂ [p]t

modulo a negligible set.

Lemma 4.6. Let µ, ν ∈ P(RN) be two given measures and let χ, defined on Ω× I,
be a minimum of Jα in Σ(µ, ν). Then χ has the no-cycle property.

Proof. Let χ be a minimum of Jα as in the hypotheses. Fix t1 < t2 in I and let A
denote the intersection of two equivalence classes of material points at t1 and t2 and
assume that µΩ(A) = a > 0. Let us consider the modification of χ on [t1, t2] given
for every p ∈ A by

χp(q, t) =

{
χ(p, t) if q ∈ A, t ∈ [t1, t2]
χ(q, t) otherwise.

Let c, cp be the infinitesimal cost functions of χ and χp respectively, let c be the
average cost of χp, defined for t ∈ I as

c(t) =
1

a

∫
A

cp(t) dµΩ.
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We claim that for almost every t ∈ [t1, t2] c(t) ≤ c(t). Indeed, fix t ∈ [t1, t2] such that
c(t) is finite and ∂χ

∂t
is constant a.e. in all the equivalence classes [p]t. Proposition 4.1

ensures that this happens for a.e. t ∈ I. For such values of t we shall denote by Ai the
(countably many) equivalence classes at t on which the constant value vi of |∂χ

∂t
(p, t)|

is different from zero. Now we set ai = µΩ(Ai ∩A), a = µΩ(A) and bi = µΩ(Ai \A).
With this notation, it is easy to check that

c(t) =
∑

i

(bi + ai)
αvi,

c(t) =
∑

i

(
ai

a
(bi + a)α +

a− ai

a
bα
i

)
vi.

Note that ai

a
(bi + a) + a−ai

a
bi = bi + ai and so the concavity of the mapping x 7→ xα

yields the claim c(t) ≤ c(t), holding the equality only if for every i either ai = 0 or
ai = a. Since χ minimizes Jα, then this must be the case for a.e. t ∈ [t1, t2]. Then,
by applying standard arguments of measure theory and by virtue of the continuity
of χ with respect to the time variable t, we get the thesis. �

Lemma 4.7. Let µ, ν ∈ P(RN) be two atomic measures and let σ be a minimum
of J in Σ(µ, ν). Then σ has the structure of a finite graph and there exists a chain
ξ ∈ P(RN), whose components are atomic measures, such that p+(ξ) = µ, p−(ξ) = ν
and C∗

α(ξ) = Jα(σ).

Proof. Let µ =
∑

i miδxi
, ν =

∑
j njδyj

, by denoting by χ a lagrangian parametriza-

tion of σ on Ω× [a, b], we introduce the sets

Ωij = {p ∈ Ω | χ(p, a) = xi, χ(p, b) = yj}
which constitute a finite partition of Ω. Now, by Lemma 4.6, almost all the points
p ∈ Ωij have the same orbit χ(p, ·) = γij and the boundary of the set of the points t
in which two different curves γij and γhk coincide contains at most two points. We
denote by ti such values of t, which are therefore in a finite number. Then we have

Jα(σ) =
∑

i

Jα(σ|[ti,ti+1]).

Let σi = σ|[ti,ti+1], we introduce the map pi : Γ → RN × RN given by pi(γ) =
(γ(ti), γ(ti+1)) and let

(4.36) πi = (pi)#σi.

We claim that, for every i,
Jα(σi) = cα(πi).

Indeed, though σi is not necessarily a uniform rectilinear motion, we know by the
definition of the points ti that the motions of material particles either have the same
trajectory or have always different positions and so we can reparametrize all the
orbits with uniform velocity without changing the value of Jα. Now, let ξ be the
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chain of the vertices of the chain of transport plans π̃ whose components πi are given
by (4.36). We finally obtain

c∗α(ξ) =
∑

i

cα(πi) =
∑

i

Jα(σi) = Jα(σ).

�

Let us introduce some notation and definitions which are essentially the two-sided
version of those stated in [8]. Let σ be a particle motion and let χ be a lagrangian
parametrization of σ on Ω× I, for every p ∈ Ω we set

τ−(p) = sup {t ∈ I : | χ(p, s) = const. ∀s ≤ t} ,

τ+(p) = inf {t ∈ I : | χ(p, s) = const. ∀s ≥ t} .

Lemma 4.8. τ− and τ+ are measurable functions.

Proof. Let us consider the function τ−. We show that for every a ∈ R the level set
La = {p ∈ Ω | τ−(p) ≥ a} is measurable. To this aim we observe that, for any real a,
τ−(p) ≥ a if and only if for every t1, t2 ≤ a, χ(p, t1) = χ(p, t2). Then, by introducing
Zt1,t2 = {p ∈ Ω | χ(p, t1) = χ(p, t2)}, we have that the set Zt1,t2 turns out to be
measurable since the functions χ(·, t1) and χ(·, t2) are both measurable. By virtue
of the continuity of χ with respect to t we get

La =
⋂

t1,t2≤a

Zt1,t2 =
⋂

t1, t2 ≤ a
t1, t2 ∈ Q

Zt1,t2

and so La is measurable since it is a countable intersection of measurable sets.
Analogous proof can be carried out for τ+. �

Let us notice that τ−(p) < τ+(p) if and only if p ∈ Ωm. By (1.6), for every t, σ(t)
can be decomposed as σs +σm(t). If σ ∈ Σ[0,1](µ, ν),we put µ1 = ν1 = σs µ2 = σm(0),
ν2 = σm(1).

Lemma 4.9. Let σ ∈ P(Γ) be a microscopic motion of minimal cost and let χ be
a lagrangian parametrization of σ on (Ω, µΩ). Then, for a.e. p ∈ Ωm and for every
ε > 0 there exists s ∈ Q ∩ [τ−(p), τ−(p) + ε] such that µΩ([p]s) > 0.

Proof. Fix ε > 0 and take p ∈ Ωm such that
∫

I
s(p, t)|∂χp

∂t
| dt < ∞ and (4.35) holds.

There exists I∗ ⊂ [τ−(p), τ−(p) + ε] with H1(I∗) > 0, such that for every t ∈ I∗
∂χp

∂t
(t) 6= 0. For a.e. t ∈ I∗ we have s(p, t) < +∞, namely µΩ([p]t) > 0. Therefore,

since I∗ is an uncountable set and µΩ(Ω) < +∞, there exist t1, t2 ∈ I∗ with t1 < t2
such that µΩ([p]t1∩[p]t2) > 0. It is also easy to see that we can avoid the negligible set
of the pairs (t1, t2) considered in (4.35). Thus, let us fix s ∈ Q such that t1 < s < t2,
since σ is a minimizer then we can apply Lemma 4.6, so we know by (4.35) that
[p]t1 ∩ [p]t2 ⊂ [p]s and therefore µΩ([p]s) > 0. �
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We observe that for every t ∈ Q ∩ I, the set Vt of all the equivalence classes [p]t
of positive measure is a countable set. Let us consider all the pairs (A, t) where t is
a rational number and A is an equivalence class of positive measure at the time t.
Such pairs are also countably many, so they can be represented as the terms of a
sequence (An, tn)n∈N. Then the previous lemma can be restated as follows.

Lemma 4.10. For a.e. p ∈ Ωm and for every ε > 0 there exists n ∈ N such that
[p]tn = An, tn ∈ [τ−(p), τ−(p) + ε].

By the continuity of χ in the t-variable, by keeping the same notation, we can
deduce the following corollary.

Corollary 4.1. For a.e. p ∈ Ωm and for every ε > 0 there exists n such that p ∈ An

and |χ(p, 0)− χ(p, tn)| < ε.

Proof. Fix p and fix ε > 0, since χ is continuous with respect to t there exists δ(p)
such that

(4.37) |χ(p, 0)− χ(p, t)| = |χ(p, τ−(p))− χ(p, t)| < ε, ∀t ≤ τ−(p) + δ(p).

Then by applying Lemma 4.10 with ε replaced by δ(p), we get the thesis. �

Definition 4.2. Let χ be a lagrangian parametrization of a microscopic motion and
let τ−, τ+ : Ω → I, with τ− ≤ τ+, be two measurable functions. Let us consider the
mapping χ defined by setting for a.e. p and for every t ∈ I

χ(p, t) =

 χ(p, τ−(p)) if t < τ−(p)
χ(p, t) if t ∈ [τ−(p), τ+(p)]
χ(p, τ+(p)) if t > τ+(p).

We shall say that χ is the (τ−, τ+)-forced absorption of χ.

Theorem 4.2. (Pruning) Let χ be a lagrangian parametrization of minimal cost
on Ω× [0, 1]. For every ε > 0 there exists Ωε ⊂ Ωm and there exist two measurable
functions τ−, τ+ : Ωε → I, with τ−(p) < τ+(p) for a.e. p, such that the (τ−, τ+)-
forced absorption χ of χ|Ωε×I , inducing σ, enjoys the following properties:

(1) σ(0) and σ(1) are measures of finite support.

(2) dW (σ(0), µ2) ≤ ε, dW (σ(1), ν2) ≤ ε.

Proof. Fix ε > 0. With the notation in Corollary 4.1 we set

Ωn = {p ∈ An | |χ(p, tn)− χ(p, 0)| < ε} .

For every n, Ωn is a measurable set. Then, for a.e. p ∈ Ωm, we set by using the
previous corollary

τ−(p) = tn with n = min{k ∈ N | p ∈ Ωk}.
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By arguing in a symmetric way, we get the mapping τ+ and so we obtain, for a
fixed ε > 0, the (τ−, τ+)-forced absorption χ of χ|Ωm . Then σ(0) = χ(·, τ−(·))#µΩ

and σ(1) = χ(·, τ+(·))#µΩ, by construction, are concentrated on two countable sets
and so, by eliminating from Ωm a set of arbitrarily small measure, we can reduce
ourselves to the case that the supports are finite sets working on a subset Ωε ⊂ Ωm

such that µΩ(Ωm \ Ωε) < ε. Therefore we have just proved the statement (1) while
(2) follows by the definition of Ωn and the bound µΩ(Ωm \ Ωε) < ε. �

Corollary 4.3. Let σ ∈ Σ(µ, ν) be any admissible microscopic motion. For every
ε > 0 there exists a chain ξ such that dW (p+(ξ), µ) < ε, dW (p−(ξ), ν) < ε and
C∗(ξ) ≤ Jα(σ).

Proof. Fix ε > 0. By virtue of lemmas 4.2, 4.5 respectively, we know that the
irrigation cost cα satisfies the cost assumptions (CA1), (CA3) and so we are allowed
to apply Theorem 3.5 and take a minimum σ∗ of Jα in Σ(µ, ν) and a corresponding
lagrangian parametrization χ. Then we apply Theorem 4.2 to σ∗ and so we get two
atomic measures σ∗(0) and σ∗(1) such that dW (σ∗(0), µ2) ≤ ε

2
and dW (σ∗(1), ν2) ≤ ε

2
.

Then we apply again Theorem 3.5 and find σ′ minimizing J in Σ(σ∗(0), σ∗(1)).
Now, since σ∗(0) and σ(1) are atomic measures, by Lemma 4.7 we know that σ′ has
the structure of a finite graph and there is a chain ξ ∈ P(RN) whose components
are atomic measures and such that p−(ξ) = σ∗(0), p+(ξ) = σ∗(1) and

C∗(ξ) = Jα(σ′) ≤ Jα(σ∗) ≤ Jα(σ∗) ≤ Jα(σ).

Now let us focus the attention on Ωs which is made of points p such that χp(t) =
const. The measure µ1 (= ν1) can be approximated in the weak distance by a finite
supported measure µ such that dW (µ, µ1) < ε

2
. After adding µ to each term of ξ we

get a new chain ξ′ having the same cost of ξ, i.e. C∗(ξ′) = C∗(ξ) and connecting
σ∗(0) + µ to σ∗(1) + µ. Since

dW (σ∗(0) + µ, µ) ≤ dW (σ∗(0), µ2) + dW (µ, µ1) < ε

and, analogously, dW (σ∗(1) + µ, ν) < ε, the thesis follows. �

The following statement is an immediate consequence of the previous result.

Lemma 4.11. For every α ∈]0, 1[ the irrigation cost cα satisfies the cost assumption
[CA4].

4.4. Equivalence of the irrigation models and existence of minimizers.
The following result establishes the existence of minimizers of the integral of the
infinitesimal costs Jα in the class Σ(µ, ν). Indeed, by Lemma 4.2 and Lemma 4.5,
we are allowed to state the following particular case of Theorem 3.5.

Theorem 4.4. (Existence of minimizers) Let cα be the irrigation cost an let
Jα be the corresponding integral of the infinitesimal costs. Then, for every α ∈]0, 1[
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there exists σ ∈ Σ(µ, ν) such that

dJα(µ, ν) = Jα(σ).

Finally, we are in a position to state the following result which establishes the
equivalence of the main irrigation models proposed in literature. More precisely,
for the irrigation cost cα the variational model proposed by Xia in [21], which is
formalized in terms of flat chains on graphs, leads to a functional equal to the chain
distance dcα . Indeed a finite chain of discrete measures induces a graph in an obvious
way. The approach proposed in [3] is a variant of that in [17], the first one relies on a
functional expressed in terms of microscopic motions, which are called traffic plans
in [3], while the other one is formalized in terms of lagrangian parameterizations
and regards the irrigation patterns which are characterized by having a single Dirac
mass (the source) as initial measure. Both these approaches lead to a variational
model which is equivalent to the irrigation model based on the kinematic distance
dJα . Finally all of these approaches are equivalent to the formulation of the irrigation
problem based on the more abstract notion of transport distance dcα presented here.
We also remark that a close analysis of the full equivalence of the functionals involved
in all these approaches will be pursued in [18].

In other terms, by Lemma 4.3, Lemma 4.11 and Theorem 4.4, we have the fol-
lowing statement.

Theorem 4.5. (Characterization of the irrigation distance) Let cα be the
irrigation cost an let Jα be the corresponding integral of the infinitesimal costs. Then,
for every α ∈]0, 1[

dcα = dcα = dJα .
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