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Abstract

We consider the p–Laplacian operator on a domain equipped with a Finsler

metric. After deriving and recalling relevant properties of its first eigenfunc-

tion for p > 1, we investigate the limit problem as p → 1.
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1 Introduction

Imagine a nonlinear elastic membrane, fixed on a boundary ∂Ω of a plane
domain Ω. If u(x) denotes its vertical displacement, and if its deformation
energy is given by

∫

Ω |∇u|p dx, then a minimizer of the Rayleigh quotient
∫

Ω |∇u|p dx
∫

Ω |u|p dx

on W 1,p
0 (Ω) satisfies the Euler-Lagrange equation

−∆pu = λp |u|p−2u in Ω, (1.1)

where ∆pu = div(|∇u|p−2∇u) is the well-known p–Laplace operator. This
eigenvalue problem has been extensively studied in the literature. As p → 1,
formally the limit equation reads

−div

( ∇u

|∇u|

)

= λ1(Ω) in Ω, (1.2)

u = 0 on ∂Ω.

∗SHORT TITLE: p-Laplace eigenvalue problem in a Finsler metric
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For a precise interpretation of (1.2) see [21] or [30]. Naturally, here λ1(Ω) :=
limp→1+ λp(Ω). A somewhat surprising recent result is that the family of
eigenfunctions {up} converges in L1 cum grano salis to (a multiple of) the
characteristic function χCΩ

of a subset CΩ of Ω, a so called Cheeger-set, see
[19]. A Cheeger set of Ω is characterized as a domain that minimizes

h(Ω) := inf
D

|∂D|
|D|

with D varying over all smooth subdomains of Ω whose boundary ∂D does not
touch ∂Ω, and with |∂D| and |D| denoting (n−1)- and n-dimensional Lebesgue
measure of ∂D and D. The existence, uniqueness, regularity and construction
of such sets is discussed in [19] and [20] and its continuous dependence on Ω
in [16]. The paper [23] contains a numerical method for the calculation of
n-dimensional Cheeger sets and some three-dimensional examples. Cheeger
sets are of significant importance in the modelling of landslides, see [17], [18],
or in fracture mechanics, see [22]. Notice that a set D ⊆ Ω is a Cheeger set if
and only if it is a minimizer of

|∂E| − h(Ω)|E| for E ⊆ Ω. (1.3)

Now suppose that the membrane is not isotropic. It is for instance woven
out of elastic strings like a piece of material. Then the deformation energy
can be anisotropic, see [5]. Another way to describe this effect is by stating
that the Euclidean distance in Ω is somehow distorted. It is the purpose of
the present paper to generalize the above result on eigenfunctions and their
convergence as p → 1 to the situation, where Ω ⊂ R

n is no longer equippped
with the Euclidean norm, but instead with a general norm φ. In that case
a Lipschitz continuous function u : Ω 7→ R (in a convex domain Ω) has
Lipschitz constant L = supz∈Ω φ∗(∇u(z)), where φ∗ denotes the dual norm to
φ. Therefore the Rayleigh quotient studied in this paper is given by

Rp(u) :=

∫

Ω (φ∗(∇u))p dx
∫

Ω |u|p dx
(1.4)

on W 1,p
0 (Ω) and the Cheeger constant by

h(Ω) := inf
D⊂Ω

Pφ(D)

|D| , (1.5)

with Pφ denoting anisotropic perimeter in R
n (see (2.10) below). The mini-

mizer up of Rp satisfies the Euler-Lagrange equation

−Qpu := −div
(

(φ∗(∇u))p−2 J(∇u)
)

∋ λp|u|p−2u in Ω (1.6)
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in the weak sense [8], i.e.

∫

Ω
(φ∗(∇up))

p−2 〈η,∇v〉 dx = λp

∫

Ω
|up|p−2up · v dx (1.7)

for any v ∈ W 1,p
0 (Ω) and for a measurable selection η ∈ J(∇up), where the

function J : R
n → P(Rn) is defined as the subdifferential

J(ξ) := ∂

(

φ∗(ξ)2

2

)

. (1.8)

Note that the function J is single-valued iff the norm φ is strictly convex, i.e.
if its unit sphere {x : φ(x) = 1} contains no nontrivial line segments [34, pag.
400]. Note further that J(0) = 0 and that for the Euclidean norm the duality
map reduces to the identity J(∇u) = ∇u.

The paper is organized as follows. In Section 2 we fix some notation. In
Section 3 we recall and derive the existence, uniqueness, regularity and log-
concavity of solutions for p > 1. In Section 4 we derive the limit equation for
p → 1. In Section 5, we discuss in detail the two-dimensional case, proving
uniqueness of Cheeger sets in the convex case. In Section 6 we provide some
instructive examples.

2 Notation

We say that the norm φ is regular if φ2, (φ∗)2 ∈ C2(Rn). This includes for
instance φ(x) = ||x||q with q ∈ (1,∞) but excludes the crystalline cases q = 1
or q = ∞, see Section 6.

Given E ⊂ R
n and x ∈ R

n, we set

distφ(x,E) := inf
y∈E

φ(x − y), dE
φ (x) := distφ(x,E) − distφ(Rn \ E, x).

Notice that, at each point where dE
φ is differentiable, there holds

φ∗(∇dE
φ ) = 1. (2.9)

Let us define the (anisotropic) perimeter of E as

Pφ(E) := sup

{
∫

E
divη dx | η ∈ C1

c (Rn), φ(η) ≤ 1

}

=

∫

∂∗E
φ∗(νE)dHn−1 ,

(2.10)
where ∂∗E and νE denote the reduced boundary of E and the (Euclidean)
unit normal to ∂∗E.
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Given an open set Ω ⊆ R
n we define the BV -seminorm of v ∈ BV (Ω) as

∫

Ω
φ∗(Dv) := sup

{
∫

Ω
v divη dx | η ∈ C1

c (Rn), φ(η) ≤ 1

}

.

Given δ > 0, we define

Eδ
+ :=

{

x ∈ R
n| dE

φ < δ
}

= E + δWφ,

Eδ
− :=

{

x ∈ R
n| dE

φ > −δ
}

,

Eδ
± :=

(

Eδ
−

)δ

+
⊆ E,

where Wφ := {x| φ(x) < 1}, also called Wulff shape, denotes the unit ball
with respect to the norm φ.

Given a compact set E ⊂ R
n with Lipschitz boundary, we denote by

nφ : ∂E → R
n any Lipschitz vector field satisfying nφ ∈ J(∇dE

φ ) a.e. on ∂E.
Moreover, we set

‖κφ‖L∞(∂E) := inf
nφ∈J(∇dE

φ
)
‖divτnφ‖L∞(∂E),

which represents the L∞-norm of the φ-mean curvature of ∂E. We make the
convention that ‖κφ‖L∞(∂E) = +∞ if the set E does not admit any Lipschitz

vector field nφ ∈ J(∇dE
φ ). We say that E is φ-regular if ‖κφ‖L∞(∂E) < +∞.

Notice that in the Euclidean case E is φ-regular iff ∂E is of class C1,1.
Moreover, the unit ball Wφ is always φ-regular and ‖κφ‖L∞(∂Wφ) = n− 1. To
see this, it is enough to consider the vector field nφ(x) = x/φ(x).

3 Existence, uniqueness, regularity and log-

concavity of solutions

Let Ω ⊂ R
n be a bounded open set. If we minimize the functional

Ip(v) =

∫

Ω
φ∗ (∇v)p dx on K := { v ∈ W 1,p

0 (Ω) | ||v||Lp(Ω) = 1 }, (3.1)

then via standard arguments (see [6]) a minimizer up exists for every p > 1
and it is a weak solution to the equation (1.6), with λp = Ip(up). Note that
Λp := Ip(up)

1/p is the minimum of the Rayleigh quotient

Rp(v) :=

(∫

Ω (φ∗(∇v))p dx
)1/p

||v||p
(3.2)
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on W 1,p
0 (Ω) \ {0}. Without loss of generality we may assume that up is non-

negative. Otherwise we can replace it by its modulus.
Moreover, as shown in [6] any nonnegative weak solution of (1.6) is neces-

sarily bounded and positive in Ω. If p > n, then up is also uniformly Hölder
continuous because of the Sobolev-embedding theorem and the equivalence of
the usual Sobolev norm with

||u||1,p :=

(
∫

Ω
|u|p dx

)1/p

+

(
∫

Ω
(φ∗(∇u))p dx

)1/p

. (3.3)

If the norm φ is regular and p > 1, one can even show that up ∈ C1,α(Ω).
Indeed, the function up minimizes

Jp(v) :=

∫

Ω
(φ∗(∇v))p − λp(Ω)|u|p dx,

and the theory for quasiminima in [15] implies that minimizers are bounded
(Thm. 7.5), Hölder continuous (Thm. 7.16) and satisfy a strong maximum
principle (Thm. 7.12), because one can easily check that up satisfies (7.71)
in [15]. Therefore up is positive. Once positivity is known, the uniqueness
follows from a simple convexity argument, see [4] or [6]. Moreover, from the
result in [11] one can conclude that up ∈ C0,β(Ω) for any β ∈ (0, 1). Finally,
if φ is regular, then up ∈ C1,α(Ω) according to [7], [25], [32], [33] or [12]. Let
us summarize these statements.

Theorem 3.1. For every p ∈ (1,∞) the nonnegative minimizer up of (3.1)
is positive, unique, belongs to C0,β(Ω) for any β ∈ (0, 1) and it solves (1.6) in
the weak sense. Moreover, if the norm φ is regular then up is of class C1,α(Ω)
for some α ∈ (0, 1). Finally, if Ω is convex, then up is log-concave and the
level sets set {up > t} ⊆ Ω are convex for all t > 0.

To prove the last statement, we follow Sakaguchi’s approach from [28],
first for strictly convex Ω and for a smooth norm φ. The general case follows
then from approximation arguments for Ω and φ. Log-concavity of a sequence
up,n is preserved under pointwise limits as n → ∞, because the inequality

log up,n

(

x1 + x2

2

)

≥ 1

2
log up,n(x1) +

1

2
log up,n(x2) in Ω × Ω

is stable under such limits. If up solves (1.6), then vp := log up solves

−div
(

(φ∗(∇v))p−2 J(∇v)
)

= (p − 1)φ∗(∇v)p + λp in Ω (3.4)

and this degenerate elliptic equation can be approximated by a nondegenerate
one

−div

(

(

ε + (φ∗(∇v))2
)

p−2
2 J(∇v)

)

5



= (p − 1 − ε)(φ∗(∇v))2(ε + (φ∗(∇v))2)
p−2
2 + λp. (3.5)

Modulo yet another approximation by a right hand side which is strictly mono-
tone in v, equation (3.5) is now amenable to Korevaar’s concavity maximum
principle which states that the concavity function

C(x1, x2) := v

(

x1 + x2

2

)

− 1

2
v(x1) −

1

2
v(x2) ∈ Ω × Ω

can attain a negative minimum only on the boundary of Ω×Ω. The latter is
ruled out, however, because of the boundary condition.

Remark 3.2. We should point out that without uniqueness of up the approx-
imation arguments would only yield log-concavity of a solution and not the
solution up.

4 The limit eigenvalue and eigenfunction

for p → 1

The following estimate for λp is optimal (as p → 1) for any shape of Ω (see
[6]).

Theorem 4.1. (Cheeger type inequality) For every p ∈ (1,∞) the eigenvalue
λp(Ω) can be estimated from below as follows:

λp(Ω) ≥
(

h(Ω)

p

)p

. (4.1)

Here h(Ω) is the Cheeger constant of Ω as defined in (1.5). Moreover, as
p → 1, the eigenvalue λp(Ω) converges to h(Ω).

In the Euclidean case this is Cheeger’s original estimate [10] when p = 2,
and for general p it can be found in [24], [2], [26] and [31]. For a more general
φ one can easily modify their proofs by using the generalized coarea formula
from [13] or [14]. To prove the limiting behaviour of λp(Ω) as p → 1 we
proceed as in [19] and observe that (4.1) implies lim infp→1 λp(Ω) ≥ h(Ω).
Therefore it suffices to find a suitable upper bound. Let {Dk}k=1,2,... be a
sequence of regular domains for which Pφ(Dk)/|Dk| converges to h(Ω). We
approximate the characteristic function of each Dk by a function wk with the
following properties: w ≡ 1 on Dk, w ≡ 0 outside an ε–neighborhood of Dk

and φ∗(∇wk) = 1/ε in an ε–layer outside Dk. For small ε the function wk is
in W 1,∞

0 (Ω) and provides the upper bound

λp(Ω) ≤ Pφ(Dk)

|Dk|
(αε)1−p . (4.2)
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Now one sends first p → 1, then k → ∞ to complete the proof of Theorem 4.1.
Let us normalize the eigenfunctions up to have L1-norm equal to 1 and

study the sequence (Λp, up) of eigenvalues and normalized eigenfunctions as
p → 1. For every p > 1 the function up minimizes

Jp(v) :=

∫

Ω
(φ∗(∇v))p − λp(Ω)|u|p dx

on Xp = {v ∈ W 1,p
0 (Ω); v ≥ 0 in Ω; ||v||1 = 1}. If one extends Jp to BV (Ω)

by setting it ∞ on BV \ Xp, the family Jp can be shown to Γ-converge to

J1(v) :=

∫

Ω
φ∗(Dv) − λ1(Ω)

∫

Ω
|v| dx

on X1 := {v ∈ BV (Ω); v ≥ 0 in Ω; ||v||1 = 1}. Notice that J1 ≥ 0 on X1.
Moreover up forms a minimizing sequence for J1 since

J1(up) =

∫

Ω
φ∗(∇up) − λ1

∫

Ω
|up| dx

≤
[
∫

Ω
(φ∗(∇up))

p

]
1
p

|Ω|p − 1

p
− λ1

∫

Ω
|up| dx

≤ 1

p

∫

Ω
(φ∗(∇up))

p dx +
p − 1

p
|Ω|

+(λp − λ1)

∫

Ω
|up| dx − λp

∫

Ω
|up|p dx

≤ Jp(up) +
p − 1

p
|Ω| + (λp − λ1)

∫

Ω
|up| dx

≤ p − 1 + λp − λ1. (4.3)

Here we have used the fact that |up| ≤ 1. Hence J1(up) → 0 as p → 1.
As a consequence, the family {up}p>1 is bounded in BV (Ω) and, after pos-

sibly passing to a subsequence, it converges strongly in L1 to a limit function
u1 ∈ X1 such that J1(u1) = 0. Using the coarea formula, one can see that for
all t ∈ [0,maxΩ u1) the level set Ωt := {u1 > t} is a Cheeger set. Thus we
have shown

Theorem 4.2. (Convergence of eigenfunctions) As p → 1, a subsequence
converges to a limit function u1 in X1, and almost all level sets Ωt := {u1 > t}
of u1 are Cheeger sets.

Remark 4.3. As a consequence of Theorem 4.2 and the logconcavity of up,
for convex Ω there exists a convex Cheeger set. Moreover, it follows from the
results of [9] that there exists a convex Cheeger set D ⊆ Ω which is maximal,
in the sense that any other Cheeger set of Ω must be contained in D. The
uniqueness of Cheeger sets is in general not true for nonconvex domains [20],
and an open problem for convex domains in dimension n > 2.
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Figure 1: The Cheeger sets D, D of Theorem 5.1.

5 The planar case

In this section we derive further properties of the function u1, under the
additional assumption n = 2. Let us begin with the following theorem, which
extends the analogous result in the Euclidean case [20, Th. 1].

Theorem 5.1. Let Ω ⊂ R
2 be a bounded open convex set. Then, there exists

a unique Cheeger set D ⊆ Ω. Moreover, D is convex and we have

h(Ω) =
1

t∗
, D = Ωt∗

± , (5.1)

where t∗ > 0 is the (unique) value t such that |Ωt
−| = t2|Wφ|.

Proof. Let D be a Cheeger set of Ω. Notice first that D is a convex set, since
otherwise we could replace it by its convex hull and reduce (1.3) (see [3, Th.
7.1]). Moreover, from the first variation of (1.3) it follows that the anisotropic
curvature of ∂D is bounded by h(Ω), and each connected component of ∂D∩Ω
is contained up to translation in 1

h(Ω)∂Wφ (see [27, Theorem 4.5]). Let D be

the open maximal Cheeger set of Ω (recall Remark 4.3), and let Γ ⊂ 1
h(Ω)∂Wφ

be a connected component of ∂D ∩ D. We denote by x, y ∈ Γ ∩ ∂D the
extremal points of Γ, and we let Γ′ be the arc of ∂D with extrema x, y and
lying in the same halfplane of Γ with respect to the straight line r passing
through x, y (see Figure 1). Reasoning as in [3, Lemma 7.3], it is easy to
show that both Γ and Γ′ can be written as graphs on r along some directions.
More precisely, there exists a vector v ∈ R

2, with |v| = 1, and two functions
f1, f2 : r → R such that 0 ≤ f1 ≤ f2 on [x, y], that min{f2(x), f2(y)} = 0,
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and that Γ = F1([x, y]) and Γ′ = F2([x, y]), with Fi(x) := fi(x)v, for i = 1, 2.
Without loss of generality, we shall assume that v ⊥ r. Since D and D are
both minimizers of (1.3), it follows that both f1 and f2 are minimizers of

G(f) :=

∫

[x,y]
φ∗(−f ′(s), 1) − h(Ω)f(s) ds . (5.2)

If φ is a regular norm, then the functional G is strictly convex, which implies
f1 = f2, i.e. D = D. For a general norm, one has to be more careful, since the
functional G is not strictly convex, but only convex. However, reasoning as in
[3, Lemma 8.2], the inclusion Γ ⊂ 1

h(Ω)∂Wφ and the inequality f1 ≤ f2 imply

‖κφ‖L∞(Γ′) ≥ h(Ω), with equality iff Γ = Γ′, which proves the uniqueness of
the Cheeger set D.

Let us now prove (5.1), reasoning as in [20, Th. 1]. It has been proved

in [3] that the convex set D = Ω
1/h(Ω)
± is a Cheeger set of Ω, hence it is the

unique Cheeger set of Ω. Therefore, it remains to prove that t∗ = 1/h(Ω), i.e.

∣

∣Ω
1

h(Ω)

−

∣

∣ =
|Wφ|
h(Ω)2

.

Let us recall from [1, Section 2.7],[29] the following Steiner-type formulae

|Cδ| = |C| + δPφ(C) + δ2|Wφ| ,
Pφ(Cδ) = Pφ(C) + δPφ(Wφ) . (5.3)

Incidentally, the second equation follows from the first one and, as in the
Eucliedean case, Pφ(Wφ) = 2|Wφ|. This follows from integrating divx on Wφ.

Applying (5.3) to C = D
1/h(Ω)
− and recalling that h(Ω) = Pφ(D)/|D|, we get

|D1/h(Ω)
− | =

|Wφ|
h(Ω)2

.

The claim now follows if we observe that

Ω
1

h(Ω)

− = D
1

h(Ω)

− .

Corollary 5.2. If n = 2 and Ω is a bounded convex set, then the sequence
of functions up converges to a multiple of the characteristic function of D.
Moreover, D = Ω if and only if

‖κφ‖L∞(∂Ω) ≤ h(Ω). (5.4)

In particular, (5.4) always holds in the case Ω = Wφ.
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6 Example and concluding remarks

If the norm under consideration for x ∈ Ω is the usual ℓq- norm, i.e. for
φq(x) = (

∑n
i=1 |xi|q)1/q, q ≥ 1. When q > 1, the dual norm of φq is given by

φ∗
q = φq′ , with q′ = q/(q − 1), and the duality map according to (1.8) is

Ji(y) = (|y|q′)2−q′ |yi|q
′−2yi.

Then the p-Laplace operator in this metric is given by (see [6])

Qp,qu =

n
∑

i=1

∂

∂xi

(

φq′(∇u)p−q′
∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

q′−2 ∂u

∂xi

)

,

and for q = 2 = q′ the norm φq′ is just the Euclidean norm and Qp,q reduces
to the well-known p-Laplace Operator

Qp,qu = ∆pu = div(|∇u|p−2∇u) .

For general q and p → 1 the operator Q1,q is formally given by

Q1,qu =
n
∑

i=1

∂

∂xi

(

[ |uxi
|

φq′(∇u)

]q′−2 uxi

φq′(∇u)

)

.

Again for q = 2 = q′ this expression shrinks down to the customary

Q1,2u = ∆1u = div

( ∇u

|∇u|

)

.

We complete this section with the construction of a particular Cheeger set
for a nonregular anisotropy. Let us fix n = 2 and consider the norm φ = φ1.
Notice that in this case the Wulff Shape Wφ has the shape of a rhombus. To
be precise, it is square of sidelength

√
2, centered in the origin and rotated by

π/2 with respect to the coordinate axes. Moreover, the dual norm φ∗ is given
by φ∗(y) = max{|y1|, |y2|}. To better illustrate the results of Section 5, let us
compute the Cheeger set (and Cheeger constant) of a square Q of sidelength
1 (see Figure 2).

Since in this case |Wφ| = 2 and Qt
− is a square of sidelength 1 − 2t, from

Theorem 5.1 we get t∗ = 1 −
√

2/2 and h(Q) = 2 +
√

2. It is interesting to
note that the Cheeger set of Q is a regular octahedron.
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Figure 2: The Cheeger set of a square with respect to the norm φ1.
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