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Abstract. We investigate a global-in-time variational approach to abstract evolution by means
of the weighted energy-dissipation functionals proposed by Mielke & Ortiz [MO08]. In par-
ticular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of
minimizers and approximate minimizers of these functionals to the unique solution of the gradi-
ent flow. Sharp convergence rates are provided and the convergence analysis is combined with
time-discretization. Applications of the theory to various classes of parabolic PDE problems are
presented. In particular, we focus on two examples of microstructure evolution from [CO08].

1. Introduction

Assume we are given a real Hilbert space H with scalar product (·, ·) and corresponding norm
| · |. Moreover, let the functional φ : H → (−∞,∞] be proper, lower semicontinuous, bounded
from below, and λ-convex for some λ ∈ R, i.e., u 7→ φ(u) − (λ/2)|u|2 is convex. Finally, let
f ∈ L2(0, T ;H), and u0 ∈ D(φ)

.

= {u ∈ H : φ(u) < ∞}. This note is concerned with the
classical gradient flow

u′ + ∂φ(u) ∋ f a.e. in (0, T ), u(0) = u0. (1.1)

Gradient flows can be regarded as the paradigm of dissipative evolution. They arise almost
ubiquitously in connection with applications and have hence attracted a constant attention dur-
ing the last four decades starting from the fundamental work by Kōmura [Kōm67], Crandall-

Pazy[CP69], and Brezis [Bre71, Bre73b]. It is beyond our purposes to even attempt to review
the huge existing literature on gradient flows. Let us however mention that, even restricting to
the present quite classical setting [Bre73b], relation (1.1) stems in a variety of different applica-
tions such as heat conduction, the Stefan problem, the Hele-Shaw cell, porous media, parabolic
variational inequalities, some classes of ODEs with obstacles, degenerate parabolic PDEs, and
the mean curvature flow for Cartesian graphs, among many others [NSV00], see Section 7 below.
More recently, following the pioneering work by Otto [Ott01], an even larger class of PDE prob-
lems have been translated into gradient flows by resorting to probability spaces endowed with
the Wasserstein metric. The reader is referred to the recent monograph by Ambrosio, Gigli,

& Savaré [AGS05] for a collection of results (let us however stress that the metric theory is
beyond the reach of the analysis presented here).

The general gradient-flow theory, although quite developed, is however not yet providing a
sound description of the evolution of nonlinear systems that develop evolving microstructures.
For these systems, the energy φ is generally not lower semicontinuous and equilibrium states
which minimize φ do not exist. At the stationary level, a classical solution to this obstruction
is the relaxation of the functional φ. Namely, one changes φ with its lower semicontinuous en-
velope sc−φ and interprets the respective minimization as an effective or macroscopic problem.
In the evolution case, the natural idea would be to introduce a functional on entire trajectories
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whose minimizers solve the gradient flow (1.1) and consider its relaxation. Moving from these
considerations Mielke & Ortiz [MO08] introduced a variational reformulation of evolution
problems as (limits of) minimizers of a class of global-in-time functionals. These functionals
feature the sum of the (scaled) energy and the dissipation, integrated in time via an exponen-
tially decaying weight. The resulting so-called weighted energy-dissipation (WED) functionals
Iε : H1(0, T ;H) → (−∞,∞] read, in the case of the gradient flow (1.1), as

Iε(v)
.

=

∫ T

0
e−t/ε

(

1

2
|v′|2 +

1

ε

(

φ(v) − (f, v)
)

)

dt. (1.2)

We will check in Subsection 2.4 that, for all ε small, the functional Iε admits a unique minimizer
in the closed convex set K(u0ε)

.

= {v ∈ H1(0, T ;H) : v(0) = u0ε} where u0ε is a suitable
approximation of u0 (see below).

The WED functional approach has been originally applied in [MO08] to the description of
rate-independent evolution, which, roughly speaking, corresponds to replacing 2 by 1 in (1.2).
Later on, the analysis of the rate-independent case has been extended and adapted to time-
discretizations in [MS08].

As for the gradient flow situation, a discussion on a linear case is contained in [MO08] together
with a first example of relaxation. More recently, two additional examples of relaxation related
with micro-structure evolution have been provided by Conti & Ortiz [CO08], see Section 7.
In the above-mentioned papers, the problem of proving the convergence uε → u is left open.
This question is solved here and our main result reads as follows.

Theorem 1.1 (Convergence). uε → u uniformly in H.

In the easiest possible setting, namely the scalar and linear case of

H = R, φ(u) = −u2/2, f = 0, u0 = 1, T = 1, (1.3)

the convergence result of Theorem 1.1 is illustrated in Figure 1.

Besides the stated uniform convergence, much more is true for we are in the position of
providing a quantitative statement, even in finer topologies (see Subsection 5.1 below). Moreover,
the assumptions on u0 can be substantially weakened (Subsection 5.2) and we obtain some novel
regularity results as a by-product (Subsection 5.3). Furthermore, the convergence analysis can be
extended to the case of sequences of approximate minimizers (Subsection 5.6) and combined with
time-discretization (Section 6). Finally, some application of the abstract theory to a collection
of examples of linear and nonlinear parabolic problems is provided in Section 7.

An important step toward the proof of Theorem 1.1 is the analysis of the Euler system for Iε
in K(u0ε). In particular, we prove that the minimizer uε fulfills

− εu′′ + u′ + ∂φ(u) ∋ f a.e. in (0, T ), (1.4a)

u(0) = u0ε, (1.4b)

u′(T ) = 0. (1.4c)

Namely, to minimize Iε is equivalent to perform an elliptic-in-time regularization of the gradient
flow (1.1). We shall stress that, at all levels ε > 0, causality is lost. Consequently, the conver-
gence for ε → 0 is generally referred to as the causal limit of (1.4). As the problem above is
second order in time, an extra boundary condition (1.4c) at the final point T is needed and our
choice for a homogeneous Neumann condition is motivated by simplicity. Other choices may be
considered and a specific alternative, originally proposed in [MO08], is commented in Subsection
5.7.

Before moving on, let us recall that the idea of taking the causal limit in an elliptic-in-time
regularization of a parabolic problem is not new. In the linear case, some results can be found
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Figure 1: Convergence in the special case (1.3). As ε → 0, the minimizers of Iε (dashed lines)
approach the solution of the gradient flow (solid line). Note that minimizers fulfill the artificial
homogeneous Neumann boundary condition at T (see (1.4c)).

in the classical monograph by Lions & Magenes [LM72]. As for the nonlinear case, this
procedure has been followed by Ilmanen [Ilm94] for proving existence and partial regularity of
the so-called Brakke mean curvature flow of varifolds. In [Gio96, Sect. 4] a conjecture suggests
the weighted functional

u 7→
∫

Ω×(0,∞)
e−t/ε

[

|utt|2 +
1

ε2

(

|∇u|2 + u2k
)

]

dxdt

as elliptic regularization for studying the wave equation utt = ∆u− ku2k−1.

Besides the WED functional approach here considered, a number of different variational
principles have been proposed for characterizing entire trajectories of evolution systems. In
the linear realm, we shall mention Biot’s work on irreversible Thermodynamics [Bio55] and
Gurtin’s principle for viscoelasticity and elastodynamics [Gur63, Gur64a, Gur64b] among many
others (see also the survey by Hlaváček [Hla69]). In the nonlinear setting, a crucial result is the
Brezis, Ekeland, & Nayroles principle [BE76a, BE76b, Nay76a, Nay76b] which specifically
focuses on the case of convex functionals φ. The literature on this principle is vast and the
reader is referred to the recent monograph by Ghoussoub [Gho08] and the papers [Ste08a,
Ste08c, Ste08b, Vis08] for additional information. Apart from the convex case, we shall record
the variational principle from De Giorgi, Marino, & Tosques which actually paved the way
to the analysis of gradient flow evolution in metric spaces (see [AGS05, MST89, RMS08, RSS08],
for instance). Finally, we mention Visintin [Vis01], where generalized solutions are obtained as
minimal elements of a certain partial-order relation on the trajectories.

2. Preliminaries

We shall collect here some notation, general assumptions, and a selection of classical results
on λ-convex functions and the corresponding gradient flows.
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2.1. Convexity and λ-convexity. Throughout the paper H is a real Hilbert space with scalar
product (·, ·) and norm | · |. Given the functional φ : H → (−∞,∞] with effective domain
D(φ) = {u ∈ H : φ(u) < ∞}, we recall that its Fréchet subdifferential ∂φ : H → 2H is defined
as

v ∈ ∂φ(u) iff u ∈ D(φ) and lim inf
w→u

φ(w) − φ(u) − (v,w − u)

|w − u| ≥ 0.

We denote by D(∂φ) the corresponding domain D(∂φ)
.

= {u ∈ H : ∂φ(u) 6= ∅}. The functional
φ is said to be proper if D(φ) 6= ∅ and λ-convex for some given λ ∈ R, if

v 7→ ψ(v) = φ(v) − λ

2
|v|2 is convex.

Equivalently, φ is λ-convex if and only if

φ(ru+ (1 − r)v) ≤ rφ(u) + (1 − r)φ(v) − λ

2
r(1 − r)|u− v|2 ∀u, v ∈ H, 0 ≤ r ≤ 1.

Let us explicitly remark that D(ψ) = D(φ), D(∂ψ) = D(∂φ), and ∂φ(v) = ∂ψ(v) + λv for all
v ∈ D(∂φ). In particular, the set ∂φ(v) turns out to be convex and closed. Hence, it possesses
a unique element of minimal norm which we indicate by (∂φ(u))◦.

A crucial tool in Convex Analysis is the Moreau-Yosida approximation ψδ : H → R of the
proper, convex, and lower semicontinuous function ψ : H → (−∞,∞] given, for all δ > 0, by

ψδ(u) = inf
v∈H

( |v − u|2
2δ

+ ψ(v)

)

∀u ∈ H.

Recall that ψδ ∈ C1,1(H) and that one has [Bre73b]

|Dψδ(u)| ≤ |(∂ψ(u))◦| and Dψδ(u) → (∂ψ(u))◦ ∀u ∈ D(∂ψ). (2.1)

For any proper functional φ : H → (−∞,∞] we denote by sc−φ the corresponding lower
semicontinuous envelope or relaxation, classically defined by

sc−φ(u)
.

= inf
{

lim inf
k→∞

φ(uk), uk → u strongly in H
}

.

2.2. Function spaces. Standard notation for spaces of vector-valued functions as Lp(0, T ;H),
C([0, T ];H), W 1,p(0, T ;H), and Hs(0, T ;H) will be used throughout, cf. [LM72]. Moreover, we
will consider the following characterizations of Besov spaces [BL76, Thm. 6.2.4, p. 142]

Bs
p q(0, T ;H)

.

= (Lp(0, T ;H),W 1,p(0, T ;H))s,q 0 < s < 1, 1 ≤ p, q ≤ ∞,

B−s
p′ q′(0, T ;H)

.

= (Bs
p q(0, T ;H))′ 0 < s < 1, 1 ≤ p, q <∞

where p′ and q′ are conjugate to p and q, respectively; and (X,Y )s,q denotes Lq interpolation.
Let us recall the identifications [Tri95, Rem. 4, p. 179], for all 0 < s < 1,

Hs(0, T ;H) = Bs
2 2(0, T ;H),

Cs([0, T ];H) = (L∞(0, T ;H),W 1,∞(0, T ;H))s,∞,

where the latter is the space of Hölder continuous functions endowed with the norm

‖u‖Cs([0,T ];H)
.

= ‖u‖C([0,T ];H) + sup
t6=r

|u(t) − u(r)|
|t− r| .
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2.3. General assumptions and well-posedness for (1.1). Unless otherwise stated, through-
out this analysis we shall assume the following

φ : H → (−∞,∞] is proper, lower semicontinuous, bounded from below

and u 7→ ψ(u)
.

= φ(u) − λ

2
|u|2 is convex, (2.2a)

f ∈ L2(0, T ;H), (2.2b)

u0 ∈ D(φ). (2.2c)

Note that the lower-bound request for φ can be weakened and is here chosen for the sake of
simplicity only. As for the λ-convexity assumption, note that any C1,1 perturbation of a convex
function turns out to be λ-convex (but see (5.6) below).

We assume from the very beginning that

minψ = ψ(0) = 0.

This can be achieved without loss of generality simply by replacing ψ (and hence φ), f , and u0,
by

ψ̃(u)
.

= ψ(u+ v) − (η, u) − ψ(v), f̃
.

= f − η, ũ0
.

= u0 − v

for some fixed v ∈ D(∂ψ) with η ∈ ∂ψ(v).

Let us recall that, the well-posedness of the gradient flow (1.1) follows from the classical
theory of [Kōm67, CP69, Bre71, Bre73b] (see also [AGS05]). Indeed, the assumption u0 ∈ D(φ)

can be weakened to u0 ∈ D(∂φ). In this case as well, a strong solution u ∈ H1
loc(0, T ;H) of (1.1)

uniquely exists.

2.4. Well-posedness for the minimum problem. In the convex case

λ−
.

= max{0,−λ} = 0

assumptions (2.2a)-(2.2b) guarantee that Iε admits a (unique) minimizer in K(w0) for any
w0 ∈ H. As for the general λ-convex case, existence and uniqueness of minimizers follow by
letting ε be small enough. More precisely, we have the following.

Proposition 2.1 (Well-posedness for the minimum problem). Let φ : H → (−∞,∞] be
λ-convex, f ∈ L2(0, T ;H), and w0 ∈ H. Letting ε be small enough, the functional Iε is
κε-convex in K(w0) with respect to the metric of H1(0, T ;H) for

κε
.

= ε2e−T/ε. (2.3)

In particular, Iε is uniformly convex in K(w0).

Additionally, if φ is lower semicontinuous, then Iε admits a unique minimizer in K(w0).

Proof. Let us start by decomposing Iε into the sum of a quadratic part Qε and a convex re-
mainder Rε as follows.

Iε(u) =

(
∫ T

0
e−t/ε

(

1

2
|u′|2 − λ−

2ε
|u|2
))

+

(
∫ T

0

1

ε
e−t/ε

(

ψ(u) − (f, u)
)

)

.

= Qε(u) +Rε(u). (2.4)
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In order to handle Qε, we will exploit the auxiliary function v(t)
.

= e−t/(2ε)u(t). As we readily
have that

e−t/(2ε)u′(t) = v′(t) +
1

2ε
v(t), (2.5)

the value Qε(u) can be rewritten in terms of v as

Qε(u) =

∫ T

0

(

1

2
|v′|2 +

1

2ε
(v′, v) +

1 − 4ελ−

8ε2
|v|2
)

=

∫ T

0

(

1

2
|v′|2 +

1 − 4ελ−

8ε2
|v|2
)

+
1

4ε
e−T/ε|u(T )|2 − 1

4ε
|u(0)|2

.

= Vε(v) +
1

4ε
e−T/ε|u(T )|2 − 1

4ε
|u(0)|2. (2.6)

Moreover, by possibly letting ε be small, standard computations lead to

e−T/ε‖u‖2
L2(0,T ;H) ≤ ‖v‖2

L2(0,T ;H) ≤ ‖u‖2
L2(0,T ;H), (2.7)

ε2e−T/ε‖u‖2
H1(0,T ;H) ≤ ‖v‖2

H1(0,T ;H) ≤ ε−2‖u‖2
H1(0,T ;H). (2.8)

Let now θ ∈ [0, 1] and u1, u2 ∈ K(w0) be given. Moreover, define vi(t)
.

= e−t/2εui(t) for
i = 1, 2. Arguing as in (2.6), for all ε small enough one deduces that

Qε

(

θu1 + (1 − θ)u2

)

= Vε(θv1 + (1 − θ)v2) +
1

4ε
e−T/ε|θu1(T ) + (1 − θ)u2(T )|2 − 1

4ε
|w0|2

≤ θVε(v1) + (1 − θ)Vε(v2) −
θ(1 − θ)

2

∫ T

0

(

|v′1 − v′2|2 +
1 − 4ελ−

4ε2
|v1 − v2|2

)

+
θ

4ε
e−T/ε|u1(T )|2 +

1 − θ

4ε
e−T/ε|u2(T )|2 − 1

4ε
|w0|2

= θQε(u1) + (1 − θ)Qε(u2) −
θ(1 − θ)

2

∫ T

0

(

|v′1 − v′2|2 +
1 − 4ελ−

4ε2
|v1 − v2|2

)

≤ θQε(u1) + (1 − θ)Qε(u2) −
θ(1 − θ)

2
‖v1 − v2‖2

H1(0,T ;H).

By exploiting the first estimate in (2.8), we have proved that Qε is κε-convex in K(w0) with
respect to the metric of H1(0, T ;H). As Iε = Qε +Rε and Rε is convex, the κε-convexity of Iε
follows as well.

Once the uniform convexity of Iε in K(w0) is established, the existence of a unique minimizer
is a consequence of the Direct Method whenever lower semicontinuity is assumed. �

The proof of Proposition 2.1 entails the existence of ε∗ > 0, possibly depending on λ− only,
such that, for all ε ∈ (0, ε∗), the functional Iε has a unique minimizer in K(w0). This can be
seen as a manifestation of the fact that, for small ε, we are close to the (causal) initial-value
problem, where we can expect existence and uniqueness. In the following, the parameter ε will
be assumed to fulfill ε ∈ (0, ε∗) throughout.

Note that, for large values of the parameter ε, existence of minimizers may fail. Let us give
an example for this fact. In order to keep the presentation simple, we shall consider a scalar
example, i.e. H = R, by dropping the lower boundedness assumption on φ. We consider

φ(u) = −u
2

4
, f = 0, w0 = 0.
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By fixing ε = 1, for simplicity, the corresponding WED functional reads

I1(u)
.

=

∫ T

0
e−t

( |u′|2
2

− u2

4

)

and we readily check that I1 is 2-homogeneous, namely I1(αu) = α2I1(u).

Let us firstly prove that inf I1 = −∞ in K(0), in particular no global minimizer exists. To

this aim it suffices to consider v(t)
.

= et/2 − 1 and compute

I1(v) = −T
8

+
1

4
(e−T − 1) + (1 − e−T/2)

so that, for T suitably large, I1(v) < 0. Then, by homogeneity, we have that I1(αv) → −∞ as
α→ ∞.

We now turn our attention to local minimizers. The Euler equation for I1 is

−u′′ + u′ − u

2
= 0

which, letting u(0) = 0, is solved by uα(t)
.

= αet/2 sin(t/2) for all α ∈ R.

If T 6= (3/2 + 2k)π, no choice of α 6= 0 fulfills u′α(T ) = 0. Namely, uα is not a local minimizer
for α 6= 0. Moreover, the trajectory δv (with v as above and δ > 0 small) is an admissible
perturbation of the trivial solution and I1(δv) = δ2I1(v) < 0 = I1(0). Namely, u = 0 is not a
local minimizer either.

If T = (3/2 + 2k)π, all α ∈ R give rise to a solution of the Euler system and one has that
I1(uα) = 0. Still, exactly as for u = 0 (see above), the functions uα are not local minimizers as

I1(uα + αδv) = α2I1(u1 + δv) = α2

(

I1(u1) + δ2I1(v) + δ

∫ T

0
e−t

(

u′v′ − 1

2
uv

))

= α2δ2I1(v) +
α2δ

2

∫ T

0
(e−t/2 − 1) sin(t/2) < α2δ2I1(v) < 0 = I1(uα)

and uα + αδv is a strict competitor of uα, for δ small.

Uniqueness of minimizers directly follows by uniform convexity if φ is convex or ε is small
(see above). In the general λ-convex case a uniqueness result for large ε is however not to be
expected. Indeed, by letting

φ(u) = IB(u) − u2

4
, f = 0, w0 = 0,

where IB is the indicator function of the interval B
.

= [−eT/2, eT/2], as the trajectory v is such
that I1(v) < 0 (for T large) and the functional is even, we have that I1 has two symmetric
minimizers (global).

2.5. Approximation of the initial datum. As we have already mentioned in the Introduc-
tion, the initial datum u0 of the gradient flow (1.1) is approximated here by a sequence u0ε

and the minimization of Iε will take place in K(u0ε). Following Brezis [Bré73a] (see also
[BS94, Bre75]), we introduce the interpolation sets Dr,p ⊂ H for 0 < r < 1, 1 ≤ p ≤ ∞ as

Dr,p = {u ∈ D(∂ψ) : ε 7→ ε−r|u− Jεu| ∈ Lp
∗(0, 1)}

where Jε = (id + ε∂ψ)−1 is the standard resolvent operator and Lp
∗(0, 1) is the Lp space

endowed with the Haar measure dε/ε. We will use the equivalence [Bré73a, Thm. 2]
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u0 ∈ Dr,p iff











∃ε ∈ [0, 1] 7→ v(ε) : v ∈W 1,1
loc (0, 1],

continuous in [0, 1], v(0) = u0, v(ε) ∈ D(∂ψ) a.e., and

ε1−r
(

|(∂ψ(v(ε)))◦ | + |v′(ε)|
)

∈ Lp
∗(0, 1).

As we have that u0 ∈ D(φ) ≡ D(ψ) ≡ D1/2,2 and D1/2,2 ⊂ D1/2,∞ [Bre75, Thm. 6], we fix

from the very beginning the sequence u0ε
.

= v(ε) → u0 in H in such a way that

ε−1/2|u0 − u0ε| + ε1/2|(∂φ(u0ε))
◦| ≤ c0, (2.9)

for some fixed c0 > 0 (recall that (∂φ(u))◦ = (∂ψ(u))◦ + λu). Note that the first term in the
left-hand side above is under control as

|u0 − u0ε| ≤
∫ ε

0
|v′(e)|de ≤ ε1/2

(
∫ ε

0

(

|v′(e)|e1/2
)2 de

e

)1/2

≤ ε1/2‖e 7→ e1/2v(e)‖L2
∗
(0,1).

In particular, we will use the fact that

φ(u0ε) = φ(u0) + ((∂φ(u0ε))
◦, u0ε − u0) ≤ φ(u0) + c20. (2.10)

Note that, as we shall comment below, in case u0 ∈ D(∂φ) no approximation u0ε is actually
needed and the minimization of Iε could be considered in the fixed K(u0) as well. A concrete
example of sets Dr,p is provided in Subsection 7.1.

2.6. Time-discretization. In the following, we shall also be considering the classical time-
discretization of the gradient flow (1.1) by means of the so-called implicit Euler scheme which,
given n ∈ N and the constant time-step τ = T/n, consists in the system

u0 = u0 and
ui − ui−1

τ
+ ∂φ(ui) ∋ f i for i = 1, . . . , n. (2.11)

Whenever a suitable approximation (f1, . . . , fn) ∈ Hn of f is given, the latter system turns out
to admit a unique solution (u0, u1, . . . , un) ∈ Hn+1 for τ small. In fact, (2.11) is equivalent to
the successive minimization problems

u0 = u0 and ui = Arg min
u∈H

( |u− ui−1|2
2τ

+ φ(u) − (f i, u)

)

for i = 1, . . . , n, (2.12)

where all of the functionals above are uniformly convex (for small τ) and lower semicontinous.

Given any vector (v0, . . . , vn) ∈ V n+1 (V = H, R), we will denote by vτ : (0, T ] → V and
vτ : [0, T ] → V the corresponding backward piecewise constant and piecewise affine interpolants
on the time-partition. Namely, we have

vτ (t) = vi, vτ (0) = v0, vτ (t) = αi(t)v
i + (1 − αi(t))v

i−1

for t ∈ ((i− 1)τ, iτ ], i = 1, . . . , n,

where αi(t) = (t− (i − 1)τ)/τ , for i = 1, . . . , n. Finally, we will also set δvi = (vi − vi−1)/τ , so
that, in particular, δvτ = v′τ . A basic convergence result for (2.11) is combined with the error
analysis by Ambrosio, Gigli, & Savaré [AGS05] (see also [NSV00]) in the following.

Lemma 2.2 (Convergence of time-discretizations). Let (f1
τ , . . . , f

n
τ ) be such that f τ → f strongly

in L2(0, T ;H) and (u0
τ , . . . , u

n
τ ) solve (2.11). Then uτ → u strongly in H1(0, T ;H) where u solves

(1.1).
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By letting f ≡ 0 and τ small enough (in particular λτ > −1), we have that

|(u− uτ )(t)| ≤ c1
√
τφ(u0)e

−2λτ t where λτ
.

= ln

(

1 + λτ

τ

)

(2.13)

where c1 depends solely on λ. Moreover, if u0 ∈ D(∂φ) we also have

|(u− uτ )(t)| ≤ c2τ |(∂φ(u0))
◦|e−2λτ t (2.14)

where c2 depends solely on λ.

Note that the factor e−2λτ t in (2.13)-(2.14) essentially plays the role of the exponential e−2λt.
In particular, if λ > 0 the error constant decays whereas if λ < 0 it deteriorates exponentially
with time. Although we restrict here to the error control for f ≡ 0 for the sake of simplicity, the
non-homogeneous case can be considered as well. The reader is referred to [NSV00] for some
results in this direction.

3. Euler equation

As already mentioned in the Introduction, our analysis relies on the specific structure of the
Euler equation for Iε, namely its linearity with respect to the time-derivatives. The aim of this
section is to provide some detail on the Euler system and we shall start form the following.

Theorem 3.1 (Euler equation). Let uε minimize Iε in K(u0ε). Then, uε ∈ H2(0, T ;H) and
there exists a function ξε ∈ L2(0, T ;H) such that

− εu′′ε + u′ε + ξε = f a.e. in (0, T ), (3.1)

uε(0) = u0ε, (3.2)

u′ε(T ) = 0, (3.3)

ξε ∈ ∂φ(uε) a.e. in (0, T ). (3.4)

3.1. Analysis of a regularized convex problem. For the sake of proving Theorem 3.1, we
focus on a regularized problem first. Let ψδ be the Yosida approximation of ψ at level δ > 0.
We have the following.

Lemma 3.2. There exists a unique uδ ∈ H2(0, T ;H) such that

− εu′′δ + u′δ + Dψδ(uδ) = f a.e. in (0, T ), (3.5)

uδ(0) = u0ε, (3.6)

u′δ(T ) = 0. (3.7)

Proof. By possibly redefining Dψδ as Dψδ(· + u0ε), we assume with no loss of generality that
u0ε = 0. Let V = {u ∈ H1(0, T ;H) : u(0) = 0} and denote by V ′ the corresponding dual. A
weak formulation of (3.5)-(3.7) is provided by the equation Au+Bu = ℓ, where A, B : V → V ′

and ℓ ∈ V ′ are given, for all v ∈ V , by

〈Au, v〉 .

= ε

∫ T

0
(u′, v′) +

∫ T

0
(u′, v),

〈Bu, v〉 .

=

∫ T

0
(Dψδ(u), v),

〈ℓ, v〉 .

=

∫ T

0
(f, v)
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where 〈·, ·〉 denotes the duality pairing between V ′ and V . The linear operator A is coercive as

〈Au, u〉 = ε

∫ T

0
|u′|2 +

1

2
|u(T )|2 ∀u ∈ V.

On the other hand, B is clearly monotone and continuous. Hence, A+B is maximal monotone
and coercive [Bar76, Cor. 1.1, p. 39]. Namely, Au + Bu = ℓ admits at least a solution u ∈ V
[Bar76, Cor. 1.3, p. 48]. Finally, as A is strongly monotone, this solution is unique.

Equation Au+Bu = ℓ reads

ε

∫ T

0
(u′, v′) =

∫ T

0
(−u′ − Dψδ(u) + f, v) ∀v ∈ V (3.8)

By choosing v ∈ V such that v(T ) = 0 we recover u ∈ H2(0, T ;H) and that relation (3.5)
holds. Hence, again from (3.8), by using the already established (3.5) one also has that
ε
(

− u′(T ), v(T )
)

= 0 for all v ∈ V and (3.7) follows. �

The forthcoming discussion of Subsection 4.1 will in particular entail the validity of the
following estimate.

Lemma 3.3 (Estimate on uδ). Let uδ solve (3.5)-(3.7). Then

‖uδ‖H2(0,T ;H) ≤ c (3.9)

where c > 0 depends on ‖f‖L2(0,T ;H), |u0|, c0, and ε but not on δ.

3.2. Proof of Theorem 3.1. Let us assume with no loss of generality λ = −λ− ≤ 0, decompose
the functional Iε into its convex and its non-convex part as Iε = Cε +Nε, and extend it to the
whole L2(0, T ;H), namely, for v ∈ L2(0, T ;H), we let

Cε(v)
.

=

∫ T

0
e−t/ε

(

1

2
|v′|2 +

1

ε

(

ψ(v) − (f, v)
)

)

for v ∈ K(u0ε) and ∞ otherwise,

Nε(v)
.

= −λ
−

2ε

∫ T

0
e−t/ε|v|2.

We shall now compute subdifferentials in the weighted space L2(0, T, e−t/εdt;H). As Nε is
clearly C1, one has that

∂Iε = ∂Cε + DNε in L2(0, T, e−t/εdt;H).

As the minimality of u implies that 0 ∈ ∂Iε(u), what is now needed is a description of the set
∂Cε(u) as, clearly, DNε(u) = −λ−u/ε. We shall prove that ∂Cε(u) = Aε(u) where the possibly
multivalued operator Aε is defined on D(Aε)

.

= {v ∈ H2(0, T ;H) ∩K(u0ε) : v′(T ) = 0} as

Aε(u)
.

=
1

ε

(

− εu′′ + u′ + ∂Ψε(u) − f
)

.

In the latter, the integral functional Ψε : L2(0, T ;H) → (−∞,∞] is given by

Ψε(u)
.

=







∫ T

0
e−t/εψ(u) dt if t 7→ ψ(u(t)) ∈ L1(0, T ),

∞ else,

and the subdifferential ∂Ψε is again taken in L2(0, T, e−t/εdt;H).
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Let us firstly check that Aε(u) ⊂ ∂Cε(u). Let η ∈ L2(0, T ;H) such that η ∈ ∂Ψε(u), namely
η ∈ ∂ψ(u) almost everywhere. For all w ∈ K(u0ε) we compute that

1

ε

∫ T

0
e−t/ε

(

− εu′′ + u′ + η − f,w − u
)

=

∫ T

0

(

(−e−t/εu′)′, w − u
)

+
1

ε

∫ T

0
e−t/ε

(

η − f,w − u
)

=

∫ T

0
e−t/ε

(

u′, w′ − u′
)

+
1

ε

∫ T

0
e−t/ε

(

η − f,w − u
)

=
1

2

∫ T

0
e−t/ε

(

|w′|2 − |u′ − w′|2 − |u′|2
)

+
1

ε

∫ T

0
e−t/ε

(

ξ − f,w − u
)

η∈∂Ψ(u)

≤ 1

2

∫ T

0
e−t/ε

(

|w′|2 − |u′|2
)

+
1

ε

(

Ψε(w) − Ψε(u)
)

− 1

ε

∫ T

0
e−t/ε

(

f,w − u
)

= Cε(w) −Cε(u).

In order to prove the converse inclusion ∂Cε(u) ⊂ Aε(u) we shall check that the monotone
operator Aε is maximal [Bre73b], namely that, for all g ∈ L2(0, T ;H), the problem

(id +Aε)(uε) ∋ g

admits a (unique) solution uε. We proceed by regularization and passage to the limit. Let ψδ be
the Yosida approximation of ψ at level δ > 0. Let now uδ solve (3.5)-(3.7) with ψδ(·) replaced
by ψδ(·) + ε| · |2/2 and f replaced by f + εg. Namely, we have that

−εu′′δ + u′δ + Dψδ(uδ) + εuδ = f + εg a.e. in (0, T ) (3.10)

The bound (3.9) still holds, independently of δ (but depending on g) and we can extract subse-
quences, without relabeling, in such a way that

uδ → uε weakly in H2(0, T ;H), (3.11)

Dψδ(uδ) → ηε weakly in L2(0, T ;H), (3.12)

pass to the limit for δ → 0 in (3.10) and (3.7), and get

−εu′′ε + u′ε + ηε + εuε = f + εg a.e. in (0, T ) (3.13)

and (3.3), respectively. As the initial condition (3.2) is clearly satisfied, one is left with the proof
of the inclusion (3.4). To this aim, let us test the regularized equation (3.10) by uδ and pass to
the lim sup as δ → 0. We obtain by lower semicontinuity that

lim sup
δ→0

∫ T

0
(Dψδ(uδ), uδ)

= lim sup
δ→0

(

− ε

∫ T

0
|u′δ |2 − ε(u′δ(0), u0ε) −

1

2
|uδ(T )|2 +

1

2
|u0ε|2

− ε

∫ T

0
|uδ|2 +

∫ T

0
(f + εg, uδ)

)

≤ − ε

∫ T

0
|u′ε|2 − ε(u′ε(0), u0ε) −

1

2
|uε(T )|2 +

1

2
|u0ε|2 − ε

∫ T

0
|uε|2 +

∫ T

0
(f + εg, uε)

(3.13)
=

∫ T

0
(ηε, uε).
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The above lim sup estimate is sufficient for identifying the limit ηε [Bre73b, Prop. 2.5, p. 27]. In
particular, we have proved that uε solves (id + Aε)(uε) ∋ g and the assertion of the Theorem
follows.

4. Proof of Theorem 1.1

4.1. Key estimate. Given the minimizer uε of Iε in K(u0ε) we have checked that uε solves
(3.1)-(3.4). The proof of Theorem 1.1 consists in a direct control of the distance between uε and
the solution u of the gradient flow (1.1). This check is performed in Subsection 4.2. The key
step in the computation is the validity of some estimates on uε which are independent of ε. Let
us state this crucial point in the following lemma.

Lemma 4.1 (Key estimate). Let uε minimize Iε in K(u0ε). For all ε small there exists a
constant c > 0 depending on ‖f‖L2(0,T ;H), |u0|, and c0, but independent of ε such that

ε ‖u′′ε‖L2(0,T ;H) + ε1/2 ‖u′ε‖L∞(0,T ;H) + ‖u′ε‖L2(0,T ;H) + ‖ξε‖L2(0,T ;H) ≤ c, (4.1)

where ξε is defined in Theorem 3.1.

The full proof of this result will be achieved by means of a time-discretization technique and
is postponed to Subsection 6.5. Let us however provide here a simplified argument in case we
have

ξε ∈W 1,1(0, T ;H) and ξε(0) = (∂φ(u0ε))
◦. (4.2)

Note that the latter, being false in general, directly follows from uε ∈ H2(0, T ;H) as soon as φ
is smooth, say φ ∈ C1,1.

Henceforth the symbol c will denote a positive constant, possibly varying from line to line
and depending on ‖f‖L2(0,T ;H), |u0|, and c0 but independent of ε.

From equation (3.1) we clearly have that −εu′′ε + u′ε + ξε is in L2(0, T ;H). Our aim is now to
deduce separate bounds for the three terms above. We argue as follows

∫ T

0
|εu′′ε |2 +

∫ T

0
|u′ε|2 +

∫ T

0
|ξε|2

=

∫ T

0
| − εu′′ε + u′ε + ξε|2 + 2

∫ T

0
(εu′′ε , u

′
ε) − 2

∫ T

0
(u′ε, ξε) + 2

∫ T

0
(εu′′ε , ξε)

=

∫ T

0
|f |2 + 2

∫ T

0
(εu′′ε , u

′
ε) − 2

∫ T

0
(u′ε, ξε) + 2

∫ T

0
(εu′′ε , ξε)

=

∫ T

0
|f |2 + ε|u′ε(T )|2 − ε|u′ε(0)|2 − 2φ(uε(T )) + 2φ(u0ε) + 2

∫ T

0
(εu′′ε , ξε).

The last term above may be controlled by virtue of (4.2) as

2

∫ T

0
(εu′′ε , ξε) = −2ε

(

u′ε(0), ξε(0)
)

− 2ε

∫ T

0
(u′ε, ξ

′
ε)

≤ ε|u′ε(0)|2 + ε|ξε(0)|2 − 2ελ

∫ T

0
|u′ε|2 (4.3)
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where we have used u′(T ) = 0 and the λ-convexity of φ. Hence, by collecting these computations
we have that

1

2

∫ T

0
|εu′′ε |2 +

1 + 2ελ

2

∫ T

0
|u′ε|2 +

1

2

∫ T

0
|ξε|2 + φ(uε(T ))

≤ φ(u0ε) +
ε

2
|ξε(0)|2 +

1

2

∫ T

0
|f |2 ≤ c+ cε|ξε(0)|2,

where, in the last inequality, we have used (2.10). Now, by taking ε small with respect to λ in
such a way that

2ελ− ≤ 1/2, (4.4)

we conclude that

ε‖u′′ε‖L2(0,T ;H) + ‖u′ε‖L2(0,T ;H) + ‖ξε‖L2(0,T ;H) ≤ c+ cε1/2|(∂φ(u0ε))
◦|. (4.5)

Classical interpolation between L2(0, T ;H) and H1(0, T ;H) (cf. [LM72, BL76] or equivalently
by Gagliardo-Nirenberg) we obtain

‖u′ε‖C0([0,T ];H) ≤ c‖u′ε‖1/2
L2(0,T ;H)

‖u′ε‖1/2
H1(0,T ;H)

= c
(

‖u′ε‖L2(0,T ;H) + ‖u′ε‖
1/2
L2(0,T ;H)

‖u′′ε‖
1/2
L2(0,T ;H)

)

≤ c
(

1 + |(∂φ(u0ε))
◦|
)

, (4.6)

so that (4.1) follows from (2.9).

Besides the regular case φ ∈ C1,1, the above argument can be easily adapted to the situation
where ∂φ is single-valued. This can be done my means of a nested approximation argument via
Moreau-Yosida approximations in (4.3).

4.2. Proof of Theorem 1.1. The strategy of this proof is elementary. We shall directly com-
pare the minimizer uε of Iε and the unique solution u of the gradient flow (1.1). In particular,
take the difference between (1.1) and the Euler equation (3.1), test it on wε

.

= u − uε, and
integrate in time getting

ε

∫ t

0
|w′

ε|2 +
1

2
|wε(t)|2 +

∫ t

0
(ξ − ξε, wε)

=
1

2
|u0 − u0ε|2 + ε

∫ t

0
(u′, w′

ε) − ε(u′ε(t), wε(t)) + ε(u′ε(0), u0 − u0ε), (4.7)

where ξ ∈ ∂φ(u) almost everywhere. Using λ-convexity we find

ε

∫ t

0
|w′

ε|2 +
1

2
|wε(t)|2 + λ

∫ t

0
|wε|2

= |u0 − u0ε|2 + ε

∫ t

0

(

|u′|2 + |w′
ε|2
)

+ ε2|u′ε(t)|2 +
1

4
|wε(t)|2 +

ε2

2
|u′ε(0)|2.

Owing to Lemma 4.1 and applying Gronwall’s Lemma, we readily compute that

ε

2

∫ t

0
|w′

ε|2 +
1

4
|wε(t)|2

≤ c

(

|u0 − u0ε|2 + ε

∫ t

0
|u′|2 + ε2|u′ε(t)|2 + ε2|u′ε(0)|2

)

≤ cε, (4.8)

where now c depends on λ− as well. The strong convergence uε → u in C([0, T ];H) follows.
Let us observe that, by inspecting the proof of Lemma 4.1, in case u0 ∈ D(∂φ) one realizes that



14 ALEXANDER MIELKE AND ULISSE STEFANELLI

no approximation of the initial datum is actually needed and the convergence result holds for
minimizers of Iε in K(u0) as well.

5. Extensions and comments

5.1. Sharper statements. The proof of Theorem 1.1 can be made precise in two different
directions. Firstly, the convergence proof is quantitative for we have obtained an explicit con-
vergence rate. Secondly, we can exploit real interpolation in order to check convergence in some
finer topology as well.

Let us refer to [BL76] for notation and results on real interpolation between Banach spaces,
in particular for the definition of (C([0, T ];H),H1(0, T ;H))η,1 which is used in the following
result.

Theorem 5.1 (Sharper convergence result). For 0 < η < 1 we have that

‖u− uε‖(C([0,T ];H),H1(0,T ;H))η,1
≤ cε(1−η)/2, (5.1)

where c > 0 depends on ‖f‖L2(0,T ;H), |u0|, c0, T , λ−, and η, but not on ε.

Proof. By interpolation we have that

‖u− uε‖(C([0,T ];H),H1(0,T ;H))η,1
≤ c‖u− uε‖1−η

C([0,T ];H)‖u− uε‖η
H1(0,T ;H)

(4.8)

≤ cε(1−η)/2ε0 = cε(1−η)/2, (5.2)

and the result is established. �

Let us make concrete this discussion in the Hilbert scale Hs(0, T ;H). Recalling that

(C([0, T ];H),H1(0, T ;H))η,1 ⊂ (L2(0, T ;H),H1(0, T ;H))η,2

= Bη
2 2(0, T ;H) = Hη(0, T ;H),

we get the following.

Corollary 5.2 (Strong convergence in Hη(0, T ;H)). For 0 < η < 1 we have that

‖u− uε‖Hη(0,T ;H) ≤ cε(1−η)/2 (5.3)

where c > 0 depends on ‖f‖L2(0,T ;H), |u0|, c0, T , λ−, and η, but not on ε.

5.2. Weaker assumptions. The above results can be easily extended to the case when

u0 ∈ Dr,∞ for some 0 < r < 1. (5.4)

Let us ask for a sequence u0ε ∈ D(∂φ) such that u0ε → u0 strongly in H and (see (2.9))

ε−r|u0 − u0ε| + ε1−r|(∂φ(u0ε))
◦| ≤ c0, (5.5)

for some c0 > 0. The arguments leading to the key estimate (4.1) still holds (note that (2.10) is
fulfilled) and we deduce that

ε‖u′′ε‖L2(0,T ;H) + ε1/2‖u′ε‖L∞(0,T ;H) + ‖u′ε‖L2(0,T ;H) + ‖ξε‖L2(0,T ;H) ≤ cεr−1/2.

In particular, estimate (4.8) turns out to be

ε

2

∫ t

0
|w′

ε|2 +
1

4
|wε(t)|2 ≤ c

(

|u0 − u0ε|2 + ε

∫ t

0
|u′|2 + ε2|u′ε(t)|2

)

≤ cε2r,
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and uniform convergence holds for all r > 0. Of course, the convergence rates of Theorem 5.1
are to be modified as follows

‖u− uε‖(C([0,T ];H),H1(0,T ;H))η,1
≤ c‖u− uε‖Hη(0,T ;H) ≤ cεr−η/2.

Some concretization of this construction in the frame of linear parabolic PDEs is given in Sub-
section 7.1.

The λ-convexity assumption on the functional can be relaxed to

∃λ : [0,∞) → R such that φ is λ(r)-convex on {|u| ≤ r} for all r ≥ 0. (5.6)

This assumption includes the case of a C2 functional which is not C1,1. Indeed, by testing (3.1)
by u′ε and taking the integral on (0, T ), one has that

ε

2
|u′(0)|2 +

∫ T

0
|u′ε|2 + φ(uε(T )) = φ(u0ε) +

∫ T

0
(f, u′ε).

In particular, a bound in H1(0, T ;H) for uε, independent of ε, follows and it suffices to fix
r

.

= supε,t |uε(t)| in (5.6) and repeat the argument of Lemma 4.1 with λ = λ(r) fixed.

5.3. Regularity result. A regularity theory for the gradient flow (1.1) in the Hölder scale
Cs([0, T ];H) has been outlined by Savaré in [Sav96] where he proves that

u0 ∈ D(∂φ) and f ∈ B
−1/2
2 1 (0, T ;H) ⇒ u ∈ C([0, T ];H),

u0 ∈ D(∂φ) and f ∈ B
1/2
2 1 (0, T ;H) ⇒ u ∈W 1,∞(0, T ;H).

Although classical nonlinear interpolation [Tar70, Tar72] does not directly apply to the present
situation, some intermediate regularity is expected. At level 1/2, we readily have that

D1/2,2 = D(φ),

(B
−1/2
2 1 (0, T ;H), B

1/2
2 1 (0, T ;H))1/2,2 = L2(0, T ;H),

(C([0, T ];H),W 1,∞(0, T ;H))1/2,∞ = C1/2([0, T ];H)

and nothing has to be proved for the intermediate regularity

u0 ∈ D(φ) and f ∈ L2(0, T ;H) ⇒ u ∈ C1/2([0, T ];H)

follows at once from H1(0, T ;H) ⊂ C1/2([0, T ];H).

On the other hand, we are in the position of completing this regularity theory for weaker
assumptions on the initial data u0 (but keeping f ∈ L2(0, T ;H) fixed). Indeed, we have that the
following regularity result, which is, to our knowledge, new even in the classical convex setting
for φ.

Lemma 5.3 (Regularity).

u0 ∈ Dr,∞, f ∈ L2(0, T ;H) =⇒ u ∈ Cr([0, T ];H).

The result follows easily from the fact that, in case u0 ∈ Dr,∞, one has

ε1−r‖uε‖W 1,∞(0,T ;H) + ε−r‖u− uε‖C([0,T ];H) ≤ c,

as the latter entails in particular that

u ∈ (C([0, T ];H),W 1,∞(0, T ;H))s,∞ = Cs([0, T ];H).
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5.4. Sharpness of the convergence rates. Although specific situations (see below) exhibit a
stronger convergence rate, in general the above proved error bounds are sharp as the estimates
(recall (4.8))

‖u− uε‖C([0,T ];H) ≤ cε1/2+δ (5.7)

‖u− uε‖H1(0,T ;H) ≤ cεδ (5.8)

are false for all δ > 0.

We shall prove this fact by contradicting the maximal regularity u ∈ H1(0, T ;H) via inter-
polation. In particular, assume (5.7). From (4.8) we have that, for all 0 < η < 1,

‖u− uε‖Cη/2([0,T ];H) ≤ c‖u− uε‖(C([0,T ];H),C1/2([0,T ];H))η,∞

≤ c‖u− uε‖(C([0,T ];H),H1(0,T ;H))η,1
≤ c ε(1−η)(1/2+δ) .

Choosing η such that

1/2 = (1 − η)(1/2 + δ) (5.9)

and recalling (4.1) we get that

ε1/2‖uε‖W 1,∞(0,T ;H) + ε−1/2‖u− uε‖Cη/2([0,T ];H) ≤ c.

Hence, by interpolation we have that

u ∈ (Cη/2([0, T ];H),W 1,∞(0, T ;H))1/2,∞ = Cs([0, T ];H) for s =
1

2

η

2
+

1

2
1 >

1

2
.

On the other hand, as we surely have that, for any s > 1/2, there exist functions in H1(0, T ;H)
which do not belong to Cs([0, T ];H), this clearly amounts to a contradiction.

A similar (easier) argument proves the sharpness in H1(0, T ;H). Indeed, assume (5.8). Then,
estimate (4.1) ensures that

ε1/2‖uε‖W 1,∞(0,T ;H) + ε−δ‖u− uε‖H1(0,T ;H) ≤ c.

Choosing the interpolation level 0 < δ < 1 we obtain

u ∈ (H1(0, T ;H),W 1,∞(0, T ;H))δ,∞

⊂ (C1/2([0, T ];H),W 1,∞(0, T ;H))δ,∞

= Cr([0, T ];H) with r = δ +
1 − δ

2
=

1 + δ

2
>

1

2
,

which again is contradicting the maximal regularity u ∈ H1(0, T ;H).

Note that the above proofs rely on the choice of a general datum f ∈ L2(0, T ;H) and a more
regular setting could give rise to better convergence rates. Let us stress that we do not presently
know if strong convergence holds in H1(0, T ;H). On the other hand, we have just proved that
no rate in H1(0, T ;H) can be expected.

5.5. Special case of (1.3). In the specific situation of the scalar and linear case of (1.3), some
improved convergence rate of uε is available. In particular, one can explicitly prove that

|(u− uε)(t)| = ε
(

e(t−1)/ε−1 − e−1/ε−t−1
)

≤ 2ε

e
,

so that a linear convergence rate is achieved in C([0, T ];H), see Figure 2.

Moreover, strong convergence in H1(0, 1) holds with rate 1/2 as we have that

‖u− uε‖H1(0,1) ∼
√
ε

(

1

2e2
+

2

e

)

.
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Figure 2: The convergence rate in C[0, T ] in the special case (1.3). The solid line is the function
ε 7→ max[0,T ] |u− uε| and the dashed line is linear in ε (log-log scale).

5.6. Approximate minimizers, relaxation. The convergence result of Theorem 1.1 can be
extended to the case of qualified sequences of approximate minimizers of the functional Iε.

Theorem 5.4 (Convergence for approximate minimizers). Let vε ∈ K(u0ε) be such that

Iε(vε) ≤ inf
K(u0ε)

Iε + αε, αε = o(ε2e−T/ε) as ε→ 0. (5.10)

Then vε → u in C([0, T ];H).

Note that the above statement can be generalized in the many directions commented above.
In particular, a convergence rate in C([0, T ];H) can be derived and the requirement on αε can
be weakened in case φ is convex.

Proof. Let vε fulfill (5.10) and ε be small enough. Moreover, let uε denote the minimizer of Iε
in K(u0ε). By using the κε-convexity of Iε from Proposition 2.1 we readily obtain that, for all
θ ∈ [0, 1),

Iε(uε) ≤ Iε
(

θuε + (1 − θ)vε

)

≤ θIε(uε) + (1 − θ)Iε(vε) −
θ(1 − θ)

2
κε‖uε − vε‖2

H1(0,T ;H).

Dividing by 1 − θ and taking θ → 1 we get that
κε

2
‖uε − vε‖2

H1(0,T ;H) ≤ Iε(vε) − min
K(u0ε)

Iε ≤ αε.

As αε = o(κε) for ε → 0, we have checked that uε − vε → 0 in H1(0, T ;H) and the assertion
follows from Theorem 1.1. �

The convergence result of Theorem 5.4 may be extended in the direction of relaxation. In
particular, sequences of approximate minimizers converge even if φ is not λ-convex nor lower
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semicontinuous, provided that sc−Iε is itself a WED functional for a λ-convex and lower semicon-
tinuous potential. This is the case, for instance, for the two relaxation examples of Subsections
7.5-7.6 below.

Corollary 5.5 (Convergence without convexity and lower semicontinuity). Assume that sc−Iε
is a WED functional fulfilling (2.2a)-(2.2b). Moreover, let vε ∈ K(u0ε) be such that

Iε(vε) ≤ inf
K(u0ε)

Iε + αε, αε = o(ε2e−T/ε) as ε→ 0.

Then vε → u in C([0, T ];H).

Proof. Let uε be the unique minimizer of sc−Iε in K(u0ε). As we clearly have that

sc−Iε(vε) ≤ Iε(vε) ≤ inf
K(u0ε)

Iε + αε = sc−Iε(uε) + αε,

we are in the position of applying directly Theorem 5.4 to the functional sc−Iε and conclude. �

5.7. Another choice for the artificial boundary condition in T . The choice of the homo-
geneous Neumann boundary condition in T for (1.4a) is just motivated by the sake of simplicity
and one may wonder if other possibilities would give rise to better convergence results. We shall
not discuss here this issue in full generality but rather consider the original setting by Mielke

& Ortiz [MO08] where the functional Īε : H1(0, T ;H) → (−∞,∞] given by

Īε(v)
.

=

∫ T

0
e−t/ε

(

1

2
|v′|2 +

1

ε

(

φ(v) − (f, v)
)

)

dt+ e−T/ε
(

φ(v(T )) − (fT , v(T ))
)

,

for a given fT ∈ H, are considered instead. The corresponding Euler system includes (1.4a)-
(1.4b) along with the boundary condition

u′(T ) + ∂φ(u(T )) ∋ fT . (5.11)

By choosing fT = f(T ) for f regular, the above condition is enforcing, independently of ε, the
attainment of the gradient flow equation (1.1) at the final time T .

The results of this paper can be equivalently stated for minimizers vε of Īε in K(u0ε) and
the corresponding proofs just follow from the (sometimes technical) adaptation of the present
ones to that case. In particular, the convergence vε → u in C([0, T ];H) holds. The difference
in considering vε may be related to the fact that we impose no artificial constraint on the
first time-derivative in T . On the other hand, by asking for (5.11) we are (formally) imposing
v′′ε (T ) = 0.

Despite the fact that the very same analytical results are available for the two different choices
of boundary conditions in T (and that the same sharpness of convergence rates can be checked,
see Subsection 5.4), the use of Īε instead of Iε could show some advantage in some situation. In
the very specific scalar and linear case of (1.3) an illustration of the uniform convergence of vε

is given in Figure 3. The plots in Figures 1 and 3 are produced by the same choices of ε. In
particular, it is evident that that the trajectory vε are closer to u than the former uε. Explicit
convergence rates can be easily computed for vε in the specific case of (1.3) from

|(u− vε)(t)| ∼ 4ε2
(

e(t−1)/ε−1 − e−1/ε−t−1
)

≤ 4ε2

e
,

‖u− vε‖H1(0,1) ∼
2
√

2ε

e
.

The comparison between the convergence rates for uε and vε are reported in Figures 4-5.
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Figure 3: The convergence result in the special case (1.3). As ε → 0, the minimizers of Īε
(dashed lines) approach the solution of the gradient flow (solid line).
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Figure 4: The functions ε 7→ ‖u − uε‖C[0,T ]

(solid) and ε 7→ ‖u− vε‖C[0,T ] (dashed) in a log-
log scale.
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Figure 5: The functions ε 7→ ‖u − uε‖H1(0,T )

(solid) and ε 7→ ‖u − vε‖H1(0,T ) (dashed) in a
log-log scale.

5.8. Cauchy argument. An alternative strategy for the proof of Theorem 1.1 is that of directly
checking that uε is a Cauchy sequence in C([0, T ];H). By taking the difference between the
Euler equation (3.1) at level ε and the same equation at level µ, testing it on w

.

= uε − uµ, and
integrating in time one gets that

ε

∫ t

0
|w′|2 +

1

2
|w(t)|2 +

∫ t

0
(ξε − ξµ, w)

= ε(w′(t), w(t)) − ε(w′(0), w(0)) +
1

2
|w(0)|2 + (ε− µ)

∫ t

0
(u′′µ, w).
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Let us now exploit λ-convexity and integrate by parts the last term in the above right-hand side
obtaining

ε

∫ t

0
|w′|2 +

1

2
|w(t)|2 + λ

∫ t

0
|w|2

≤ ε(w′(t), w(t)) − ε(w′(0), w(0)) +
1

2
|w(0)|2

+ (ε− µ)(u′µ(t), w(t)) − (ε− µ)(u′µ(0), w(0)) − (ε− µ)

∫ t

0
(u′µ, w

′)

=
1

2
|w(0)|2 + (εu′ε(t) − µu′µ(t), w(t)) − (εu′ε(0) − µu′µ(0), w(0)) − (ε− µ)

∫ t

0
(u′µ, w

′)

≤ |w(0)|2 +
1

4
|w(t)|2 + cε2‖u′ε‖2

C([0,T ],H) + cµ2‖u′µ‖2
C([0,T ],H)

+ (ε+ µ)‖u′µ‖L2(0,T ;H)‖w′‖L2(0,T ;H)

where we have exploited Lemma 4.1. In particular, we have that

ε

∫ t

0
|w′|2 +

1

4
|w(t)|2 + λ

∫ t

0
|w|2 ≤ c(ε+ µ)

and the Cauchy character in C([0, T ];H) follows by Gronwall’s Lemma. Once uε is proved to
admit a strong limit u it is standard to check that indeed u solves (1.1).

The advantage of this argument with respect to the former proof of Theorem 1.1 is that it
does not rely on the well-posedness of the limiting gradient flow (1.1). This fact allows us to
state a modification of Theorem 1.1 as follows.

Proposition 5.6 (Convergence without lower semicontinuity). Let φ be proper, bounded below,
λ-convex but not necessarily lower semicontinuous. Moreover let f ∈ L2(0, T ;H), u0 ∈ D(φ),
u0ε fulfill (2.9), and uε solve the Euler system (3.1)-(3.3). Then, uε → u strongly in C([0, T ];H)
and weakly in H1(0, T ;H) where u is the only solution of the gradient flow

u′ + ∂φ(u) ∋ f a.e. in (0, T ), u(0) = u0, (5.12)

where ∂φ is the strong × weak closure of ∂φ in H ×H, namely

∂φ(u)
.

= {ξ ∈ H : ∃(uk, ξk) → (u, ξ) strongly × weakly in H ×H and ξk ∈ ∂φ(uk)}.

Proof. As the compactness of the sequence uε in C([0, T ];H) (has well as its boundedness in
H1(0, T ;H)) has been already established, owing to Lemma 4.1 and by passing to the limit in
(3.1) we get the assertion. �

For the sake of illustrating the above result, let us remark that

∂φ ⊂ ∂(sc−ψ), (5.13)

the inclusion being strict. First of all, we have that ∂φ = ∂ψ+λ id, where ∂ψ is the corresponding
closure of ∂ψ (note that ∂ψ does not coincide with ∂ψ as ψ may be not lower semicontinuous).

On the one hand, by exploiting the very definition of subdifferential and relaxation we readily
get that ∂ψ ⊂ ∂(sc−ψ). Indeed, let η ∈ ∂ψ(u). Then there exists (uk, ηk) → (u, η) strongly ×
weakly such that

(ηk, wk − uk) ≤ ψ(wk) − ψ(uk) ≤ ψ(wk) − sc−ψ(uk) ∀wk ∈ H.
Fix now w ∈ H and choose wk → w to be such that ψ(wk) → sc−ψ(w). By passing to the
lim inf in the above inequality we get that η ∈ ∂(sc−ψ)(u).
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On the other hand, let H = R and φ be defined by

φ(u)
.

=







0 for u < 0
1 for u = 0
∞ otherwise

so that we immediately compute the relaxation

sc−φ(u) =

{

0 for u ≤ 0
∞ otherwise.

The corresponding subdifferentials read

∂φ(u) =

{

0 for u < 0
∅ otherwise,

∂φ(u) =

{

0 for u ≤ 0
∅ otherwise,

∂(sc−φ)(u) =







0 for u ≤ 0
[0,∞) for u = 0
∅ otherwise.

In particular, the inclusion in (5.13) is strict.

Note that, from the one hand, Proposition 5.6 is more general than Theorem 1.1 as the lower
semicontinuity assumption on φ is dropped. This would in principle open the way to relaxation.
On the other hand, Proposition 5.6 directly assumes the existence of solutions to the Euler
system (3.1)-(3.3), a circumstance that we check for lower semicontinuous functionals only (see
Theorem 3.1).

6. Time-discretization

The convergence result of Theorem 1.1 can be efficiently combined with time-discretization
which, in turn, provides a sound frame for the proof of Lemma 4.1 out of the regular case of
(4.2).

We start by recalling the notation for the constant time-step τ = T/n and introducing the
functional Iετ defined on discrete trajectories (v0, . . . , vn) ∈ Hn+1 as

Iετ (v
0, . . . , vn) =

n
∑

i=1

ρi
ετ

τ

2

∣

∣

∣

∣

vi − vi−1

τ

∣

∣

∣

∣

2

+
n−1
∑

i=1

(ρi
ετ − ρi+1

ετ )
(

φ(vi) − (f i, vi)
)

.

Here, the weights (ρ1
ετ , . . . , ρ

n
ετ ) are given by

ρi
ετ =

(

ε

τ + ε

)i

for i = 1, . . . , n. (6.1)

In particular, (ρ1
ετ , . . . , ρ

n
ετ ) is nothing but the solution of the constant time-step implicit Euler

discretization of the problem ρ′ + ρ/ε = 0 with initial condition ρ(0) = 1. As this choice ensures
that, for i = 1, . . . , n− 1,

ρi
ετ − ρi+1

ετ =
τ

ε
ρi+1

ετ > 0, (6.2)

and we have by Lemma 2.2 that ρετ (t) → e−t/ε uniformly as τ → 0 for ε > 0 fixed, the functional
Iετ may be regarded as a quadrature of the time-continuous functional Iε.
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Before moving on, let us motivate our specific choice for the functional Iετ . First of all, we
recall that the incremental minimization scheme of (2.12) in equivalent to

u0 = u0 and ui = Argmin
u∈H

(

1

2

∣

∣

∣

∣

u− ui−1

τ

∣

∣

∣

∣

2

+
φ(u) − (f i, u)

τ
− φ(ui−1) − (f i−1, ui−1)

τ

)

for i = 1, . . . , n. (6.3)

Indeed, the latter is nothing but (2.12) where, at each level i, we have added the inconsequential
term −(φ(ui−1) − (f i−1, ui−1))/τ . Here, the point f0 ∈ H is assumed to be given (its actual
value being irrelevant).

The latter minimization problems are usually solved sequentially. On the other hand, a direct
computation shows that

Iετ (v
0, . . . , vn)

=

n
∑

i=1

ρi
εττ

(

1

2

∣

∣

∣

∣

vi − vi−1

τ

∣

∣

∣

∣

2

+
φ(vi) − (f i, vi)

τ
− φ(vi−1) − (f i−1, vi−1)

τ

)

− ρn
ετ

(

φ(vn) − (fn, vn)
)

+ ρ1
ετ

(

φ(v0) − (f0, v0)
)

. (6.4)

Hence, the minimization of Iετ in Kτ (u0ε)
.

= {(v0, . . . , vn) ∈ Hn+1 : v0 = u0ε} roughly
corresponds to collect all the minimization problems in (6.3) in a single constrained minimization
problem for the entire discrete trajectory (u0, . . . , un). This in particular motivates our reference
to the values ρi

ετ as Pareto weights in analogy with the corresponding notion in multi-objective
optimization [Cla90]. More specifically, as ρ1

ετ ≫ ρ2
ετ ≫ · · · ≫ ρn

ετ for ε → 0, it turns out that,
by minimizing Iετ , a much larger priority is accorded to the first minimum problem in (6.3) with
respect to the second, to the second with respect to the third, and so on. Hence, the limit ε→ 0
again formally corresponds to causality restoring, see also [MS08].

Exactly as in the time-continuous situation, in case φ is convex, the functional Iετ turns out
to be uniformly convex for all ε. In particular, a unique minimizer of Iετ in Kτ (w0) exists for
all w0 ∈ H. The same holds true for general λ-convex functionals whenever ε and τ are chosen
to be small enough. Indeed, we have the following.

Proposition 6.1 (Well-posedness of the discrete minimum problem). For ε and τ small and
all w0 ∈ H, the functional Iετ admits a unique minimizer in Kτ (w0).

Proof. This argument is the discrete analogue of the proof of Proposition 2.1. In particular, we
start by decomposing Iετ into a quadratic part Qετ and a convex remainder Rετ as

Iετ (u
0, . . . , un)

=

(

n
∑

i=1

τ

2
ρi

ετ

∣

∣δui
∣

∣

2 −
n−1
∑

i=1

(ρi
ετ − ρi+1

ετ )
λ−

2
|ui|2

)

+

(

n−1
∑

i=1

(ρi
ετ − ρi+1

ετ )
(

ψ(ui) − (f i, ui)
)

)

.

= Qετ (u
0, . . . , un) +Rετ (u

0, . . . , un).

The result follows by checking that, for small ε and τ , the functional Qετ is uniformly convex
on Kτ (w0). To this aim, for all (u0, . . . , un) ∈ K(w0) let (v0, . . . , vn) be defined as vi .

=
√

ρi
ετu

i.
Then, we compute that (see (2.5))

δui =
1

√

ρi−1
ετ

δvi + viδ

(

1
√

ρi
ετ

)

=
1

√

ρi
ετ

(

rετδv
i +

1 − rετ
τ

vi

)
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where rετ
.

=
√

ε/(ε+ τ). By observing that ρi
ετ − ρi+1

ετ = ρi
ετ (1− r2ετ ), the value Qετ (u

0, . . . , un)
can hence be rewritten as

Qετ (u
0, . . . , un) =

n
∑

i=1

τ

2

(

r2ετ |δvi|2 +
(1 − rετ )

2

τ2
|vi|2 +

2rετ (1 − rετ )

τ
(δvi, vi)

)

−
n−1
∑

i=1

(1 − r2ετ )λ
−

2
|vi|2

=
n
∑

i=1

τr2ετ
2

|δvi|2 +
(1 − rετ )

2

2τ
|vn|2 +

n−1
∑

i=1

[

(1 − rετ )
2

2τ
− (1 − r2ετ )λ

−

2

]

|vi|2

+
rετ (1 − rετ )

τ

(

1

2
|vn|2 +

1

2

n
∑

i=1

|vi − vi−1|2 − 1

2
|w0|2

)

.

As we readily check that
[

(1 − rετ )
2

2τ
− (1 − r2ετ )λ

−

2

]

→ 1

2τ
− λ−

2
as ε→ 0,

for all ε and τ small (depending on λ− only), the functional Qετ turns out to be uniformly
convex in K(w0). �

The main result of this section is the convergence of minimizers of the time-discrete functional
Iετ to solutions of the gradient flow (1.1) as the time-step τ and the causal parameter ε go to
0. To this aim, we assume for the very beginning that f τ → f strongly in L2(0, T ;H). This
convergence holds, for instance, if f τ is built on local means. We have the following.

Theorem 6.2 (Convergence + discretization). uετ → u in C([0, T ];H) as ε+ τ → 0.

6.1. Discrete Euler equation. The functional Iετ is the quadratic perturbation of a convex
functional. Hence, its Fréchet subdifferential is readily computed and, letting (u0

ε, . . . , u
n
ε ) be

the minimizer of Iετ in Kτ (u0ε), from 0 ∈ ∂Iετ (u
0
ε, . . . , u

n
ε ) we have that there exist ξi

ε ∈ ∂φ(ui
ε),

i = 1, . . . , n− 1, such that

0 ∈
n
∑

i=1

ρi
εττ(δu

i
ε, δv

i) +

n−1
∑

i=1

(ρi
ετ − ρi+1

ετ )(ξi
ε − f i, vi) ∀(v0, . . . , vn) ∈ Kτ (0).

The first term in the above right-hand side reads (recall that v0 = 0)

n
∑

i=1

ρi
εττ(δu

i
ε, δv

i) =

n−1
∑

i=1

(ρi
ετδu

i
ε − ρi+1

ετ δui+1
ε , vi) + ρn

ετ (δu
n
ε , v

n),

and, by using (6.2), we have that

ρi
ετδu

i
ε − ρi+1

ετ δui+1
ε = (ρi

ετ − ρi+1
ετ )δui

ε + ρi+1
ε (δui

ε − δui+1
ε )

=
τ

ε
ρi+1

ετ δui
ε + ρi+1

ετ (δui
ε − δui+1

ε ).

On the other hand, again form (6.2) we have that

n−1
∑

i=1

(ρi
ετ − ρi+1

ετ )(ξi
ε − f i, vi) =

n−1
∑

i=1

τ

ε
ρi+1

ε (ξi
ε − f i, vi).
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Hence, the minimizer (u0
ε, . . . , u

n
ε ) of Iετ in Kτ (u0ε) fulfills the discrete Euler equation (see

(3.1)-(3.4))

− ε
δui+1

ε − δui
ε

τ
+ δui

ε + ξi
ε = f i for i = 1, . . . , n− 1, (6.5a)

u0
ε = u0ε, (6.5b)

δun
ε = 0, (6.5c)

ξi
ε ∈ ∂φ(ui

ε) for i = 1, . . . , n− 1. (6.5d)

6.2. Key estimate at the discrete level. Our next aim is to reproduce at the discrete level
the key estimate (4.1). Note that the regularity in time in (4.2) is not needed here as integration
by parts is here replaced by summation.

Let us fix with no loss of generality ξ0ε = (∂φ(u0ε))
◦. For the sake of notational simplicity, we

let vi
ε = δui+1

ε for i = 1, . . . , n− 1. The Euler equation (6.5a) ensures that

n−1
∑

i=1

τ
∣

∣−εδvi
ε + δui

ε + ξi
ε

∣

∣

2
=

n−1
∑

i=1

τ |f i|2

and we shall now proceed to the proof of separate bounds on the three terms in the left-hand
side above. In particular, we have that

n−1
∑

i=1

τ
(

ε2|δvi
ε|2 + |δui

ε|2 + |ξi
ε|2
)

=

n−1
∑

i=1

τ | − εδvi
ε + δui

ε + ξi
ε|2 + 2ε

n−1
∑

i=1

τ(δvi
ε, δu

i
ε) − 2

n−1
∑

i=1

τ(δui
ε, ξ

i
ε) + 2ε

n−1
∑

i=1

τ(δvi
ε, ξ

i
ε)

=

n−1
∑

i=1

τ |f i|2 + 2ε

n−1
∑

i=1

τ(δvi
ε, δu

i
ε) − 2

n−1
∑

i=1

τ(δui
ε, ξ

i
ε) + 2ε

n−1
∑

i=1

τ(δvi
ε, ξ

i
ε). (6.6)

We now aim at controlling the last three terms in the above right-hand side. We have that

2ε

n−1
∑

i=1

τ(δvi
ε, δu

i
ε) = −ε|δu1

ε |2 − ε

n−1
∑

i=1

|vi
ε − vi−1

ε |. (6.7)

Moreover, by exploiting λ-convexity, one computes that

−2

n−1
∑

i=1

τ(δui
ε, ξ

i
ε) = 2

n−1
∑

i=1

(ui−1
ε − ui

ε, ξ
i
ε)

≤ 2

n−1
∑

i=1

(

ψ(ui−1
ε ) − ψ(ui

ε) −
λ

2
|ui

ε|2 +
λ

2
|ui−1

ε |2 − λ

2
|ui

ε − ui−1
ε |2

)

= 2φ(u0ε) − 2φ(un−1
ε ) − λ

n−1
∑

i=1

|ui
ε − ui−1

ε |2

= 2φ(u0ε) − 2φ(un−1
ε ) − λτ

n−1
∑

i=1

τ |δui
ε|2. (6.8)
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Finally, again λ-convexity ensures that

2ε

n−1
∑

i=1

τ(δvi
ε, ξ

i
ε) = −2ε(δu1

ε , ξ
1
ε ) − 2ε

n−1
∑

i=2

τ(δui
ε, δξ

i
ε)

≤ −2ε(δu1
ε , ξ

0
ε ) − 2λε

n−1
∑

i=1

τ |δui
ε|2. (6.9)

Now, taking into account (6.7)-(6.8), estimate (6.6) becomes

1

2

n−1
∑

i=1

τ
(

ε2|δvi
ε|2 +

(

1 + λ(2ε+ τ)
)

|δui
ε|2 + |ξi

ε|2
)

+
ε

2
|δu1

ε |2 +
ε

2

n−1
∑

i=1

|vi
ε − vi−1

ε | + φ(un−1
ε )

≤ 1

2

n−1
∑

i=1

τ |f i|2 − ε(δu1
ε , ξ

0
ε ) + φ(u0ε). (6.10)

In particular, as soon as λ−(2ε+ τ) ≤ 1/2 (see (4.4)), we recall (2.9)-(2.10) and conclude that

ε2
n−1
∑

i=1

τ
∣

∣δvi
ε

∣

∣

2
+

n
∑

i=1

τ |δui
ε|2 +

n−1
∑

i=1

τ |ξi
ε|2 ≤ c, (6.11)

where c depends on ‖f‖L2(0,T ;H), |u0|, and c0.

We now aim at reproducing estimate (4.6). Let for brevity zi
ε = δui

ε = vi−1
ε . Estimate (6.11)

yields that both zετ and εv′ετ are bounded in L2(0, T − τ ;H) independently of ε and τ . Let us
now handle the difference zετ − vετ as follows.

‖zετ − vετ‖2
L2(0,T−τ ;H) =

n−1
∑

i=1

∫ iτ

(i−1)τ
|zi

ε − (αi(t)zi+1
ε + (1 − αi(t))zi

ε)|2dt

=

n−1
∑

i=1

(

∫ iτ

(i−1)τ
(αi(t))2dt

)

|zi+1
ε − zi

ε|2 =
τ2

3

n−1
∑

i=1

τ

∣

∣

∣

∣

zi+1
ε − zi

ε

τ

∣

∣

∣

∣

2

=
τ2

3

n−1
∑

i=1

τ |δvi|2 =
τ2

3
‖v′ετ‖2

L2(0,T−τ ;H). (6.12)

In particular, we have that

‖vετ‖L2(0,T−τ ;H) ≤ ‖zετ‖L2(0,T−τ ;H) +
τ√
3
‖v′ετ‖L2(0,T−τ ;H) ≤ c

(

1 +
τ

ε

)

Hence, we have

‖vετ‖C0([0,T−τ ];H) ≤ c‖vετ‖1/2
L2(0,T−τ ;H)

‖vετ‖1/2
H1(0,T−τ ;H)

≤ c
(

1 +
τ

ε

)1/2
(

(

1 +
τ

ε

)2
+

1

ε2

)1/4

≤ c

(

1 +
τ1/2

ε1/2

)(

1 +
τ1/2

ε1/2
+

1

ε1/2

)

≤ c

(

1 +
1

ε1/2
+
τ1/2

ε

)

. (6.13)

This bound is the discrete counterpart to (4.6) (recall (2.9)).
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6.3. Proof of Theorem 6.2. This argument is nothing but the discrete analogue of the proof
of Theorem 1.1. Let (u0, u1, . . . , un) solve the implicit Euler scheme (2.11) and (u0

ε, u
1
ε, . . . , u

n
ε )

minimize Iετ locally in Kτ (u0ε). Test (2.11) by wi
ε = ui − ui

ε getting

(δui, wi
ε) + φ(ui) +

λ

2
|wi

ε| ≤ φ(ui
ε) + (f i, wi

ε) for i = 1, . . . , n− 1.

Test now (6.5a) by −wi
ε and obtain that

− ε
τ
(δui+1

ε − δui
ε,−wi

ε) + (δui
ε,−wi

ε) + φ(ui
ε) +

λ

2
|wi

ε| ≤ φ(ui) − (f i, wi
ε)

for i = 1, . . . , n− 1. (6.14)

Take the sum of the last two inequalities, multiply it by τ , and sum for i = 1, . . . ,m ≤ n − 1
getting

ε

m
∑

i=1

(δui+1
ε − δui

ε, w
i
ε) +

m
∑

i=1

τ(δwi
ε, w

i
ε) + λ

m
∑

i=1

τ |wi
ε|2 ≤ 0. (6.15)

We easily handle the first term above by computing

ε

m
∑

i=1

(δui+1
ε − δui

ε, w
i
ε) = −ε

m
∑

i=1

τ(δui
ε, δw

i
ε) + ε(δum+1

ε , wm
ε ) − ε(δu1

ε , w
0
ε).

Hence, (6.15) entails that

ε

m
∑

i=1

τ |δwi
ε|2 +

1

2
|wm

ε |2

≤ 1

2
|w0

ε |2 + λ−
m
∑

i=1

τ |wi
ε|2 + ε

m
∑

i=1

τ(δui, δwi
ε) − ε(δum+1

ε , wm
ε ) + ε(δu1

ε , w
0
ε).

In particular, by letting 4λ−τ < 1, as u′τ is bounded in L2(0, T ;H) independently of τ , we have
proved by the discrete Gronwall Lemma that

|wm
ε |2 ≤ c

(

ε+ ε2|δum+1
ετ |2 + ε2|δu1

ε|2
)

for some constant c > 0 depending also on λ− but independent of ε and τ . Recall now the
bound (6.13) and obtain that

|wm
ε |2 ≤ c



ε+ ε2

(

1 + ε−1/2 +
τ1/2

ε

)2


 ≤ c(ε+ τ).

Hence, we have checked that maxi=1,...,n−1 |wi
ε| ≤ c(ε + τ). In fact, this bound can be extended

to i = n as wn
ε = wn−1

ε . In particular, we have proved that wετ → 0 in C([0, T ];H) as ε+ τ → 0.
Finally, the strong convergence uετ → u in C([0, T ];H) follows from Lemma 2.2.

More specifically, in case φ is lower semicontinuous and f ≡ 0, by exploiting the error control
in (2.13)-(2.14), we have proved the joint convergence rates

‖u− uετ‖C([0,T ];H) ≤ c
(

ε+ τ
)1/2

.

Note that, in this case, the sub-optimality of the rate τ1/2 is already expected for the Euler
scheme (recall (2.13)). Namely, the present functional approach is not deteriorating convergence
with respect to the time-step size. Let us mention that the above joint convergence result can
be specialized for establishing quantitative convergence in interpolation spaces and allowing for
less-regular initial data in the spirit of Subsections 5.1 and 5.2.
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6.4. Limit τ → 0 for ε > 0: convergence to the Euler equation. By letting λ ≥ 0 and
ε > 0 be fixed and passing to the limit in the time-step τ we can prove the following.

Theorem 6.3 (τ → 0 for ε > 0). Let λ ≥ 0 and (u0
ε, . . . , u

n
ε ), (ξ1ε , . . . , ξ

n−1
ε ) solve (6.5). Then,

there exists non-relabeled subsequences such that uετ → uε weakly in H1(0, T ;H) and ξετ → ξ
weakly in L2(0, T ;H) where (uε, ξε) solves (3.1)-(3.4).

Sketch of the proof. Let (ui
ε, ξ

i
ε) ∈ HN+1 × HN−1 solve (6.5) and define vi

ε = δui+1
ε for i =

1, . . . , n − 1. Our first aim is to pass to the limit in the discrete equations (6.5a), (6.5c)-(6.5d)
written in the compact form

− εv′ετ + u′ετ + ξετ = f ετ a.e. in (0, T − τ), (6.16)

vετ (T − τ) = 0, (6.17)

ξετ ∈ ∂φ(uετ ) a.e. in (0, T − τ). (6.18)

Owing to estimates (6.11)-(6.12) we find a pair (uε, ξε) such that, by extracting not relabeled
subsequences (and possibly considering standard projections for t > T − τ),

uετ → uε weakly in H1(0, T ;H),

vετ → u′ε weakly in H1(0, T ;H),

ξετ → ξε weakly in L2(0, T ;H).

The above convergences suffice for ensuring that equations (3.1)-(3.3) hold. Moreover, we have

lim sup
τ→0

∫ T−τ

0
(ξετ , uετ )

≤ lim sup
τ→0

(

− ε

∫ T−τ

0
|u′ετ |2 − ε(vετ (0), u0ε) −

1

2
|uετ (T − τ)|2 +

1

2
|u0ε|2 +

∫ T−τ

0
(f τ , uετ )

)

≤ −ε
∫ T

0
|u′|2 − ε(u′(0), u0ε) −

1

2
|u(T )|2 +

1

2
|u0ε|2 +

∫ T

0
(f, u)

=

∫ T

0
(ξ, u), (6.19)

and the inclusion (3.4) follows again from the classical [Bre73b, Prop. 2.5, p. 27]. �

Note that the above proof can be adapted to the non-convex case λ < 0 by additionally
requiring some compactness on the sublevels of φ. Hence, the extracted sequences would fulfill
the strong convergence [Sim87, Cor. 4], namely

uετ → uε strongly in C([0, T ];H).

This convergence suffices in order to pass to the limit in

ξετ − λuετ ∈ ∂ψ(uετ ) a.e. in (0, T )

and get that

ξε − λuε ∈ ∂ψ(uε) a.e. in (0, T ).

Namely, inclusion (3.4) holds.
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6.5. Proof of the key estimate. Let us finally come to the proof of Lemma 4.1. By reconsider-
ing the argument of Subsection 6.2 and Theorem 6.3 we readily have that, given g ∈ L2(0, T ;H),
the solution (uε, ηε) ∈ H2(0, T ;H) × L2(0, T ;H) of

− εu′′ε + u′ε + ηε = g a.e. in (0, T ), (6.20)

uε(0) = u0ε, (6.21)

u′ε(T ) = 0, (6.22)

ηε ∈ ∂ψ(uε) a.e. in (0, T ) (6.23)

is the limit (the component uε being unique) of a discrete problem which in turn fulfills the
expected estimates. In particular, by passing to the limit we find that there exists a positive
constant c > 0 depending on |g|L2(0,T ;H), |u0|, and c0 such that

ε‖u′′ε‖L2(0,T ;H) + ‖u′ε‖L2(0,T ;H) + ‖ηε‖L2(0,T ;H) ≤ c. (6.24)

Moreover, arguing exactly as in Subsection 4.1, we also have that

ε1/2 ‖u′ε‖L∞(0,T ;H) ≤ c. (6.25)

Take now uε to be the minimizer of Iε on K(u0ε). Owing to Theorem 3.1 we have that,
indeed, uε solves (6.20)-(6.23) (along with the associated selection ηε = ξε−λuε) with the datum
g replaced by f − λuε. Hence, in order to conclude for Lemma 4.1, what we are actually left to
prove is that the norm ‖uε‖L2(0,T ;H) is uniformly bounded in terms of data for all minimizers.

This is however a standard estimation argument. Test (3.1) by uε+αu′ε (α ≥ 0 to be determined
later) and integrate in time getting

αε

2
|u′ε(0)|2 + (ε+ α)

∫ T

0
|u′ε|2 +

1

2
|uε(T )|2 − λ−

∫ T

0
|uε|2 + αφ(uε(T ))

≤ −ε(u′ε(0), u0ε) +

∫ T

0
(f, uε + αu′ε) +

1

2
|u0ε|2 + αφ(u0ε). (6.26)

By taking α large enough (precisely, by taking α/λ− (for λ 6= 0) strictly larger than the first
eigenvalue of the one-dimensional Laplacian in (0, T ) with non-homogeneous Dirichlet and ho-
mogeneous Neumann conditions in 0 and T , respectively) we conclude for

‖uε‖H1(0,T ;H) ≤ c

where now c > 0 depends on |f |L2(0,T ;H), |u0|, c0, and λ−.

7. Applications

7.1. Linear parabolic PDEs. Let the bounded Lipschitz domain Ω ⊂ R
n be given and f ∈

L2(Ω × (0, T )) and u0 ∈ H2(Ω) ∩ H1
0 (Ω). Then, the minimizers uε in K(u0) of the WED

functionals given by

u 7→







∫ T

0

∫

Ω
e−t/ε

(

1

2
u2

t +
1

2ε
|∇u|2 − 1

ε
fu

)

for u ∈ L2(0, T ;H1
0 (Ω))

∞ otherwise

converge to the solution of the heat equation

ut − ∆u = f a.e. in Ω × (0, T ) (7.1)
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supplemented with the initial condition and with homogeneous Dirichlet conditions (other
boundary conditions can be considered as well) in the following sense

max
t∈[0,T ]

‖u(t) − uε(t)‖L2(Ω) ≤ cε1/2, (7.2)

‖u− uε‖Hη(0,T ;L2(Ω)) ≤ cε(1−η)/2 for all 0 < η < 1. (7.3)

Note that, given (7.2), convergence (7.3) is equivalent to
(

∫ T

0

∫ T

0

‖(u− uε)(t) − (u− uε)(s)‖2
L2(Ω)

|t− s|1+2η
dt ds

)1/2

≤ cε(1−η)/2 for all 0 < η < 1.

Analogous conclusions hold for more general initial data u0. Define φ to be the Dirichlet
integral

φ(u)
.

=
1

2

∫

Ω
|∇u|2, D(φ)

.

= H1
0 (Ω).

We readily characterize the corresponding interpolation set Dr,2 for 0 < r < 1. Indeed, one
has that [Bre75, Thm. 2] u0 ∈ Dr,2 iff there exists ε 7→ v(ε) ∈ H2(Ω) ∩ H1

0 (Ω) such that
ε 7→ ε1−r‖∆v(ε)‖L2(Ω) ∈ L2

∗(0, 1), and ε 7→ ε−r‖u0 − v(ε)‖L2(Ω) ∈ L2
∗(0, 1). This precisely

amounts to say that

u0 ∈
(

L2(Ω),H2(Ω) ∩H1
0 (Ω)

)

r,2
≡







H2r(Ω) for 0 < r < 1/4

H
1/2
0 0 (Ω) for r = 1/4

H2r
0 (Ω) for 1/4 ≤ r < 1

(7.4)

where Hs
0(Ω), 1/2 < s < 2 and H

1/2
0 0 (Ω) classically denote the spaces of functions whose trivial

extension to R
n belongs to Hs(Rn) and H1/2(Rn), respectively [LM72] (note that Hs

0(Ω), 1/2 <
s < 2 is the closure in Hs(Ω) of the space of compactly supported smooth functions whereas

H
1/2
0 0 (Ω) is not).

Choose now u0 fulfilling (7.4) for some 0 < r < 1 and let ε 7→ u0ε ∈ H2(Ω) ∩H1
0 (Ω) be such

that ε 7→ ε1−r‖u0ε‖H2(Ω), ε 7→ ε−r‖u0 −u0ε‖L2(Ω) ∈ L2
∗(0, 1). Then, the unique minimizers uε of

the WED functionals over K(u0ε) fulfill

max
t∈[0,T ]

‖u(t) − uε(t)‖L2(Ω) ≤ cεr

and quantitative convergence in Hη(0, T ;L2(Ω)) holds as well. Obvious modifications lead to
the more general linear parabolic equation ut − div(A∇u) = f where the bounded function
A : Ω → R

n×n takes symmetric and uniformly positive definite values.

Let now Ω be C1,1 or convex, u0 ∈ H2(Ω) ∩ H1
0 (Ω), and u0ε be suitable approximations in

the same spirit above. Define

u 7→







∫ T

0

∫

Ω
e−t/ε

(

1

2
u2

t +
1

2ε
|∆u|2 − 1

ε
fu

)

for u ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω))

∞ otherwise.

The minimizers to the latter, constrained to fulfill uε(·, 0) = u0ε almost everywhere in Ω, fulfill
(7.2)-(7.3) where u is the solution of the biharmonic equation

ut + ∆2u = f a.e. in Ω × (0, T )

subject to the initial condition, homogeneous Dirichlet conditions on u and homogeneous Neu-
mann conditions on ∆u (again other boundary conditions may be considered).

We may recollect the above examples (as well as a variety of other symmetric parabolic
problems of order 2k) in the following abstract setting. Let the Hilbert spaces H and V be
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given with the injection V ⊂ H being dense. Moreover, let the bilinear and symmetric form
a : V × V → R be coercive and continuous and define

u 7→







∫ T

0
e−t/ε

(

1

2
|u′|2 +

1

2ε
a(u, u) − 1

ε
(f, u)

)

for u ∈ L2(0, T ;V )

∞ otherwise.

Then, the minimizers of the above WED functionals (suitably constrained to fulfill initial con-
ditions) converge in H, uniformly with respect to time, to a solution of the abstract linear
equation

u′ +Au = f a.e. in (0, T )

where the linear operator A : H → H is defined by (Au, v)
.

= a(u, v) for all v ∈ V and
u ∈ D(A)

.

= {v ∈ V : sup|z|=1 a(v, z) < ∞}. Indeed, in the same spirit of (7.2)-(7.3), much
more is true as we have that

max
t∈[0,T ]

‖u(t) − uε(t)‖H ≤ cε1/2, (7.5)

‖u− uε‖Hη(0,T ;H) ≤ cε(1−η)/2 for all 0 < η < 1. (7.6)

7.2. Parabolic variational inequalities. Under the above assumptions, let now g ∈ H1(Ω)
be given with g ≤ 0 on ∂Ω and consider the WED functionals

u 7→























∫ T

0

∫

Ω
e−t/ε

(

1

2
u2

t +
1

2ε
|∇u|2 − 1

ε
fu

)

for u ∈ L2(0, T ;H1
0 (Ω))

with u(·, t) ≥ g(·) a.e.

∞ otherwise.

Then, (suitably constrained) minimizers converge in C([0, T ];H) to a solution of the parabolic
obstacle problem

∫

Ω
ut(u− v) +

∫

Ω
∇u · ∇(u− v) ≤

∫

Ω
f(u− v) ∀v ∈ K, a.e. in (0, T )

where the convex set K is defined by K
.

= {v ∈ H1
0 (Ω) : v ≥ g a.e.}. More precisely, the error

estimates (7.2)-(7.3) hold. Within the abstract setting introduced in the previous subsection, a
variety of other constraints can be discussed as well.

Next, let W : R → R be a λ-convex and smooth function. Then, (suitably constrained)
minimizers of

u 7→















∫ T

0

∫

Ω
e−t/ε

(

1

2
u2

t +
1

2ε
|∇u|2 +

1

2ε
W (u) − 1

ε
fu

)

for u ∈ L2(0, T ;H1
0 (Ω))

∞ otherwise

converge in the sense of (7.2)-(7.3) to solutions of the reaction-diffusion equation

ut − ∆u+W ′(u) = f a.e. in Ω × (0, T ).

The choice W (u) = (u2 − 1)2 corresponds to the so-called Allen-Cahn equation.

7.3. Quasi-linear parabolic PDEs. Let F : Ω × R
n → [0,+∞) be such that:

F (x, ·) ∈ C1(Rn) for a.e. x ∈ Ω, (7.7)

F (x, ·) is convex and F (x, 0) = 0 for a.e. x ∈ Ω, (7.8)

F (·, ξ) is measurable for all ξ ∈ R
n. (7.9)
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Then, we can set b
.

= ∇ξF : Ω × R
n → R

n. We assume that, for a given p > 1, F satisfies the
growth conditions

∃c, C > 0 such that F (x, ξ) ≥ c|ξ|p − C,

|b(x, ξ)| ≤ C(1 + |ξ|p−1) for a.e. x ∈ Ω and all ξ ∈ R
n. (7.10)

Let us now consider the WED functionals

u 7→







∫ T

0

∫

Ω
e−t/ε

(

1

2
u2

t +
1

ε
F (·,∇u) − 1

ε
fu

)

for u ∈ L2(0, T ;L2(Ω) ∩W 1,p
0 (Ω))

∞ otherwise.

In the latter, homogeneous Dirichlet conditions are considered, other choices being possible.
The present analysis ensures that minimizers of the above functionals, suitably constrained as
for initial values, converge in the sense of (7.2)-(7.3) to a solution of the quasilinear equation

ut − div b(·,∇u) = f a.e. in Ω × (0, T ).

In particular, the choice F (x, ξ)
.

= |ξ|p/p gives rise to the so-called p-Laplacian equation, whereas

the choice F (x, ξ)
.

= (1 + |ξ|2)1/2 corresponds to the mean curvature flow for Cartesian surfaces
(note however that the latter does not directly fit into this theory because of a lack of lower
semicontinuity).

7.4. Degenerate parabolic PDEs. Assume we are given β : R → R monotone and continuous
with β(0) = 0 and superlinear growth at infinity [Bre73b]. Define j to be the only convex function
such that β = j′ and j(0) = 0. We now introduce the WED functionals on H1(0, T ;H−1(Ω))
given by

u 7→























∫ T

0
e−t/ε

(

1

2
‖ut‖2

H−1(Ω) +
1

ε

∫

Ω

(

j(u) − fu
)

)

for u ∈ L2(0, T ;L2(Ω))

with j(u) ∈ L1(Ω × (0, T ))

∞ otherwise.

Qualified minimizers of the latter functional converge inH−1(Ω), uniformly in time, to a solution
of the following degenerate parabolic equation

ut − ∆β(u) = f in Ω × (0, T )

in a distributional sense, along with homogeneous Dirichlet boundary conditions for β(u).
More precisely, we have that (7.5)-(7.6) hold for H = H−1(Ω). In particular, the choice
β(u)

.

= (u− 1)+ −u− corresponds to the classical two-phase Stefan problem, β(u)
.

= |u|m−2u for
m > 2 leads to the porous medium equation. The multivalued case β(u) = ∂I[0,1] (subdifferential
of the indicator function of the interval [0, 1]), related to the Hele-Shaw cell equation, can be
handled as well.

7.5. Evolution of microstructure in a bistable bar. In [CO08] Conti & Ortiz consider
the WED functionals

Fε(u)
.

=







∫ T

0

∫

Ω
e−t/ε

(

1

2
u2

t −
1

ε
fu

)

if |ux| = 1 a.e.

∞ else

suggested by a modelization of branching in martensite in a one-dimensional bar occupying the
reference domain Ω = (0, 1). The function u : Ω × (0, T ) → R represents the bar displacement,
the system is constrained in the two phases ux = 1 and ux = −1, no contribution from the
interfacial energy is considered, and f stands for an applied body force (see [KM94]).
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For fixed ε > 0, the functional Fε fails to be lower semicontinuous with respect to the weak
topology of H1(0, T ;L2(Ω)). The argument in [CO08, Thm. 3.1] entails that

sc−Fε(u) =

∫ T

0

∫

Ω
e−t/ε

(

1

2
u2

t + I[−1,1](ux) − 1

ε
fu

)

where the relaxation is taken with respect to the weak topology in H1(0, T ;L2(Ω)) (note that
the actual proof in [CO08] is concerned with the weak topology in H1(Ω × (0, T )) instead) and
I[−1,1] is the indicator function of the interval [−1, 1]. This computation is by no means trivial
as the interplay between energy and dissipation has to be carefully taken into account. In this
specific case, sc−Fε coincides with the convexification of Fε. Note however that this is not the
case in general, see [MO08, Sec. 5.1].

From this computation, Conti & Ortiz conjecture that the WED formalism can be of some
use for describing microstructure evolution. In particular, at a fixed level ε > 0, the net effect
of relaxation is that of allowing solutions u with |ux| < 1 which may therefore be interpreted as
the weak limit of a fine evolving microstructure.

The analysis in [CO08] left open the issue of considering ε → 0, namely of extending the
above interpretation to the causal limit. We are in the position of filling this gap. Fix an
initial condition (say u0 = 0 as in [CO08], for simplicity) and homogeneous Dirichlet boundary
conditions. Note that sc−Fε is coercive with respect to the weak topology in H1(0, T ;L2(Ω))
on K(0) (see again [CO08, Thm. 3.1]). Hence, at each level ε, the functional sc−Fε admits
a unique minimizer uε in K(0) (along with homogeneous Dirichlet boundary conditions) and,
by applying our results, uε converges uniformly in L2(Ω) and weakly in H1(0, T ;L2(Ω)) to a
function u solving

u′ + ∂IC(u) ∋ f a.e. in (0, T ), u(0) = 0. (7.11)

Here IC is the indicator function of the nonempty convex and closed set

C
.

= {u ∈ H1
0 (Ω) : |ux| ≤ 1 a.e.}.

In particular, the latter entails that u : [0, T ] → H1
0 (Ω) fulfills

∫ 1

0

(∫ x

0
(ut − f)

)

(p− ux) ≤ 0 ∀p ∈ L2(Ω) with |p| ≤ 1 a.e. in Ω and

∫

Ω
p = 0,

a.e. in (0, T ), u(·, 0) = 0 a.e. in Ω.

Moreover, our convergence analysis may be extended to the case of approximate minimizers of
the original unrelaxed functional Fε. In particular, as sc−Fε turns out to be the WED functional
corresponding to the convex and lower semicontinuous potential

u 7→
∫

Ω

(

I[−1,1](ux) − 1

ε
fu

)

,

we are in the position of applying Corollary 5.5 and deduce that all (qualified) sequences of
approximate minimizers of Fε converge to the unique solution of (7.11) in the sense of (7.2)-(7.3).
An illustration of this solution for a constant body force f is given in [CO08, Fig.4].

7.6. Surface roughening by island growth. A second example of relaxation in [CO08] con-
cerns the WED functionals

Fε(u)
.

=







∫ T

0

∫

Ω
e−t/ε

(

1

2
u2

t −
1

ε
fu

)

if ∇u ∈ K a.e.

∞ else

where Ω
.

= [0, 1]2 and

K
.

= {(0,±1), (±1, 0)}.
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These functionals are considered in connection with the phenomenon of island growth and coars-
ening during the epitaxial growth of thin films. In particular, u : Ω → R represents the height
of the thin film surface, f is a given deposition rate, and K is the set of preferred slopes (see
[ORS99])

For fixed ε > 0 the relaxation of Fε with respect to the weak topology of H1(0, T ;L2(Ω))
reads [CO08, Thm. 4.1]

sc−Fε(u)
.

=

∫ T

0

∫

Ω
e−t/ε

(

1

2
u2

t + Ico K(∇u) − 1

ε
fu

)

where Ico K is the indicator function of the convex hull coK of K, namely

coK = {(x, y) ∈ R
2 : |x| + |y| ≤ 1}.

By inspecting the specific form of sc−Fε, in [CO08] the macroscopic behavior of the evolving
thin film in the causal limit ε→ 0 is conjectured to corresponds to the gradient flow along with
the choice

φ(u)
.

= −
∫

Ω
fu if ∇u ∈ coK and φ(u)

.

= ∞ else,

the effect of the microstructure being that of relaxing the original constraint ∇u ∈ K to the
weaker ∇u ∈ coK (in particular, solutions with ∇u ∈ int coK are interpreted as weak limits of
evolving microstructures).

This fact is confirmed by our convergence result. Indeed, the functionals sc−Fε are (con-
vex and) lower semicontinuous. Hence, they admit unique minimizers uε in K(0) (the initial
condition 0 is chosen for simplicity and reference with [CO08]) and the sequence uε converges
uniformly in L2(Ω) to the unique gradient flow

u′ + ∂IM (u) ∋ f a.e. in (0, T ), u(0) = 0 (7.12)

where M
.

= {v ∈ H1
0 (Ω) : ∇v ∈ coK}.

Convergence also holds for approximate minimizers of the original unrelaxed functional Fε.
Indeed, as the relaxation sc−Fε is the WED functional related to the convex and lower semi-
continuous potential

u 7→
∫

Ω

(

Ico K(∇u) − 1

ε
fu

)

,

Corollary 5.4 ensures that all (qualified) sequences of approximate minimizers of Fε converge to
the unique solution of (7.12) in the sense of (7.2)-(7.3). The reader is referred to [CO08, Fig. 5]
for an illustration of a thin film evolution developing island growth under a constant deposition
rate.
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