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Abstract. We consider the disintegration of the Lebesgue measure on the graph of a convex function f :
R
n → R w.r.t. the partition into its faces, which are convex sets and therefore have a well defined linear

dimension, and we prove that each conditional measure is equivalent to the k-dimensional Hausdorff
measure of the k-dimensional face on which it is concentrated. The remarkable fact is that a priori the
directions of the faces are just Borel and no Lipschitz regularity is known. Notwithstanding that, we
also prove that a Green-Gauss formula for these directions holds on special sets.
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1. Introduction

In this paper we deal with the explicit disintegration of the Lebesgue measure on the graph of a convex
function w.r.t. the partition given by its faces. As the graph of a convex function naturally supports the
Lebesgue measure, its faces, being convex, have a well defined linear dimension, and then they naturally
support a proper dimensional Hausdorff measure.
Our main result is that the conditional measures induced by the disintegration are equivalent to the
Hausdorff measure on the faces on which they are concentrated.
Theorem. Let f : Rn → R be a convex function and let H n be the Hausdorff measure on its graph.
Define a face of f as the convex set obtained by the intersection of its graph with a supporting hyperplane
and consider the partition of the graph of f into the relative interiors of the faces {Fα}α∈A .
Then, the Lebesgue measure on the graph of the convex function admits a unique disintegration

H n =
∫

A

λα dm(α)
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w.r.t. this partition and the conditional measure λα which is concentrated on the relative interior of the
face Fα is equivalent to H k Fα, where k is the linear dimension of Fα.

This apparently intuitive fact does not always hold. Indeed, on one hand existence and uniqueness
of a disintegration are obtained by classical theorems, thanks to measurability conditions satisfied by
the faces. Nevertheless, even for a partition given by a Borel measurable collection of segments in R

3

(1-dimensional convex sets), if any Lipschitz regularity of the directions of these segments is not known,
it may happen that the conditional measures induced by the disintegration of the Lebesgue measure are
Dirac deltas (see the couterexamples in [Lar71a], [AKP]).
Also in our case, up to our knowledge, the directions of the faces of a convex function are just Borel
measurable. Therefore, our result, other than answering a quite natural question, enriches the reg-
ularity properties of the faces of a convex function, which have been intensively studied for example
in [ELR70], [KM71], [Lar71a], [LR71], [AKP04], [PZ07]. As a byproduct, we recover the Lebesgue negli-
gibility of the set of relative boundary points of the faces, which was first obtained in [Lar71b].

Our result is also interesting for possible applications. Indeed, the disintegration theorem is an effective
tool in dimensional reduction arguments, where it may be essential to have an explicit expression for the
conditional measures. In particular, the problem of the absolute continuity of the conditional measures
w.r.t. a partition given by affine sets arose naturally in a work by Sudakov ([Sud79]).

In absence of any Lipschitz regularity for the directions of the faces, the proof of our theorem does not
rely on Area or Coarea Formula, which in several situations allow to obtain in one step both the existence
and the absolute continuity of the disintegration (in applications to optimal mass transport problem, see
for example [TW01], [FM02], [AP03]). The basis of the technique we use was first presented in order
to solve a variational problem in [BG07] and it has been successfully applied to the existence of optimal
transport maps for strictly convex norms in [Car08].

Just to give an idea of how this technique works, focus on a collection of 1-dimensional faces C which
are transversal to a fixed hyperplane H0 = {x ∈ Rn : x · e = 0} and such that the projection of each face
on the line spanned by the fixed vector e contains the interval [h−, h+], with h− < 0 < h+. Indeed, we
will obtain the disintegration of the Lebesgue measure on the k-dimensional faces, with k > 1, from a
reduction argument to this case.
First, we slice C with the family of affine hyperplanes Ht = {x · e = t}, where t ∈ [h−, h+], which are
parallel to H0. In this way, by Fubini-Tonelli Theorem, the Lebesgue measure L n of C can be recovered
by integrating the (n − 1)-dimensional Hausdorff measures of the sections of C ∩ Ht over the segment
[h−, h+] which parametrizes the parallel hyperplanes. Then, as the faces in C are transversal to H0, one
can see each point in C ∩Ht as the image of a map σt defined on C ∩H0 which couples the points lying
on the same face.
Suppose that the (n−1)-dimensional Hausdorff measure H n−1 (C ∩Ht) is absolutely continuous w.r.t.
the pushforward measure σt#(H n−1 (C ∩H0)) with Radon-Nikodym derivative αt. Then we can reduce
each integral over the section C ∩Ht to an integral over the section C ∩H0:∫

C

dL n =
∫

[h−,h+]

H n−1 (C ∩Ht) dt =
∫

[h−,h+]

∫
C∩H0

αt(σt(z)) dH n−1(z) dt.

Exchanging the order of the last iterated integrals, we obtain the following:∫
C

dL n =
∫

C∩H0

∫
[h−,h+]

αt(σt(z)) dt dH n−1(z).

Since the sets {σ[h−,h+](z)}z∈C∩H0 are exactly the elements of our partition, the last equality provides
the explicit disintegration we are looking for: in particular, the conditional measure concentrated on
σ[h−,h+](z) is absolutely continuous w.r.t. H n−1 σ[h−,h+](z).

The core of the proof is then to show that

H n−1 (C ∩Ht)� σt](H
n−1 (C ∩H0)).

We prove this fact as a consequence of the following quantitative estimate: for all 0 ≤ t ≤ h+ and
S ⊂ C ∩H0

(1.1) H n−1(σt(S)) ≤
(
t− h−

−h−

)n−1

H n−1(S).

This fundamental estimate, as in [BG07], [Car08], is proved approximating the 1-dimensional faces with
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a sequence of finitely many cones with vertex in C ∩Hh− and basis in C ∩Ht.
At this step of the technique, the construction of such approximating sequence heavily depends on the
nature of the partition one has to deal with. In this case, our main task is to find the suitable cones
relying on the fact that we are approximating the faces of a convex function.
One can also derive an en estimate symmetric to the above one, showing that σt#(H n−1 (C ∩H0)) is
absolutely continuous w.r.t. H n−1 (C ∩ Ht): as a consequence, αt is strictly positive and therefore
the conditional measures are not only absolutely continuous w.r.t. the proper Hausdorff measure, but
equivalent to it.

The fundamental estimate (1.1) implies moreover a Lipschitz continuity and BV regularity of αt(z)
w.r.t t: this yields an improvement of the regularity of the partition that now we are going to describe.
Consider a vector field v which at each point x is parallel to the face through that point x. If we restrict
the vector field to an open Lipschitz set Ω which does not contain points in the relative boundaries of the
faces, then we prove that its distributional divergence is the sum of two terms: an absolutely continuous
measure, and a (n − 1)-rectifiable measure representing the flux of v through the boundary of Ω. The
density (div v)a.c. of the absolutely continuous part is related to the density of the conditional measures
defined by the disintegration above.
In the case of the set C previously considered, if the vector field is such that v · e = 1, the expression of
the density of the absolutely continuous part of the divergence is

∂tα
t = (div v)a.c.α

t.

Up to our knowledge no piecewise BV regularity of the vector field v of faces directions is known.
Therefore, it is a remarkable fact that a divergence formula holds.

The divergence of the whole vector field v is the limit, in the sense of distributions, of the sequence of
measures which are the divergence of truncations of v on the elements {K`}`∈N of a suitable partition of
R
n. However, in general, it fails to be a measure.
In the last part, we change point of view: instead of looking at vector fields constrained to the faces of

the convex function, we describe the faces as an (n + 1)-uple of currents, the k-th one corresponding to
the family of k-dimensional faces, for k = 0, . . . , n. The regularity results obtained for the vector fields
can be rewritten as regularity results for these currents. More precisely, we prove that they are locally
flat chains. When truncated on a set Ω as above, they are locally normal, and we give an explicit formula
for their border; the (n + 1)-uple of currents is the limit, in the flat norm, of the truncations on the
elements of a partition.

An application of this kind of further regularity is presented in Section 8 of [BG07]. Given a vector field
v constrained to live on the faces of f , the divergence formula we obtain allows to reduce the transport
equation

div ρv = g

to a PDE on the faces of the convex function. We do not pursue this issue in the paper.

1.1. Outline of the article. In the following we describe the structure of the paper.
In Section 2 we first give the definition of disintegration of a measure consistent with a fixed partition of

the ambient space. Then, we report an abstract disintegration theorem which guarantees the existence and
uniqueness of the disintegration under quite general assumptions on the σ-algebra of the ambient space
and on the partition; under these hypothesis, the conditional probabilities given by the disintegration are
concentrated on the sets of the partition.

In Section 3, after giving the basic definitions and notations we will be working with, we apply the
disintegration theorem recalled in Section 2 and get the existence and uniqueness of the disintegration of
the Lebesgue measure on the faces of a convex function. For notational convenience, we work with the
projections of the faces on Rn and we neglect the set where the convex function is not differentiable.
In Subsection 3.2 we state our main theorem on the equivalence between the conditional probabilities
and the k-Hausdorff measure on the k-dimensional faces where they are concentrated. As the conditional
measures on the 0-dimesional and n-dimesional faces are already determined (they must be respectively
given by Dirac deltas and by the H n-measure on the corresponding faces), we focus on the disintegration
of the Lebesgue measure on the k-dimensional faces for k = 1, ..., n− 1.

In Section 4 we prove the explicit disintegration theorem.
In Subsection 4.1 we explain the first idea of our disintegration technique, which consists in the reduction
to countably many model sets like C and in the application of the Fubini-Tonelli technique on these sets
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which has been briefly sketched in the introduction.
In Subsection 4.2 we address the Borel measurability of the multivalued function D which assigns to each
point x ∈ Rn the directions of the face passing through x. This is needed in the following in order to
reduce the ambient space into countably many model sets.
In Subsection 4.3 we define the partition of Rn into the model sets (called D-cylinders) on which we
will first prove our disintegration theorem. When k = 1, the k-dimensional faces are partitioned into
sets like C . When k > 1, each model set C k is defined taking a collection of k-dimensional faces
which are transversal to a fixed (n − k)-dimensional affine plane (as, e.g., H = {x ∈ R

n : x · e1 =
... = x · ek = 0}) and considering the points of these faces whose projection on the perpendicular
k-plane (H⊥ = {x ∈ R

n : x · ek+1 = ... = x · en = 0}) is contained in a fixed rectangle (as, e.g.,
{x ∈ Rn : x · ek+1 = ... = x · en = 0, x · ei ∈ [h−i , h

+
i ] for i = 1, ..., k and h±i ∈ R}).

Subsection 4.4 is devoted to the proof of the quantitative estimate (1.1). Actually, in Lemma 4.7 we prove
that an estimate like (1.1) holds for the pushforward of the H n−k-dimensional measure on the sections of
a model set C k which are obtained cutting it with transversal (n−k)-dimensional affine planes. The core
of the proof, which is the construction of a suitable sequence of approximating cones for the 1-dimensional
faces of f , is contained in Lemma 4.14.
In Subsection 4.5 we study some regularity properties of the Radon-Nikodym derivative αt; they will be
used in Section 5 to study the regularity of the divergence of vector fields parallel to the faces.
In Subsection 4.6 we prove the explicit disintegration theorem on the model sets C k of the partition.
In Subsection 4.7 we collect the disintegrations obtained on the model set and obtain the global result
regarding the disintegration of the Lebesgue measure on all Rn.

Section 5 deals with the divergence of the faces directions, with two equivalent approaches.
In Subsection 5.1 we consider the divergence of any vector field which at each point x is parallel to
the face of f through x. In Subsection 5.1.1 we truncate this vector field to k-dimensional D-cylinders.
The divergence of these truncated vector fields turns out to be a Radon measure. The density of the
absolutely continuous part of this distributional divergence involves the density α defined in (4.67). The
precise statement is given in Corollary 5.4.
In Subsection 5.1.2 we consider the vector field v in the whole Rn. Its divergence is the limit, in the sense
of distributions, of finite sums of the Radon measures corresponding to the divergence of the truncations
of v on a family of D-cylinders as above constituting a partition of Rn. In general, the divergence of v
fails to be a measure.
In Section 5.2 we consider the border of k-dimensional currents associated to k-faces, where each k-face
is thought as a k-covector field, for k = 0, . . . , n. We rephrase the results of Section 5.1 in this formalism.
Subsection 5.2.1 is devoted to recalls on tensors and currents in order to fix the notation.
In Subsection 5.2.2 we fix the attention on the current associated to a k-vector field that gives the direction
of the k-faces on C k and vanishes elsewhere. The border of this current is the sum of two currents, both
representable by integration. One is the integral on C k of the divergence of the k-vector field truncated
to C k and it is again related to α. The other one is concentrated on dC k and arises from the truncation
of the faces to the D-cylinder. The statement is given in Lemma 5.9.
In Subsection 5.2.3, we consider the (n + 1)-uple of currents associated to the faces of f , the k-th one
acting on k-forms on R

n. By means of a partition of Rn into D-cylinders as above, we recover each of
them as the limit, in the flat norm, of the normal currents defined as truncations of this (n+ 1)-uple to
the elements of the partition.

The last section contains a long Table of Notations, for the reader’s convenience.

2. An Abstract Disintegration Theorem

A disintegration of a measure over a partition of the space on which it is defined is a way to write that
measure as a “weighted sum” of probability measures which are possibly concentrated on the elements of
the partition.

Let (X,Σ, µ) be a measure space (which will be called the ambient space of the disintegration), i.e. Σ
is a σ-algebra of subsets of X and µ is a measure with finite total variation on Σ and let {Xα}α∈A ⊂ X
be a partition of X. After defining the following equivalence relation on X

x ∼ y ⇔ ∃α ∈ A : x, y ∈ Xα,

we make the identification A = X/∼ and we denote by p the quotient map p : x ∈ X 7→ [x] ∈ A.
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Moreover, we endow the quotient space A with the measure space structure given by the largest σ-algebra
that makes p measurable, i.e.

A = {F ⊂ A : p−1(F ) ∈ Σ},
and by the measure ν = p#µ.

Definition 2.1 (Disintegration). A disintegration of µ consistent with the partition {Xα}α∈A is a family
{µα}α∈A of probability measures on X such that

1. ∀E ∈ Σ, α 7→ µα(E) is ν-measurable;

2. µ =
∫
µα dν, i.e.

µ(E ∩ p−1(F )) =
∫
F

µα(E) dν(α), ∀E ∈ Σ, F ∈ A .(2.1)

The disintegration is unique if the measures µα are uniquely determined for ν-a.e. α ∈ A.
The disintegration is strongly consistent with p if µα(X\Xα) = 0 for ν-a.e. α ∈ A.
The measures µα are also called conditional probabilities of µ w.r.t. ν.

Remark 2.2. When a disintegration exists, formula (2.1) can be extended by Beppo Levi theorem to
measurable functions f : X → R as ∫

f dµ =
∫ (∫

f dµα

)
dν(α).

The existence and uniqueness of a disintegration can be obtained under very weak assumptions which
concern only the ambient space. Nevertheless, in order to have the strong consistency of the conditional
probabilities w.r.t. the quotient map we have to make structural assumptions also on the quotient
measure algebra, otherwise in general µα(Xα) 6= 1 (i.e. the disintegration is consistent but not strongly
consistent). The more general result of existence of a disintegration which is consistent with a given
partition is contained in [Pac79], while a weak sufficient condition in order that a consistent disintegration
is also strongly consistent is given in [HJ71].

In the following we recall an abstract disintegration theorem, in the form presented in [BC]. It
guarantees, under suitable assumptions on the ambient and on the quotient measure spaces, the existence,
uniqueness and strong consistency of a disintegration. Before stating it, we recall that a measure space
(X,Σ) is countably-generated if Σ coincides with the σ-algebra generated by a sequence of measurable
sets {Bn}n∈N ⊂ Σ.

Theorem 2.3. Let (X,Σ) be a countably-generated measure space and let µ be a measure on X with finite
total variation. Then, given a partition {Xα}α∈A of X, there exists a unique consistent disintegration
{µα}α∈A. Moreover, if there exists an injective measurable map from (A,A ) to (R,B(R)), where B(R)
is the Borel σ-algebra on R, the disintegration is strongly consistent with p.

Remark 2.4. If the total variation of µ is not finite, a disintegration of µ consistent with a given partition as
defined in (2.1) in general does not exists, even under the assumptions on the ambient and on the quotient
space made in Theorem 2.3 (take for example X = R

n, Σ = B(Rn), µ = L n and Xα = {x : x · z = α},
where z is a fxed vector in Rn and α ∈ R).

Nevertheless, if µ is σ-finite and (X,Σ), (A,A ) satisfy the hypothesis of Theorem 2.3, as soon as we
replace the possibly infinite-valued measure ν = p#µ with an equivalent σ-finite measure m on (A,A ),
we can find a family of σ-finite measures {µ̃α}α∈A on X such that

(2.2) µ =
∫
µ̃α dm(α)

and

(2.3) µ̃α(X\Xα) = 0 for m-a.e. α ∈ A.

For example, we can take m = p#θ, where θ is a finite measure equivalent to µ.
We recall that two measures µ1 and µ2 are equivalent if and only if

(2.4) µ1 � µ2 and µ2 � µ1.
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Moreover, if λ and {λ̃α}α∈A satisfy (2.2) and (2.3) as well as m and {µ̃α}α∈A, then λ is equivalent to
m and

λ̃α =
dm

dλ
(α)µ̃α,

where dm
dλ is the Radon-Nikodym derivative of m w.r.t. λ.

In the following, whenever µ is a σ-finite measure with infinite total variation, by disintegration of µ
strongly consistent with a given partition we will mean any family of σ-finite measures {µ̃α}α∈A which
satisfy the above properties; in fact, whenever µ has finite total variation we will keep the definition of
disintegration given in (2.1).

Finally, we recall that any disintegration of a σ-finite measure µ can be recovered by the disintegrations
of the finite measures {µ Kn}n∈N, where {Kn}n∈N ⊂ X is a partition of X into sets of finite µ-measure.

3. Statement of the Main Theorem

In this section, after setting the notation and some basic definitions, we apply Theorem 2.3 to get the
existence, uniqueness and strong consistency of the disintegration of the Lebesgue measure on the faces
of a convex function. Then, we give a rigorous formulation of the problem we are going to deal with and
state our main theorem.

3.1. Setting. Let us consider the ambient space

(Rn,B(Rn),L n K),

where L n is the Lebesgue measure on Rn, B(Rn) is the Borel σ-algebra, K is any set of finite Lebesgue
measure and L n K is the restriction of the Lebesgue measure to the set K. Indeed, by Remark 2.4,
the disintegration of the Lebesgue measure w.r.t. a given partition is determined by the disintegrations
of the Lebesgue measure restricted to finite measure sets.

Then, let f : Rn → R be a convex function.
We recall that the subdifferential of f at a point x ∈ Rn is the set ∂−f(x) of all r ∈ Rn such that

f(w)− f(x) ≥ r · (w − x), ∀w ∈ Rn.

From the basic theory of convex functions, as f is real-valued and is defined on all Rn, ∂−f(x) 6= ∅ for
all x ∈ Rn and it consists of a single point if and only if f is differentiable at x. Moreover, in that case,
∂−f(x) = {∇f(x)}, where ∇f(x) is the differential of f at the point x.
We denote by dom∇f a σ-compact set where f is differentiable and such that Rn \ dom∇f is Lebesgue
negligible. ∇f : dom∇f → R denotes the differential map and Im∇f the image of dom∇f with the
differential map.

The partition of Rn on which we want to decompose the Lebesgue measure is given by the sets

∇f−1(y) = {x ∈ Rn : ∇f(x) = y}, y ∈ Im∇f,

along with the set Σ1(f) = R
n\ dom∇f .

By the convexity of f , we can moreover assume w.l.o.g. that the intersection of ∇f−1(y) with dom∇f
is convex

Since ∇f is a Borel map and Σ1(f) is a L n-negligible Borel set (see e.g. [AAC92], [AA99]), we can
assume that the quotient map p of Definition 2.1 is given by ∇f and that the quotient space is given by
(Im∇f,B(Im∇f)), which is measurably included in (Rn,B(Rn)).

Then, this partition satisfies the hypothesis of Theorem 2.3 and there exists a family

{µy}y∈Im∇f

of probability measures on Rn such that

L n K(B ∩∇f−1(A)) =
∫
A

µy(B) d∇f#(L n K)(y), ∀A,B ∈ B(Rn).

In the following we give the formal definition of face of a convex function and relate this object to
the sets ∇f−1(y) of our partition.
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Definition 3.1. A tangent hyperplane to the graph of a convex function f : Rn → R is a subset of Rn+1

of the form

(3.1) Hy = {(z, hy(z)) : z ∈ Rn, and hy(z) = f(x) + y · (z − x)},

where x ∈ ∇f−1(y).

We note that, by convexity, the above definition is independent of x ∈ ∇f−1(y).

Definition 3.2. A face of a convex function f : Rn → R is a set of the form

(3.2) Hy ∩ graph f|dom∇f .

It is easy to check that, ∀ y ∈ Im∇f and ∀ z such that (z, f(z)) ∈ Hy ∩ graph f|dom∇f , we have that
y = ∇−1f(z).

If we denote by πRn : Rn+1 → R
n the projection map on the first n coordinates, one can see that, for

all y ∈ Im∇f ,
∇f−1(y) = πRn(Hy ∩ graph f|dom∇f ).

For notational convenience, the set ∇f−1(y) will be denoted as Fy.
We also write F ky instead of Fy whenever we want to emphasize the fact that the latter has dimension k,
for k = 0, . . . , n (where the dimension of a convex set C is the dimension of its affine hull aff(C)) and we
set

(3.3) F k =
⋃

{y: dim(Fy)=k}

Fy.

3.2. Absolute continuity of the conditional probabilities. Since the measure we are disintegrating
(L n) has the same Hausdorff dimension of the space on which it is concentrated (Rn) and since the
sets of the partition on which the conditional probabilities are concentrated have a well defined linear
dimension, we address the problem of whether this absolute continuity property of the initial measure is
still satisfied by the conditional probabilities produced by the disintegration: we want to see if

(3.4) dim(Fy) = k ⇒ µy �H k Fy.

The answer to this question is not trivial. Indeed, when n ≥ 3 one can construct sets of full Lebesgue
measure in Rn and Borel partitions of those sets into convex sets such that the conditional probabilities
of the corresponding disintegration do not satisfy property (3.4) for k = 1 (see e.g. [AKP04]).

However, for the partition given by the faces of a convex function, we show that the absolute continuity
property is preserved by the disintegration. Our main result is the following:

Theorem 3.3. Let {µy}y∈Im∇f be the family of probability measures on Rn such that

(3.5) L n K(B ∩∇f−1(A)) =
∫
A

µy(B) d∇f#(L n K)(y), ∀A,B ∈ B(Rn).

Then, for ∇f#(L n K)-a.e. y ∈ Im∇f , the conditional probability µy is equivalent to the k-dimensional
Hausdorff measure H k restricted to F ky ∩K, i.e.

(3.6) µy �H k (F ky ∩K) and H k (F ky ∩K)� µy.

Remark 3.4. The result for k = 0, n is trivial. Indeed, for all y such that Fy ∩K 6= ∅ and dim(Fy) = 0
we must put µy = δ{Fy}, where δx0 is the Dirac mass supported in x0, whereas if dim(Fy ∩K) = n we
have that µy = Ln Fy

|Ln Fy| .

Remark 3.5. Since the map

id× f :Rn → R
n+1

x 7→ (x, f(x))

is locally Lipschitz and preserves the Hausdorff dimension of sets, Theorem 3.3 holds also for the disin-
tegration of the (n+ 1)-dimensional Lebesgue measure over the partition of the graph of f given by the
faces defined in (3.2). We have chosen to deal with the disintegration of the Lebesgue measure over the
projections of the faces on Rn only for notational convenience.
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Theorem 3.3 will be proved in Section 4.7, where we provide also an explicit expression for the condi-
tional probabilities.

If we knew some Lipschitz regularity for the field of directions of the faces of a convex function, we
could try to apply the Area or Coarea Formula in order to obtain within a single step the disintegration
of the Lebesgue measure and the absolute continuity property (3.6).

However, such regularity is presently not known and for this reason we have to follow a different
approach.

4. The Explicit Disintegration

4.1. A disintegration technique. In this paragraph we give an outline of the technique we use in order
to prove Theorem 3.3.
This kind of strategy was first used in order to disintegrate the Lebesgue measure on a collection of
disjoint segments in [BG07], and then in [Car08].
For simplicity, we focus on the disintegration of the Lebesgue measure on the 1-dimensional faces and, in
the end, we give an idea of how we will extend this technique in order to prove the absolute continuity
of the conditional probabilities on the faces of higher dimension.
The disintegration on model sets: Fubini-Tonelli theorem and absolute continuity estimates
on affine planes which are transversal to the faces. First of all, let us suppose that the projected
1-dimensional faces of f are given by a collection of disjoint segments C whose projection on a fixed
direction e ∈ Sn−1 is equal to a segment [h−e, h+e] with h− < 0 < h+, more precisely

(4.1) C = ∪
z∈Zt

[a(z), b(z)],

where Zt is a compact subset of an affine hyperplane of the form {x · e = t} for some t ∈ R and
a(z) · e = h−, b(z) · e = h+. Any set of the form (4.1) will be called a model set (see also Figure 1).

〈e〉

a(z)

{x · e = h−}

R
n

z ∈ Z0

{x · e = 0} {x · e = h+}

b(z)

Figure 1: A model set of one dimensional projected faces. Given a subset Z0 of the hyperplane {x·e = 0},
the above model set is made of the one dimensional faces of f passing through some z ∈ Z0, truncated
between {x · e = h−}, {x · e = h+} and projected on Rn.

We want to find the conditional probabilities of the disintegration of the Lebesgue measure on the
segments which are contained in the model set C and see if they are absolutely continuous w.r.t. the H 1

measure.
The idea of the proof is to obtain the required disintegration by a Fubini-Tonelli argument, that

reverts the problem of absolute continuity w.r.t. H 1 of the conditional probabilities on the projected
1-dimensional faces to the absolute continuity w.r.t. H n−1 of the push forward by the flow induced by
the directions of the faces of the H n−1-measure on transversal hyperplanes.

First of all, we cut the set C with the affine hyperplanes which are perpendicular to the segment
[h−e, h+e], we apply Fubini-Tonelli theorem and we get

(4.2)
∫

C

ϕ(x) dL n(x) =
∫ h+

h−

∫
{x·e=t}∩C

ϕ dH n−1 dt, ∀ϕ ∈ C0
c (Rn).
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Then we observe the following: for every s, t ∈ [h−, h+], the points of {x · e = t} ∩ C are in bijective
correspondence with the points of the section {x · e = s} ∩ C and a bijection is obtained by pairing the
points that belong to the same segment [a(z), b(z)], for some z ∈ Zt.
For example, a map which sends the transversal section Z = {x · e = 0}∩C into the section Zt = {x · e =
t} ∩ C (for any t ∈ [h−, h+]) is given by

σt :Z → σt(Z) = {x · e = t} ∩ C

z 7→ z + t
ve(z)
|ve(z) · e|

= {x · e = t} ∩ [a(z), b(z)],

where [a(z), b(z)] is the segment of C passing through the point z and ve(z) = b(z)−a(z)
|b(z)−a(z)| .

Therefore, as soon as we fix a transversal section of C , say for e.g. Z = {x · e = 0} ∩ C , we can try to
rewrite the inner integral in the r.h.s. of (4.2) as an integral of the function ϕ ◦ σt w.r.t. to the H n−1

measure of the fixed section Z.
This can be done if

(4.3) (σt)−1
# (H n−1 σt(Z))�H n−1 Z.

Indeed,

(4.4)
∫
σt(Z)

ϕ(y) dH n−1(y) =
∫
Z

ϕ(σt(z)) d(σt)−1
# (H n−1 σt(Z))(z)

and if (4.3) is satisfied for all t ∈ [h−, h+], then

(4.2) =
∫ h+

h−

∫
Z

ϕ(σt(z))α(t, z) dH n−1(z) dt,

where α(t, z) is the Radon-Nikodym derivative of (σt)−1
# (H n−1 σt(Z)) w.r.t. H n−1 Z.

Having turned the r.h.s. of (4.2) into an iterated integral over a product space isomorphic to Z +
[h−e, h+e], the final step consists in applying Fubini-Tonelli theorem again so as to exchange the order
of the integrals and get

(4.5)
∫

C

ϕ(x) dL n(x) =
∫
Z

∫ h+

h−
ϕ(σt(z))α(t, z) dt dH n−1(z).

This final step can be done if α is Borel-measurable and locally integrable in (t, z).
By the uniqueness of the disintegration stated in Theorem 2.3 we have that

(4.6) dµz(t) =
α(t , z) · dH 1 [a(z), b(z)](t)∫ h+

h−
α(s, z) ds

, for H n−1-a.e. z ∈ Z.

The same reasoning can be applied to the case k > 1. Indeed, let us consider a collection C k of k-

dimensional faces whose projection on a certain k-plane 〈e1, . . . , ek〉 is given by a rectangle
k∏
i=1

[h−i ei, h+
i ei],

with h−i < 0 < h+
i for all i = 1, . . . , k (see Figure 2).

Then, as soon as we fix an affine (n − k)-dimensional plane which is perpendicular to the k-plane

〈e1, . . . , ek〉, as for example Hk =
k
∩
i=1
{x · ei = 0}, and we denote by π〈e1,...,ek〉 : Rn → 〈e1, . . . , ek〉 the

projection map on the k-plane 〈e1, . . . , ek〉, the k-dimensional faces in C k can be parametrized with the
map

(4.7) σte(z) = z + t
ve(z)

|π〈e1,...,ek〉(ve(z))|
,

where z ∈ Zk = Hk ∩C k, e is a unit vector in the k-plane 〈e1, . . . , ek〉, t ∈ R satisfies te · ei ∈ [h−i , h
+
i ] for

all i = 1, . . . , k and ve(z) is the unit direction contained in the face passing through z which is such that
π〈e1,...,ek〉(ve(z))

|π〈e1,...,ek〉(ve(z))| = e.
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〈ek+1, . . . , en〉

Z k

π−1
〈e1,...,ek〉(C

k)

Ck

R
n

Ek∇f(z)

z ∈ Zk

〈e1, . . . , ek〉

Figure 2: Sheaf sets and D-cylinders (Definitions 4.3, 4.5). Roughly, a sheaf set Z k is a collection of
k-faces of f , projected on Rn, which intersect exactly at one point some set Zk contained in a (n − k)-
dimensional plane. A D-cylinder C k is the intersection of a sheaf set with π−1

〈e1,...,ek〉(C
k), for some

rectangle Ck = conv({t−i ei, t+i ei}i=1,...,k), where {e1, . . . , en} are an orthonormal basis of Rn. Such
sections Zk are called basis, while the k-plane 〈e1, . . . , ek〉 is an axis.

If we cut the set C k with affine hyperplanes which are perpendicular to ei for i = 1, . . . , k and apply
k-times the Fubini-Tonelli theorem, the main point is again to show that, for every e and t as above,

(4.8) (σte)−1
# (H n−k Zk)�H n−k Zk

and, after this, that the Radon-Nikodym derivative between the above measures satisfies proper measur-
ability and integrability conditions.

Then, to prove Theorem 3.3 on model sets that are, up to translations and rotations, like the set
C k, it is sufficient to prove (4.8) and some weak properties of the related density function, such as
Borel-measurability and local integrability.
Actually, the properties of this function will follow immediately from our proof of (4.8), which is given
in a stronger form in Lemma 4.31.
Partition of Rn into model sets and the global disintegration theorem. In the next section we
show that the set F k defined in (3.3), for k = 1, . . . , n− 1, can be partitioned, up to a negligible set, into
a countable collection of Borel-measurable model sets like C k. After proving the disintegration theorem
on the model sets we will see how to glue the “local” results in order to obtain a global disintegration
theorem for the Lebesgue measure over the whole faces of the convex function (restricted to a set of
L n-finite measure).

4.2. Measurability of the directions of the k-dimensional faces. The aim of this subsection is to
show that the set of the projected k-dimensional faces of a convex function f can be parametrized by a
L n-measurable (and multivalued) map. This will allow us to decompose Rn into a countable family of
Borel model sets on which to prove Theorem 3.3.

First of all we give the following definition, which generalizes Definition 3.1.

Definition 4.1. A supporting hyperplane to the graph of a convex function f : Rn → R is an affine
hyperplane in Rn+1 of the form

H = {w ∈ Rn+1 : w · b = β},
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where b 6= 0, w · b ≤ β for all w ∈ epi f = {(x, t) ∈ Rn × R : t ≥ f(x)} and w · b = β for at least one
w ∈ epi f . As f is defined and real-valued on all Rn, every supporting hyperplane is of the form

(4.9) Hy = {(z, hy(z)) : z ∈ Rn, hy(z) = f(x) + y · (z − x)},
for some y ∈ ∂−f(x). Whenever y ∈ Im∇f , Hy is a tangent hyperplane to the graph of f according to
Definition 3.1.

Then we define the map

(4.10) x 7→ P(x) =
{
z ∈ Rn : ∃ y ∈ ∂− f(x) such that f(z)− f(x) = y · (z − x)

}
.

By definition, P(x) = ∪
y∈∂−f(x)

πRn (Hy ∩ graph(f)).

Moreover, the map
dom∇f 3 x 7→ R(x) := P(x) ∩ dom∇f,

gives precisely the set Fy of our partition that passes through the point x.
As the disintegration over the 0-dimensional faces is trivial, we will restrict our attention to the set

T = {x ∈ dom∇f : R(x) 6= {x}}.
For all such points there is at least one maximal segment [w, z] ⊂ R(x) such that w 6= z.

We can also define the multivalued map giving the unit directions contained in the faces passing
through the set T, that is

(4.11) T 3 x 7→ D(x) =
{
z − x
|z − x|

: z ∈ R(x), z 6= x

}
.

We recall that a multivalued map is defined to be Borel measurable if the counterimage of any open set
is Borel.
The measurability of the above maps is proved in the following lemma:

Lemma 4.2. The graph of the multivalued function P is a closed set in Rn × Rn. As a consequence, P,
R and D are Borel measurable multivalued maps and T is a Borel set.

Proof. The closedness of the graph of P follows immediately from the continuity of f and from the
upper-semicontinuity of its subdifferential. Then, the graph of P is σ-compact in R

n × Rn and, due to
the continuity of the projections from R

n × Rn to Rn. It follows then that the map is Borel.
Moreover, since we chose dom∇f to be σ-compact, also the graph of R is σ-compact, thus R is a Borel

map.
The same reasoning that is made for the map P can be applied to the multifunction P\I (where I

denotes the identity map), thus giving the mesurability of the set T, since

T = π
(
graph(P\I)

)
∩ dom∇f,

where π : Rn × Rn → R
n denotes the projection on the first n coordinates.

The measurability of D follows by the continuity of the map R
n × R

n 3 (x, z) 7→ z−x
|z−x| out of the

diagonal. �

4.3. Partition into model sets. First of all, we introduce some preliminary notation.
If K ⊂ Rd is a convex set and aff(K) is its affine hull, we denote by ri(K) the relative interior of K, which
is the interior of K in the topology of aff(K), and by rb(K) its relative boundary, which is the boundary
of K in aff(K).

In order to find a countable partition of F k into model sets like the set C k which was defined in Section
4.1, we have to neglect the points that lie on the relative boundary of the k-dimensional faces.
More precisely, from now onwards we look for the disintegration of the Lebesgue measure over the sets

(4.12) Ey = ri(Fy), y ∈ Im∇f.
As we did for the sets Fy, we set

Eky = Ey, if dim(Ey) = k

and

(4.13) Ek =
⋃

{y∈Im∇f : dim(Ey)=k}

Eky .
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This restriction will not affect the characterization of the conditional probabilities because, as we will
prove in Lemma 4.19, the set

T \
n⋃
k=1

Ek

is Lebesgue negligible.
Now we can start to build the partition of Ek into model sets.

Definition 4.3. For all k = 1, . . . , n, we call sheaf set a σ-compact subset of Ek of the form

(4.14) Z k = ∪
z∈Zk

ri(R(z)),

where Zk is a σ-compact subset of Ek which is contained in an affine (n−k)-plane in Rn and is such that

(4.15) ri(R(z)) ∩ Zk = {z}, ∀ z ∈ Zk.

We call sections of Z k all the sets Y k that satisfy the same properties of Zk in the definition.
A subsheaf of a sheaf set Z k is a sheaf set W k of the form

W k = ∪
w∈Wk

ri(R(w)),

where W k is a σ-compact subset of a section of the sheaf set Z k.

Similarly to Lemma 2.6 in [Car08], we prove that the set Ek can be covered with countably many
disjoint sets of the form (4.14).
First of all, let us take a dense sequence {Vi}i∈N ⊂ G(k, n), where G(k, n) is the compact set of all the
k-planes in Rn passing through the origin, and fix, ∀ i ∈ N, an orthonormal set {ei1 , . . . , eik} in Rn such
that

(4.16) Vi = 〈ei1 , . . . , eik〉.

Denoting by Sn−1 ∩V the k-dimensional unit sphere of a k-plane V ⊂ Rn w.r.t. the Euclidean norm and
by πi = πVi : Rn → Vi the projection map on the k-plane Vi, for every fixed 0 < ε < 1 the following sets
form a disjoint covering of the k-dimensional unit spheres in Rn:

(4.17) Sk−1
i =

{
Sn−1 ∩ V : V ∈ G(k, n), inf

x∈Sn−1∩V
‖πi(x)‖ ≥ 1− ε

}
\
i−1
∪
j=1

Sk−1
j , i = 1, . . . , I,

where I ∈ N depends on the ε we have chosen.
In order to determine a countable partition of Ek into sheaf sets we consider the k-dimensional rect-

angles in the k-planes (4.16) whose boundary points have dyadic coordinates. For all

(4.18) l = (l1, . . . , lk), m = (m1, . . . ,mk) ∈ Zk with lj < mj ∀ j = 1, . . . , k

and for all i = 1, . . . , I, p ∈ N, let Ckiplm be the rectangle

(4.19) Ckiplm = 2−p
k∏
j=1

[lj eij ,mj eij ].

Lemma 4.4. The following sets are sheaf sets covering Ek: for i = 1, . . . , I, p ∈ N, and S ⊂ Zk take

Z k
ipS =

{
x ∈ Ek : D(x) ⊂ Sk−1

i and S ⊂ Zk is the maximal set such that

∪
l∈S

Ckipl(l+1) ⊂ πi[ri(R(x))]
}
.(4.20)

Moreover, a disjoint family of sheaf sets that cover Ek is obtained in the following way: in case p = 1
we consider all the sets Z k

ipS as above, whereas for all p > 1 we take a set Z k
ipS if and only if the set

∪
l∈S
Ckipl(l+1) does not contain any rectangle of the form Ckip′l(l+1) for every p′ < p.

As soon as a nonempty sheaf set Z k
ipS belongs to this partition, it will be denoted by Z̄ k

ipS.

For the proof of this lemma we refer to the analogous Lemma 2.6 in [Car08].
Then, we can refine the partition into sheaf sets by cutting them with sections which are perpendicular

to fixed k-planes.
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Definition 4.5. (See Figure 2) A k-dimensional D-cylinder is a σ-compact set of the form

(4.21) C k = Z k ∩ π−1
〈e1,...,ek〉(C

k),

where Z k is a k-dimensional sheaf set, 〈e1, . . . , ek〉 is any fixed k-dimensional subspace which is perpen-
dicular to a section of Z k and Ck is a rectangle in 〈e1, . . . , ek〉 of the form

Ck =
k∏
i=1

[t−i ei, t+i ei],

with −∞ < t−i < t+i < +∞ for all i = 1, . . . , k, such that

(4.22) Ck ⊂ π〈e1,...,ek〉[ri(R(z))] ∀ z ∈ Z k ∩ π−1
〈e1,...,ek〉(C

k).

We set C k = C k(Z k, Ck) when we want to refer explicitily to a sheaf set Z k and to a rectangle Ck that
can be taken in the definition of C k.
The k-plane 〈e1, . . . , ek〉 is called the axis of the D-cylinder and every set Zk of the form

C k ∩ π−1
〈e1,...,ek〉(w), for some w ∈ ri(Ck)

is called a section of the D-cylinder.

We also define the border of C k transversal to D and its outer unit normal as

dC k = C k ∩ π−1
〈e1,...,ek〉(rb(Ck)),

n̂|
dCk

(x) = outer unit normal to π−1
〈e1,...,ek〉(C

k) at x, for all x ∈ dC k.(4.23)

Lemma 4.6. The set Ek can be covered by the D-cylinders

(4.24) C k(Z k
ipS , C

k
ipl(l+1)),

where S ⊂ Zk, l ∈ S and Z k
ipS, C

k
ipl(l+1) are the sets defined in (4.20),(4.19).

Moreover, there exists a countable covering of Ek with D-cylinders of the form (4.24) such that

(4.25) πi

[
C k(Z k

ipS , C
k
ipl(l+1)) ∩ C k(Z k

ip′S′ , C
k
ip′l′(l′+1))

]
⊂ rb[Ckipl(l+1)] ∩ rb[Ckip′l′(l′+1)]

for any couple of D-cylinders which belong to this countable family (if i 6= i′, it follows from the definition
of sheaf set that C k(Z k

ipS , C
k
ipl(l+1)) ∩ C k(Z k

i′p′S′ , C
k
i′p′l′(l′+1)) must be empty).

Proof. The fact that the D-cylinders defined in (4.24) cover Ek follows directly from Definitions 4.3 and
4.5 as in [Car08].

Our aim is then to construct a countable covering of Ek with D-cylinders wich satisfy property (4.25).
First of all, let us fix a nonempty sheaf set Z̄ k

ipS which belongs to the countable partition of Ek given in
Lemma 4.4.
In the following we will determine the D-cylinders of the countable covering which are contained in Z̄ k

ipS ;
the others can be selected in the same way starting from a different sheaf set of the partition given in
Lemma 4.4.
Then, the D-cylinders that we are going to choose are of the form

C k
(
Z k
ip̂Ŝ
, Ck

ip̂̂l(̂l+1)

)
,

where Z k
ip̂Ŝ

is a subsheaf of the sheaf set Z̄ k
ipS .

The construction is done by induction on the natural number p̂ which determines the diameter of the
squares Ck

ip̂̂l(̂l+1)
obtained projecting the D-cylinders contained in Z̄ k

ipS on the axis 〈ei1 , . . . , eik〉. Then,
as the induction step increases, the diameter of the k-dimensional rectangles associated to the D-cylinders
that we are going to add to our countable partition will be smaller and smaller (see Figure 3).

By definition (4.20) and by the fact that Z̄ k
ipS is a nonempty element of the partition defined in Lemma

4.4, the smallest natural number p̂ such that there exists a k-dimensional rectangle of the form Ck
ip̂̂l(̂l+1)

which is contained in πi(Z̄ k
ipS) is exactly p ; then, w.l.o.g., we can assume in our induction argument that

p = 1.
For all p̂ ∈ N, we call Cylp̂ the collection of the D-cylinders which have been chosen up to step p̂.
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R
n

〈eik+1 , . . . , ein〉

〈ei1 , . . . , eik〉

Figure 3: Partition of Ek into D-cylinders (Lemma 4.6).

When p̂ = 1 we set
Cyl1 = {C k(Z̄ k

i1S , C
k
i1l(l+1)) : l ∈ S}.

Now, let us suppose to have determined the collection of D-cylinders Cylp̂ for some p̂ ∈ N.
Then, we define

Cylp̂+1 = Cylp̂
⋃{

C k = C k(Z k
i(p̂+1)S̃

, Ck
i(p̂+1)̃l(̃l+1)

) : Z k
i(p̂+1)S̃

is a subsheaf of Z̄ k
ipS and

C k * C k(Z k
ip′S′ , C

k
ip′l′(l′+1)) for all C k(Z k

ip′S′ , C
k
i′p′l′(l′+1)) ∈ Cylp̂

}
.(4.26)

�

As we did in (4.7), any k-dimensional D-cylinder C k = C k(Z k, Ck) can be parametrized in the
following way: if we fix w ∈ ri(Ck), then

C k =
{
σw+te(z) : z ∈ Zk = π−1

〈e1,...,ek〉(w) ∩ C k, e ∈ Sn−1 ∩ 〈e1, . . . , ek〉

and t ∈ R is such that (w + te) · ej ∈ [t−j , t
+
j ] ∀ j = 1, . . . , k

}
,(4.27)

where

(4.28) σw+te(z) = z + t
ve(z)

|π〈e1,...,ek〉(ve(z))|
,

and ve(z) ∈ D(z) is the unit vector such that π〈e1,...,ek〉(ve(z))

|π〈e1,...,ek〉(ve(z))| = e.
We observe that, according to our notation,

(4.29) (σw+te)−1 = σ(w+te)−te.

4.4. An absolute continuity estimate. According to the strategy outlined in Section 4.1, in order to
prove Theorem 3.3 for the disintegration of the Lebesgue measure on the D-cylinders we have to show
that, for every D-cylinder C k parametrized as in (4.27)

(4.30) (σw+te)−1
# (H n−k σw+te(Zk))�H n−k Zk.

This will allow us to make a change of variables from the measure space (σw+te(Zk),H n−k (σw+te(Zk))
to (Zk, α ·H n−k Zk), where α is an integrable function w.r.t. H n−k Zk (see Section 4.1).
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It is clear that the domain of the parameter t, which can be interpreted as a time parameter for a flow
σw+te that moves points along the k-dimensional projected faces of a convex function, depends on the
section Zk which has been chosen for the parametrization of C k and on the direction e.
Then, if 〈e1, . . . , ek〉 is the axis of a D-cylinder C k, for every w ∈ ri(Ck) and for every e ∈ Sn−1 ∩
〈e1, . . . , ek〉, we define the numbers

h−(w, e) = inf{t ∈ R : w + te ∈ Ck}, h+(w, e) = sup{t ∈ R : w + te ∈ Ck}.

We observe that, as w ∈ ri(Ck), h−(w, e) < 0 < h+(w, e).
We obtain (4.30) in Corollary 4.15 as a consequence of the following fundamental lemma.

Lemma 4.7 (Absolutely continuous push forward). Let C k be a k-dimensional D-cylinder parametrized
as in (4.27). Then, for all S ⊂ Zk the following estimate holds:

(
h+(w, e)− t
h+(w, e)− s

)n−k
H n−k(σw+se(S)) ≤H n−k(σw+te(S))

≤
(
t− h−(w, e)
s− h−(w, e)

)n−k
H n−k(σw+se(S)),(4.31)

where h−(w, e) < s ≤ t < h+(w, e).
Moreover, if s = h−(w, e) the left inequality in (4.31) still holds and if t = h+(w, e) the right one.

Lemma 4.7 will be proven at page 22.
The idea to prove this lemma, as in [BG07] and [Car08], is to get the estimate (4.31) for the flow σw+te

j

induced by simpler vector fields {vj}j∈N and then to show that they approximate the initial vector field
ve in such a way that the inequalities in (4.31) pass to the limit.

The main problem in our proof is then to find a suitable sequence of vector fields {vj}j∈N that
approximate, in a certain region, the geometry of the projected k-dimensional faces of a convex function
in the direction e, which is described by the vector field ve.
For the construction of this family of vector fields we strongly rely on the fact that the sets on which we
want to disintegrate the Lebesgue measure are, other than disjoint, the projections of the k-dimensional
faces of a convex function.

For simplicity, we first prove the estimate (4.31) for 1-dimensional D-cylinders.
In this case, if 〈e〉 is the axis of a 1-dimensional D-cylinder C , there are only two possible directions ±e
that can be chosen to parametrize it. Up to translations by a multiple of the same vector, we can assume
that w = 0. Moreover, since choosing −e instead of e in the definition of the parametrization map (4.28)
simply reverses the order of s and t in (4.31), in order to prove (4.31) it is sufficient to show that, for all
0 ≤ t ≤ h+ and for all S ⊂ σt(Z)

(4.32) H n−1(S) ≤
(
t− h−

−h−

)n−1

H n−1((σt)−1(S)),

where σt = σ0+te and h± = h±(0, e).
In our construction we first approximate the 1-dimensional faces that lie on the graph of f restricted

to the given D-cylinder and then we get the approximating vector fields {vj}j∈N simply projecting the
directions of those approximations on the first n coordinates.
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Before giving the details we recall and introduce some useful notation:

Sn−1 = {x ∈ Rn : ‖x‖ = 1};
e ∈ Sn−1 a fixed vector;

Ht := {x ∈ Rn : x · e = t}, where t ∈ [h−, h+] and h−, h+ ∈ R : h− < 0 < h+;

Bn−1
R (x) = {z ∈ H{x·e} : ‖z − x‖ ≤ R};

Z is the σ-compact section of the 1-dimensional D-cylinder C which is contained in H0;

ve(x) ∈ D(x) is the unit vector such that πe(ve(x)) = |πe(ve(x))| e, ∀x ∈ C ;

C = {σt(z) : z ∈ Z, t ∈ [h−, h+]}, σt(z) = z + t
ve(z)

|πe(ve(z))|
;

Ct = ∪
s∈[h−,t]

Hs ∩ C ;

lt(x) = R(x) ∩ Ct, ∀x ∈ Ct;

∀x ∈ Rn, x̃ := (x, f(x)) ∈ Rn+1 and ∀A ⊂ Rn, Ã := graph f|A .

Moreover, we recall the following definitions:

Definition 4.8. The convex envelope of a set of points X ⊂ R
n is the smaller convex set conv(X) that

contains X. The following characterization holds:

(4.33) conv(X) =
{ J∑
j=1

λj xj : xj ∈ X, 0 ≤ λj ≤ 1,
J∑
j=1

λj = 1, J ∈ N
}
.

Definition 4.9. The graph of a compact convex set C ⊂ R
n+1, that we denote by graph(C), is the graph

of the function g : πRn(C)→ R which is defined by

(4.34) g(x) = min{t ∈ R : (x, t) ∈ C}.

Definition 4.10. A supporting k-plane to the graph of a convex function f : Rn → R is an affine k-
dimensional subspace of a supporting hyperplane to the graph of f (see Definition 4.1) whose intersection
with graph f is nonempty.

Definition 4.11. An R-face of a convex set C ⊂ R
d is a convex subset C ′ of C such that every closed

segment in C with a relative interior point in C ′ has both endpoints in C ′. The zero-dimensional R-faces
of a convex set are also called extreme points and the set of all extreme points in a convex set C will be
denoted by ext(C).

The definition of R-face corresponds to the definition of face of a convex set in [Roc70].
We also recall the following propositions, for which we refer to Section 18 of [Roc70].

Proposition 4.12. Let C = conv(D), where D is a set of points in Rd, and let C ′ be a nonempty R-face
of C. Then C ′ = conv(D′), where D′ consists of the points in D which belong to C ′.

Proposition 4.13. Let C be a bounded closed convex set. Then C = conv(ext(C)).

The key to get fundamental estimate (4.32) is contained in the following lemma:

Lemma 4.14 (Construction of regular approximating vector fields). For all 0 ≤ t ≤ h+, there exists a
sequence of H n−1-measurable vector fields

{vtj}j∈N, vtj : σt(Z)→ Sn−1

such that

1. vtj converges H n−1-a.e. to ve on σt(Z);(4.35)

2. H n−1(S) ≤
(
t− h−

−h−

)n−1

H n−1((σtvtj )
−1(S)), ∀S ⊂ σt(Z),

where σtvtj is the flow map associated to the vector field vtj. .(4.36)

Indeed, if we have such a sequence of vector fields, the proof of the estimate (4.32) follows as in [Car08].
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Proof. Step 1 Preliminary considerations
First of all, let us fix t ∈ [0, h+].

Eventually partitioning C into a countable collection of sets, we can assume that σt(Z) and σh
−

(Z)
are bounded, with σt(Z) ⊂ Bn−1

R1
(x1) ⊂ Ht and σh

−
(Z) ⊂ Bn−1

R2
(x2) ⊂ Hh− . Then, if we call Kt the

convex envelope of Bn−1
R1

(x1)∪Bn−1
R2

(x2), the function f|Kt is uniformly Lipschitz with a certain Lipschitz
constant Lf .
Step 2 Construction of approximating functions (see Figure 4)
Now we define a sequence of functions {fj}j∈N whose 1-dimensional faces approximate, in a certain

f|Ht

Hh− Ht

y4

f|H
h−

ỹ3

ỹ2

ỹ4

ỹ1

R
n+1

R
n

y1

y3

y2

Figure 4: Illustration of a vector field approximating the one dimensional faces of f (Lemma 4.14). One
can see in the picture the graph of f4, which is the convex envelope of {ỹi}i=1,...,4 and f |Ht . The faces
of fj connect H n−1-a.e. point of Ht to a single point among the {ỹi}i, while the remaining points of
Ht correspond to some convex envelope conv({ỹi`}`) — here represented by the segments [ỹi, ỹi+1]. The
region where the vector field vt4, giving the directions of the faces of fj , is multivalued corresponds to the
‘planar’ faces of f4. The affine span of these planar faces, restricted to suitable planes contained in Ht,
provides a supporting hyperplane for the restriction of f to these latter planes — in the picture they are
depicted as tangent lines. The intersection of σt(Z) ⊂ Ht with any supporting plane to the graph of f |Ht
must contain just one point, otherwise D would be multivalued at some point of σt(Z).

sense, the pieces of the 1-dimensional faces of f which are contained in Ct. The directions of a properly
chosen subcollection of the 1-dimensional faces of fj will give, when projected on the first n coordinates,
the approximate vector field vtj .

First of all, take a sequence {ỹi}i∈N ⊂ σ̃h
−

(Z) such that the collection of segments {l̃t(yi)}i∈N is dense
in ∪

y∈σh− (Z)
l̃t(y).
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For all j ∈ N, let Cj be the convex envelope of the set

(4.37) {ỹi}ji=1 ∪ graph f|
B
n−1
R1

(x1)

and call fj : πRn(Cj)→ R the function whose graph is the graph of the convex set Cj .
We note that πRn(Cj) ∩Hh− = conv({yi}ji=1) and graph fj |

conv({yi}
j
i=1)

= graph(conv({ỹi}ji=1)).

We claim that the graph of fj is made of segments that connect the points of graph(conv
(
{ỹi}ji=1

)
) to

the graph of f|
B
n−1
R1

(x1)
(indeed, by convexity and by the fact that ỹi = (yi, f(yi)), fj = f on Bn−1

R1
(x1)).

In order to prove this, we first observe that, by definition, all segments of this kind are contained in the
set Cj . On the other hand, by (4.33), all the points in Cj are of the form

(4.38) w =
J∑
i=1

λi wi,

where
J∑
i=1

λi = 1, 0 ≤ λi ≤ 1 and wi ∈ {ỹi}ji=1 ∪ graph f|
B
n−1
R1

(x1)
. In particular, we can write

(4.39) w = αz + (1− α)r, where 0 ≤ α ≤ 1, z ∈ conv
(
{ỹi}ji=1

)
and r ∈ epi f|

B
n−1
R1

(x1)
.

Moreover, if we take two points z′ ∈ graph(conv({ỹi}ji=1)), r′ ∈ graph f|
B
n−1
R1

(x1)
such that πRn(z′) =

πRn(z) and πRn(r′) = πRn(r), we have that the point

(4.40) w′ = αz′ + (1− α)r′

belongs to Cj , lies on a segment which connects graph(conv
(
{ỹi}ji=1

)
) to graph f|

B
n−1
R1

(x1)
and its (n+ 1)

coordinate is less than the (n+ 1) coordinate of w.

The graph of fj contains also all the pieces of 1-dimensional faces {l̃t(yi)}ji=1, since by construction it
contains their endpoints and it lies over the graph of f|π

Rn (Cj)
.

Step 3 Construction of approximating vector fields (see Figure 4)
Among all the segments in the graph of fj that connect the points of graph(conv

(
{ỹi}ji=1

)
) to the

graph of f|
B
n−1
R1

(x1)
, we select those of the form [x̃, ỹk], where x ∈ σt(Z), yk ∈ {yi}ji=1, and we show that

for H n−1-a.e. x ∈ σt(Z) there exists only one segment within this class which passes through x̃. The
approximating vector field will be given by the projection on the first n coordinates of the directions of
these segments.

First of all, we claim that for all x ∈ Bn−1
R1

(x1) the graph of fj contains at least a segment of the form
[x̃, ỹi] for some i ∈ {1, . . . , j}.
Indeed, we show that if x̃ is the endpoint of a segment of the form [x̃, (y, fj(y))] where y ∈ conv

(
{yi}ji=1

)
but (y, fj(y)) /∈ ext

(
conv

(
{yi}ji=1

))
, then there are at least two segments of the form [x̃, ỹk] with ỹk ∈

ext(conv({ỹi}ji=1)) ⊂ {ỹi}ji=1 (here we assume that j ≥ 2).
In order to prove this, take a point (z, fj(z)) in the open segment (x̃, (y, fj(y))) and a supporting hyper-
plane H(z) to the graph of fj that contains that point. By definition, H(z) contains the whole segment
[x̃, (y, fj(y))] and the set H(z) ∩

(
Hh− × R

)
is a supporting hyperplane to the set graph(conv({ỹi}ji=1))

that contains the point (y, fj(y)).
Now, take the smallest R-face C of conv

(
{ỹi}ji=1

)
) which is contained in graph(conv

(
{ỹi}ji=1

)
)) and

contains the point (y, fj(y)), that is given by the intersection of all R-faces which contain (y, fj(y)).
By Propositions 4.12 and 4.13, C = conv

[
ext
(
conv

(
{ỹi}ji=1

))
∩C
]
and as (y, fj(y)) /∈ ext

(
conv

(
{ỹi}ji=1

))
,

dim(C) ≥ 1 and the set ext
(
conv

(
{ỹi}ji=1

))
∩ C contains at least two points ỹk, ỹl.

In particular, since both C and x̃ belong to H(z)∩ graph(fj), by definition of supporting hyperplane we
have that the graph of fj contains the segments [x̃, ỹk], [x̃, ỹl] and our claim is proved.

Now, for each j ∈ N, we define the (possibly multivalued) map Dt
j : Bn−1

R1
(x1)→ R

n as follows:

(4.41) Dt
j : x 7→

{
yi − x
|yi − x|

: [x̃, ỹi] ⊂ graph(fj)
}
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and we prove that the set

(4.42) Bj := σt(Z) ∩ {x ∈ Bn−1
R1

(x1) : Dt
j(x) is multivalued }

is H n−1−negligible, ∀ j ∈ N.
Thus, if we neglect the set B = ∪

j∈N
Bj , we can define our approximating vector field as

(4.43) vtj(x) = {Dt
j(x)}, ∀x ∈ σt(Z)\B, ∀ j ∈ N.

In order to show that H n−1(Bj) = 0 we first prove that, for H n−1-a.e. x ∈ Bn−1
R1

(x1), whenever
Dt
j(x) contains the directions of two segments, fj must be linear on their convex envelope.

Indeed, suppose that the graph of fj contains two segments [x̃, ỹik ], where ik ∈ {1, . . . , j} and k = 1, 2,
and consider two points (zk, fj(zk)) ⊂ [x̃, ỹik ] such that

z1 = x+ se + a1v1, s ∈ [h− − t, 0), v1 ∈ H0;

z2 = x+ se + a2v2, s ∈ [h− − t, 0), v2 ∈ H0.(4.44)

As fj is linear on [x, yik ], we have that

(4.45) fj(zk) = fj(x) + rk · (se + akvk),

where rk ∈ ∂−fj(x), k = 1, 2.
Moreover, since

(4.46) πH0(∂−fj(x)) = ∂−f|
B
n−1
R1

(x1)
(x)

and the set where ∂−f|
B
n−1
R1

(x1)
is multivalued is H n−2-rectifiable (see for e.g. [Zaj78, AA99]), we have

that, for H n−1-a.e. x ∈ Bn−1
R1

(x1)

(4.47) r · v = ∇(f|
B
n−1
R1

(x1)
)(x) · v, ∀ r ∈ ∂−fj(x), ∀ v ∈ H0.

Then, if we put w = ∇(f|
B
n−1
R1

(x1)
)(x), (4.45) becomes

(4.48) fj(zk) = fj(x) + rk · se + w · akvk.

If zλ = (1− λ)z1 + λz2, we have that

fj(zλ) ≤ (1− λ)fj(z1) + λfj(z2)
(4.48)

= fj(x) + s((1− λ)r1 + λr2) · e + w · ((1− λ)a1v1 + λa2v2).(4.49)

As ((1− λ)r1 + λr2) ∈ ∂−fj(x), we also obtain that

fj(zλ) ≥ fj(x) + s((1− λ)r1 + λr2) · e
+ ((1− λ)r1 + λr2) · ((1− λ)a1v1 + λa2v2) =

= fj(x) + s((1− λ)r1 + λr2) · e + w · ((1− λ)a1v1 + λa2v2) =
(4.48)

= (1− λ)fj(z1) + λfj(z2).(4.50)

Thus, we have that fj((1− λ)z1 + λz2) = (1− λ)fj(z1) + λfj(z2) and our claim is proved.
In particular, there exists a supporting hyperplane to the graph of fj which contains the affine hull of

the convex envelope of {[x̃, ỹik ]}k=1,2 and then this affine hull must intersect Ht × R into a supporting
line to the graph of f|

B
n−1
R1

(x1)
which is parallel to the segment [ỹi1 , ỹi2 ].

Thus, if all the supporting lines to the graph of f|
B
n−1
R1

(x1)
which are parallel to a segment [ỹk, ỹm] (with

k,m ∈ {1, . . . , j}, k 6= m) are parametrized as

(4.51) lk,m + w,

where lk,m is the linear subspace of Rn+1 which is parallel to [ỹk, ỹm] and w ∈ Wk,m ⊂ Ht × R is
perpendicular to lk,m, we have that

(4.52) Bj = σt(Z) ∩
[

∪
k,m∈{1,...,j}

k<m

∪
w∈Wk,m

πRn(lk,m + w)
]
.
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By this characterization of the set Bj and by Fubini theorem on Ht w.r.t. the partition given by the lines
which are parallel to πRn(lk,m) for every k and m, in order to show that H n−1(Bj) = 0 it is sufficient to
prove that, ∀w ∈Wk,m,

(4.53) H n−1(σt(Z) ∩ πRn(lk,m + w)) = 0.

Finally, (4.53) follows from the fact that a supporting line to the graph of f|
B
n−1
R1

(x1)
cannot contain

two distinct points of σ̃t(Z), because otherwise they would be contained in a higher dimensional face of
the grapf of f contraddicting the definition of σ̃t(Z).

Then, the vector field defined in (4.43) is defined H n−1-a.e..
Step 4 Convergence of the approximating vector fields

Here we prove the convergence property of the vector field defined in (4.43) as stated in (4.35).
This result is obtained as a consequence of the uniform convergence of the approximating functions fj to
the function f̂ which is the graph of the set

(4.54) Ĉ = conv
(
{l̃t(yi)}i∈N

)
.

First of all we observe that, since Cj ↗ Ĉ,

(4.55) dom fj = πRn(Cj)↗ dom f̂ = πRn(Ĉ) and fj(x)↘ f̂(x) ∀x ∈ ri(πRn(Ĉ)),

where fj(x) is defined ∀ j ≥ j0 such that x ∈ πRn(Cj0).
In order to prove that fj(x)↘ f̂(x) uniformly, we show that the functions fj are uniformly Lipschitz

on their domain, with uniformly bounded Lipschitz constants.
We recall that the graph of fj is made of segments that connect the points of graph f|

B
n−1
R1

(x1)
to the

points of graph(conv
(
{ỹi}ji=1

)
).

In order to find and upper bound for the incremental ratios between points z, w ∈ dom fj , we distin-
guish two cases.

Case 1: [z, w] ⊂ [x, yk], where x ∈ Bn−1
R1

(x1), yk ∈ {yi}ji=1 and [x̃, ỹk] ⊂ graph(fj).
In this case we have that

(4.56)
|fj(z)− fj(w)|
|z − w|

=
|fj(x)− fj(yk)|
|x− yk|

=
|f(x)− f(yk)|
|x− yk|

≤ Lf ,

where Lf is tha Lipschitz constant of f on Kt.
Case 2: Otherwise we observe that, since fj is convex,

(4.57) |fj(z)− fj(w)| ≤ sup
r∈∂−fj(z)∪∂−fj(w)

|r · (z − w)|.

Let then r ∈ ∂−fj(z) ∪ ∂−fj(w) be a maximizer of the r.h.s. of (4.57) and let us suppose, without loss
of generality, that r ∈ ∂−fj(z). If x ∈ Bn−1

R1
(x1) is such that (z, fj(z)) ⊂ [(y, fj(y)), x̃] ⊂ graph(fj) for

some y ∈ conv({yi}ji=1), we have the following unique decomposition

(4.58) w − z = βj(z, w)
(
x− z
|x− z|

)
+ γj(z, w)q,

where q ∈ Sn−1 ∩H0 and βj(z, w), γj(z, w) ∈ R.
Then,

(4.59) r · (w − z) = βj(z, w)
(
r · x− z
|x− z|

)
+ γj(z, w)(r · q).

The first scalar product in (4.59) can be estimated as in Case 1.
As for the second term, we note that the supporting hyperplane to the graph of fj given by the graph

of the affine function h(p) = fj(z)+r · (p−z) contains the segment [(z, fj(z)), x̃] and its intersection with
the hyperplane Ht × R is given by a supporting hyperplane to the graph of f|

B
n−1
R1

(x1)
which contains the

point x̃.
Moreover, as q ∈ H0, we have that

(4.60) r · q = πH0(r) · q,
and we know that πH0(r) ∈ ∂−f|

B
n−1
R1

(x1)
(x).
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By definition of subdifferential, for all s ∈ ∂−f|
B
n−1
R1

(x1)
(x) and for all λ > 0 such that x + λq, x − λq ∈

Bn−1
R1

(x1),

(4.61)
f(x)− f(x− λq)

λ
≤ s · q ≤ f(x+ λq)− f(x)

λ

and so the term |r · q| is bounded from above by the Lipschitz constant of f .
As the scalar products βj(z, w), γj(z, w) are uniforlmly bounded w.r.t. j on dom fj ⊂ dom f̂ , we conclude
that the functions {fj}j∈N are uniformly Lipschitz on the sets {dom fj}j∈N and their Lipschitz constants
are uniformly bounded by some positive constant L̂.
If we call f̂j a Lipschitz extension of fj to the set dom f̂ which has the same Lipschitz constant (Mac
Shane lemma), by Ascoli-Arzelá theorem we have that

f̂j → f̂ uniformly on dom f̂ .

Now we prove that, for H n−1-a.e. x ∈ σt(Z)\B, vtj(x)→ ve(x).
Given a point x ∈ σt(Z)\B, we call ỹj(x), where j ∈ N, the unique point ỹk ∈ {ỹi}ji=1 such that

vtj(x) =
yk − x
|yk − x|

.

By compactness of graph(conv({ỹi}i∈N)) , there is a subsequence {jn}n∈N ⊂ N such that

ỹjn(x) → ŷ ∈ graph f,

hence
vtjn(x)→ v̂ =

ŷ − x
|ŷ − x|

.

As the functions fj converge to f̂ uniformly, the point ŷ and the whole segment [x̃, ŷ] belong to the graph
of f̂ .
So, there are two segments l̃t(x) and [x̃, ŷ] which belong to the graph of f̂ and pass through the point x̃.
Since f̂|

B
n−1
R1

(x1)
= f|

B
n−1
R1

(x1)
, we can apply the same reasoning we made in order to prove that the set

(4.42) was H n−1-negligible to conclude that the set

σt(Z)∩
{
x ∈ Bn−1

R1
(x1) : ∃ more than two segments in the graph of f̂

that connect x̃ to a point of graph(conv({ỹi}i∈N))
}

has zero H n−1-measure.
Then, [x̃, ŷ] = l̃t(x) and v̂ = ve(x) for H n−1-a.e. x ∈ σt(Z), so that property (4.35) is proved.

Step 4 Proof of the estimate (4.36) (see Figure 5)
The estimate for the map σtvtj

induced by the approximating vector fields vtj follows as in [BG07]
and [Car08] from the fact that the collection of segments with directions given by vtj and endpoints in
dom vtj , σ

h−(Z) form a finite union of cones with bases in dom vtj and vertex in {yi}ji=1.
Indeed, if we define the sets

(4.62) Ωij =
{
x ∈ σt(Z) : Dt

j(x) = {vtj(x)} and vtj(x) =
yi − x
|yi − x|

}
, j ∈ N, i = 1, . . . , j,

for all S ⊂ σt(Z)\B we have that

H n−1(S) =
j∑
i=1

H n−1(S ∩ Ωij)

and

H n−1((σtvtj )
−1(S)) =

j∑
i=1

H n−1((σtvtj )
−1(S ∩ Ωij)).

Then it is sufficient to prove (4.36) when the vector field vtj is defined as

vtj(x) =
yi − x
|yi − x|

.
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σt(Z)
σh

+
(Z)y1

Z

{x · e = h−} {x · e = h+}{x · e = t}{x · e = 0}

R
n

Figure 5: The vector field ve is approximated by directions of approximating cones, in the picture one
can see the first one. At the same time, Z is approximated by the push forward of σt(Z) with the
approximating vector field: compare the blue area with the red one.

After these preliminary considerations, (4.36) follows from the fact that the set

(4.63)
⋃

s∈[0,t−h−]

σ−s
vtj

(S)

is a cone with with base S ⊂ Ht and vertex yi ∈ Hh− and σ−t
vtj

(S) is the intersection of this cone with
the hyperplane H0. �

Proof of Lemma 4.7. Given a k-dimensional D-cylinder C k parametrized as in (4.27), the collection of
segments

(4.64) ∪
z∈Zk

{σw+te(z) : t ∈ [h−(w, e), h+(w, e)]}

is a 1-dimensional D-cylinder of the convex function f restricted to the (n− k + 1)-dimensional set

(4.65) π−1
〈e1,...,ek〉({w + te : t ∈ [h−(w, e), h+(w, e)]}).

Then, as in Lemma 4.14, we can construct a sequence of approximating vector fields also for the
directions of the segments (4.64). The only difference with respect to the approximation of the 1-
dimensional faces of f is that the domain of the approximating vector fields will be a subset of an
(n − k)-dimensional affine plane of the form π−1

〈e1,...,ek〉(w) and so the measure involved in the estimate
(4.32) will be H n−k instead of H n−1. Finally, we pass to the limit as with the approximating vector
fields given in Lemma 4.14 and we obtain the fundamental estimate (4.31) for the k-dimensional D-
cylinders. �

4.5. Properties of the density function. In this subsection, we show that the quantitative estimates
of Lemma 4.14 allow not only to derive the absolute continuity of the push forward with σw+te, but also
to find regularity estimates on the density function. This regularity properties will be used in Section 5.

Corollary 4.15. Let C k be a k-dimensional D-cylinder parametrized as in (4.27) and let σw+se(Zk),
σw+te(Zk) be two sections of C k with s and t as in (4.31). Then, if we put s = w + se and t = w + te,
we have that

σ
t−|s−t|e
#

(
H n−k σt(Zk)

)
�H n−k σs(Zk)(4.66)

and by the Radon-Nikodym theorem there exists a function α(t, s, ·) which is H n−k-a.e. defined on σs(Zk)
and is such that

(4.67) σ
t−|s−t|e
#

(
H n−k σt(Zk)

)
= α(t, s, ·) ·H n−k σs(Zk).
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Proof. Without loss of generality we can assume that s = 0. If H n−k(A) = 0 for some A ⊂ Zk, by
definition of push forward of a measure we have that

(σw+te)−1
#

(
H n−k σw+te(Zk)

)
(A) = H n−k(σw+te(A))(4.68)

and taking s = 0 in (4.31) we find that H n−k(A) = 0 implies that H n−k(σw+te(A)) = 0. �

Remark 4.16. The fuction α = α(t, s, y) defined in (4.67) is measurable w.r.t. y and, for H n−k-a.e.
y′ ∈ σw+te(Zk), we have that

(4.69) α(s, t, y′) = α(t, s, σt−|s−t|e(y′))−1.

Moreover, from Lemma 4.7 we immediately get the uniform bounds:(
h+(t, e)− u
h+(t, e)

)n−k
≤ α(t + ue, t, ·) ≤

(
u− h−(t, e)
−h−(t, e)

)n−k
if u ∈ [0, h+(t, e)],(

u− h−(t, e)
−h−(t, e)

)n−k
≤ α(t + ue, t, ·) ≤

(
h+(t, e)− u
h+(t, e)

)n−k
if u ∈ [h−(t, e), 0].(4.70)

We conclude this section with the following proposition:

Proposition 4.17. Let C k(Z k, Ck) be a k-dimensional D-cylinder parametrized as in (4.27) and assume
without loss of generality that w = π〈e1,...,ek〉(Z

k) = 0. Then, the function α(t, 0, z) defined in (4.67) is
locally Lipschitz in t ∈ ri(Ck) (and so jointly measurable in (t, z)). Moreover, for H n−k-a.e. y ∈ σt(Z)
the following estimates hold:

1. Derivative estimate

−
(

n− k
h+(t, e)− u

)
α(t + ue, t, y) ≤ d

du
α(t + ue, t, y) ≤

(
n− k

u− h−(t, e)

)
α(t + ue, t, y);(4.71)

2. Integral estimate(
|h+(t, e)− u|
|h+(t, e)|

)n−k
(−1)1{u<0} ≤ α(t + ue, t, y) (−1)1{u<0} ≤

(
|h−(t, e)− u|
|h−(t, e)|

)n−k
(−1)1{u<0} ;(4.72)

3. Total variation estimate∫ h+(t,e)

h−(t,e)

∣∣∣∣ dduα(t + ue, 0, z)
∣∣∣∣ du ≤ 2α(t, 0, z)

[
|h+ − h−|n−k

|h+|n−k
+
|h+ − h−|n−k

|h−|n−k
− 1
]
,(4.73)

where h+, h− stand for h+(t, e), h−(t, e).

Proof. Lipschitz regularity estimate First we prove the local Lipschitz regularity of α(t, 0, z) w.r.t. t ∈
ri(Ck).
Given s, t ∈ Ck, we set e = s−t

|s−t| .
As

σs−|s| s
|s| = σt−|t| t

|t| ◦ σs−|s−t|e,

then

σ
s−|s| s

|s|
# (H n−k σs(Z)) = σ

t−|t| t
|t|

#

(
σ

s−|s−t|e
# H n−k σs(Z)

)
= σ

t−|t| t
|t|

#

(
α(s, t, y) ·H n−k σt(Z)

)
= α(t, 0, z) · α(s, t, σt(z)) ·H n−k

|Z .(4.74)

By definition of α it follows that

(4.75) α(s, 0, z)− α(t, 0, z) = α(t, 0, z)[α(s, t, σt(z))− 1].



24 L. CARAVENNA AND S. DANERI

Now we want to estimate the term [α(s, t, σt(z)) − 1] with the lenght |s − t| times a constant which is
locally bounded w.r.t. t. In order to do this, we proceed as in the Corollary 2.19 of [Car08] using the
estimate (

h+(t, e)− u2

h+(t, e)− u1

)n−k
H n−k(σt+u1e(S)) ≤H n−k(σt+u2e(S))

≤
(
u2 − h−(t, e)
u1 − h−(t, e)

)n−k
H n−k(σt+u1e(S)),(4.76)

which holds ∀ h−(t, e) < u1 ≤ u2 < h+(t, e) and ∀S ⊂ σt(Z).
Indeed, (4.76) can be rewritten in the following way:

(
h+(t, e)− u2

h+(t, e)− u1

)n−k ∫
S

α(t + u1e, t, y) dH n−k(y) ≤
∫
S

α(t + u2e, t, y) dH n−k(y)

≤
(
u2 − h−(t, e)
u1 − h−(t, e)

)n−k ∫
S

α(t + u1e, t, y) dH n−k(y).(4.77)

Therefore, there is a dense sequence {ui}i∈N in (h−(t, e), h+(t, e)) such that for H n−k-a.e. y ∈ S and
for all ui ≤ uj , i, j,∈ N the following inequalities hold

[(
h+(t, e)− uj
h+(t, e)− ui

)n−k
− 1
]
α(t + uie, t, y) ≤ α(t + uje, t, y)− α(t + uie, t, y)

≤
[(

uj − h−(t, e)
ui − h−(t, e)

)n−k
− 1
]
α(t + uie, t, y).(4.78)

Thanks to the uniform bounds (4.70), for all y ∈ σt(Z) such that (4.78) holds, the function α(t + ·e, t, y)
is locally Lipschitz on {ui}i∈N and for every [a, b] ⊂ (h−(t, e), h+(t, e)) the Lipschitz constants of α on
{ui}i∈N ∩ [a, b] are uniformly bounded w.r.t. y.
Then, on every compact interval [a, b] ⊂ (h−(t, e), h+(t, e)) there exists a Lipschitz extension α̃(t+ ·e, t, y)
of α(t + ·e, t, y) which has the same Lipschitz constant.
By the dominated convergence theorem, whenever {ujn}n∈N ⊂ {uj}j∈N converges to some u ∈ [a, b] we
have ∫

S

α(t + ujne, t, y) dH n−k(y) −→
∫
S

α̃(t + ue, t, y) dH n−k(y), ∀S ⊂ σt(Z).

However, the integral estimate (4.77) implies that∫
S

α(t + ujne, t, y) dH n−k(y) −→
∫
S

α(t + ue, t, y) dH n−k(y),

so that the Lipschitz extension α̃ is an L1(H n−k) representative of the original density α for all u ∈ [a, b].
Repeating the same reasoning for an increasing sequence of compact intervals {[an, bn]}n∈N that converge
to (h−(t, e), h+(t, e)), we can assume that the density function α(t+ue, t, y) is locally Lipschitz in u with
a Lipschitz constant that depends continuously on t and on e.
Then, by (4.75), the local Lipschitz regularity in t of the function α(t, 0, z) is proved.

Derivative estimate If we derive w.r.t. u the pointwise estimate (4.78) (which holds for all u ∈
(h−(t, e), h+(t, e)) by the first part of the proof) we obtain the derivative estimate (4.71).

Integral estimate (4.71) implies the monotonicity of the following quantities:

d

du

(
α(t + ue, t, y)

(h+(t, e)− u)n−k

)
≥ 0,

d

du

(
α(t + ue, t, y)

(u− h−(t, e))n−k

)
≤ 0.

Integrating the above inequalities from u ∈ (h−(t, e), h+(t, e)) to 0 we obtain (4.72).
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Total variation estimate In order to prove (4.73) we proceed as in Corollary 2.19 of [Car08].

∫ 0

h−(t,e)

∣∣∣∣ dduα(t + ue, 0, z)
∣∣∣∣ du ≤ ∫

{ dduα(t+ue,0,z)>0}∩{u∈(h−(t,e),0)}

d

du
α(t + ue, 0, z) du

+
∫ 0

h−(t,e)

(n− k)α(t + ue, 0, z)
|h+(t, e)− u|

du

≤
∫ 0

h−(t,e)

d

du
α(t + ue, 0, z) du+

+ 2
∫ 0

h−(t,e)

(n− k)α(t + ue, 0, z)
|h+(t, e)− u|

du

≤ α(t, 0, z) + 2
∫ 0

h−(t,e)

(n− k)α(t + ue, 0, z)
|h+(t, e)− u|

du.(4.79)

From (4.75) we know that α(t + ue, 0, z) = α(t, 0, z) α(t + ue, t, σt(z)).
Moreover, since u < 0

α(t + ue, t, σt(z)) ≤
(4.72)

(
|h+(t, e)− u|
|h+(t, e)|

)n−k
.

If we substitute this inequality in (4.79) we find that

(4.79) ≤ α(t, 0, z) + 2α(t, 0, z)
∫ 0

h−(t,e)

(n− k)|h+(t, e)− u|n−k−1

|h+(t, e)|n−k
du

= −α(t, 0, z) + 2α(t, 0, z)
|h+(t, e)− h−(t, e)|n−k

|h+(t, e)|n−k
.(4.80)

Adding the symmetric estimate on (0, h+(t, e)) we obtain (4.73). �

4.6. The disintegration on model sets. Now we conclude the proof of Theorem 3.3 on the model
sets, giving also an explicit formula for the conditional probabilities.

We consider a k-dimensional D-cylinder C k = C k(Z k, Ck) parametrized as in (4.27) and we assume,
without loss of generality, that π〈e1,...,ek〉(Z

k) = 0 ∈ Rn. We also set h±j = h±(0, ej), ∀ j = 1, . . . , k, and
we omit the point w = 0 in the notation for the map (4.28).

Theorem 4.18. Let C k be a k-dimensional D-cylinder parametrized as in (4.27). Then, ∀ϕ ∈ L1
loc(Rn),

(4.81)
∫

Ck

ϕdL n =
∫
Zk

∫ h+
k

h−k

. . .

∫ h+
1

h−1

α(t1e1 + · · ·+ tkek, 0, z)ϕ(σ(t1e1+···+tkek)(z)) dt1 . . . dtk dH n−k(z).

Then, as (Zk,B(Zk)) is isomorphic to the quotient space determined by the map ∇f on C k, by the
uniqueness of the disintegration the conditional probabilities of the disintegration of the Lebesgue measure
on the pieces of k-dimensional faces of f which are contained in C k are given by

(4.82) µz(dt1 . . . dtk) =
α(t1e1 + · · ·+ tkek, 0, z) H k [ri(R(z)) ∩ C k](dt1 . . . dtk)∫ h+

k

h−k
. . .
∫ h+

1

h−1
α(s1e1 + · · ·+ skek, 0, z) ds1 . . . dsk

,

for H n−k-a.e. z ∈ Zk.
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Proof. We proceed using the disintegration technique which was presented in Section 4.1.∫
Ck

ϕ(x) dL n(x) =
∫ h+

k

h−k

. . .

∫ h+
1

h−1

∫
Ck∩{x·ek=tk}∩···∩{x·e1=t1}

ϕdH n−k

=
(4.66)

∫ h+
k

h−k

. . .

∫ h+
1

h−1

∫
Zk
α(tkek, 0, z) . . . α(t1e1 + · · ·+ tkek, t2e2 + · · ·+ tkek, σ(t2e2+···+tkek)(z))

· ϕ(σ(t1e1+···+tkek)(z)) dH n−k(z) dt1 . . . dtk

=
(4.74)

∫ h+
k

h−k

. . .

∫ h+
1

h−1

∫
Zk
α(t1e1 + · · ·+ tkek, 0, z)ϕ(σ(t1e1+···+tkek)(z)) dH n−1(z) dt1 . . . dtk

=
(4.70)

Prop 4.17

∫
Zk

∫ h+
k

h−k

. . .

∫ h+
1

h−1

α(t1e1 + · · ·+ tkek, 0, z)ϕ(σ(t1e1+···+tkek)(z)) dt1 . . . dtk dH n−1(z).(4.83)

�

4.7. The global disintegration. In this section we prove Theorem 3.3, concerning the disintegration of
the Lebesgue measure (restricted to a set of finite Lebesgue measure K ⊂ Rn) on the whole k-dimensional
faces of a convex function.

The idea is to put side by side the disintegrations on the model D-cylinders which belong to the
countable family defined in Lemma 4.6, so as to obtain a global disintegration.

What will remain apart will be set T \ ∪nk=1E
k, projection of those points which do not belong to the

relative interior of any face. Nevertheless, the following lemma ensures that this set is L n-negligible.
Indeed, the union of the borders of the n-dimensional faces has zero Lebesgue measure by convexity and
by the fact that the n-dimensional faces of f are at most countable.

For faces of dimension k, with 1 < k < n, the proof is by contradiction: one considers a Lebesgue
point of suitable subsets of ∪yF ky and applies the fundamental estimate (4.31) in order to show that the
complementary is too big.

Equation (4.84) below was first proved using a different technique in [Lar71b] — where it was shown
that the union of the relative boundaries of the R-faces (see Definition 4.11) of an n-dimensional convex
body C which have dimension at least 1 has zero H n−1-measure.

Lemma 4.19. The set of points which do not belong to the relative interior of any face is L n-negligible:

(4.84) L n

(
T \

n⋃
k=1

Ek
)

= 0, where Ek =
⋃
y

ri
(
F ky
)
.

Proof. Consider any n-dimensional face Fny . Being convex, it has nonempty interior. As a consequence,
since two different faces cannot intersect, there are at most countably many n-dimensional faces

{
Fnyi
}
i∈N;

moreover, by convexity, each Fnyi has an L n-negligible boundary. Thus

L n

(⋃
i

rb
(
Fnyi
))

= 0.

Since T ⊂
n⋃
k=1

F k, the thesis is reduced to showing that, for 0 < k < n,

(4.85) L n
(
F k \ Ek

)
= 0.

Given a k dimensional subspace V ∈ G(k, n), a unit direction e ∈ Sn−1 ∩ V , and p ∈ N0 = N ∪ {0},
define the set Ap,e,V of those x ∈ T \ ri(F k∇f(x)) which satisfy the two relations

inf
d∈D(x)

‖πV (d)‖ ≥ 1/
√

2(4.86)

πV
(
F k∇f(x)

)
⊃ conv

({
πV (x)

}
∪ πV (x) + 2−p+1e + 2−p

(
Sn−1 ∩ V

))
.(4.87)

Choosing (p, e, V ) in a sequence {(pi, ei, Vi)}i∈N which is dense in N0 ×
(
Sn−1 ∩ V

)
×G(k, n), the family{

Api,ei,Vi
}
i∈N provides a countable covering of F k \Ek with measurable sets. The measurability of each
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Ap,e,V can be deduced as follows. The set defined by (4.86) is exactly

D−1 ◦ π−1
V

(
V \ ri

(
1√
2
Bn

))
.

Moreover, (4.87) is equivalent to

πV
(
R(x)− x

)
⊃ conv(2−p+1e + 2−p

(
Sn−1 ∩ V

)
).

Since R and D are measurable (Lemma 4.2), then the measurability of Ap,e,V follows.
In particular, if by absurd (4.85) does not hold, then there exists a subset Ap,e,V of F k\Ek with

positive Lebesgue measure. Up to rescaling, one can assume w.l.o.g. that p = 0, V = 〈e1, . . . , ek〉, where
{e1, . . . , en} is an orthonormal basis of Rn, and e = e1. Moreover, we will denote Ap,e,V simply with A.

Before reaching the contradiction L n(A) = 0, we need the following remarks.
First of all we notice that, for 0 ≤ h ≤ 3 and t ∈ πV (A), one can prove the fundamental estimate

(4.88) H n−k(σt+he
(
S
))
≥
(

3− h
3

)n−k
H n−k(S) ∀S ⊂ A ∩ π−1

V (t)

exactly as in Lemma 4.7, with the approximating vector field given in Step 3, Page 18. Indeed, the
(n − k + 1)-plane π−1

V (Re) cuts the face of each z ∈ A ∩ π−1
V (t) into exactly one line l; this line has

projection on V containing at least [t, t + 3e].
Notice moreover that, by (4.87), each point x ∈ l, with πV (x) ∈ ri

(
[t, t + 3e]

)
, is a point in the relative

interior of the face. In particular, it does not belong to A.
Let us now prove the claim, assuming by contradiction that L n(A) > 0 (see also Figure 6). Fix any

ε > 0 small enough. w.l.o.g. one can suppose the origin to be a Lebesgue point of A. Therefore, for every
0 < r < r̄(ε) < 1, there exists T ⊂

∏k
i=1[0, rei], with H k(T ) > (1− ε)rk, such that

(4.89) H n−k(A ∩ π−1
V (t) ∩ [0, r]n

)
≥ (1− ε)rn−k for all t ∈ T .

Moreover, there is a set Q ⊂ [0, re], with H 1(Q) > (1− 2ε)r, such that

(4.90) H k−1
(
T ∩ π−1

〈e〉(q)
)
> (1− ε)rk−1 for q ∈ Q.

Consider two points q, s := q + 2εre ∈ Q, and take t ∈ T ∩ π−1
〈e〉(q). By the fundamental estimate (4.88),

one has

H n−k(σt+2εre
(
St,r

))
≥ (1− ε)n−kH n−k(St,r

)
where St,r := A ∩ π−1

V (t) ∩ [0, r]n.

Furthermore, condition (4.85) implies that ‖x+2εre−σt+2εre(x)‖≤ 2εr for each x ∈ A∩π−1
V (t). Moving

points within π−1
V (t) ∩ [0, r]n by means of the map σt+2εre , they can therefore reach only the square

π−1
V (s) ∩ [−2εr, (1 + 2ε)r]n. Notice that for ε small, since our proof is needed for n ≥ 3 and k ≥ 1,

H n−k([−2εr, (1 + 2ε)r]n \ [0, r]n) = (1 + 4ε)n−krn−k − rn−k ≤ 4(n− k)εrn−k + o(ε) < n2nεrn−k.

As a consequence, the portion which exceeds π−1
V (s) ∩ [0, r]n can be estimated as follows:

H n−k(σt+2εre
(
St,r

)
∩ [0, r]n

)
≥H n−k(σt+2εre

(
St,r

))
− n2nεrn−k.

As notice before, condition (4.87) implies that the points σt+2εre
(
St,r

)
∩ [0, r]n belong to the complemen-

tary of A. By the above inequalities we obtain then

H n−k(Ac ∩ π−1
V (t + 2εre) ∩ [0, r]n

)
≥ H n−k(σt+2εre

(
St,r

)
∩ [0, r]n

)
≥ (1− ε)n−kH n−k(St,r

)
− n2nεrn−k

(4.89)
≥ (1− ε)n−k+1rn−k − n2nεrn−k

≥ 1
2
rn−k.

The last estimate shows that, for each t ∈ T ∩π−1
〈e〉(q), the point s = t+2εre does not satisfy the inequality

in (4.89): thus
(
T ∩ π−1

〈e〉(q)
)

+ 2εre lies in the complementary of T . In particular

H k−1
(
T ∩ π−1

〈e〉(s)
)
< rk−1 −H k−1

(
T ∩ π−1

〈e〉(q)
)
.



28 L. CARAVENNA AND S. DANERI

V

A

〈e2, . . . , ek〉

T

〈ek+1, . . . , en〉

〈e1〉

R
n

s = q + 2εr

t

q
π−1
〈e1〉(q)

π−1
V (s)

Figure 6: Illustration of the construction in the proof of Lemma 4.19. A is the set of points on the
border of k-faces of f , projected on Rn, having directions close to V = 〈e1, . . . , ek〉 and such that, for each
point x ∈ A, πV (F k∇f(x)) contains a fixed half k-cone centered at x with direction e1. T is a subset of the

square
∏k
i=1[0, rei] such that, for every t ∈ T , π−1

V (t) ∩A is ‘big’. Finally, q, s = q + 2εre1 are points on
[0, re1] such that the intersection of T with the affine hyperplanes π−1

〈e1〉(q), π−1
〈e1〉(s) is ‘big’. The absurd

arises from the following. Due to the fundamental estimate, translating by 2εre1 the points T ∩ π−1
〈e1〉(q),

one finds points in the complementary of T . Since T ∩ π−1
〈e1〉(q) was ‘big’, then T \ π−1

〈e1〉(s) should be big,
contradicting the fact that T ∩ π−1

〈e1〉(s) is ‘big’.

However, by construction both t and s belong to Q. This yields the contradiction, by definition of Q:
1
2
rk−1

(4.90)
< H k−1

(
T ∩ π−1

〈e〉(s)
)
< rk−1 −H k−1

(
T ∩ π−1

〈e〉(t)
) (4.90)

<
1
2
rk−1. �

Proof of Theorem 3.3. As we observed in Remark 3.4, it is sufficient to prove the theorem for the disin-
tegration of the Lebegue measure on the set F k when k ∈ {1, . . . , n− 1}.

Thanks to Lemma 4.19, we can further restrict the disintegration to the set Ek defined in (4.13);
moreover, by (5.4), for all k = 1, . . . , n− 1 there exists a L n-negligible set Nk such that

Ek\Nk = ∪
j∈N

C k
j \dC k

j ,

where {C k
j }j∈N is the countable collection of k-dimensional D-cylinders covering Ek which was con-

structed in Lemma 4.6, so that the sets Ĉ k
j = C k

j \dC k
j are disjoint.

The fundamental observation is the following:

∪
j∈N

Ĉ k
j = ∪

j∈N
∪

y∈Im∇f|
Ek

Eky,j = ∪
y∈Im∇f|

Ek

∪
j∈N

Eky,j = ∪
y∈Im∇f|

Ek

Eky\Nk,(4.91)

where Eky,j = Eky ∩ Ĉ k
j .

For all j ∈ N, we set

(4.92) Yj = {y ∈ Im∇f|
Ek

: Eky,j 6= ∅},
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we denote by pj : Ĉ k
j → Yj the quotient map corresponding to the partition

Ĉ k
j = ∪

y∈Im∇f|
Ek

Eky,j

and we set νj = pj#L n Ĉ k
j .

Since the quotient space (Yj ,B(Yj)) is isomorphic to (Zkj ,B(Zkj )), where Zkj is a section of C k
j , by

Theorem 4.18 we have that

(4.93) L n C k
j (Ej ∩ p−1

j (Fj)) =
∫
Fj

µjy(Ej) dνj(y), ∀Ej ∈ B(C k
j ), Fj ∈ B(Yj),

where µjy is equivalent to H k Eky,j for νj-a.e. y ∈ Yj .
Moreover, for every E ∈ B(Rn) ∩ Ek there exist sets Ej ∈ B(C k

j ) such that

E = ∪
j∈N

Ej

and for all F ∈ B(Y ), where Y = ∪
j∈N

Yj = Im∇f|
Ek

, there exist sets Fj ∈ B(Yj) such that

F = ∪
j∈N

Fj and ∇f−1(F ) = ∪
j∈N

p−1
j (Fj).

Then,

L n K(E ∩∇f−1(F )) =
+∞∑
j=1

L n C k
j (Ej ∩ p−1

j (Fj))

=
(4.93)

+∞∑
j=1

∫
Fj

µjy(Ej) dνj(y)

=
+∞∑
j=1

∫
Yj

1Fj (y)µjy(Ej) dνj(y)

=
+∞∑
j=1

∫
Y

1Fj (y)µjy(Ej)fj(y) dν(y),(4.94)

where fj is the Radon-Nikodym derivative of νj w.r.t. the measure ν on Y given by ∇f#L n K.
Since, as we proved in Section 3.1, there exists a unique disintegration {µy}y∈Im∇f|

Ek
such that

L n K(E ∩∇f−1(F )) =
∫
F

µy(E) dν(y) for all E ∈ B(Rn), F ∈ B(Y ),

we conclude that the last term in (4.94) converges and

(4.95) µy =
+∞∑
j=1

fj(y)µjy for ν-a.e. y ∈ Y,

so that the Theorem is proved. �

5. A Divergence Formula

The previous section led to a definition of a function α, on any D-cylinder C k = C k(Z k, Ck), as the
Radon-Nikodym derivative in (4.67).
In the present section we find that on C k the function α satisfies the system of ODEs

∂t`α

(
t = π〈e1,...,ek〉(x), 0, x−

k∑
i=1

x · eivi(x)
)

= (div v`)a.c.(x)α
(
π〈e1,...,ek〉(x), 0, x−

k∑
i=1

x · eivi(x)
)

for ` = 1, . . . , k, where we assume w.l.o.g. that 0 ∈ Ck, 〈e1, . . . , ek〉 is an axis of C , vi(x) is the vector
field

x 7→ 1Ck(x)(〈D(x)〉 ∩ π−1
〈e1,...,ek〉(ei))

and (div vi)a.c.(x) is the density of the absolutely continuous part of the divergence of vi, that we prove
to be a measure.
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This is a consequence of the Disintegration Theorem 4.18 and of the regularity estimates on α in Propo-
sition 4.17.
Notice that even the fact that the divergence of vi is a measure is not trivial, since the vector field is just
Borel.

Heuristically, the ODEs above can be formally derived as follows.
In Section 4 we saw that C k is the image of the product space Ck + Zk, where Zk = C k ∩ π−1

〈e1,...,ek〉(0)
is a section of C k, with the change of variable

(5.1) Φ(t + z) = z +
k∑
i=1

tivi(z) = σt(z) for all t =
k∑
i=1

tiei ∈ Ck, z ∈ Zk.

In Theorem 4.18 we found that the weak Jacobian of this change of variable is defined, and given by

|J(t + z)| = α(t, 0, z).

From (5.1) one finds that, if vi was smooth instead of only Borel, this Jacobian would be

J(t + z) = det

([
[vj · ei]i=1,...,n

j=1,...,k

∣∣∣∣[ k∑
`=1

t`∂zj 〈v`(z) · ei〉+ δi,j

]
i=1,...,n

j=k+1,...,n

])
;

by direct computations with Cramer rule and the multilinearity of the determinant, moreover, from the
last two equations above one would prove the relation

∂t`J(t + z) = trace
(
Jv`(z) (JΦ(t + z))−1

)
J(t + z),

where Jg denotes the Jacobian matrix of a function g.
By the Lipschitz regularity of α w.r.t. the {ti}ki=1 variables given in Proposition 4.17, one could then
expect that

(5.2) ∂t`α(t, 0, z) =
( n∑
j=1

∂xj (vi(Φ
−1(x)) · ej)|x=Φ(t+z)

)
α(t, 0, z).

Notice that
∑
j ∂xj (vi(Φ

−1(x)) · ej)|x=Φ(t+z) is the pointwise divergence of the vector field vi(Φ−1(x))
evaluated at x = Φ(t + z). In this article, we denote it with (div(vi ◦ Φ−1))a.c..
Finally, given a regular domain Ω ⊂ Rn, by the Green-Gauss-Stokes formula one should have

(5.3)
∫

Ω

(div(vi ◦ Φ−1))a.c. dL
n(x) =

∫
∂Ω

vi(Φ−1(x)) · n̂ dH n−1(x),

where n̂ is the outer normal to the boundary of Ω.

The analogue of Formulas (5.2) and (5.3) is the additional regularity we prove in this section, in a
weak context, for vector fields parallel to the faces and for the current of k-faces. Actually, for simplicity
of notations we will continue working with the projection of the faces on R

n instead of with the faces
themselves. We give now the idea of the proof, in the case of one dimensional faces.

Fix the attention on a 1-dimensional D-cylinder C with axis e and basis Z = C ∩ π−1
〈e〉(0). Consider

the distributional divergence of the vector field v giving pointwise on C the direction of projected faces,
normalized with v·e = 1, and vanishing elsewhere. The Disintegration Theorem 4.18 decomposes integrals
on C to integrals first on the projected faces, with the additional density factor α, then on Z. By means
of it, one then reduces the integral

∫
C ∇ϕ · v, defining the distributional divergence, to the following

integrals on the projected faces:

−
∫

[h−e,h+e]

∇ϕ(x)|x=z+t1v(z) · v(z)α(t, 0, z) dH 1(t) where z varies in Z.

Since α is Lipschitz in t and ∇ϕ|x=σw+t1e(z) · v = ∂t1(ϕ ◦ σw+t(z)), by integrating by parts one arrives to∫
[h−e,h+e]

ϕ ◦ σw+t(z)∂t1α(t, 0, z) dH 1(t)− [ϕ ◦ σw+t(z)α(t, 0, z)]
∣∣∣t=h+e

t=h−e
.
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Applying again the disintegration theorem in the other direction, by the invertibility of α, one comes
back to integrals on the D-cylinder, where in the first addend ϕ is now integrated with the factor ∂t1α/α.

An argument of this kind yields an explicit representation of the distributional divergence of the
truncation of a vector field v, parallel at each point x to the projected face through x, to C k. This
divergence is a Radon measure, the absolutely continuous part is basically given by (5.2) and, as in (5.3),
there is moreover a singular term representing the flux through the border of C k transversal to D, already
defined as

(5.4) dC k = C k ∩ π−1
〈e1,...,ek〉(rb(Ck)), n̂|

dCk
outer unit normal to π−1

〈e1,...,ek〉(C
k).

As C k are not regular sets, but just σ-compact, there is a loss of regularity for the divergence of v in
the whole Rn. In general, the distributional divergence will just be a series of measures.

5.1. Vector fields parallel to the faces. In the present subsection, we study the regularity of a vector
field parallel, at each point, to the corresponding face through that point.

5.1.1. Study on D-cylinders. As a preliminary step, fix the attention on the D-cylinder

C k = C k(Z k, Ck).

One can assume w.l.o.g. that the axis of C k is identified by vectors {e1, . . . , ek} which are the first k
coordinate vectors of Rn and that Ck is the square

Ck =
k∏
i=1

[−ei, ei].

Denote with Zk the section Z k ∩ π−1
〈e1,...,ek〉(0).

Definition 5.1 (Coordinate vector fields). We define on Rn k-coordinate vector fields for C k as follows:

vi(x) =

{
0 if x /∈ C k

v ∈ 〈D(x)〉 such that π〈e1,...,ek〉v = ei if x ∈ C k.

The k-coordinate vector fields are a basis for the module on the algebra of measurable functions from R
n

to R constituted by the vector fields with values in 〈D(x)〉 at each point x ∈ C k, and vanishing elsewhere.
Consider the distributional divergence of vi, denoted by div vi. As a consequence of the absolute

continuity of the push forward with σ, and by the regularity of the density α, one gains more regularity
of the divergence.

Let us fix a notation. Given any vector field v : Rn → R
n whose distributional divergence is a Radon

measure, we will denote with (div v)a.c. the density of the absolutely continuous part of the measure div v.

Lemma 5.2. The distribution div vi is a Radon measure. Its absolutely continuous part has density

(5.5) (div vi)a.c.(x) =
∂tiα

(
t = π〈e1,...,ek〉(x), 0, x−

∑k
i=1 x · eivi(x)

)
α
(
π〈e1,...,ek〉(x), 0, x−

∑k
i=1 x · eivi(x)

) 1Ck(x).

Its singular part is H n−1
(
C k ∩ {x · ei = −1}

)
−H n−1

(
C k ∩ {x · ei = 1}

)
.

Proof. Consider any test function ϕ ∈ C∞c (Rn) and apply the Disintegration Theorem 4.18:

〈div vi, ϕ〉 := −
∫

Ck

∇ϕ(x) · vi(x) dL n(x) = −
∫
Zk

∫
Ck
α(t, 0, z)∇ϕ(σt(z)) · vi(z) dH k(t) dH n−k(z),

where we used that vi is constant on the faces, i.e. vi(z) = vi(σt(z)). Being σt(z) = z +
∑k
i=1 tivi(z),

one has

∇xϕ(x = σt(z)) · vi(z) = ∇xϕ(x = σt(z)) · ∂ti(σt(z)) = ∂ti(ϕ(σt(z))).

The inner integral is thus∫
Ck
∇ϕ(σt(z)) · vi(z)α(t, 0, z) dH k(t) =

∫
Ck
∂ti(ϕ(σtz))α(t, 0, z) dH k(t).
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Since Proposition 4.17 ensures that α is Lipschitz in t, for t ∈ Ck, one can integrate by parts:∫
Ck
∂ti(ϕ(σt(z)))α(t, 0, z) dH k(t) =−

∫
Ck
ϕ(σt(z))∂tiα(t, 0, z) dH k(t)

+
∫
Ck∩{ti=1}

ϕ(σt(z))α(t, 0, z) dH k−1(t)

−
∫
Ck∩{ti=−1}

ϕ(σt(z))α(t, 0, z) dH k−1(t).

Substitute in the first expression. Recall moreover the definition of α in (4.67), as a Radon-Nikodym
derivative of a push-forward measure, and its invertibility and Lipschitz estimates (Remark 4.16, Proposi-
tion 4.17), among with in particular the L1 estimate on the function ∂tiα/α. Then, pushing the measure
from t = 0 to a generic t, one comes back to the integral on the D-cylinder

〈div vi, ϕ〉 =
∫
Zk

∫
Ck
ϕ(σt(z))∂tiα(t, 0, z) dH k(t) dH n−k(z)

−
∫
Zk

∫
Ck∩{ti=1}

ϕ(σt(z))α(t, 0, z) dH k−1(t) dH n−k(z)

+
∫
Zk

∫
Ck∩{ti=−1}

ϕ(σt(z))α(t, 0, z) dH k−1(t) dH n−k(z)

=
∫

Ck

ϕ(x)(div vi)a.c.(x) dL n(x)−
∫

Ck∩{x·ei=1}
ϕ(x) dH n−1(x) +

∫
Ck∩{x·ei=−1}

ϕ(x) dH n−1(x).

where (div vi)a.c. is the function ∂tiα

α precisely written in the statement. Thus we have just proved the
thesis, consisting in the last formula. �

Remark 5.3. Consider a function λ ∈ L1(C k;R) constant on each face, meaning that λ(σt(z)) = λ(z)
for t ∈ Ck and z ∈ Zk. One can regard this λ as a function of ∇f(x). Then the same statement of
Lemma 5.2 applies to the vector field λvi, but the divergence is clearly div(λvi) = λ div vi. The proof is
the same, observing that

〈div(λvi), ϕ〉 :=−
∫

Ck

∇ϕ(x) · λ(x)vi(x) dL n(x)

4.18= −
∫
Zk

∫
Ck
λ(z)∇ϕ(σt(z)) · vi(z)α(t, 0, z) dH k(t) dH n−k(z)

=−
∫
Zk

∫
Ck
λ(z)∂ti(ϕ(σt(z)))α(t, 0, z) dH k(t) dH n−k(z)

=
∫
Zk

∫
Ck
λ(z)ϕ(σt(z))∂tiα(t, 0, z) dH k(t) dH n−k(z)(5.6)

−
∫
Zk

∫
Ck∩{ti=1}

λ(z)ϕ(σt(z))α(t, 0, z) dH k−1(t) dH n−k(z)

+
∫
Zk

∫
Ck∩{ti=−1}

λ(z)ϕ(σt(z))α(t, 0, z) dH k−1(t) dH n−k(z)

4.18=
∫

Ck

ϕ(x)λ(x)(div vi)a.c.(x) dL n(x)−
∫

Ck∩{x·ei=1}
ϕ(x)λ(x) dH n−1(x)

+
∫

Ck∩{x·ei=−1}
ϕ(x)λ(x) dH n−1(x).

Suitably adapting the integration by parts in the above equality (5.6) with∫
Ck
λ(σt(z))∂ti(ϕ(σt(z)))α(t, 0, z) dH k(t) =

−
∫
Ck
λ(σt(z))ϕ(σt(z))∂tiα(t, 0, z) dH k(t)−

∫
Ck
∂tiλ(σt(z))ϕ(σt(z))α(t, 0, z) dH k(t)

+
∫
Ck∩{ti=1}

λ(σt(z))ϕ(σt(z))α(t, 0, z) dH k−1(t)−
∫
Ck∩{ti=−1}

λ(σt(z))ϕ(σt(z))α(t, 0, z) dH k−1(t)
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one finds moreover that for all λ ∈ L1(Rn;R) continuously differentiable along vi with integrable direc-
tional derivative ∂viλ, the following relation holds:

div(λvi) = λ div vi + ∂viλ dL
n(5.7)

Notice that in (5.7) there is the addend λH n−1 (C k ∩ {x · ei = 1}), which would make no sense for a
general λ ∈ L1(Rn;R). Now we prove that the restriction to C k ∩ {x · ei = 1} of each representative of λ
which is C1(F k∇f(z) ∩ C k), for H n−k-a.e. z ∈ Zk, identifies the same function in L1(C k ∩ {x · ei = 1}).
Indeed, any two representatives λ̃, λ̂ of the L1-class of λ can differ only on a L n-negligible set N . By
the Disintegration Theorem 4.18, and using moreover Fubini theorem for reducing the integral on Ck to
integrals on lines parallel to ei, one has that the intersection of N with each of the lines on the projected
faces with projection on 〈e1, . . . , ek〉 parallel to ei is almost always negligible:

H 1
(
N ∩ {q + 〈vi(q)〉}

)
= 0 for q ∈ C k ∩ {x · ei = 0} \M , with H n−1(M)=0.

Being continuously differentiable along vi, one can redefine λ̃, λ̂ in such a way that N ∩{q+ 〈vi(q)〉} = ∅
for all q ∈ C k ∩ {x · ei = 0} \M . As a consequence N ∩ {x · ei = t} is a subset of τ tei(M), where τ tei is
the map moving along each projected face with tvi:

C k ∩ {x · ei = 0} 3 q 7→ τ tei(q) := q + tvi = σ(π〈e1,...,ek〉(q))+te1(q).

By the push forward formula (4.67), denoting wq := π〈e1,...,ek〉(q) and zq := π〈ek+1,...,en〉(q)

H n−1 (τ tei(S)) = α(wq,wq + tei, zq)τ tei] (H n−1(q) S)) for S ⊂ C k ∩ {x · e1 = 0}.

Therefore, as H n−1(M) = 0, one has that λ̃ and λ̂ identify the same integrable function on each section
of C k perpendicular to ei, showing that the measure λH n−1 ({x · ei = 1}) is well defined.

Actually, the same argument as above should be used in (5.6) in order to show that λ(z) is integrable
on Zk, so that one can separate the three integrals as we did. Indeed, being constant on each face by
assumption, the restriction of λ to a section is trivially well defined as associating to a point the value of
λ corresponding to the face of that point, but the integrability w.r.t. H n−1 on each slice is a consequence
of the push forward estimate.

As a direct consequence of (5.7), by linearity, one gets a divergence formula for any sufficiently regular
vector field which, at each point of C k, is parallel to the corresponding projected face of f .

Corollary 5.4. Consider any vector field v =
∑k
i=1 λivi with λi ∈ L1(C k;R) continuously differentiable

along vi, with directional derivative ∂viλi integrable on C k. Then the divergence of v is a Radon measure
and for every ϕ ∈ C1

c(Rn)

〈div v, ϕ〉 =
∫

Ck

ϕ(x)(div v)a.c.(x) dL n(x)−
∫

dCk

ϕ(x) v(x) · n̂(x) dH n−1(x),

where dC k, the border of C k transversal to D, and n̂, the outer unit normal, are define in Formula (5.4).
Moreover, for x ∈ C k

(div v)a.c.(x) =
k∑
i=1

λi(x)
∂tiα(t = π〈e1,...,ek〉(x), 0, x−

∑k
i=1 x · eivi(x))

α(π〈e1,...,ek〉(x), 0, x−
∑k
i=1 x · eivi(x))

+
k∑
i=1

∂viλi(x).(5.8)

Remark 5.5. The result is essentially based on the application of the integration by parts formula when
the integral on C k is reduced, by the Disintegration Theorem, to integrals on Ck: this is why we assume
the C1 regularity of the λi, w.r.t. the directions of the k-face passing through each point of C k. Such
regularity could be further weakened, however we do not pursue this issue here. As a consequence, one
can easily extend the statement of the previous corollary to sets of the form C k

Ω = F k ∩ π−1
〈e1,...,en〉(Ω), for

an open set Ω ⊂ 〈e1, . . . , ek〉 with piecewise Lipschitz boundary, defining dC k
Ω := F k ∩ π−1

〈e1,...,en〉(rb(Ω)).

5.1.2. Global Version. We study now the distributional divergence of an integrable vector field v on T,
as we did in Subsection 5.1.1 for such a vector field truncated on D-cylinders.

Corollary 5.6. Consider a vector field v ∈ L1(T;Rn) such that v(x) ∈ 〈D(x)〉 for x ∈ R
n, where we

define D(x) = 0 for x /∈ T. Suppose moreover that the restriction to every face Ey, for y ∈ Im∇f , is
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continuously differentiable with integrable derivatives.
Then, for every ϕ ∈ C1

c(Rn) one can write

〈div v, ϕ〉 = lim
`→∞

∑̀
i=1

{∫
Ci

ϕ(x)(div(1Civ))a.c.(x) dL n(x)−
∫

dCi

ϕ(x) v(x) · n̂i(x) dH n−1(x)
}
.(5.9)

where {C`}`∈N is the countable partition of T in D-cylinders given in Lemma 4.6, while (div(1Civ))a.c. is
the one of Corollary 5.4 and dCi, n̂i are defined in Formula (5.4).

Remark 5.7. By construction of the partition, each of the second integrals in the r.h.s. of (5.9) appears
two times in the series, with opposite sign. Intuitively, the finite sum of these border terms is the integral
on a perimeter which tends to the singular set.

Remark 5.8. Suppose that div v is a Radon measure. Then Corollary 5.6 implies that

1Ck(div v)a.c. ≡ (div(1Ckv))a.c..

Proof of Corollary 5.6. The partition of ∪nk=1E
k into such sets {C`}`∈N is given exactly by Lemma 4.6.

Moreover, Lemma 4.19 shows that the set T \ ∪nk=1Ek is Lebesgue negligible. Therefore, by dominated
convergence theorem one finds that

〈div v, ϕ〉 = −
∫

T

v(x) · ∇ϕ(x) dL n(x) = − lim
`→∞

∑̀
i=1

∫
Ci

v(x) · ∇ϕ(x) dL n(x).

The addends in the r.h.s. are, by definition, the distributional divergence of the vector fields v1Ci applied
to ϕ. In particular, by Corollary 5.4, they are equal to

−
∫

Ci

v(x) · ∇ϕ(x) dL n(x) =
∫

Ci

ϕ(x)
(

div v
)
a.c.

(x) dL n(x) +
∫

dCk
i

ϕ(x) v(x) · n̂i(x) dH n−1(x),

proving the thesis. �

5.2. The currents of k-faces. In the present subsection, we change point of view. Instead of looking
at vector fields constrained to the faces of f , we regard the k-dimensional faces of f as a k-dimensional
current. We establish that this current is a locally flat chain, providing a sequence of normal currents
converging to it in the mass norm. The border of these normal currents has the same representation one
would have in a smooth setting.

Before proving it, we devote Subsection 5.2.1 to recalls on this argument, in order to fix the notations.
They are taken mainly from Chapter 4 of [Mor00] and Sections 1.5.1, 4.1 of [Fed69].

5.2.1. Recalls. Let {e1, . . . , en} be a basis of Rn. The wedge product between vectors is multilinear
and alternating, i.e.:( n∑

i=1

λiei
)
∧ u1 ∧ · · · ∧ um =

n∑
i=1

λi(ei ∧ u1 ∧ · · · ∧ um) m ∈ N, λ1, . . . , λn ∈ R

u0 ∧ · · · ∧ ui ∧ · · · ∧ um = (−1)iui ∧ u0 ∧ · · · ∧ ûi ∧ · · · ∧ um 0 < i ≤ m, u0, . . . , um ∈ Rn,

where the element under the hat is missing. The space of all linear combinations of{
ei1...im := ei1 ∧ · · · ∧ eim : i1 < · · · < im in {1, . . . , n}

}
is the space of m-vectors, denoted by ΛmRn. The space Λ0R is just R. ΛmRn has the inner product
given by

ei1...im · ej1...jm =
m∏
k=1

δikjk where δij =

{
1 if i = j

0 otherwise
.

The induced norm is denoted by ‖·‖. An m-vector field is a map ξ : Rn → ΛmRn.
The dual Hilbert space to ΛmRn, denoted by ΛmRn, is the space of m-covectors. The element dual

to ei1...im is denoted by dei1...im . A differential m-form is a map ω : Rn → ΛmRn.
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We denote with
〈
·, ·
〉
the duality pairing between m-vectors and m-covectors. Moreover, the same

symbol denotes in this paper the bilinear pairing, which is a map ΛpRn × ΛqRn → Λp−qRn for p > q
and ΛpRn × ΛqRn → Λq−pRn for q > p whose non-vanishing images on a basis are

dei1...i` =
〈
dei1...i` ∧ dei`+1...i`+m , ei`+1...i`+m

〉
if p = `+m > m = q

ei`+1...i`+m =
〈
dei1...i` , ei1...i` ∧ ei`+1...i`+m

〉
if p = ` < `+m = q.

Consider any differential m-form

ω =
∑
i1...im

ωi1...im dei1...im

which is differentiable. The exterior derivative dω of ω is the differential (m+ 1)-form

dω =
∑
i1...im

n∑
j=1

∂ωi1...im
∂xj

dej ∧ dei1...im .

If ω ∈ Ci(Rn; ΛmRn), the i-th exterior derivative is denoted with diω.
Consider any m-vector field

ξ =
∑

ξi1...im ei1...im
which is differentiable. The pointwise divergence (div ξ)a.c. of ξ is the (m− 1)-vector field

(div ξ)a.c. =
∑
i1...im

n∑
j=1

∂ξi1...im
∂xj

〈
dej , ei1...im

〉
.

Consider the space Dm of C∞-differential m-form with compact support. The topology is generated
by the seminorms

νiK(φ) = sup
x∈K, 0≤j≤i

‖djφ(x)‖ with K compact subset of Rn, i ∈ N.

The dual space to Dm, endowed with the weak topology, is called the space of m-dimensional currents
and it is denoted by Dm. The support of a current T ∈ Dm is the smallest close set K ⊂ R

n such that
T (ω) = 0 whenever ω ∈ Dm vanishes out of K. The mass of a current T ∈ Dm is defined as

M(T ) = sup
{
T (ω) : ω ∈ Dm, sup

x∈Rn
‖ω(x)‖ ≤ 1

}
.

The flat norm of a current T ∈ Dm is defined as

F(T ) = sup
{
T (ω) : ω ∈ Dm, sup

x∈Rn
‖ω(x)‖ ≤ 1, sup

x∈Rn
‖dω(x)‖ ≤ 1

}
.

An m-dimensional current T ∈ Dm is representable by integration, and we denote it by T = µ ∧ ξ,
if there exists a Radon measure µ over Rn and a µ-locally integrable m-vector field ξ such that

T (ω) =
∫
Rn

〈
ω, ξ

〉
dµ ∀ω ∈ Dm.

If m ≥ 1, the boundary of an m-dimensional current T is defined as

∂T ∈ Dm−1,
(
∂T
)
(ω) = T (dω) whenever ω ∈ Dm−1.

If either m = 0, or both T and ∂T are representable by integration, then we will call T locally normal.
If T is locally normal and compactly supported, then T is called normal. The F-closure, in Dm, of the
normal currents is the space of locally flat chains. Its subspace of currents with finite mass is the
M-closure, in Dm, of the normal currents.

To each L n-measurable m-vector field ξ such that ‖ξ‖ is locally integrable there corresponds the
current L n ∧ ξ ∈ Dm(Rn). If ξ is of class C1, then this current is locally normal and the divergence of ξ
is related to the boundary of the corresponding current by

−∂
(
L n ∧ ξ

)
= L n ∧ (div ξ)a.c.,

Moreover, if Ω is an open set with C1 boundary, n̂ is its outer unit normal and dn̂ the dual of n̂, then

∂
(
L n ∧ (1Ωξ)

)
= −(L n Ω) ∧ (div ξ)a.c. + (H n−1 ∂Ω) ∧

〈
dn̂, ξ

〉
.(5.10)

In the next subsection, we are going to find the analogue of the Green-Gauss Formula (5.10) for the
k-dimensional current associated to k-faces, restricted to D-cylinders. In order to do this, we will re-define
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the function (div ξ)a.c. for a less regular k-vector field and this definition will be an extension of the above
one.

5.2.2. Divergence of the Current of k-Faces on D-cylinders. As a preliminary study, restrict again the
attention to a D-cylinder as in Subsection 5.1.1, and keep the notation we had there.

The k-faces, restricted to C k, define a k-vector field

ξ(x) = 1Ckv1 ∧ · · · ∧ vk.

In general, this vector field does not enjoy much regularity. Nevertheless, as a consequence of the study
of Section 4, one can find a representation of ∂

(
L n ∧ ξ

)
like the one in a regular setting, (5.10). This

involves the density α of the push-forward with σ which was studied before, see (4.67).

Lemma 5.9. Consider a function λ such that it is continuously differentiable on each face and assume
C k bounded.
Then, the k-dimensional current

(
L n ∧ λξ

)
is normal and the following formula holds

∂
(
L n ∧ λξ

)
= −L n ∧ (div λξ)a.c. +

(
H n−1 dC k

)
∧
〈
dn̂, λξ

〉
,

where dC k, n̂ are defined in (5.4), dn̂ is the differential 1-form at each point dual to the vector field n̂,
and (div λξ)a.c. is defined here as

(div λξ)a.c. :=
k∑
i=1

(−1)i+1(div λvi)a.c. v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk

with the functions (div vi)a.c. of (5.5):

(div λvi)a.c.(x) =
(
λ(x)

∂tiα
(
t = π〈e1,...,ek〉(x), 0, x−

∑k
i=1 x · eivi(x)

)
α
(
π〈e1,...,ek〉(x), 0, x−

∑k
i=1 x · eivi(x)

) + ∂viλ(x)
)
1Ck(x).

Proof. Actually, this is consequence of Corollary 5.4 in Subsection 5.1.1, reducing to computations in
coordinates. One has to verify the equality of the two currents on a basis.

For simplicity, consider first
ω = φde2 ∧ · · · ∧ dek.

with φ ∈ C1(Rn). Then

dω = ∂x1φde1 ∧ · · · ∧ dek +
n∑

i=k+1

∂xiφdei ∧ · · · ∧ den,

〈dω, ξ〉 = ∇φ · v1

〈
ω, (div λξ)a.c.

〉
= (div λv1)a.c.φ

〈
ω,
〈
dn̂, ξ

〉〉
= φ n̂ · e1

and the thesis reduces exactly to Lemma 5.2, and Remark 5.3:

∂
(
L n ∧ λξ

)
(ω) :=

∫
Ck

〈dω, λξ〉 dL n 5.2= −
∫

Ck

〈
ω, (div λξ)a.c.

〉
dL n +

∫
dCk

〈
ω,
〈
dn̂, λξ

〉〉
dH n−1

=: −L n ∧ (div λξ)a.c. + (H n−1 dC k) ∧ (n̂ ∧ λξ).

The same lemma applies with (−1)i+1vi instead of v1 if

ω = φde1 ∧ · · · ∧ d̂ei ∧ · · · ∧ dek,

since the following formulas hold:

〈dω, ξ〉 = (−1)i+1∇φ · vi
〈
ω, (div λξ)a.c.

〉
= (−1)i+1(div λvi)a.c.φ

〈
ω,
〈
dn̂, ξ

〉〉
= (−1)i+1φ n̂ · ei.

Let us show the equality more in general. By a direct computation, one can verify that

v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk =
k−1∑
h=0

∑
k<ih+1<...
···<ik−1≤n

∑
σ∈S(1...̂ı...k−1)
σ(1)<···<σ(h)

sgnσ vih+1

σ(h+1) . . . v
ik−1

σ(k−1) eσ(1)...σ(h)ih+1...ik−1 ,

where vji is the j-th component of vi, S(1 . . . ı̂ . . . k) denotes the group of permutation of the integers
{1, . . . , ı̂, . . . , k}, with i is missing, and, if σ ∈ S(1 . . . ı̂ . . . k), sgnσ is 1 if the permutation is even, −1
otherwise.
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On the other hand, consider now a (k−1) form ω = φdei1...ih ∧deih+1...ik−1 , where 1 ≤ i1 < · · · < ih ≤ k,
and k < ih+1 < · · · < ik−1 ≤ n. Then, again by direct computation,〈

dω, ξ
〉

=
∑

σ∈S(1...k)
σ(2)=i1,...,σ(h+1)=ih

(∇φ · vσ(1)) sgnσ vih+1

σ(h+2) . . . v
ik−1

σ(k) ,

〈
ω, (div λξ)a.c.

〉
= φ

k∑
i=1

(−1)i+1(div λvi)a.c.

∑
σ∈S(1...̂ı...k−1)

σ(1)=i1,...,σ(h)=ih

sgnσ vih+1

σ(h+1) . . . v
ik−1

σ(k−1)

=
∑

σ∈S(1...k)
σ(2)=i1,...,σ(h+1)=ih

(φ · (div λvσ(1))a.c.) sgnσ vih+1

σ(h+2) . . . v
ik−1

σ(k) ,

and finally 〈
ω,
〈
dn̂, ξ

〉〉
=

k∑
i=1

(−1)i+1(n̂ · ei)
〈
ω, v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk

〉
=

∑
σ∈S(1...k)

σ(2)=i1,...,σ(h+1)=ih

(φ n̂ · vσ(1)) sgnσ vih+1

σ(h+2) . . . v
ik−1

σ(k)

Therefore the thesis reduces to Corollary 5.4, being each vij constant on each face. �

5.2.3. Divergence of the current of k-faces in the whole space. In the previous section, we considered a
k-dimensional current

(
L n C k

)
∧ ξ identified by the restriction to a D-cylinder C k of the k-faces of f ,

projected on Rn. We established the formula analogous to (5.10) for the border of this current, which is
representable by integration w.r.t. the measures L n C k and H n−1 dC k. In particular, when C k is
bounded it is a normal current.
Moreover, we have related the density of the absolutely continuous part to the function α by

(div ξ)a.c. =
k∑
i=1

(−1)i+1 ∂tiα
(
t = π〈e1,...,ek〉(x), 0, x−

∑k
i=1 x · eivi(x)

)
α
(
π〈e1,...,ek〉(x), 0,

∑k
i=1 x− x · eivi(x)

) 1Ck(x) v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk.

We observe now that the partition we of Rn into the sets {F k}nk=1, and the remaining set that we call
now F̃ 0, define a (n+1)-uple of currents. The elements of this (n+1)-uple are described by the following
statement, which is basically Corollary 5.6 when rephrased in this setting.

Corollary 5.10. Let {C k
` }`∈N be a countable partition of Ek in D-cylinders as in Lemma 4.6 and, up

to a refinement of the partition, assume moreover that the D-cylinders are bounded.
Consider a k-vector field ξk ∈ L1(Rn; ΛkRn) corresponding, at each point x ∈ Ek, to the k-plane
〈D(x)〉, and vanishing elsewhere. Assume moreover that it is continuously differentiable if restricted
to any set Ek∇f(x), with locally integrable derivatives, meaning more precisely that ξk ◦ σw`+t(z) belongs
to L1

H n−k(z)(Z
k
` ; C1

t (Ck; ΛkRn)) for each `.
Then, the k-dimensional current L n ∧ ξk is a locally flat chain, since it is the limit in the flat norm of
normal currents: indeed, for k > 0 one has

∂
(
L n ∧ ξk

)
= F - lim

`

∑̀
i=1

{
−L n ∧ (div(1Ck

i
ξk))a.c. +

(
H n−1 dC k

i

)
∧
〈
dn̂i, ξk

〉}
,

where (div 1Ck
i
ξk)a.c. is the one of Lemma 5.9, dC k

i , the border of C k
i transversal to D, and n̂i, the outer

unit normal, are defined in Formula (5.4), and dn̂i is the dual to n̂i.

Notice finally that the current L n ∧ ξk is itself locally normal if restricted to the interior of Ek.
However, in general Ek can have empty interior. If ∂

(
L n ∧ ξk

)
is representable by integration, then the

density of its absolutely continuous part w.r.t. L n, at any point x ∈ C k
` , is given by div(1Ck

`
ξk)a.c.(x).
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Table of Notations

The following table collects some of the notations in the article.

B(Rd) Borel sets in R
d

L d d-dimensional Lebesgue measure
H d d-dimensional Hausdorff outer measure
(X,Σ, µ) Σ = σ-algebra of subsets of X and µ =

measure on Σ, i.e. µ : Σ → [0,+∞],
µ(∅) = 0 and µ is countably additive on
disjoint sets of Σ

L1
(loc)(µ) (locally) integrable functions (w.r.t. µ)

L∞(loc) (locally) essentially bounded functions
Ck(c) k-times continuously differentiable func-

tions (with compact support)
1A 1A(x) = 1 if x ∈ A, 1A(x) = 0 otherwise
µ A restriction of a measure µ to a set A
µ =

R
µα dν disintegration of µ, see Definition 2.1

µ� ν µ(A) = 0 whenever ν(A) = 0 (absolute
continuity of a measure µ w.r.t. ν)

equivalent µ is eqivalent to ν if µ� ν and ν � µ
separated two sets A and B sets are separated if each

is disjoint from the other’s closure
perpendicular A set A is perpendicular to an affine plane

H of Rd if ∃w ∈ H s.t. πH(A) = w
v · w Euclidean scalar product in R

n

‖·‖ Euclidean norm in R
n

Sn−1,Bn {x ∈ Rn : ‖x‖ = 1}, {x ∈ Rn : ‖x‖ ≤ 1}
G(k, n) Grassmaniann of k-dimensional vector

spaces in R
n

πL orthogonal projection from R
d to the affine

plane L ⊂ R
d˙

·, ·
¸

pairing, see Subsection 5.2.1
〈v1, . . . , vk〉 linear span of vectors {v1, . . . , vk} in R

n

aff(A) affine hull of A, the smallest affine plane
containing A

conv(A) convex envelope of A, the smallest convex
set containing A

dim(A) linear dimension of aff(A)
ri(C) relative interior of C, the interior of C

w.r.t. the topology of aff(C)
rb(C) relative boundary of C, the boundary of

C w.r.t. the topology of aff(C)
R-face see Definition 4.11
extreme points zero-dimensional R-faces
ext(C) extreme points of a convex set C
dom g the domain of a function g
graph g {(x, g(x)) : x ∈ dom g} (graph)
epi g {(x, t) : x ∈ dom g, t ≥ g(x)} (epigraph)

∇g gradient of g
∂−g subdifferential of g, see Page 6
g|a evaluation of g at the point a
g|ab the difference g(b)− g(a)
g|A the restriction of g to a subset A of dom g
f a fixed convex function R

n → R

dom∇f a fixed σ-compact set where f is differ-
entiable, see Subsection 3.1

Im∇f {∇f(x) : x ∈ dom∇f}, see Subsec-
tion 3.1

face of f intersection of graph f|dom∇f with a tan-
gent hyperplane

k-face of f k-dimensional face of f
Fy ∇f−1(y) = {x ∈ dom∇f : ∇f(x) = y}
F ky Fy when dim(Fy) = k, k = 0, . . . , n

Ey, Eky the sets, respectively, ri(Fy) and ri(F ky )

Ek, F k the sets, respectively, ∪
y
Eky and ∪

y
F ky

P(x) see Formula (4.10)
R(x) F∇f(x), for every x ∈ dom∇f
T {x ∈ dom∇f : R(x) 6= {x}}
D multivalued map of unit faces directions,

see Formula (4.11)
Zk section of a sheaf set, see Definition 4.3
Z k sheaf set, see Definition 4.3
[v,w] segment that connects v to w, i.e. {(1−

λ)v + λw : λ ∈ [0, 1]}
Πk
i=1[vi,wi] k-dimensional rectangle in R

n with sides
parallel to {[vi,wi]}ki=1, equal to the con-
vex envelope of {vi,wi}ki=1

C k(Z k, Ck) k-dimensional D-cylinder C k, see Defini-
tion 4.5

dC k, n̂|
dCk

border of C k transversal to D and outer
unit normal, see Formula (5.4)

σw+te a map which parametrizes a D-cylinder
C k(Z k, Ck), see Formula (4.28)

σte σte = σ0+te, where e ∈ Sn−1, t ∈ R
σt if we write t = te with e a unit direction,

then σt = σ0+te

α(t, s, x) see Formula (4.67)
div v if v ∈ L1

loc(R
n;Rn), its divergence is the

distribution C1
c(Rn) 3 ϕ 7→ −

R
v · ∇ϕ

(div v)a.c. see Notation 5.1.1, Formula (5.8)
vi see Definition 5.1
(div vi)a.c. see Formula (5.5)

We avoid to recall here the notation on tensors and currents, which is the matter of Subsection 5.2.1.
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