A TRANSPORT PROBLEM WITH QUEUE PENALIZATION EFFECT
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ABSTRACT. Consider a distribution of citizens in an urban area in which some services (super-
markets, post offices...) are present. Each citizen, in order to use a service, spends an amount
of time which is due both to the travel time to the service and to the queue time waiting in
the service. The choice of the service to be used is made by every citizen in order to be served
more quickly. Two types of problems can be considered: a global optimization of the total
time spent by the citizens of the whole city (we define a global optimum and we study it with
techniques from optimal mass transportation) and an individual optimization, in which each
citizen chooses the service trying to minimize just his own time expense (we define the concept
of equilibrium and we study it with techniques from game theory). In this framework we are also
able to exhibit two time-dependent strategies (based on the notions of prudence and memory
respectively) which converge to the equilibrium.

1. INTRODUCTION

In this note we summarize and comment some results recently obtained by the authors in
[8]. We are interested in an optimization problem coming from the modeling of the behaviour
of citizens who every day need to use some services (supermarkets, post offices...) present in
a city. We consider a bounded set  C R? which is the geographic reference for the city and a
nonnegative function f with unit integral representing the population density. We fix k points
1, T2, ..., Tf at which the services are located. If every service was able to answer immediately
to the demand of each customer, obviously every person would choose the one closest to his
home. Namely, being p > 1 a fixed number so that the time spent to cover a distance ¢ is given
by /P, then a citizen living at x would choose the service located at x; if and only if

|z —2;|P = min |z — ;[P

geeey

However, in real world, if a service is crowded because a certain amount of citizens have
chosen it, the satisfaction of the demand of the customer is not immediate, and some time has
to be spent waiting for it. This time spent in the queue surely depends on the amount of people
waiting at the service, but also on the characteristics of the service (for instance, its dimension
or the ability of the employees). This can be modeled using k functions hi, ho, ..., hx which
express the time to be waited in dependence of the amount of people in the queue. If the amount
of citizens choosing the service z; is ¢;, for j = 1,...,k, then a citizen living at x and going to
the service x; needs to use a total amount of time expressed by the quantity

|z — 2l + hi(ci)

in order to reach the service x; and to have his request fulfilled. In particular, the better service
for the customer is not necessarily the closest one. It could be convenient for him to go a bit
further away in order to be served in a bigger service, in which the queue is faster.

It is surely apparent from the above discussion that, in this modeling, the decision of each
citizen depends on the choices of all the other citizens. Each customer chooses the best service
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according to the corresponding queue, but the queue itself depends on the choices of all the
other customers.

To attack this problem, we first want to define a meaningful notion of solution, for which we
alm to show existence and uniqueness, and eventually study its properties. There are in fact two
notions of solution to this problem: the global optimum (whose treatment exploit some concepts
from optimal mass transportation) and the individual equilibrium (which is closely related to
concepts from game theory). The study of these two notions will be carried out in Sections 3
and 4. The final Section 5 will be devoted to a dynamical evolution of the problem and to some
related convergence results.

We just mention a couple of (somehow) related results, due to Bouchitté, Jimenez and
Rajesh [4] and Brancolini, Buttazzo, Santambrogio and Stepanov [5], regarding optimal location
problems. Even though the models and the techniques present in these papers are quite different
from ours, the inspiration for our work precisely came from the knowledge of their results. For
some more optimization results related to economics, we refer to the references listed in [8].

We close this introduction by introducing some notation that will be extensively used in
all this paper. We fix a bounded Borel set  C R? and we denote by . ¢ the d-dimensional
Lebesgue measure in R?. We consider k points x1, 2, ..., x; belonging to €, where k is a
strictly positive integer; these points represent the location of the services in the city. The
density of the citizens is given by an absolutely continuous probability measure u = f.% dI_Q,
where f : 2 — R is a nonnegative function with unit integral. The measure p defined in this
way will be typically the reference measure in {2, and we shall also write f-a.e. and f-negligible
as a shortening of the more precise notation u-a.e. and p-negligible. For ¢ = 1,..., k we consider
the functions h; : [0, 1] — [0, +oo[ which encode the amount of time to be waited in dependence
of the amount of people using the service. With this we mean that, if the service located at
x; is chosen by an amount ¢; of citizens, then the time that will be spent in the queue by each
customer is h;(c;). Notice that in this modeling we can also include some penalizations for
the particular features of the various services, choosing the queue functions in such a way that
hi(0) > 0: for instance, higher prices or lower quality of the products. We do not specify a priori
any condition on the functions h;, but we will rather clarify the assumptions needed in each
particular result. For every Borel set A C €2 we consider the indicatrix function 14 defined by

1 ifzed

Lal) = { 0 ifz¢ A
The set of probability measures on §2 and €2 x Q are denoted by P(£2) and P (2 x Q) respectively.
When v € P(Q) is given, we denote by L}Y(Q) the vector space consisting of the Borel functions

which are y-integrable. A partition of €2 is a finite or countable family (A;);cn of pairwise disjoint
(up to f-negligible sets) Borel sets A; C €2 such that U;enA; has full measure in .

2. OPTIMAL MASS TRANSPORTATION: A VERY QUICK REVIEW

In this section we survey some very basic results relative to optimal mass transportation,
see for instance [1, 18]. Given two measures pu, v € P(2) and p > 1 we consider the following
minimization problem

1/p
M,(p,v) = inf { </ |z —T'(x)|P du(:z:)) : T :Q — Q Borel and such that Ty p = 1/} .
Q
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This problem has been first considered by Monge [16]. Due to the high nonlinearity it is ex-
tremely difficult to deal with the problem in this formulation. The following relaxed version,
proposed by Kantorovich [13, 14], is thus of great utility:

Wy(p, v) = inf { </sm |z —yl? dv(ﬂfvy)y/p oy € (p, V)} :

M(p,v) = {’y EPxQ) : (m)yy=pand (m2),y= y} .
It is worth noticing that W), turns out to be a distance on P(£2), called the Wasserstein distance
of order p. It metrizes the weak convergence of measures (recall that we are assuming that € is
bounded).
We shall also make extensive use of the following dual formulation of the Monge-Kantorovich
problem. For p, v € P(Q) the following equality holds:

1 1
p _ ) ueL,(Q), vel,(Q) and
W (,v) = sup {/Q udp + /Q vdv u(z) +v(y) < |z —yP for p-a.e. x and v-a.e. y |

Moreover, there exists an optimal pair (u,v) for this dual formulation.

where

In the following theorem we summarize various results regarding existence and uniqueness
of solutions to the Monge problem, see [6, 15, 17, 11, 7, 9, 2].

Theorem 2.1 (Existence and uniqueness of an optimal transport map). Let p and v be prob-
ability measures in  and fir p > 1. We assume that p is absolutely continuous with respect
to the Lebesque measure L. Then Mpy(p,v) = Wy(p,v) and there exists an optimal transport
map from p to v, which is also unique p-a.e. if p > 1.

A small refinement of the previous uniqueness result can be obtained when the target mea-
sure v is atomic:

Lemma 2.2. Assume that p < L and v = Y ien bidy, are probability measures in Q. Then
the optimal transport map from p to v is unique even in the case p = 1.

3. EXISTENCE, UNIQUENESS AND CHARACTERIZATION OF THE OPTIMUM

A first approach to the problem is from a global point of view. The unknown is a partition
(Ai)i=1,...k of Q, where each A; represents the urban area where customers choosing the service
located at z; live. The total amount of people living in A; is given by ¢; = [ A, f(x)dx. Every
citizen living at x and using the service located at x; is going to spend, in order to be served, a
time given by

|ZL‘ — x,;]p + hZ(CZ) .
In this expression, |x — z;|P is the transport time and h;(c;) is the time spent waiting in the
queue. Consequently, the total time spent by the whole population is given by

k
> [, L=+ e e (51)

We want to choose the partition (A;)i=1,. r of Q in such a way that the quantity in (3.1) is as
small as possible; thus we are led to the following minimization problem:

(Az-)ig,“,k {g/A [|x—xilp + h (/A f(x) dx>} F(2) dl‘} , (3.2)

partition of
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Definition 3.1 (Optimum). We say that a partition (A;)i=1,. r of Q is an optimum if it is a
minimizer for (3.2).

We are able to show the following result regarding the optimum. We consider fori =1,...,k
the functions 7; : [0, 1] — [0, +oo[ defined by
ni(t) = thi(t). (3:3)

Theorem 3.2. Assume that the functions h; are lower semi-continuous. Then:

(i) there exists an optimum (z&)lzlk for (3.2);
(ii) #f in addition the maps n; are strictly convex the optimum is unique.

Moreover, if h; are differentiable in ]0,1] and continuous in 0 and n; are convex, then
Ai={o € i |o—ailP + hiles) + ahlle) < |o = ;[P + hyle;) + eihle;) Vi i}
ci = fAif(a:)d:c,

is a necessary and sufficient condition for the optimality of the partition (A;)i=1,. k-

(3.4)

We briefly comment on the existence and uniqueness result presented in the theorem. Let
us denote by S the unit simplex in R* defined by

k
S: {C_<Cl7027"‘7ck)€Rk : ciZOa Zcz_l}
i=1

and introduce the function F : S — R defined by

k
F(ey,... cx) = WP (f.zdl_sz, Zci&ci) .
i=1
The result stated above is then an easy consequence of the two following technical observa-
tions, which permit to reduce the discussion to the study of an auxiliary minimization problem
on the simplex S C R*, and whose proof relies on the theory of optimal mass transportation
presented in Section 2:

e the function F' is continuous and convex;
e the following equality holds:

k
inf (3.2) = inf {F(c) +)° hi(ci)ci} .

€s
¢ i—1

4. EXISTENCE, UNIQUENESS AND CHARATERIZATION OF THE EQUILIBRIUM

We observe that, even though the description given in the previous section is mathematically
quite elegant and complete, the concept of optimum could be not the right one in economic terms.
Indeed, it is based on the assumption that some “external authority” (for instance, the major of
the city) has the right to force the decisions of all the customers. This can comport very unfair
results for some particular citizens, as pointed out in the following example.

Example 4.1. Consider a small city with 1000 citizens and two bakeries. In the first bakery the
shop assistant is extremely talkative, and in any case you wait 100 hours listening to his boring
stories. In the second bakery the shop assistant is very organized and clever, thus typically
you are served immediately, even when a lot of people is present, apart from the case in which
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everybody (i.e. exactly all the 1000 citizens) are in the shop; in that occasion, the shop assistant
panics and slows down, so that everybody waits 1 hour.

The major of the city forces the choices of the citizens in order to minimize the global cost:
in other words, he imposes with a law that the global optimum must be chosen. An unlucky
customer is forced to go to the shop with the talkative guy, and all the others go to the organized
place.

Consider the situation from the point of view of the unlucky customer: he is not interested
in the global situation of the city. He only realizes that (because of the dictatorial decision of
the major) he must wait 100 hours to buy the bread. From his point of view, a change of the
bakery would imply a gain of 99 hours, and he is not so happy to waste his time in order to help
the other citizens.

In this section we are going to discuss an alternative notion of solution, the equilibrium,
which should be economically more realistic. In any case, we shall see that some proofs rely on
the results regarding the optimum presented in Section 3, since they exploit the previous results
with some modified queue functions.

4.1. The concept of equilibrium. As suggested from the above discussion, it is much more
reasonable that a citizen living at x € ) and going to x; shall be “satisfied” if and only if

|z — ;P + hi(c) < nllink |z — z;|P + hj(cj) .
=15
Indeed, in a free market, each customer chooses his strategy without (too many) impositions
from the government, in order to minimize just his own time expense.

Definition 4.2 (Equilibrium). We say that a partition (A;)i=1,. x of £ is an equilibrium if for
everyt=1,...,k:

A= {x € |z —xiP+ hi(e) < |z —xj|P + hj(cj) for every j # z}
(4.1)

¢i = [y, flz)dz.

In the context of game theory this is precisely a Nash equilibrium: each player is satisfied in
the sense that his strategy (i.e. the choice of the service) is the best possible, once the behaviour
of the other players (in this case, the sets 4;) is fixed. This type of equilibrium is non-cooperative:
each citizen chooses the service just by himself, without collaborating with the other citizens in
order to choose a “better” global strategy.

We are able to show the following result concerning existence and uniqueness of the equi-
librium. We notice that in general game theory the existence of a Nash equilibrium is typically
a difficult task: the proof of the above result does not follow from “general game theory” argu-
ments.

Theorem 4.3. Assume that the functions h; are continuous and non-decreasing. Then there
exists a unique equilibrium.

The heart of the proof relies on the following lemma, which makes a connection between
the equilibrium problem and an auxiliary optimization problem, with modified queue functions.
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We introduce for i = 1,...,k the functions g; : [0, 1] — [0, +oo[ defined by

1 t

t/ hi(s)ds f0<t<1

gi(t) = 0
hi(0) if t = 0.

Lemma 4.4. Assume that the functions h; are continuous and non-decreasing and define the
functions g; as above. Then a partition (A;)i=1,..k of Q is an equilibrium if and only if it is a
minimizer of the problem

R

partition of 2

4.2. A direct proof in the case k£ = 2. We now give an alternative and more direct proof of
Theorem 4.3 in the particular case k = 2. This has also the advantage of introducing some ideas
and notation that will be important in the dynamical analysis of Section 5. In what follows, we
will make extensively use of the following definitions:

T(z) = |z — 21|P — |z — x2|?, m(t) = / et f(z)dx. (4.2)

The condition in (4.1) defining the equilibrium can be read in this context as follows: a partition
(A1, A2) of Q is an equilibrium when there exists t € R such that:

Al={zeQ:7(x)<t}, Ay={zeQ:7(z)>1} (4.3)

Proposition 4.5. Assume that the functions hy and ho are continuous and mon-decreasing.
Then there exists a unique equilibrium (Ay, Az).

Proof. Let us consider the map
U(t) =t —ha(1—m(t)) + hi(m(t)).

It is a continuous and strictly increasing map. Notice that for ¢ > supg 7 we have m(t) = 1 and
U(t) =t — ha(0) + hi(1) so that lim;—, 1o U(t) = +00. In the same way for ¢ < info 7 we have
m(t) =0 and U(t) =t — ho(1) + h1(0), thus lim;—, o, U(t) = —o0. By consequence, there exists
a unique ¢ such that U(¢) = 0, that is, (4.4) holds. Then the partition (A, As) associated to ¢
as in (4.3) is an equilibrium and this is unique. O

4.3. A comparison with Pareto optimum. The situation described in Example 4.1 shows
that in some cases the global optimum can really be not convenient for some citizens: in par-
ticular the optimum is better than the equilibrium for 999 of the 1000 citizens, even though it
is much worse for the remaining unlucky citizen. In some classical games (like the well-known
prisoner’s dilemma, see for instance Section 7.8 of [3]) the equilibrium is in fact a bad strategy
for all players, in the sense that there is a situation which is better for everybody.

On the contrary we can show that in our model this can not happen. Even more, given
an equilibrium, we show that it is not possible to find a situation in which every citizen spend
less time. More precisely, and introducing a further notion from game theory, we can prove
that every equilibrium is a Pareto optimum for the problem. This means that, in our situation,
starting from the non-cooperative Nash equilibrium it is not possible to lower the costs of all
the citizens by a cooperation in the choice of the services.
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Let us introduce the individual cost function
k

C(z,(By);) = Z {]a: — ;[P + Ry </ f(z) d:c)} 1p,(z), (4.5)
i=1 B;
defined for z € Q and (B;);=1,.. partition of Q. We say that a partition (A4;);=1,. x of Q

, of Q

is a Pareto optimum (see also Section 12.5 of [3]) if there exists no partition (B;)i=1,..
satisfying
C(z,(Bi)i) < C(z,(A);)  for f-ae z €

with strict inequality in a set of strictly positive measure. With these definitions we can show
the following result.

Proposition 4.6. If the maps h; are strictly increasing, then every equilibrium is a Pareto
optimum.

5. DYNAMICAL EVOLUTION AND CONVERGENCE TO THE EQUILIBRIUM

We finally want to study a dynamical formulation of the problem. Assume that the citizens
have some procedure to decide, day by day, where to go, using information obtained in the
previous days. They know how long the queues were yesterday, and they decide which service to
use today. Does this evolution converge to something? If this is the case, we expect convergence
to the individual equilibrium, since the decisions of the customers are taken freely and without
any cooperation. In this spirit, in this section we restrict ourselves to a case in which (thanks
to the results of Section 4, i.e. we assume that the queue functions h; are continuous and non-
decreasing. Moreover, for simplicity, we consider the case of just two points x1 and xzs.

5.1. Standard evolution. We first try to implement the most natural dynamical strategy. We
restrict for simplicity to the case of two services 1 and x2 and we first introduce some notation.
We consider functions v;(x) : Q — {0,1}, for j € N, such that

bi(x) = 0 if the citizen in x goes to x; at time j
J | 1 if the citizen in = goes to x5 at time j.

The total amount of citizens going to x1 at time j is thus

mi= [ (=) 1) o
Q

We also set
T(z) = |v — z1P — | — x2|P. (5.1)
A natural choice of the citizens at the initial time is

[0 ifr(z) <0
wo(fﬁ)—{l if 7(z) > 0;

indeed, they just choose to go to the closest service, since they have no experience of queues of
the preceding days.
The most simple strategy for the time evolution we could conceive gives

_ [0 if7(z) < ho(l —my) — ha(my)
Yjr1(r) = { 1 if r(z) > hz(l —mj) — hi(m]’)'
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Recalling the definition of 7(z) in (5.1), we see that the discriminating condition the citizen is
checking in order to choose the most convenient shop is
@ — 21| + hi(my) S o — 22|’ + ha(1 —my).
Setting
tjt1 = ha(l —m;) — ha(m;)
we construct a sequence (t;); with the property that

[0 ifr(x) <ty
wj(ﬂ{l ifT($)>tj‘.

Let us consider the function ¢ associated to the equilibrium, i.e.

- {O if v € Ay {0 if 7(x)

<t
Y@= e a, 1 ifr(z) >

The convergence issue can then be stated as follows:

Question 5.1. Does the convergence ; — Y hold?

Notice that it is enough to show that ¢; — ¢: this implies that ¢; — 1 uniformly on the
compact subsets of Q\ {7 =t}. We define

and consider the non-increasing function
G(t) = ha(1 —m(t)) — h1(m(t)) .
By the definitions previously given we have
tiv1 =G(t;) and t=G(1). (5.2)

Notice that, being G' non-increasing, we have a unique ¢ such that ¢ = G(), thus we obtain
again a proof of the existence and uniqueness of the equilibrium (compare with Section 4.2).

From the properties in (5.2) and some standard fixed point arguments we deduce that we
have the convergence ¢t; — t under the assumption

|G| < 1.

Observe that this assumption means that:

e the queue changes slowly as the amount of people changes;
e there are no highly populated areas.

Example 5.2. Consider a “small” city (in which all travel times are very small) with two shops
in which the queue is quite consistent. Assume that the whole population lives in a small area
and that everybody is closer to the first shop. At the initial time, all the citizens simply go to
x1, since it is closer. But then they experience a long queue, thus the day after they all go to
the second shop. This implies that the queue is again very high, thus the subsequent day they
all switch back to the first shop. This clearly gives rise to an oscillatory phenomenon, with lack
of convergence.
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As the above example clearly suggests, we need to find a way to damp these oscillations,
which are due to the “too impulsive” decisions of the citizens. Also from the economic point of
view, it is not so convincing that the customers change their mind regarding the preferred shop
in such a speedy (an silly...) way: it is plausible that they have some resistance against too
sudden decisions.

5.2. Evolution with prudence and evolution with memory. We propose two different
models for this:

e the citizens have more prudence in the decision of the service to be used;
e the citizens have longer memory, in the sense that they remember more than a single
day.

5.2.1. Ewvolution with prudence. We fix a parameter 0 < p < 1 which is called the prudence
parameter and we set

Wi (x) = { pi;() if () <tjm
J 1—p(1—4j(z)) if 7(z) > tjp.
This can be interpreted as prudence in the decision, or as laziness or resistance against a change
of habit. The introduction of this parameter has the effect of damping the oscillations.

Notice that now #; : @ — [0,1]: this means that the decision of the citizens is no more
deterministic, but it is modeled by a stochastic variable. It also corresponds to a statistical
formulation of the problem, if we think that at each point there is a building with a big number
of citizens. In game theory this is related to the concept of mixed strategy. This is also
reminiscent of the passage from transport maps to transport plans.

The case p = 0 means no prudence, so we are again in the previous case. The case p =1
means full prudence, thus we obtain v; = 1)y for all j, and we cannot obtain convergence. We
are able to show the following convergence result.

Theorem 5.3. Assume that the population density f is bounded and that hy and hs are non-
decreasing and Lipschitz continuous. Then there exists a prudence threshold 0 < p < 1 such
that for every prudence parameter p < p < 1 the evolution with prudence gives the convergence

Y; — .
Moreover, we can also consider the case in which the prudence varies with time.

Theorem 5.4. Consider a sequence of prudence parameters (p;); with

pi —1 and Z(l —pj) = +o0
J
and consider an evolution with variable prudence (i.e. p = p; in the above model). Then we
have the convergence ¢; — 1.

5.2.2. Evolution with memory. In this second model we go back to a deterministic strategy,
i.e. we have again ¢; : Q@ — {0,1}. We fix an integer number x, which is called the memory
coefficient: we now assume that the population keeps track of x previous days when deciding
the strategy. This means that we consider

anzj—nﬂ G(tm)

tjt1 = - ;
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where as before
G(t) = ha(1 = m(t)) — hy(m(1)).
The convergence in the above model is ensured by a condition of Lipschitzianity on the
function G.

Theorem 5.5. Assume that G is strictly k-Lipschitz, i.e.
|G(t1) — G(t2)| < /-€|t1 — t2’ fO?" all t1 7'5 ta.
Then we have the convergence ¢; — ).

Similarly to what we have done in the case of the increasing prudence, we can consider
models with increasing memory. In particular, we have the case of global memory, in which the
citizens remember “the whole story of the city” in terms of queues.

Theorem 5.6. Assume that G is Lipschitz and consider the global memory evolution

Iy Gltm)

tjy = ==L
’ j
Then we have the convergence ¢; — ).

5.3. A proof in a simplified setting. Even though the proofs given in [8] of all the results
in Section 5.2 ultimately rely on “elementary” tools, they are at some points quite complicated.
In order to make the argument of [8] more accessible to the interested reader, we give here a
proof of a convergence result in the case of evolution with memory in the simplified case when
Q=001 CR,zy=0,22=1,p=1and f =1. We consider the case when the coefficient
memory Kk = 2.

Since we are assuming that the citizens have a memory of two days, we (arbitrarily) fix as
initial data of our evolution t; = to = 1/2. For n > 2, the customers are going to choose their
strategy for the day n + 1 remembering the length of the queues at time n — 1 and n. More
precisely, they are going to choose the value of t,11 assuming that

e the queue in the point z7 is (hl(tn,l) + hl(tn))/2,

e the queue in the point zs is (hg(l —tp—1) + ho(1 — tn))/Z.
This exactly means that we are assuming that the expected queue at each service is the average
of the queues observed in the two preceding days. Then the value of ¢, is determined from
the condition

dist(tn+1, 21) + expected queue in z1 = dist(t,+1,22) + expected queue in zo

(recall that we are dealing with the case f = 1), which reads
hi(tn-1) + hi(tn) ho(1 —ty 1) + ho(1 —t,)

tht1 + 5 = (1 —tnpy1) + 5 (5.3)
From (5.3) we obtain
byt = ho(1 —t—1) — hi(tn—1) + ha(1 —t,) — hi(t,) + 2
e 4
5.4
_ (I)(tnfl) + (I)(tn) ( )
= 5 ,

where we have set
d(t) = . (5.5)
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Notice that, thanks to Proposition 4.5, there exists a unique equilibrium
Ay = 0,1, Ay =], 1],
where t is characterized by the condition
t=®(t).

We want to understand the issue of the convergence of the sequence ¢, defined above to
the value . We are going to show the following partial case of Theorem 5.5: Assume that the
function ® defined in (5.5) is L-Lipschitz, with L < 2. Then the sequence t, defined in (5.4)
converges to t.

Notice that the Lipschitz continuity of @ is related to the Lipschitz continuity of the queue
functions hy and he. Roughly speaking, we are assuming that the queue time depends nicely on
the amount of people in the queue.

In order to prove the above result, we introduce the following two properties:

P.(a): ®(t,) — (t)| < a

Qn(a):  [®(tn) = B(E) + P(tn1) — ()] < .

Notice that P,(«) is well-defined for n > 1 and Q,(«) for n > 2.
Step 1. We show the validity of the implications

Qn(a) = Py <§a> = Pyii(a). (5.6)

Using the L-Lipschitzianity of ®, the definitions of ¢,11 and of ¢ and the assumption Q, ()
we immediately deduce
Blta-1) — (D) + ¥(ta) ~ 20| _ L
2 -2

B(tasn) — B(D)] < Lituss — 7] = L \

Since we are assuming that L < 2, the second implication in (5.6) is trivial. Thus we have shown
(5.6).
Step 2. We show the validity of the implication
(Pn,l(a) & Poa) & Pn+1(oz)) —  Quiila). (5.7)
Our objective is to show that
[B(ta1) — (D) + D(t) — B(D)] < a. (5.8)

First of all notice that (5.8) is immediate in the case when ®(t,,) — ®(¢) and ®(t,41) — ®(¢) have
different sign. Indeed, thanks to the assumptions P, (a) and P,41(«), the absolute value of both
is necessarily smaller or equal to . Thus, we assume that ®(¢,) — ®(¢) and ®(t,+1) — P(f) have
the same sign, and without loss of generality let us assume that

O(t,) — P(t) <0 and O (tpr1) — P(t) <0. (5.9)
Since @ is non-increasing, this implies that
tny1 >t and th >t.
But this implies

= O(th— D(t,
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thus
(I)(tn—l) > (I)(ﬂ

We can compute

“I)(tn+1) - CI’(Z) + (I)(tn> - (I)(E)‘

(I)(E) - Cb(tn+1) + CI’(Z) - (I’(tn>
L(tni1 —t) + @(t) — 2(tn)

D(t_1) — B(D) + D(ta) — (D
2

IN

L

= F00) — 2] + (5 -1 [2(0) - 2(0]

Lo L
<—+(l-—=-]a=aqa,

+ (I)(t_) - (I)(tn)

2 2

where we have used (5.9), the L-Lipschitzianity of ®, the definition of ¢,41 and the assumptions
P,_1(a) and P,(«). This concludes the proof of the implication (5.7).

Step 3. Conclusion of the proof. From the previous steps, it is immediate to deduce that
there exists a constant C'(®) such that

n

L

[5]
|®(t,) — @(F)] < C(P) <2> : (5.10)

where we denote with [z] the largest integer which is less or equal to z. Recalling that L < 2
and that ®(¢) = ¢, we deduce that ®(t,) — ¢, but recalling (5.4) this also implies ¢, — ¢, as
desired.

REFERENCES

[1] L. Ambrosio, Lecture Notes on Optimal Transport Problems. Mathematical aspects of evolving interfaces,
CIME Summer School in Madeira, vol. 1812, Springer, 2003.

[2] L. Ambrosio & A. Pratelli, Existence and stability results in the L' theory of optimal transportation.
Optimal transportation and applications (Martina Franca, 2001), 123-160, Lecture Notes in Math., 1813,
Springer, Berlin, 2003.

[3] J.-P. Aubin, Optima and equilibria. An introduction to nonlinear analysis. Translated from the French
by Stephen Wilson. Second edition. Graduate Texts in Mathematics, 140. Springer-Verlag, Berlin, 1998.
xviii+429 pp.

[4] G. Bouchitté, C. Jimenez & M. Rajesh, Asymptotique d’un probléme de positionnement optimal. (French)
C. R. Math. Acad. Sci. Paris 335 (2002), no. 10, 853-858.

[5] A. Brancolini, G. Buttazzo, F. Santambrogio & E. Stepanov, Long-term planning versus short-term planning
in the asymptotical location problem. CVGMT preprint 2006, see http://cvgmt.sns.it/papers/brabutsan06/.

[6] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl.
Math. 44 (1991), no. 4, 375-417.

[7] L.A. Caffarelli, M. Feldman & R.J. McCann, Constructing optimal maps for Monge’s transport problem as
a limit of strictly convex costs. J. Amer. Math. Soc. 15 (2002), no. 1, 1-26

[8] G. Crippa, C. Jimenez and A. Pratelli, Optimum and equilibrium in a transport problem with queue
penalization effect, Submitted paper, 2008.

[9] L.C. Evans & W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem.
Mem. Amer. Math. Soc. 137 (1999), no. 653, viii+66 pp.

[10] A. Friedman, Differential games. Pure and Applied Mathematics, Vol. XXV. Wiley-Interscience, New York-
London, 1971. xii+350 pp.

[11] W. Gangbo & R. J. McCann, The geometry of optimal transportation. Acta Math. 177 (1996), no. 2,
113-161.

[12] C. Jimenez, Optimisation de problémes de transport. PhD Thesis, Univ. du Sud-Toulon Var, (2005)



TRANSPORT PROBLEM WITH QUEUE 13

[13] L.V. Kantorovich, On the transfer of masses. Dokl. Akad. Nauk. SSSR 37 (1942), 227-229.

[14] L.V. Kantorovich, On a problem of Monge. Uspekhi Mat. Nauk. 3 (1948), 225-226.

[15] M. Knott & C.S. Smith, On the optimal mapping of distributions. J. Optim. Theory Appl. 43 (1984), no.
1, 39-49.

[16] G. Monge, Mémoire sur la Théorie des Déblais et des Remblais. Histoire de I’Acad. de Sciences de Paris,
1781.

[17] L. Riischendorf, Optimal solutions of multivariate coupling problems. Appl. Math. (Warsaw) 23 (1995), no.
3, 325-338.

[18] C. Villani, Topics in Optimal transportation. Graduate studies in Mathematics, 58, AMS (2003).

G.C.: DIPARTIMENTO DI MATEMATICA, UNIVERSITA DEGLI STUDI DI PARMA, VIALE G.P. USBERTI 53/A
(Campus), 43100 PARMA, ITALY
E-mail address: gianluca.crippa®@unipr.it

C.J.: LABORATOIRE DE MATHEMATIQUES DE BREST, UMR 6205, 6, AVENUE VICTOR LE GORGEU, CS
93837, F-29238 BREST CEDEX 3, FRANCE
E-mail address: chloe.jimenezQuniv-brest.fr

A.P.: DIPARTIMENTO DI MATEMATICA, UNIVERSITA DEGLI STUDI DI PAVIA, VIA FERRATA 1, 27100 PAVIA,
ITALy
E-mail address: aldo.pratelli@unipv.it



