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1. INTRODUCTION

In 1998 Francfort and Marigo [15] proposed a model of quasistatic growth of brittle
fractures in linearly elastic bodies inspired to the classical Griffith criterion.

Let Q C R? be an elastic body, pQ a part of its boundary, and let g : 9pQ — R3
be the spatial displacement of ) at the points of Op2. Following [15], given a preexisting
crack I'; C Q, the new crack I' and the displacement u : Q \ I' — R? associated to g at the
equilibrium minimizes the following total energy

(1.1) E(v,g,T) = / p|Ev? + NtrEBul? de + kH?(T),
Q

among all cracks I' with Ty C T and all displacements v : 2\ ' — R3 with v = g on
OpQ\ T. Here Ev denotes the symmetric part of the gradient of v, tr denotes the trace of
the matrix, and H? denotes the two dimensional Hausdorff measure. The coefficients u, A
and k depend on the material. Thus the theory of [15] determines the growth of the crack
(as the formation of its new components) through a competition between the bulk energy
given by [, p|Eul* + A[tr Eul? dz and the surface energy given by kH?*(I'). The boundary
condition is required only on 9pf \ T' because the displacement in a fractured region is
supposed to be not transmitted. We indicate by £(g,T") the minimum value of (1.1) among
allv: Q\ T — R3 with v = g on 9pQ\ T.

Suppose that the boundary displacement g varies with the time ¢ € [0, 1]. The quasistatic
evolution ¢t — I'(¢) proposed in [15] requires that:
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2 A. GIACOMINT
(1) T'(¢) is increasing in time, i.e., I'(t1) C T'(t2) for all 0 < ¢1 <ty < 1;
(2) E(g(t),T(t)) < E(g(¢),T) for all cracks I' such that Us;I'(s) C T;

(3) the total energy £(g(t),['(¢)) is absolutely continuous in time, and its derivative is
equal to the power of external forces.

Condition (1) stands for the irreversibility of the evolution (fracture can only increase);
condition (2) states that each time ¢ is of static equilibrium, while condition (3) stands for
the nondissipativity of the process.

The problem of giving a precise mathematical formulation of the preceding model has
been the object of several recent papers. In 2000, Dal Maso and Toader [12] dealt with
the case of antiplanar shear in dimension two: the authors consider a cylindric elastic body
Q= Q' xR with Q' C R? subject to displacements of the form u(7z)esz where ez is the unit
vector of the x3-axis, and 7 is the projection on €. The boundary antiplanar displacement
is assigned on dp€)’ x R while the admissible cracks are of the form K x R with K compact
subset of Q' with a prescribed number of connected components and with finite 7!-length.
A generalization to non-isotropic surface energies is contained in [16].

Recently Francfort and Larsen [14] proposed a mathematical formulation which involves
the space SBV of special functions of bounded variation (see Section 2). Their approach
permits to treat antiplanar shear in a IN-dimensional setting, and allows to consider fractures
with a possibly infinite number of connected components. To be precise, they consider
displacements of the form wu(z)eyi1, where v € SBV(Q) and eyy; denotes the unitary
vector of the (N + 1)-axis. The crack at time t is defined as I'(t) x R where I'(t) :=
Us<t [Sus) U (02N {u(s) # g(s)})], and the pair (u(t),I'(t)) is such that:

(a) for all z € SBV(Q)

(12) [ IVuOP + HYU00) < [ (95 4 YIS0 0020 (= £ ()} UT(0):
Q Q
(b) the total energy £(t) := [, [Vu(t)|* + HN~1(T'(¢)) is absolutely continuous and

E(t):5(0)+2/0 /QVu(T)Vg'(T)dxdT.

Numerical computations concerning this model of evolution (see [7]) are performed using
a discretization in time procedure and an approximation of the total energy proposed in
1990 by Ambrosio and Tortorelli (see [5],[6]). Being the new energy elliptic, the difficulties
arising in the discretization of the free discontinuity term given by the fracture are avoided.
Supposing to have determined the displacement wu; and the fracture K; at the time ¢;, one
minimizes the Ambrosio-Tortorelli functional in the domain 2 \ K; under the boundary
conditions ¢(t;41), and hence reconstruct the couple (u;y1,K;+1). In this way, errors due
to the discretization in time and to the approximation of the energy are introduced. In
order to study the convergence of the procedure, one is led to formulate a natural notion
of quasistatic evolution for the Ambrosio-Tortorelli functional. The aim of this paper is to
prove the convergence of this regular evolution to an evolution of brittle fractures in the
sense of [14].
The Ambrosio-Tortorelli functional is given by

Fs(u,v):/(775+02)|Vu|2d:r+§/ \Vv|2dx+i/(1—v)2dx
Q 2 Ja 2¢ Ja

where (u,v) € HY(Q) x HY(Q), 0 <v < 1,0 < n. << e. F. contains an elliptic part

(1.3) /Q(ns—i—v2)|Vu\2dx



AMBROSIO-TORTORELLI APPROXIMATION OF QUASI-STATIC EVOLUTION 3

and a surface part

(1.4) MM, (v) := f/ \VU|2dx+i/(1—v)2dx
2 Q 2e O

which is a term of Modica-Mortola type (see [17]).

If a sequence (ue,v:) is such that F.(ue,ve) + ||ue||oo < C, then ve — 1 strongly in L?(€),
and it turns out that, up to a subsequence, u. — w in measure for some u € SBV(Q);
roughly speaking, the gradient of u. becomes larger and larger in the thick regions in which
ve approaches zero, possibly creating some jumps in the limit. We conclude that the function
u. has to be considered as a regularization of the displacement u, while the function v. has
to be intended as a function which tends to 0 in the region where S, will appear, and to
1 elsewhere. Moreover (1.3) and (1.4) have to be interpreted as regularizations of the bulk
and surface energy of w.

In the regular context of the Ambrosio and Tortorelli functional, we define through a
variational argument the following notion of quasistatic evolution (Theorem 3.1): for every
e > 0 we find a map t — (u-(t),v:(t)) from [0,1] to HY(Q) x HY(Q), 0 < v.(t) < 1,
ue(t) = g(t), ve(t) =1 on OpQ such that:

(a) forall 0 < s <t <1: v (t) <wels);

(b) for all (u,v) € H(2) x HY(Q) with u = g(t), v =1 0n 9pQ, 0 < v < v (t):
(1.5) Fe(ue(t),ve(t)) < Fe(u,v);

(c) the energy E.(t) := F.(uc(t),v:(t)) is absolutely continuous and for all ¢ € [0, 1]
E(t) +2/ / e + 02 (1)) Vue (1)V (1) dz dr;

(d) there exists a constant C' depending only on g such that £.(t) < C for all ¢ € [0, 1].

Condition (a) permits to recover in this regular context the fact that the fracture is in-
creasing in time: in fact, as v.(t) determines the fracture in the regions where it is near
zero, the condition ve(t) < v.(s) ensures that existing cracks are preserved at subsequent
times. Condition (b) reproduces the minimality condition at each time with respect to larger
fractures, while condition (c) describes the evolution in time of the total energy. Condition
(d) gives the necessary compactness in order to let ¢ — 0. In the particular case in which
[lg()||oo < Ci for all t € [0, 1], it turns out that, using truncation arguments, ||ue(t)||oo < C1
for all ¢ so that a uniform L* bound is available at any time. The requirement v, (t) = 1
on OpQ for all ¢t € [0, 1] is made in such a way that, letting ¢ — 0, the surface energy of the
fracture in the limit is the usual one also for the part touching the boundary 0p€2.

The main result of the paper (Theorem 3.2) is that, as ¢ — 0, the quasistatic evolution
t — (us(t),ve(t)) for the Ambrosio-Tortorelli functional converges to a quasistatic evolution
for brittle fracture in the sense of [14]. More precisely, there exists a quasistatic evolution
t — (u(t),T'(t)), u(t) € SBV(Q), relative to the boundary data g and a sequence &, — 0
such that for all ¢ € [0, 1] which are not discontinuity points of HY~1(T'(-)) we have

ve, (t)Vue, (t) — Vu(t) strongly in L?(Q,RY),

/ (nan + Ve, (t)2)|vu5n (t)|2 dz — / |V’U1(t)‘2 dl‘,
Q Q
and
MM, (ve,, () — HYTH(L(L)).
Moreover & (t) — E(t) for all ¢ € [0,1]. We thus obtain an approximation of the total

energy at any time, and an approximation of the strain, of the bulk and the surface energy
at all time up to a countable set. The main step in the proof is to derive the unilateral
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minimality property (1.2) from its regularized version (1.5). Given z € SBV(2), a natural
way consists in constructing z, € H'(Q) and v, € H*(Q) with z, = g(¢), v, = 1 on dpQ,
0 <w, <w,(t) and such that

(1.6) lim/ (1., +02)|Vzn|? do = / V2|2 du,
noJa Q
and
(1.7) limsup [M M., (v,) — MM, (v, ()] < HN 1 (S.\T(2)).

We thus need a recovery sequence both for the displacement and the fracture: moreover we
have to take into account the boundary conditions and the constraint v,, < v,(t). Density
results on z, such that of considering S, polyhedral, cannot be directly applied since the set
S, \ T'(t) could increase too much; on the other hand it is not possible to work in Q\ T'(¢)
since no regularity results are available for I'(t) apart from its rectifiability. It turns out
that S, NI'(¢) is the part of the fracture more difficult to be regularized, and in fact all the
problems in the construction of (z,, v, ) are already present in the particular case S, C T'(¢).
In order to fix ideas, let us suppose to be in this situation; we solve the problem in two
steps. We firstly construct z, € SBV () with VZ, — Vz strongly in L?(2; RY) and such
that Sz, is related to u,(t) and v, (t) with precise energy estimates: this is done following
the ideas of [14, Theorem 2.1], that is using local reflections and gluing along the boundaries
of suitable upper levels of u,(t), but we have to choose the upper levels in a more precise
way. In a second time, we regularize Sz, using not only v, (t), which is quite natural, but
also wu,(t), so that (1.6) and (1.7) hold.

The plan of the paper is the following. We introduce in Section 2 the notation and the
main tools employed in the rest of the paper. Section 3 contains the statements of the
main theorems. In Section 4 we treat the quasistatic evolution for the Ambrosio-Tortorelli
functional, while in Section 5 we prove its convergence to a quasistatic growth of brittle
fractures. The derivation of the minimality property (1.2) is contained in Section 6.

2. NOTATION AND PRELIMINARIES

In this section we state the notations and introduce the main tools used in the rest of the
paper.

Basic notation. In the rest of the paper, we will employ the following basic notations:

- Qis an open bounded subset of RY with Lipschitz boundary;

- 0p is a subset on 02 open in the relative topology;

- LP(Q;R™) with 1 < p < 400 and m > 1 is the Lebesgue space of p-summable
R™-valued functions;

- H'(Q) is the Sobolev spaces of functions in L?(2) with distributional derivative in
LA RY);

- ifu € H'(Q), Vu is its gradient;

- if u,v € HY(Q), u < v in Q means that u(z) < v(z) for a.e. z €

- HN=1 is the (N — 1)-dimensional Hausdorff measure;

- || - Jloo is the sup-norm;

- 14 is the characteristic function of A;

- if 0 €]0, 4+00[, o(o) is such that lim, ¢+ o(o) = 0.

Special functions of bounded variation. For the general theory of functions of bounded
variation, we refer to [4]; here we recall some basic definitions and theorems we need in the
sequel.

Let A be an open subset of RV, and let u : A — R™. We say that u € BV (A;R") if
u € LY(A;R™), and its distributional derivative is a vector-valued Radon measure on A.
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We say that v € SBV(A;R"™) if u € BV(A;R™) and its distributional derivative can be
represented as

Du(B) = / Vu(z) dx + / (ut(z) —u™ (2)) @ v, dHY ~1(x)
B BNS,,

where Vu denotes the approximate gradient of u, S,, denotes the set of approximate jumps

of u, uT and u~ are the traces of w on S,, and v, is the normal to S, at x. The space

SBV(A;R"™) is called the space of special functions of bounded variation. Note that if

u € SBV(A;R™), then the singular part of Du is concentrated on S,, which turns out to be

countably H™ ~lrectifiable. We set SBV(A) := SBV(A;R).

We say that u € GSBV (A) if for every M > 0 we have (uAM)V (—M) € SBV(A). For
every p € [1,00], let us set SBVP(A,R") := {u € SBV(A,R") : Vu € LP(A; MN*")}, and
GSBVP(A) :={u € GSBV(A) : Vu € LP(A;RM)}.

The space SBV is very useful when dealing with variational problems involving volume
and surface energies because of the following compactness and lower semicontinuity result
due to L.Ambrosio (see [1], [3]).

Theorem 2.1. Let (ug) be a sequence in SBV (A;R™) such that there exist ¢ > 1 and ¢ > 0
with

/A Vuel? de + HY " (Su) + el loora <

for every k € N. Then there exist a subsequence (uy,) and a function u € SBV(A;R™) such
that

ug, — u  strongly in L*(A;R™),
(2.1) Vug, — Vu  weakly in L'(A; MY ™),
HNTL(S,) < umhianN—l(su,%).

In the rest of the paper, we will say that ur, — u in SBV(A4;R"™) if uy, and v satisfy (2.1).

Quasi-static evolution of brittle fractures. Let g : [0,1] — H*(2) be absolutely continuous;
we indicate the gradient of g at time ¢ by Vg(t), and the time derivative of g at time ¢ by
g(t). Let © C RY be open, bounded and with Lipshitz boundary, and let dpQ2 C 99Q. The
main result of [14] is the following theorem.

Theorem 2.2. There exists a crack T'(t) C Q and a field u(t) € SBV(Q) such that
(a) T'(t) increases with t;

(b) u(0) minimizes
/ (Vo2 de +HN (S, U{x € pQ: v(x) # g(0)(z)})
among all UQE SBV(Q) (inequalities on Op§Y are intended for the traces of v and g);
(c) fort >0, u(t) minimizes
/Q [Vol? de +HY 7 ([S, U{z € 9pQ = v(a) # g(6) ()] \ T(1))
amonyg all v € SBV(Q);

(d) Sy U{z € 0pQ : u(t)(x) # g(t)(x)} S T(t), up to a set of HN "' ~measure 0.
Furthermore, the total energy

E(t) ::/Q|Vu(t)|2dx+HN_1(F(t))
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is absolutely continuous and is given by

E(t) =E£(0) + 2/0 /QVU(T)VQ(T) dx dr.

Finally, for any countable, dense set I C [0,1], the crack T'(t) and the field u(t) can be
chosen such that

)= | (Sum U{zedpQ : u(r)(x) # g(7)(x)})

Tel, <t

The Ambrosio-Tortorelli functional. In [5] and [6], Ambrosio and Tortorelli proposed an
elliptic approximation of the Mumford-Shah functional in the sense of I'-convergence. Their
result has been extended in the vectorial case in [13], where non-isotropic surface energies
are also considered. Let 2 C RY be open and bounded. For every u € GSBV () let

Flu) = /Q \Vul? dz + HY 1 (S,)

the well known Mumford-Shah functional; for every (u,v) € HY(Q2) x H(Q) the Ambrosio-
Tortorelli functional is defined by

Fo(u,v) ::/(n5+v2)|Vu|2 dx—i—i/ |Vv|2dx+i/(l—v)2 dx
Q 2 Ja 2 Jo

where 7. > 0 and 7. << e. Let us indicate the space of Borel functions on 2 by B(2) and
let us consider on B(£2) x B() the functionals
F(u) uwe GSBV(),v=1a.e.on
F(u,v,Q) :=
400 otherwise

and
F.(u,v) (u,v) € H}(Q),0<v <1
Fe(u,v,Q) =
+00 otherwise.
The Ambrosio-Tortorelli result can be expressed in the following way.

Theorem 2.3. The functionals (F.) on B(Q) x B(2) I'-converge to F with respect to the
convergence in measure.

In particular, we will use several times _the following fact: if ut € HY(Q), i = 1,...,n,
and v, € H'(Q) are such that Y | Fr(ul,v.) 4 |lul]oc < C, there exist u’ € SBV (),
i=1,...,n and a sequence ¢ — 0 such that u!_ — v’ a.e., and
(2.2) / |Vu'|? do < limi(r)lf/ (e +v2)|Vul|? d,

Q =0 Jo
(" - 1
HN-1 (H Su> < III;ILI[I)'lf (2/9 Vo |* dx + % /9(1 —v.)? dm) .

A density result. Let A C RY be open. We say that K C A is polyhedral (with respect
to A), if it is the intersection of A with the union of a finite number of (N — 1)-dimensional
simplexes of S.

The following density result is proved in [9].

Theorem 2.4. Assume that A is locally Lipschitz, and let w € GSBVP(A). For every
€ > 0, there exists a function v € SBVP(A) such that
(a) S, is essentially closed, i.e., HN~1(S, \ S,) = 0;
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(b) Sy is a polyhedral set;

(c) v e Wh(A\'S,) for every k € N;
(d) [lv—ullLe(ay <e;

(e) [IVv—Vul|prarny <e;

(£) [HN=Y(S,) — HN=1(S,)| < e.

Theorem 2.4 has been generalized to non-isotropic surface energies in [10]. In Section 6,
we will use the following result.

Proposition 2.5. Let OnQ := 902\ 0pQ, B an open ball such that Q C B, and let Q' := B\
ONQY. Given g € HY(B) and u € SBV (') withu = g on '\, there exists up, € SBV (')
such that

(a) up =g in Q' \ Q and in a neighborhood of OpS;
(b) S, is polyhedral and S,, C Q for all h;
(c) Vuy, — Vu strongly in L*(Q;RY);

(d) for all A open subset of Q' with HN~1(0ANS,) =0, we have
li}llrnHN_l(A NSy, )=H""1ANS,).

Proof. Using a partition of unity, we may prove the result in the case ' := @Qx] — 1,1],
Q= {(z,y) € Qx] = 1,1[: y > f(z)}, 0pQ = {(z,y) € @x] —1,1[: y = f(z)}, where
Q is unit cube in R¥~! and f : Q — R is a Lipshitz function with values in ] — 3, 2[. Let

g € HY(Y), and let uw € SBV (') with u =g on Q" \ Q.

Let wy, := u(x — heyn) where ey is the versor of the N-axis, and let ¢, be a cut off
function with ¢, =1 on {y < f(z) + 4}, o = 0on {y > f(z) + 4}, and ||[Ven|| < 3.
Let us set vy, := ¢pg + (1 — pp)wy. We have that v, = g in '\ Q and in a neighborhood
of Jp€); moreover we have

Vor = @pVg + (1 — @) Vwp + Vor(g — wp).
Since Vi, (g —wy) — 0 strongly in L2(2'; RY), we have Vv, — Vu strongly in L2(; RY).
Finally, for all A open subset of Q' with HVN~1(0AN S,) = 0, we have
liinHN_l(A NS,,)=HN"HANS,).

In order to conclude the proof, let us apply Theorem 2.4 obtaining v} with polyhedral
jumps such that [|vy, — Onl|L2(0) + | Vor = VOr| L2 vy < B2 [HY (S, ) —HY 71(S5,)] <
h. If we set up := @ng + (1 — ¢p)0p, we obtain the thesis. O

3. THE MAIN RESULTS

Let © C RY be open, bounded and with Lipshitz boundary, and let 9pQ C 9Q. If
g € WH([0,1]; H1(Q)), we indicate the gradient of g at time ¢ by Vg(¢), and the time
derivative of g at time t by g(t).

Concerning the Ambrosio-Tortorelli functional, the following theorem holds.

Theorem 3.1. Let g € WH1([0,1]; HY(Q)). Then for all € > 0 there exists a strongly
measurable map
0,1 — HYQ)x HY(Q)
t o (ue(t),ve(t))
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such that 0 < v (t) < 1in Q, u(t) = g(t), v-(t) =1 on IpQ for allt € [0,1], and:
(a) for all0 < s <t <1:v.(t) <wv(s);

(b) for all (u,v) € H* () x HY(Q) with u = g(0), v =1 on Ip
Fe(ug(0),v:(0)) < Fe(u,v);

(c) for all t €]0,1] and for all (u,v) € H () x H(Q) with 0 < v < v.(t) on Q, and
u=g(t), v=1 on dp

F.(uc(t),ve(t)) < Fe(u,v);

(d) the function t — F.(uc(t),v:(t)) is absolutely continuous and

t
Fu(ue(9), () = (o0 0:0) +2 [ [ (04 2(0) Ve (r)Vi(r) d
o Ja
The main result of the paper is the following theorem.

Theorem 3.2. Let g € WH([0,1]; HL(Q)) be such that ||g(t)||ec < C for allt € [0,1], and let
gn € WHL([0,1]; HY(Q)) be a sequence of absolutely continuous functions with ||gn(t)| s < C,
gn(t) € C(Q) for all t € [0,1] and such that g, — g strongly in WH([0,1]; H1(Q)). For
alle > 0, let t — (uep(t),ven(t)) be a quasistatic evolution for the Ambrosio-Tortorelli
functional F, with boundary data gp, given by Theorem 3.1.

Then there exists a quasistatic evolution t — (u(t),T'(t)), u(t) € SBV (), relative to the
boundary data g in the sense of Theorem 2.2, and two sequences €, — 0 and h,, — 400
such that, setting up := Ue, p, ond v, := Ve, h,, the following hold:

(a) for allt €[0,1] we have

F., (un(t),vn(t)) — E(t);

(b) if N denotes the point of discontinuity of HN~Y(T(+)), for all t € [0,1]\ N we have
v (t)Vu, (t) — Vu(t)  strongly in L2(Q;RY),

i [ (1, + R OIVu O de = [ [Fu(t)da.

and
. 1 .
nmi/ |wn(t)|2dx+—/(1—vn(t))2dx:HN L)
n 2 O 257’7, Q

Theorem 3.1 concerning the quasistatic evolution for the Ambrosio-Tortorelli functional
is proved in Section 4. In Section 5 we prove the compactness and approximation result
given by Theorem 3.2. An important step in the proof is given by Theorem 5.6 to which is
dedicated the entire Section 6.

4. QUASI—STATIC EVOLUTION FOR THE AMBROSIO-TORTORELLI FUNCTIONAL

This section is devoted to the proof of Theorem 3.1 where a suitable notion of quasistatic
evolution in a regular context is proposed. The evolution will be obtained through a dis-
cretization in time procedure: each step will be performed using a variational argument
which will give the minimality property stated in points (b) and (c).

Let © € RY be open, bounded and with Lipshitz boundary, and let 9pQ C 9. Let
g € WH([0,1]; HY(2)). Given 6 > 0, let Ns be the largest integer such that 6 N5 < 1; for
i >0 we set t0 = id and for 0 < i < N5 we set g7 = g(t?). Define u3 and v as a minimum
for the problem

(4.1)  min{F.(u,v) : (u,v) € HY(Q) x H'(Q),0<v < 1in Qu=g5,v=10n9pQ},
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and let (ud, ;,v¢,,) be a minimum for the problem
(4.2)  min{F-(u,v) : (u,v) € H'(Q) x H'(2),0 <v <ofin Qu=gl,v=10n9pN}.

Problems (4.1) and (4.2) are well posed: in fact, referring for example to problem (4.2), let
(tn,vy,) be a minimizing sequence. Since (g? H,vf ) is an admissible pair, we obtain that
there exists a constant C' > 0 such that for all n

F.(upn,v,) < C.

Since €,7. > 0, we deduce that (u,,v,) is bounded in H*(Q2) x H'(Q) so that up to a
subsequence wu,, — u and v, — v weakly in H(2). We get immediately that u = gf 1 and
v =1 on dpQ since u,, = ng and v,, = 1 on 9p for all n; on the other hand, since v,, — v
strongly in L2(Q2), we obtain that 0 < v < v?. By semicontinuity, we have

F.(u,v) < liminf F_(uy,, vy,)

so that (u,v) is a minimum point for problem (4.2).
We note that by minimality of the pair (ul,,,v?, ), we may write

(4.3) FE(U?+1>7J?+1) < Fa(uf +g?+1 _g??vg) =

= F(ul 0f) +2 / (e + (002 VulV(gl,1 — o) da + / (e + (00))|V(glss — g2) du <

o
uf,vf) +2 / [ e+ @DV drdr 4 e0) [ IV e d
ti
where

tf‘+1
6):=(1 ] RrNy d
0) = (14 max [ IV e dr
is infinitesimal as § — 0.

We now make a piecewise constant interpolation defining

(4.4) wlty =ul, v3(t) =2, ¢(t)=g0 fortd <t<tl,.

g g

Note that by construction the map ¢ — v?(t) is decreasing from [0, 1] to L?(£2). Moreover,
iterating the estimate (4.3), we obtain

F(ud®),00(t) < Fo(ul(s), ol +2/t/17€+v )Vl (1) Vi) dr dr +

ol
(4.5) +e(0) [ I99(llza oy dr

S
where s° := ¢ and 0 := t‘5 are the step discretization points such that tJ < s < ¢, ; and
<t <t

Note that by minimality of the pair (uS(t),vS(t)), we have

€

Fo(ul(t),v2(1)) < Fe(g°(t),02(t))

€ »Ye )’ ve

so that

(4.6) /(na +02 (1)) |Vul (1) dz < /(?75 +02(1)*)Vg’ ()P de < Cy
Q Q

with Cy > 0 independent of § and ¢. In particular by (4.6) we have that

Cy
||Vug(t)”%2(ﬂ;RN) < .
€

Since ud(t) = g°(t) on Ipf, and ¢°(t) is uniformly bounded in H'(Q) for all ¢ and §, we get
by a variant of Poincaré inequality that u(¢) is uniformly bounded in H*(€2) for all ¢ and 4.
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Now we come to v in order to obtain some coerciveness in the space H'(£2). Notice that

t&

(ne +02(7)?)Vud (T)V§(7) da dr| <

< 2 / Vi T ([ 4 2 ONTEOP dz) VG0 o

and by (4.6), we obtain

v s 5 .
2/0 /Q(ns + vl (T)2)VU€(T)VQ(T) dx dr

with C5 > 0 independent of ¢ and 4.
By (4.5) with s =0, and (4.7), we deduce

/|W |2dx+—/(1—vé(t))%zxg

(4.7) <y

N ™

IN

té
F.(u5(0),05( —|—2/ / ne + 02 ( ul(T)V§(r) dedr +
0
+e(0) / I99(l|z2 @y dr <

1
< Rul(0),020)) + Ca+ €(0) [ Va2 dr
0
We conclude that there exists C' > 0 independent of ¢ and ¢ such that for all ¢ € [0, 1]
(4.8) ()] 1 (o) < C.

We now want to pass to the limit in § as § — 0.

Lemma 4.1. There exists a sequence 6, — 0 and a strongly measurable map v, : [0,1] —
HY(Q) such that v~ (t) — v.(t) weakly in H*(Q) for allt € [0,1]. Moreover, v. is decreasing
from [0,1] to L?(Q2), and 0 < v.(t) <1 in Q, v-(t) =1 on dpQ for all t € [0,1].

Proof. Since the map t — v%(t) is monotone decreasing from [0,1] to L?*(Q), and 0 <
vg (t) < 1 for all ¢, we deduce by a variant of Helly’s compactness theorem for sequences
of monotone real functions, that there exists a subsequence §,, — 0 and a decreasing map
.+ [0,1] — L%*(Q) such that for all ¢ € [0,1] we have v (t) — v.(t) strongly in L?(Q).
In particular we deduce 0 < v.(t) < 1 in Q. By (4.8), we have that for all ¢ € [0,1], up
to a subsequence, vo" (t) — w weakly in H'(f2); since vo (t) — v.(t) strongly in L?(Q), we
deduce that w = v.(t) so that v.(t) € H'(Q), and v (t) — v.(t) weakly in H*(Q). As a
consequence, v:(t) = 1 on 9pf for all ¢ € [0,1]. Finally, v, is strongly measurable from
[0,1] to H'(Q) because it is weakly measurable and separably valued (see [18, Chapter V,
Section 4]). O

Let us consider the sequence d,,, and the map v, given by Lemma 4.1. We indicate ug",
v2» and g% simply by u”, v and g,,.

Lemma 4.2. There exists a strongly measurable map u, : [0,1] — H*(Q) such that u”(t) —
ue(t) strongly in HY(Q) for allt € [0,1]. In particular, uc(t) = g(t) on dpS) for all t € [0, 1].

Proof. Let t € [0,1]. We note that u?(¢) is the minimum of the following problem

min {/Q(ns + 0 ()A) |V de 2 2 € HY(Q), 2 = gn(t) on8DQ} :
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Since by Lemma 4.1 v?(t) — v.(¢) strongly in L?(Q), and g,,(t) — g(t) strongly in H(Q),
we deduce by standard results on I'-convergence (see [11]), that u”(t) — wu.(t) weakly in
H(Q) where u.(t) is the solution of the problem

min {/Q(ns +02(t)| V2| dx : z € HY(Q), 2z = g(t) on@DQ} :
Moreover, we have also convergence of energies, that is
(49) i [ (e + 02 @)VUOP do = [ (e +020) V)
Since v (t)Vu? (t) — v (t)Vue(t) weakly in L2(£; RY), we obtain
/Qv?(t)|VuE(t)|2 da < 1in;inf/ﬂv?(t)2wun(t)|2 da,

so that by (4.9) we deduce Vu?(t) — Vu.(t) strongly in L?(£;RY). We conclude that
ul(t) — wuc(t) strongly in HY(Q) for all ¢ € [0,1], and so the map t — wu(t) is strongly

€
measurable from [0, 1] to H1(Q). Finally u.(t) = g(t) on dpQ and the proof is complete. [

The following minimality property for the pair (ue(t), v:(¢)) holds.

Proposition 4.3. Ift €]0,1], for every (u,v) € HY(Q) x HY(Q) such that 0 < v < v.(t) in
Q, and u=g(t), v=1 on IpQ, we have

F(ue(t), v (1)) < Fu(u, 0).
Moreover, for all (u,v) € HY(Q) x HY(Q) such that u = g(0), v =1 on dpQ, we have
Fa(ue(0),0.(0)) < F(u,0).
Proof. Let us set
U =+ gn(t) — g(t),
and
vy, = min{vl (t),v};

we have u,, — u strongly in H(2), and v, — v weakly in H'(Q). Since 0 < v,, < v?(t)
Q, and u, = gn(t), v, = 1 on dp€2, by the minimality property of the pair (u?(t), vZ(t)) wi
get

Fe(uZ(t),v7(t) < Fe(un,vn),
that is

1
(4.10) / (e + o2 (0| Vul (1) de + & / Vo () de + / (1= o2 (6)? dz <
Q 2 Ja 2e Jq
1
S/(n5+vn2)|Vun|2dx+§/ |an\2dx+—/(1—vn)2dx.
Q 2 Q 2e Q

Notice that

%/ Vv, |2 do = %/ Vol (8)[2 dz + g/ V|2 do
Q {vz(t)<v} {vz(t)>v}

so that (4.10) becomes

1
N + 02 (0)7)|Vul ()2 d + = VR ()P de + o- [ (1— o) do <
( ()| Vul (1) d
Q 2 Jiwp (2o} 2 Jo

1
< /(775+vn2)\Vun|2dx+E/ |Vol? cl:c—f——/(l—vn)2 dx.
Q 2 Jorwzv) 2 Jo
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For n — oo, the right hand side is less than F.(u,v). Let us consider the left hand side. By
semicontinuity we have

hminff/ Vol ()2 do > E/ Vo (t)]? de,
(v (®)>v} 2 Jo

n

and so we conclude that F.(ue(t),ve(t)) < Fe(u,v).
For the case t = 0, by lower semicontinuity we get immediately the result. O

In order to obtain the proof of Theorem 3.1, we need the following proposition.

Proposition 4.4. For all0 < s <t <1, we have that

Fu(ue(£), v:(t) — Fo(uc(s),ve(s) > 2 / (e + 02(t) Ve (1) (Vg (t) — Vig(s)) e +

t
~o(t=5) [ V3 amm, dr
S
where o is an increasing positive function with o(r) — 0 as r — 0T,
Proof. By Proposition 4.3, we have

Fa(us(3)7 115(8)) < Fa(ua(t) - g(t) + 9(8)7 UE@))
so that

Fe(ue(s),ve(s)) < Fe(ue(t),ve(t)) — 2 /Q(ns +02(8)) Vue (t)(Vg(t) = Vg(s)) do +

+ /Q (ne +02(6)|Vg(t) — Va(s)P de.
Then we conclude that

Fe(ue(t),ve(t)) — Fe(ue(s),ve(s)) > 2 /Q(Tle +02(1) Vue ()(Vg(t) — Vg(s)) dx +

~o(t—5) [ I¥3(r)s2a
where , S
o(r) = (L4 ) max [ (V9 aamm,
and so the proof is complete. ) 0
We can now prove Theorem 3.1.

Proof of Theorem 3.1. Let us consider the sequence 6, — 0 given by Lemma 4.1, and let
us indicate the discrete evolutions u’» and v defined in (4.4) simply by u and v”. Let
us denote also by u.(t) and ve(¢) their limits at time ¢ according to Lemma 4.1 and Lemma
4.2. We have that the maps t — u.(t) and ¢ — v.(t) are strongly measurable from [0, 1] to
H'(€2); moreover for all t € [0,1] we have 0 < v.(¢) < 1in Q, u.(t) = g(t), ve(t) = 1 on IpQ
and t — v.(t) is decreasing from [0, 1] to L?(9) so that point (a) is proved. By construction
we get point (b) and by Proposition 4.3 we get point (c).

Let us come to condition (d). Let us fix t € [0,1], and let us divide the interval [0,¢] in &k
subintervals with endpoints s;“ = % where j =0,1,--- , k. Let us define u(s) := ug(s§+1),

and U (s) := UE(S?+1) for 8? <s< 3§+1' Then, applying Proposition 4.4, we have

WHE (e (), vo(t)) > Fo(ua(0), 0-(0)) + 2 /0 /Q (e + 82(7)) Vi (1) V(7) d dr +

()] V)2 dr
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Since t — v.(t) is monotone decreasing from [0, 1] to L?(Q), we have that ¥(s) — v.(s)
strongly in L?(Q2) for a.e. s € [0,¢]; consequently, we have that iy (s) — u.(s) strongly in
H'(Q) as noted in Lemma 4.2. We conclude by the Dominated Convergence Theorem that

hm/ / ne + 03(7)) Vi (1) V(T da:dr—/ / Ne + 02 (7)) Vue (1)V§(7) dz dr.

By (4.11) we deduce that

(4.12) F(uc(t),ve(t)) > Fo(uc(0),v:(0)) + 2/ / (- + 02 (7)) Vue (1)V§(7) dz dr.

On the other hand, from (4.5), and since F.(uZ(0),v2(0)) = Fr(us(0),v:(0)) for all n, we
deduce

t
(4.13) Timsup F.(u” (), v (£)) < Fi (ue(0), 0. (0)) + 2 / / (0. + 02(7)) Ve (F)V(7) da dr.
n 0 Q
Since by semicontinuity we have for all ¢ € [0, 1]
Fo(uc(t),ve(t)) < liminf F(ul(¢),v2(t)),
by (4.12) and (4.13), we conclude that
(4.14) lm F.(ul (t),v2(t)) = Fe(ue(t), ve(t)).

In particular

P (ue(8), 0. (1)) = F(uc(0), v.(0)) +2 / / e + 02(7) Ve (1) (7) da dr,
and this proves point (d). O

Remark 4.5. The map {t — v.(t), t € [0,1]} is decreasing from [0, 1] to L?(Q2), so that v.
is continuous with respect to the strong topology of L?(Q) at all points except a countable

set. Since
e 2 1 2
=35 € o 1 — Ue

is monotone increasing (see Proposition 5.8), we conclude that v, : [0,1] — H'(Q) is contin-
uous with respect to the strong topology at all points except a countable set. Then we have
ve € L*(]0,1], HY(R2)). Moreover, we have that u. : [0,1] — H'(£2) is continuous at the
continuity points of v. as observed in Lemma 4.2. We conclude that u. € L>([0,1], H*(£2)).

Remark 4.6. The minimality property of point (¢) of Theorem 3.1 holds indeed in this
stronger form: if ¢ €]0,1], for all (u,v) € H'(Q) x H' () with 0 < v < v.(s) on Q for all
s <t,and u = g(t), v =1 on Op{, we have

Fe(ue(t),ve(t)) < Fo(u,v).
In fact, if 0 < v < wv.(s), by the minimality property of (uc(s),v:(s)) we have
Fe(ue(s),v=(s)) < Fe(u+g(s) — g(t),v),

so that, letting s — ¢ and using the continuity of F.(uc(+),v:(-)) we get the result.
This stronger minimality property is the reformulation in the context of the Ambrosio-
Tortorelli functional of the minimality of the cracks required in [15] (see the Introduction).



14 A. GIACOMINI

5. QUASI-STATIC GROWTH OF BRITTLE FRACTURE

In this section, we prove that the evolution for the Ambrosio-Tortorelli functional F.
converges as € — 0 to a quasistatic evolution of brittle fractures in linearly elastic bodies in
the sense of [14].

Let © € RY be open, bounded and with Lipshitz boundary. Let dpQ C 052, and let
su set OnvQ = 9N\ IpQ. Let g € WHI([0,1]; H1(2)). In order to treat in a convenient
way the boundary condition as € — 0, let B be an open ball such that Q C B, and let
us set Q' == B\ dyQ and Qp = Q' \ Q. Let E be an extension operator from H!({2)
to HY(B): we indicate Eg(t) still by g(t) for all ¢t € [0,1]. In this enlarged context, the
following proposition holds.

Proposition 5.1. Let us consider the evolution t — (uc(t),v:(t)) from [0,1] to HY(Q) x
HY(Q) given by Theorem 3.1, and let us extend u.(t) and v.(t) to Q' setting u.(t) = g(t)
and ve(t) = 1 on Qp respectively. Then the map
0,1 — HYQ)x HY(Y)
t — (ue(t), ve(t))
is strongly measurable and the following facts hold:
(a) for all0 < s <t <1:v.(t) <wv(s);

(b) for all (u,v) € HY(QV) x HY(Q') with u = g(0), v =1 on Qp:
(5.1) F.(u:(0),v:(0)) < F-(u,v);

(c) for t €]0,1] and for all (u,v) € HY(Q') x HY(Q') with 0 < v < v.(t) on ', and
u=g(t),v=1onQp:

(5.2) F.(uc(t),ve(t)) < Fe(u,v);

(d) the function t — F.(uc(t),v:(t)) is absolutely continuous and

63 Fluc)o) = Fe0.0.0) 2 [ [ o+ 020) V) Vi) dadr.

Proof. Recall that for all t € [0, 1] we have u.(t) = g(¢), ve(t) = 1 on IpQ, and 0 < v.(t) < 1
in Q. The extensions to H!(£2') are thus well defined. We obtain a strongly measurable map
t — (uc(t),ve(t)) from [0,1] to HY(Q') x HY(Q') such that 0 < v.(t) < 1in ', u(t) = g(t),
ve(t) = 1 on Qp, and such that

Fe(ue(t), ve(t)) < Fe(u,v)

for all (u,v) € HY(Q')x HL (') with 0 < v < v.(t) on ', u = g(t), v = 1 on Qp; note in fact
that the integrations on 2 which appear in both sides are the same. By the same reason, we
get the minimality property at time ¢ = 0 and deduce that the function ¢t — F¢ (uc(t),v:(t))
is absolutely continuous with

Fu(ue(0).0:(0) = Fo(ue0),0:0) +2 [ [ (4 02() V(1) Vi(r) o
0

From now on, we assume that there exists a constant C' > 0 such that for all ¢ € [0,1],
lg(t)]l« < C, and that there exists g, € W([0,1], H'(€')) such that |gnllec < C, gn €
C('), and g, — g strongly in WH1([0,1], H1(Q)). For every ¢ > 0 we indicate by (uc p, ve,5)
the evolution for the Ambrosio-Tortorelli functional relative to the boundary data g, given

by Proposition 5.1. The bound on the sup-norm is made in order to apply Ambrosio’s
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compactness theorem in SBV when € — 0. Notice that we may assume by a truncation
argument that ||ue p(t)||co < [|gn(t)||oo, that is
(5.4) e (8)]|oe < C.

We conclude that u j(t) is uniformly bounded in L*(£Y’) as ¢, h and ¢ vary. Moreover we
have that the following holds.

Lemma 5.2. There exists a constant C1 > 0 depending only on g such that for allt € [0, 1],
e, h

(55) Fs(us,h(t)avs,h(t)) + Hus,h(t)”oo S Cl-

Proof. Notice that Fg(uep(0),ver(0)) < F:(gn(0),1) so that the term F (ue p(0), ve ,(0)) is
bounded as € and h vary. We now derive an estimate for the derivative of the total energy.
Since 0 < v, 5(7) < 1 and n. — 0, by Hélder inequality we get

<

[ 0+ 07V (1) V() do

<9 ( | +vs,h<7>2>|ws,h<7>|2d:c) 160 (7)o ermn;

since by the minimality property (5.2)

| e+ oIV uen ()P e < [+ ven(r)Von(r) d,
’ Q/
we get the conclusion by (5.3) and (5.4). O

As a consequence of (5.5), we have

€ 1
| = vn@)Ven®ldn < 5 [ [FoonOP ot 5 [ (1= vn0)do < O,
/ Q € Ja
so that the functions we 5 () :== (1 — ve 5(¢))? have uniformly bounded variation.
By coarea formula for BV -functions (see [4, Theorem 3.40]), we have that

/ RN (0" {ven(t) > s}) ds = / (1 —ven(t)| Voo i (t)| dz
o ,

(0* denotes the essential boundary) so that by the Mean Value theorem, for all j > 1 there

exists bg’h(t) € (571, 35 with

(5.6) 2j1+1HN4 (8*{vs,h(t) > bg,h(t)}) < (.
Let us set
(5.7) Bon(t) == {bgh(t) > 1}.

We now let € — 0. Let D be countable and dense in [0, 1] with 0 € D.

Lemma 5.3. There exists a sequence €, such that for all t € D there exists up(t) €
SBV (), up(t) = gn(t) on Qp, with

u6n7}L(t)]l{/l)sn.h(t)>b;n‘h(t)} — uh(t) m SBV(Q’)

In particular for allt € D we have

(5.8) /Q [Vun(t)? da +HY " (Su, ) + llun(®) |0 < Ch.
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Proof. For all t € [0,1] we may apply Ambrosio’s compactness Theorem 2.1 to the func-
tion z,(t) = uemh(t)]l{vsn,h(t)>b;mh(t)}: in fact z,(t) is bounded in L% (Q)) and Vz,(t) is
bounded in L2(€) by (5.5), and S, ) € 0x{ve, n(t) > bl ,(t)} so that HN (S, () is
uniformly bounded in n by (5.6). Using a diagonal argument, there exists a subsequence
such that for all t € D, z,(t) — uy(t) in SBV(Q); in particular, we have that uy(t) = g (¢)
on Qp, and by (5.5) and the I'-liminf inequality for the Ambrosio-Tortorelli functional (2.2),
we get (5.8). O

The following lemma deals with the possibility of truncating at other levels given by the
elements of B, ().

Lemma 5.4. Lett € D and j > 1. For every bgmh(t) € B., 1(t) we have that
UE”’h(t)ﬂ{’Ugn,h(t)>b]; h(t)} — Uh(t) in SBV(QI)

Proof. Note that, up to a subsequence, e, n(t)Ly, sy (1 — # In SBV(Q') because
En,h h
of Ambrosio’s Theorem 2.1. By (5.4), we have that

En,

wy e Ohu, >or el <
< C[{t, 10 < veyn®) < 8L, a0}
Since ve, p(t) — 1 strongly in L?*(Q'), we conclude that

{02, (0) < ey (0) < L0} =0,

e, n (DL, >

En,

so that

1z = un ()| L2 =
= lim ||u6n7h(t)]l{ven,h(t)>binyh(t)} — e, h (g, >0t oyllz@) =0,
that is z = up(t) and the proof is complete. O

The following lemma deals with the possibility of truncating at time s using the function
Ve, .1 (t) for t > s.

Lemma 5.5. Let s,t € D with s <t, and j > 1. Then for every bin,h(w € B, n(t) we
have that

ufnvh(s)ﬂ{ven,h(t)>b];n,h(t)} — up(s) in SBV(Y).

Proof. Up to a subsequence, by Ambrosio’s Theorem, we have that

e n()py sy — 2 I SBV(Q).

en,h

Since ve, 1 (t) < ve, 1(s), we have that {v., »(t) > bimh(t)} C {ve, n(s) > bi:lh(s)} Then
we have

ltenn (o o7 o = Yoo oo o lliz@n) < C|{ve,n® <V L0}

Since v, n(t) — 1 strongly in L*(Q), we conclude that ‘{vgmh(t) < bgmh(t)}’ — 0. By
Lemma 5.4 we have

Uean($)Lyy, (o514, o)y — un(s)  in SBV(E),
so that z = up(s) and the proof is complete. O

We now pass to the analysis of u,(¢t) with ¢ € D. The following minimality property for
the functions uy(t) with ¢t € D is crucial for the subsequent results.
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Theorem 5.6. Let t € D. Then for every z € SBV () with z = gn(t) on Qp, we have
that

|V (t)* de < \Vz|2de +HN1 | S, \ U Sun(s)
@ v s<t,seD
The proof is quite technical, and it is postponed to Section 6. We now let h — oo.

Proposition 5.7. There exists h, — oo such that for allt € D there exists u(t) € SBV ()
with u(t) = g(t) on Qp such that up, (t) — u(t) in SBV (). Moreover, Vuy, (t) — Vu(t)
strongly in L2(Q';RY) and for all z € SBV () with z = g(t) on Qp we have

o |Vu(t)|? de < /Q, |Vz[2de +HN 1S\ U Su(s)

s<t,s€D

Proof. The compactness is given by Ambrosio’s Theorem in view of (5.8). The strong
convergence of the gradients and the minimality property is a consequence of the minimality
property of Theorem 5.6 and of [14, Theorem 2.1]. O

‘We can now deal with € and h at the same time.

Proposition 5.8. There exists €, — 0 and h,, — +00 such that for all t € D there exists
u(t) € SBV(Q') with u(t) = g(t) on Qp such that for all j > 1

e s gy ey — wlt) in SBV(QY).

enshn

Furthermore for all z € SBV () with z = g(t) on Qp we have

|Vu(t)|* do < V22 de +HN"1 | S.\ U Suts) | 5
v v s<t,s€D

and we may suppose that the functions Ac, n, converge pointwise on [0,1] to an increasing
function X such that for allt € D

s<t,s€D

Finally, we have that for allt € D
(5.10) [ IFu0)? do+ 15 (Su0) + ) < o

Proof. We find ¢, and h,, combining Lemma 5.3 and Proposition 5.7, and using a diagonal
argument. Passing to the second part of the proposition, notice that the functions A.,
are monotone increasing. In fact if s <, since v, p, (t) < ve, 1, (s), and ve, 5, (t) =1 on
Qp, by the minimality property (5.2), we have that

Fe, (ue, h, (s), Uen,hn<5>) < F, (uen,hn(s)a Vepn,hn (),

so that
ey hn (t) — /\en,hn(S) >
2 / (e, + Ve (8)) Ve, i, (5)]* do — / (e, + Ve, ()*) Ve, i, (5)]* d > 0.
Q 9%

Moreover by (5.5) we have 0 < X, 5, < Cq. Applying Helly’s theorem, we get that there
exists an increasing function A up to a subsequence A._ p, — A pointwise in [0, 1]. In order
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to prove (5.9), let us fix s1,..., 8, € DN[0,t]; we want to prove that

. =i > KNt NP
(5.11) At) = lim A, 1, () > H (L_Jl su(&))
Then taking the sup over all possible si,..., S, we can deduce (5.9). Consider z, €

SBV(QV,R™) defined as

2 (1) = (Uey hy (81)5 s Uy (Sm))-

Notice that by (5.5), and the fact that t — v, 5, (t) is decreasing in L?(£’), we obtain that
there exists C’ > 0 such that for all n

T 1
/ (Mo +ves o, ()| Van(B) P dz+ 22 / Ve, (8) it —— / (1= ey, (1) dz < C",
Q/ 2 Q/ 2877, QO

Then we may apply (2.2) obtaining (5.11). Finally (5.10) is a consequence of (5.5) and the
lower semicontinuity (2.2). The proof is now concluded. O

Let us extend the evolution {t — (u(¢),I'(¢)) : ¢ € D} of Proposition 5.8 to the entire
interval [0,1]. Let us set for every ¢ € [0, 1]

(5.12) It = |J Sue-
seD,s<t

Proposition 5.9. For every t € [0,1] there exists u(t) € SBV(Q) with u(t) = g(t) on Qp
such that Vu € L>=([0,1], L2(Q;RYN)), Vu is left continuous in [0,1]\ D with respect to the
strong topology, and such that, if T' is as in (5.12), the following hold:

(a) for allt € [0,1]

(5.13) Suwy ST(t) up to a set of HN Y — measure 0,
and if A is as in Proposition 5.8
(5.14) At) = HNHT());

(b) for all z € SBV(Y) with z = ¢g(0) on Qp

(5.15) IVu(0)?dz + HN ! (Suoy) < [ |Vz]Pde+HNT1(S,).
Qo Q'
(c) for allt €]0,1] and for all z € SBV () with z = ¢(t) on Qp
(5.16) / |Vu(t)|? de < / V2> de +HN "1 (S, \T(t)).
o o
Finally,
(5.17) £(t) > £(0) + Q/Ot/, Vu(r)Vg(r) de dr
where
(5.18) Et):= [ |Vu@®)|?dr +HN"HT ().

o
Proof. Let t € [0,1] \ D and let ¢, € D with ¢, ' t; by (5.10) we can apply Ambrosio’s
Theorem obtaining u € SBV (') with u = g(t) on Qp such that u(t,) — w in SBV (') up
to subsequences. Let us set u(¢) := u. By [14, Lemma 3.7], we have that (5.13) and (5.16)
hold, and that the convergence Vu(t,) — Vu is strong in L?(Q';RY). Notice that Vu(t) is
uniquely determined by (5.13) and (5.16) since the gradient of the solutions of the minimum
problem

min{ |Vul>dz = uw=g(t) on Qp, S, CT(t) up to aset of HN ™1 — measure O}
Q/
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is unique by the strict convexity of the functional. We conclude that Vu(t) is well defined.
The argument above proves that Vu is left continuous at all the points of [0,1] \ D. Tt
turns out that Vu is continuous in [0, 1] up to a countable set. In fact let us consider
t € [0,1] \ (D UN) where A is the set of discontinuities of the function HY~1(T'(-)). Let
t, \, t. By Ambrosio’s Theorem, we have that there exists u € SBV(Q') with u = ¢(¢)
on Qp such that, up to a subsequence, u(t,) — u in SBV()'). Since ¢ is a continuity
point of H1(I'(-)), we deduce that S, C I'(t) up to a set of HY~l-measure 0. Moreover
by [14, Lemma 3.7] we have that u satisfies the minimality property (5.16), and Vu(t,) —
Vu strongly in L2(; RY). We deduce that Vu = Vu(t), and so Vu(-) is continuous in
[0,1]\ (DUN). We conclude that Vu(+) is continuous in [0, 1] up to a countable set, so that
Vu € L*([0,1]; L2(Y; RY)).

We have that (5.14) is a direct consequence of (5.9), while (5.15) is a consequence of (5.1)
and the I'-convergence result of Ambrosio and Tortorelli [5] and [6].

Finally, in order to prove (5.17), we can reason in the following way. Given ¢ € [0, 1] and

m >0, let s7* := =t for all i = 0,...,m. Let us set u™(s) := u(sj},) for s]* < s < 71 ,.

T m

By (5.16) we have

(5.19) £() > £(0) +2 / [ Va0V drdi + o
0 Q/

where 0,, — 0 for m — +o0o because g is absolutely continuous. Since Vu is continuous
with respect to the strong topology of L2(€/;RY) in [0, 1] up to a countable set, passing to
the limit for m — +o00 we deduce that (5.17) holds, and the proof is concluded. O

We are now in a position to prove our convergence result. We need the following lemma.

Lemma 5.10. Let N be the set of discontinuity points of the function A given by Proposition
5.8. Then for every t € [0,1]\ N, and j > 1 we have that

Vuan,hn (t)]l{vgn,h” (t)>bgn,h,n(t)} - VU(t) Weakly n LQ(Q/; RN)

Proof. Let t € [0,1]\ V: we may suppose that ¢ ¢ D, since otherwise the result has already
been established. Let s € D with s < t. We set

J = inf {/ (e, +v2 5 (1)|Vz[*dz : 2= gp,(s) on QD} ,

and we indicate by wy(s,t) the minimum point of this problem. Notice that u., p, (t) —
wp(s,t) is the minimum for

K :=inf {/ ne, + vgmh" (t)|Vz|?dx : 2= gn, (t) — gn,(s) on QD} .
Q/
Comparing ., p, (t) — wy(s,t) with gp, (t) — gn,, (s), we have
(5.20) / (Ne,, + v?mhn )| Vue, n, (t) — Vwy(s, t)|2 dr <
Q/

< [ e 02, (D0, )~ Ton, () da

Since ue,, b, (5) — wn(s,t) is a good test for J, we have

[+ 02 )V (50) (Tt i, 5) = a5 0) o = 0,
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and so the following equality holds

/Q/ (e + 02, 1, (D) ([ Vtte, i, ()17 — [V (5, 1)) dar =

= [ O+ 02 OVt () = T (5,0 d

Since v, p, (t) < Ve, h, (s) and by minimality of u., 5, (s) we have

/ (e + 0% (0)[Vtiey o ()2 + Ao g (5) <
QI
< / (e, + 02, ()| Vit o ()2 it + Aey o (5) <
Q/

< [ e 02 (DT (s, O o+ e (1)
Q/

so that
621 [ (e, #0210 T, (5) = V(5,0 do =
Q/

= /Q (e, + V2, n, () (IVtie, i, (8)* = [Vwn (s, 1)[*) dz <

< Ay () = ey, (5)-
By (5.20) and (5.21), we conclude that there exists C’ > 0 with

(5.22) / (e, + 02, 1, O)(IVtte, 1, () = Vie, i, (5)?) dz <
< C'IVon, (8) = Van, () + Ay n, (8) = A, n, (5)-
Then we conclude that for bgn,hn (t) € Be, ., (1)

(5.23) ||VUsn,hn(t)]l{vin,hn(tbbf

En

,h,,(t)}HL2(Q/?RN) <
<o(t—2s)

since A, n, — A pointwise, and ¢ is a continuity point for A. Recall that by Lemma 5.5

@y = Ve ($) L, s

En

Ve, n, ($)T, O>¥ .y Vu(s) weakly in L*(Q;RY).

Since

Ve, h, (t)]l{vsn,hn (t)>b ) Vu(t) =

en,hn
= (Vue, n, (t)ﬂ{ys,mh" ®>b 0 v“fmhn(s)ﬂ{vm,hn(t)>bin,h,n (t)})+
(Ve (oo oy~ V() + (Vu(s) = V(b))
by (5.23) and the left continuity of {r — Vu(7)} at the points of [0,1] \ D, we have that
Ve, n, (t)]l{van,hn(t)>bj — Vu(t) weakly in L2 (Q/; RN),

En

o (D)}
so that the lemma is proved.

We are now in a position to prove the main theorem of the paper.

Proof of Theorem 8.2. By Proposition 5.1, we may extend (uen(t),ven(t)) to Q' setting
ue,p(t) = gn(t) and v p(t) = 1 on Qp, obtaining a quasistatic evolution in €’. In this

context, the points of dp{) where the boundary condition is violated in the limit simply
become discontinuity points of the extended function. Thus we prove the result in this

equivalent setting involving €'.



AMBROSIO-TORTORELLI APPROXIMATION OF QUASI-STATIC EVOLUTION 21

Let ¢, — 0 and h, — +oco be the sequences determined by Proposition 5.8. Let us
indicate ue, p, (t), Ve, n, () and F. by un(t),v,(t) and F,. Moreover, let us write B, (t)
and b/ (t) for Be, p, (t) and bg o, (t). Let {t — (u(t),I'(t)) € SBV(Y),t € [0,1]} be the
evolution relative to the boundary data g given by Proposition 5.9; up to a subsequence, we
have that u"(t)]l{vn(tbbi;(t)} — u(t) in SBV(€) for all j > 1 and for all ¢ in a countable
and dense subset D C [0,1] with 0 € D. Moreover for all ¢t € [0, 1] we have that

t
(5.24) E(t) > &£(0) + 2/ / Vu(r)V§(r) dz dr,
where £(t) := [, [Vu(t)|? dz + HN 1 (D(t)) and I'(¢) is as in (5.12).
By pomt (b) of Proposition 5.1 and the Ambrosio-Tortorelli Theorem 2.3 we have
(5.25) lim F, (uy,(0), v,(0)) = £(0).

For m > 1, notice that

/ (e, +02 (7)) Vaun (1) Vi, (7) dz = / (e, + 02 (7)) Vet ()1 g, ()55 (1 Vi, (7) it

+ / (e, + 02 (7)) Vi (1)L o, ()<t (o2 Vi, () .

If 7 € [0,1], we have the estimate

/ (s, + 02(7) Vatn(T) Lo, (ry <oy Vil (7) dt] <

1
1 B .
e+ g (] (e + DIV o) (0, )2y <

<A/ 7e, + 22%0 — 2%
Moreover, by Lemma 5.10 we have that for a.e. 7 € [0, 1]
lim Q/(Uan + 0o (7)) Vn (T) g, (1) 56 ()} Vi, (T) do = o Vu(r)Vg(r)dz
and we deduce that for such 7
limnsup /Q,(T]gn + 02(7))Vun (7)Vn, (1) dz — " Vu(r)Vg(r)dz| < 2%
Since m is arbitrary, we have that for a.e. 7 € [0,1]
(5.26) hm/ Ne,, + V2(T))Vun (T)Van, () dz = o Vu(r)Vg(r) dx

By (5.3), (5.25), (5.26) and the Dominated Convergence Theorem, we conclude that for all
t€0,1)

(5.27) liyrln Fo(un(t),vn(t)) = £(0) + 2/0 o Vu(r)Vg(r) dz dr.

Since by Proposition 5.8 we have liminf,, F, (u,(¢),v,(t)) > E(¢) for all t € D, by (5.24) we
have for all t € D

lim F,, (un (t), va(t)) = E(2).
n
In particular we get for all t € D

(5.28) E(t) = E(0) +2 /O | Vuln)Vy(r) d dr,
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and since by Proposition 5.9 Vu(-) and H¥~(T(-)) are left continuous at ¢t ¢ D and so &(-)
is, we conclude that the equality holds for all ¢ € [0,T]. Recalling all the properties stated
in Proposition 5.9, we deduce that {t — (u(t),T'(t)) : t € [0,1]} is a quasistatic evolution
relative to the boundary data g. In order to prove point (a), it is sufficient to see that
liminf,, F, (un(t),vn(t)) > E(t) holds for all ¢ € [0,1]. Considering s > ¢ with s € D, we
have

Futn(9):0(5)) = Faln(®:00(0) 42 [ [ (0, + 02(0) Va(7) Vit (7) d
so that
linilinf Fy(un(t),vn(t)) > E(s) — 2/ // Vu(r)V§(r) dz dr.

Letting s \ t, since &(+) is continuous and by (5.28), we obtain liminf,, F},(u,(t), v, (t)) >
E(t), and so point (a) is now completely proved.

Let us come to point (b). By Lemma 5.10, we know that if A is the set of discontinuity
points of A, for all ¢ € [0,1] \ NV and for all j > 1 we have Vun(t)]l{vn(t»bi(t)} — Vu(t)

weakly in L?(Q',RY). Since
Un () Vun(t) = vn(O)Vun )y, )54,y T OOV Oy, )<ty

we get immediately that v, (t)Vu,(t) — Vu(t) weakly in L%(Q/,RY). For all such ¢, we
have that

Jim inf / (ner, + 02(8))|Vun (8) 2 der > / Vu(t) 2 da,
" Q 1oL

and by (5.14)

1
lim inf 8i/ Von(®)2de+ — [ (1= vn(t)2de > HY-1(T()).
n 2 Q/ 2571, Q/

By point (a), we have that the two preceding inequalities are equalities. In particular, A
and HN~1(T(-)) coincide up to a countable set in [0,1]. We deduce that A and HN~1(T'(-))
have the same continuity points, that is A" = A". We conclude that for all ¢ € [0,1] \ V' we
have vy, (t)Vu, (t) — Vu(t) strongly in L2(,RY),

lim/ (n5n+v,21(t))|Vun(t)|2dx:/ \Vu(t)\de,
n Q Q

and
n 1
Jim &2 / Von®)2de+ —— [ (1= vn(t)2de = HYN-1(T(1)),
n 2 QO 2677, Q
so that point (b) is proved, and the proof of the theorem is complete. O

6. PROOF OF THEOREM 5.6

In this section we give the proof of Theorem 5.6 which is an essential step in the analysis
of Section 5. For simplicity of notation, for all ¢t € D we write u(t), u,(t) and v, (¢) for
un(t), ue, n(t) and ve, ,(t) respectively. Moreover, let us write By, (t), b (t) for Be, ,(t) and
bgmh(t)7 where B, 1 (t) is defined as in (5.7).

Given z € SBV () with z = g5, (t) on Qp, we want to see that

(6.1) |Vu(t)|2d3:§/ V22 dz+HY 1 (S \ (1)),
Q Q

where g, (t) € H' ()N C(Q) and T(t) = U <y sep Su(s)-
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The plan is to use the minimality property (5.2) of the approximating evolution, so that
the main point is to construct a sequence (zp,,v,) € H(') x H(€') such that z, = gn(t),
v, =1 on Qp, 0 < v, <wv,(t), and such that

lim/ (nn+v2)|Vzn|2dx:/ |V2|? da
mn Q Q/

and
limnsup [MMn(vn) - MMn(Un(t))} S HNil (SZ \ F(t)) ’

where we use the notation
n 1
MM, (w) = n Vwl*dz + — [ (1—w)*dz.
2 Q/ 2577, Q/

If a sequence with these properties exists, then by property (5.2) we get the result. The
following lemma contains the main ideas in order to prove Theorem 5.6.

Lemma 6.1. Lett € D; given z € SBV(Q) with z = gn(t) on Qp we have that
(6.2) |Vu(t)]? de < / (V2> dz +HV 1 (S.\ Suqy) -
Q/ Q/

In order to prove Lemma 6.1, we need several preliminary results. Let z € SBV (') be
such that z = g5 (t) on Qp. Given o > 0, let U be a neighborhood of S, such that |U| < o,
and [|Vz||p2ryy < 0. Let C:= {z € OpQ : IpQ is not differentiable at x}. We recall that
there exists a countable and dense set A C R such that up to a set of HN 1 measure zero

Suy = |J 0"E.NO"E,
a,bcA

where E, :={x € Q" : u(t)(z) > a} and 9* denotes the essential boundary. Consider

5= {resu0\C @) 2 1,

with j chosen in such a way that Y1 (S,) \ J;) < 0. For & € J;, let ay(z),az(z) € A
be such that u™(t)(z) < a1(z) < az(z) < ut(t)(x) and asz(z) — a1 (x) > % Following [14,
Theorem 2.1], we consider a finite disjoint collection of closed cubes {Q;}i=1,... x With center
x; € Jj, radius r; and with normal v(x;) such that Ule Q: CU, HN=1(J; \Uf:1 Q;) <o,
and foralli=1,...,k, j=1,2

1. HNL (Su(t) N (%21) =0;

2. TlN_l < oHN-1 (Su(t) N Ql),
3. Y (S \ 0" Buy (0] 1@0) < 7

4., HN-T ({y € 0" Ey,(e) NQ; ¢ dist(y, H;) > %n}) < Urfvfl where H; denotes the

intersection of @; with the hyperplane through x; orthogonal to v(z;);

5. HN7L((S.\ Su@y) NQ;) < oy~ and HN1(S. N9Q;) = 0.
Note that we may suppose that @; C Q if z; € Q. Moreover we may require that (see [14,
Theorem 2.1] and references therein) for alli =1,...,k and j = 1,2
(6.3) e, wpna: = lgrllLie) < o).
Let us indicate by R; the rectangle given by the intersection of @; with the strip centered
at H; with width 20r;, and let us set V; := {y + sv(x;) : y € 0Q;,s € R} N R;. Note that
up to changing the strip, we can suppose HY"1(OR; N (S, U S.)) = 0.
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If x; € 0p9, since x; € C, we may require that
(6.4) NNQ; C{z : |(x— ;) -v(z)| <ori};
moreover, if (Q;F \ R;) C 2, we can assume that g;,(t) < a1(z;) on 92N Q; because gy (t) is
continuous and gp,(t)(x;) = v (z;) < ai(x;). Similarly we may require that gy (t) > az(x;)
on 9NN Q; in the case (Q; \ R;) C Q.

Since we can reason up to subsequences of €,, we may suppose that > e, < é. Since

by (5.5) we have that ||u,(t)||cc < C1 and v, (t) — 1 strongly in L?(Q'), by Lemma 5.4 we
deduce that u,(t) — w(t) in measure. By (6.3), we deduce that for n large enough

(6.5) Q7 \ B @il < 2071,

where we use the notation E} := {z € Q' : u,(t)(z) > a}. Let G,, C]7;, §73[ be the set of
all s such that

/ (o + 02 (6)) [Vun (8)2 dH¥ 1 > -1,
Hi(s)

OTiEn
we get immediately by (5.5) that
|G| < orien,

so that, setting G := |J,, Gn, we have |G| < g7y and |]§7q, §73[\G | > §75. From (6.5),
applying Fubini’s Theorem we obtain

/ HN (Hl-(s) \ EZQ(%)) ds < 2021,

1gri gri\G

so that there exists 5 €]Zr;, Zr;[\G such that, setting H;" := H;(5), we have
— n N—

(6.6) HN (N EL ) s ) < 160770

Moreover we have by construction

(6.7) / L + 03 () [Vun|* dHY T < K,
H;

i

where K, is of the order of . In a similar way, there exists H;

Hi(3) with § €
] = §ri, —§rs[ and

N—-1 — n N—-1
(6.8) HN (BT OB s ) < 16077
and
(6.9) / (N + V2 ()| Vun|? dHN 7 < K,

where K, is of the order of ?1" We indicate by R; the intersection of @; with the strip
determined by H;™ and H; .

A similar argument prove that, up to reducing Q; (preserving the estimates previously
stated), we may suppose that

(6.10) /V (N + V2 ()| Vun ()2 dHY 7! < K,

where K, is of the order of é

In order to prove Lemma 6.1, we claim that we can suppose z = gp(t) on Qp and in a
neighborhood V of 9pQ\ Ule Qi, S2\ Ule R; polyhedral with closure contained in €2, and
HNTH(S\ Suw) N Qs) < orN =t for all i = 1,...,k. In fact, by Proposition 2.5, there
exists wy, € SBV(Q) with w,, = gx(t) in '\ Q and in a neighborhood V,, of 9p such
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that w,, — 2 strongly in L?(Q), Vw,, — Vz strongly in L?(Q;RM), S, C Q polyhedral,
and such that for all A open subset of Q' with HY~1(0AN S,) = 0, we have

mHY "1 (ANS,, )=HN"1ANS,).

Let us fix ¢/ > 0 and let us consider for all ¢ = 1,...,k a rectangle R} centered in z;,
oriented as R; and such that R} C int(R;), HN 1 (OR;NS,) = 0, HN~1(S. N(int(R;)\ R})) <
o’ rN ! where int(R;) denotes the interior part of R;. Let 1b; be a smooth function such

that 0 < ¢; < 1, ¢; = 1 on R} and ¢; = 0 outside R;. Setting ¢ := Zle s, let us
consider z,, = wz +(1- z/))wm Note that z,, — z strongly in L?(Q), Vz,, — Vz
strongly in L?(Q;RY), 2, = gn(t) in Qp and in a neighborhood V!, of dpQ \ Ule R;,
Sw,, \ Ule R; is polyhedral with closure contained in €. Finally, for m — +o0, we have
HNY(S,, A\ Uiy @) = HYH(S. \ Ui, Qi) and limsup,, KN =1(S.,, N (int(R;) \ R)) <
2HN (S, N (int(R;) \ R})) < 20'rY 1. So, if (6.2) holds for z,,, we obtain for m — +oo
that (6.2) holds also for z since ¢’ is arbitrary, and so the claim is proved.
We begin with the following lemma.

Lemma 6.2. Let B, (t) be as in (5.7), and let us consider b2 := bJ2(t),b3 := bi2(t) € B,(t)
3 -

with jo > j3 > 1. Suppose that k,, := Z—; > 1 and let k,b be such that 1 < k < ky, b> < b for

all n. Then setting

o (0 (6) = B2) B in (B2 < v () < b3}
Wy 1= 0 in {wv,(t) < b%}
U (t) in {v,(t) > b3}

we have that w, € HY (V') with w, =1 on Qp, 0 < w, < v,(t) in Q' and

. 201k Cy Cyb
(6.11) lim sup (M M., (wy,) — M M,,(v,(t))) < + + ,

n (k=12 (k-1 -0 (1-b)?
where Cy is given by (5.5). Moreover there exist bl := bl ( ) € Bp(t) with j1 > j2 +1 and
a cut-off function o, € H*(Q') with ¢, = 0 in {vn( ) < B}, on =1 on {v,(t) > b2} (in
particular on Qp) and such that

(6.12) limnn/ |Von|?dz =0
n Q/

Proof. w, is well defined in H! ('), and by construction w,, = 1 on Qp and 0 < w,, < v, (t)
in Q. Let us estimate MM, (w,) — M M, (vy,). Since

i”/ |V, |? dz = i”/ Vo, (t) | dz + i"/ Vw,|? de,
2 Jo 2 Jwa 202} 2 S <oa<e
and MM, (v,(t)) < Cy by (5.5), we have that
/ |Vw,|? dr — —/ |V, (t)]? de <
—_— gn

— Vv, de——/ Vo, ()2 dz <
2 (b2 <v, ()<b3} ((k‘ —1)2 ) [Von ()] 2 {un(t)gbg}l )

k2 Cy(2k, — 1) _ 204k
Cl((kn—n 1> Un—DZ = (E—1)2°

IN

IN
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Moreover we have that

- /(1—wn>2dx—i (1 - v,(1)) do =

2577, 2577, Q/
= 0w - (- ent)?] de =
261’7, Q/
2 n ) = wn) (@ — o (t) — wn) dz =
261’7, Q/
_ b (vn(t)— L. ()—b3)—b3> (2 — vp(t) — wn) dz +
2en J vz <vn (<03 fn — 1
—|—L U () (2 — v, (1)) do =
2en J{vn(1)<b2}
! L8 — on()(2 = vn(t) — wy) da +
= = — Un — Un n
2en J (b2 <v,(t)<bsy Fn — 1
1
— Un(0)(2 — v, (1)) dz <
2n Jiva(ty<p2}
2
. c L Ok c L O

(kn =D =03)> (107> — (k=11 -0 (1-0)?

because H”"ggs}‘ < (12)2. We conclude that

. 2C1k Ch C1b

1 3 MMn n) MMn n t S .

Let j; > j2 + 1: we have that b} := b/! and b2 are not in adjacent intervals, and so there
exists [ > 0 with 0 < [ < b2 — blL. Let us divide the interval [b},b2] in h,, intervals of the

same size I;,j = 1,..., hy, with h, such that Z—”hn — 0. Since
z 3/

we deduce that there exists I,, such that

Vo )|2dac<—/ Von(8)2 da < O,

{vn(t)el;}

n C
(6.13) n Vo, ()2 de < =2
{vn (D€L} ha
Let a,, B, be the extremes of I,,. Let us set
1

Then ¢, € HY(Q), ¢n = 0 in {v,(t) < bL}, v =1 on {v,(t) > b2} (in particular on Qp)
and by (6.13) and the choice of h,, we have that

1 2 MNn 2C1 h%
nn/ Vgonzdx = nn/ ——|Vu,(O)|*de < ————=2 — 0,
o Ven {an<on()<pn} (Bn — @n)Q‘ ) en hn 12

so that the proof is complete. O

In the following lemmas, we will use the following notation: for all measurable set B C )
we set

1
(6.15) MM, (w, B) ::i/ |Vw|2dx+—/(1—w)2dx.
2 B 2€n B

Let bl be as in Lemma 6.2 and let § := SLj so that foralli=1,...,k

a1 (z;) < ar(x;) + 6 < az(x;) — 0 < ag(x;).
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Lemma 6.3. For each i = 1,...,k, there exists w2* € HY(Q;) and [y}, — 72,45 + 7] C
[a1(x;) + 6, az(x;) — 6] such that 0 < w2t <1, w2t =0in {v, — 7 <up(t) <AL +TIINQ;,
w2 =1 on [{u,(t) < ar(z;) + 26} U{un(t) > as(z;) — 26} NQ;, and

k

(6.16) limsup » MM, (w2’, {vn(t) > b}}) < o(0).
"=l
Moreover there exists 2" € H*(Q;) such that 0 < 2" <1, 2t =0 on {7 — % < un(t) <
+3H0Qu @2 =1 on [{un(t) <~i — 7} U {un(t) > 7k + 7} N Qi, and

(6.17) lim 7,

/ |V 2 dr = 0.
" Qin{vn (t)>b3,}

Proof. For each i let us consider the strip
Sy, = E;Ll(a:i)+5 \ E&(zi)f&

Let h,, € N and let us divide [a1 (2;)+0, a2(x;)—4] in h,, intervals of the same size: there exists
a subinterval with extremes !, and 3¢, such that, setting S¢ := {z € Q' : af, < u,(t) < 3},

(6.15) [ Lot + EO)Tun0P + (1~ 0)] do <
1
< — [cr(nn + 02 (1) |V, (8) > + (1 — a)] dx.
han SiNQ;
Let 7} := LL;B’Z and 71 1= —@(mi)l{;;n(mi)_%. We set

m(un@) 9 =T TAL i {un(t) >4+ 7N Qs
wy =14 0 in {7, = 7, S un(t) <+ 7N Qs

m(un(t)_%if"ﬂi)_/\l in {u,(t) <55, =75} N Qi
We have that
n Vw2 | de + — (1 — w2 dx <
2 JQin{un(t)>b1} 2en JQin{vn(t)>bL}

4h2 1 -
< 5 ( 52 / |Vun(t)2d:v> + 515, N (Qi N {vn(t) > bL 1.
SiN(Qin{vn (t)>bL1}) En

Since by (6.18)

1 )
[ <nn+v§<t>>|wn<t>|2dxsV (1 + 02 () [V (8)? nmw]
3i.NQs hn | Jsing;
and
1 )
180N Qi < — "/ (7 + 020 [V (O] do + |55 A Qi)
hn o Jsinq
we have

MM, (w**, {v,(t) > bL}) <

thsn :
< 51 o+ (009 [ (0 + 03 (1) Vun(£)? dz 5 N Qi
SiNQ;

n U2 (t W) d LNQil| -
b g ll_U/S%ﬂin 020 Tun ) :c+|smc2|]
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Summing on i = 1,..., k, recalling (5.5) and letting d €]0, 1] with 5, + (b})? > d? for all n,
we obtain

k
MM, (W3 {un(t) > D)) <

< hnen

2 l1-0 1 1
522 {014’ P |UQ1‘|] enh 2{ |]

We choose h,, in such a way that the preceding quantity is less than (recall that |U Q;| <

Ul <o)
1 o
Then we obtain

k
;MMn(wZ’i7{vn()>b1}) \/52512(01“ ))(1_001+o>= o(0).

This prove the first part of the lemma.

4 Let us define 2% as w?? but operating with the levels v} — 7 <~ — % and 7% + % <
v, + 7). Reasoning as above we obtain

k

16n,h,

Mn / Vgp 2dx < Ci+1—0)—0
Z ,;ﬂ{vn(t)>b1}| | (52d2 ( 1 )

since h,, has been chosen of the order of i. O

Lemma 6.4. Let Q; C Q. Then there exists w>' € H'(Q;) such that 0<wd <1, wd =0

in a neighborhood of H;" \ E” )35 and of H; N EY (w435 Wn' = =1 on Q; \ R; for n
4
large, and
(6.19) limsup » MM, (w)*, {va(t) > b)}) < o(0).
" QiCQ

Moreover there exists a cut-off function > G Hl(Qi) such that p>* = 0 in a neighborhood
of H; \E 2)—6 and of H, NE" o (2:)+67 @3t =1 on Q; \ R; for n large, supt(Vp>i) C
{w3t =0}, and

(6.20) lim nn/ V32 de = 0.
Qin{vn (t)>bL}

n

Proof Let 77 be the planes which contain Hii, and for x € U, let ﬂfx be its projection
on 7. Let us now consider (u,,(t )+ we set

it 4 35\
Vit (y) = 3 un(y) —az(zs) + 70 Al

Note that %% is equal to zero on H;" \Eaz(x - s and so on {z € H :up(t)(x) =41}
where 7 is defined as in Lemma 6.3. Moreover, 1/)}1"’ =1lon H N Bl e . If d €]0,1] is
such that n, + (b})? > d?, by (6.7) we have

. 16
(6.21) / Vot PdHN Tt < =
1 0{on (0> b4} 0

Let us define

16 K,

[V [ dHVE < =5

/Hfm{vn(t»ba}

0«1\»&

Dt (y) = < (ualy) — az(zi) +0)F

which is null on H;" \EZQ(M)—&'
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In a similar way we construct ¥%~ and 1/32; on H,  which are null on H; N E(’l’1 (@) +36
4

and on H; N E;ll(a:j)+6 respectively. Let us set

whhE (z) = [YhE(rFr) + gi(dHii (x) =) | Al

n

with 2 b, 0and ( #5y — 0. This is possible since 7, << &n. Let Al (H*\Ea2 ()~ )x]—

En — l;,sn + 18 [N{v,(t) > bL}. Then we have by definition of ¢%*, by (6.6), (6.21) and the
fact that K, &, is bounded in n

lim sup M M,, (w>"F {v,(t) > bL}) =

n ; 1 )
= lim sup n / Vw2t *|? de + — (1 — w3 2de 3 <
n 2 JQin{on(t)>bL} 2en JQin{wn(t)>b1}

. 1
< lim sup {62 / (|V’(/Jn(ﬂ';rx)|2 + 52) dx+

+2; (2™ \ B, g)(enﬂg))}

so that we get

lim sup MMn(wi’i’+, {vn(t) > brlz}) =
n

. 3 En 16Kn i En 2 i N-1 +
ghmnbup{2 e (€n+ln)—|—?;( +0L)H (H; \Ew(x )—,)—ﬁ-
w1
+5 + ngyN- 1(H+\En 5)}<
En 2

<2hmsup’HN YHI\E" o) < dorM L

ag(l )—*

Similar calculations hold for w2%~. Let us set w3 := w3+ Aw»~. Then 0 < wd' < 1,
w3 = 0 in a neighborhood of H+ \Ea (235 a0d ofH NEY (o436 wl=1on Q;\ R;

for n large, and we have that

limsup Y MM, (wi’, {va(t) > b}}) < o(0),
" Qica

which prove the first part of the lemma.
We define

o' (x) = [&:ﬁ(ﬁjx) +% <de (z) — ;)j lw (m; )+% (dHi (z) — l;)w Al

The previous calculations prove that

lim 7, / V32 de =0
n Qin{vn(t)>b}}

— 0. Moreover ¢>* =1 on Q; \ R; for n large. 0

. T
since e
Lemma 6.5. Suppose that Q; C ; if‘hen there exists wht € HY(Q') such that 0 < wh <1,
wi? =0 in a neighborhood of V;, w* =1 on Qp for n large and

(6.22) limsup Y MM, (wy') < o(0).
Qg



30 A. GIACOMINI

Moreover there exists a cut-off functzon ©bt such that &% = 0 in a neighborhood of V;,
o2 =1 on Qp for n large, supt(Vprt) C {whi = 0}, and
(6.23) lim 7, / |Vki|2dr = 0.

n Q

Proof. Let us set

and

where é—z — 0 and ﬁ — 0. We have immediately (since > 5 q HN=YHV;) < o(0))

lim sup Z MM, (wk*) < o(o)
n 0:C0

while
timn, [ Vb do =0
n Q
since # — 0. For n large enough, w® = 1, ¢** = 1 on Qp and the proof is complete. [
We recall that z = g (t) in a neighborhood V of 90\ UQ;.
Lemma 6.6. Let Q; N 9pQ # 0 with QF \ R; C Q. Then EZ( yps 0 Q; C Q for all n,
1(Zi)T3

and there exists wi >t € HY(Q') with 0 < wbbt < 1, wbb* =1 on Qp, Wb+ =0 in a
neighborhood of

Vi"’Jr = [Vz N E;L1($i)+6:| U [(Vl N Qj_) \V] ’
and such that

(6.24) limsup Y MMy (wh", {on(t) > b)}) < o(0).
" Q;ndp QD

Moreover there exists a cut-off function @%b+ such that %%+t =1 on Qp, &+ =0 in a
neighborhood of V", supt(VbsT) C {wl+ =0}, and

(6.25) lim 7, / |Vt 2 da = 0
Q' N{v, (t)>bL}

n

Proof. Note that by construction, Bl ypal Q; C Q) since uy,(t) is continuous and u, (t) =
)3

gn(t) on Qp. It is now sufficient to operate as in Lemma 6.4 and in Lemma 6.5. In fact,
in view of (6.10), we may construct wb it e HY(Q) such that 0 < @2+ < 1, @%b+ =0

in a neighborhood of V; N Eal(m Jrsr W =1on Qp and on V; \E o)+ 8 and such that

lim sup,, M M,, (w55, {v, (t) > bL}) < 0( )r¥ =L Referring to (Vi N Q+) \ V, we can reason
as in Lemma 6.5 gettmg woh T, such that 0 < @b i+ <1, W%t = 0 in a neighborhood of
(V;inQH\V, w4+ =1 on QD, and such that limsup,, MM,L( Wt < o(o)rN L
Setting wbit = @lHt A w4t we get the first part of the the51s. Sumlarly, we may
construct gab »F which satlsﬁes (6 25). O

In a similar way we can prove the following lemma.

Lemma 6.7. Let Q; N Opt # 0 with Q; \ R; C Q. Then Q; \ E;LZ( s € Q for all n,
2

and there exists wlb~ € HY(Q) with 0 < wi»~ <1, b4~ =1 on Qp, wb»~ =0 in a
neighborhood of

VT = [Vi\ Bl s U [N QDY
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and such that

(6.26) limsup Y MM, (wh"~, {va(t) > b}}) < o(0).
" QiNApOQFAD
Moreover there exists a cut-off function %~ such that %"~ =1 on Qp, Y&~ =0 in a

neighborhood of V"™, supt(Vehi~) C {wb®~ = 0}, and

(6.27) lim 7, / Vb= 2 dax = 0
Q' N{vn (t)>bL}

n
‘We can now prove Lemma 6.1.

Proof of Lemma 6.1. We employ the notation of the preceding lemmas. Following [14, The-
orem 2.1], for each i let us define z;” on Q;” U R; to be equal to z on Q; \ R; and to the
symmetrization of z with respect to H;(c) on R;. Similarly we define z; .

For each Q; C Q, let us set 2% to be equal to z;" on (Q; \ R U (E;E N R;), and to z; in
the rest of Q);. ’

If Q;NOpQ # B with QT\RZ C Q, by Lemma 6.3 and Lemma 6.6 we have E%_T:»L nQ; C
Qf for all n, and its closure does not intersect 9€2. We define z! to be equal to z:r on
(QF \ R) (E" N R), and to gx(t) in the rest of Q;. If Q; \ R; € Q, by Lemma 6.3 and
Lemma 6.7 we have Q;\ E” i i
to be equal to z; on (Q; \ R;) U (R; \ E‘%)7 and to gp(t) in the rest of Q;.

Let us now define Z,, to be equal to z outside Ule R;, and to z; inside each R;. We have
Zn = gn(t) on Qp. Note that if Q; € Q, H;" \ EZ,, H; N EJ:, Vi™, and 9" EZ; NQ; could be
contained in S, . Similarly, if Q; N 9Q # 0 and Q;" \ R* C Q (the other case being similar),
then H;"\ E”l , vV and 8*E” N Q; could be contained in Sy .

7

C Q, and its closure does not intersect Q. We define 2/,

By assumptlon on U, we have that
(628) Hgn - Z||L2(Q/) + van - VZHL2(Q’;]RN) S O(O');

moreover, besides the possible jumps previously individuated, Z,, has in R; polyhedral jumps
which are a reflected version of the polyhedral jumps of z in @;. By assumption on z, we
conclude that the union of these polyhedral sets P;(S.) has H~¥~! measure which is of the

order of o that is HN~1(P(S.)) < o(c) where P(S,) := UZ 1 Pi(S2).
Let @, be optimal for the Ambrosio-Tortorelli approximation of [S, \ (U @:)] U P(S.)
(as we can find for example in [13, Lemma 3.3]), that is w,, is null in a neighborhood of

[S:\ (UQi)] U P(S.) and
(6.29) limsupM M, (w,) < HY71(S. \ (UQ;) U P(S.)) <

< HN?I(SZ \ Su(t)) + O(U)'

As in [13], let @, be a cut-off function associated to w,,, such that

(6.30) 1imnn/ IV@n|? dz = 0.
n Q/
Let us set for all Q; C Q
min{w,, w2, wd wh'} in R;
w! = { min{tw,, wd’ wh} in R; \ R;

. ~ 4.1 .
min{wy,, wy"} outside R;,
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and
3 > 2,0 5340 40 D
min{@n, ", 0" e’} in Ry

@l =< min{@,, p>t, bt} in R; \ R,

min{@n» @i’i} outside Ri.
For all Q; such that Q; N9pQ # 0 with Q; \ R; C Q, let us set

min{i, wd, ity n R B
min{w?? wh*} in (R; \ EZ?%) uQ;
. ind 1 4, b,i, . ~ —
w:z T mln{wnvwiz+7wnz +} m Rl\(R,UQl )
1 in QD
. ~ b.i
min{w, wn’l’+ } otherwise
and
min{@,, o1, o35+, ity In RN EY
min{gy?, 05"} in (R:\ B, ) UQ;
P = min{@n, it ehtt} in R; \ (R UQ;)
1 in QD
oL b .
min{@,, gy} otherwise
Similarly we reason for the case Q; \ R; C Q. By construction, for all i =1,..., k we have

that wi ¢! € HY(Q), 0 < w!, ¢! <1 and wi, ¢! =1 on Qp for n large.
Note that by Lemmas 6.3, 6.4, 6.5, 6.6 and 6.7, and by (6.29) and (6.30), we have that

k
(6.31) lim supz MM, (wh, {vn(t) > bp}) < HN (S, \ Sury) + olo),

=1
and
k
(6.32) lim, 3 / Vi ()] da = 0.
n i=1 Y N {un (t)>bL}
We are now in a position to conclude the proof. We set
vp = min{w,,w’,i=1,... k}, @, :=min{e,, ¢, i=1,...,k}.

Note that ¢, = 0 in a neighborhood of S; , and ¢, = 1 on Qp for n large. Moreover
0<v, <w, <vy(t)in Q@ and v, =1 on Qp. Let 2, := ¢, Z,; we have z, € H(Q') with
zZn = gn(t) on Qp. By (5.2), we have that

FEn (un(t)vvn(t)) < an (Zn7vn)7

and so

[0+ a1 Tun0 do < [+ 02V on2 P do+ MMy (00) = MM, (00 (0).
Q o
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We may write

//(nn + 0, (1)) Vun (1) dr <

S/WmeMfw+/mmwmﬂ%N%+%W%ﬁw+
Q Q

k
+ MM, (wy) = MMy (vn(£) + > MMy (w),, {vn(t) > b}}).

Taking into account (6.28), (6.12), (6.32), (6.11), and (6.31), we have that passing to the
limit
Vul? de < / V2 dz 4+ HY LS.\ Suey)+
Q o
n 2Ck n C n Cbh

(k=12 (=11 -b2 (1-2)
so that, letting 0 — 0 and then b — 0, k — oo (which is permitted choosing appropriately
j2 and j3), we obtain the thesis. O

5 +0(0),

We can now pass to the proof of Theorem 5.6. Given 0 =t <ty < ... <t = ¢, it is
sufficient to prove that

k
(6.33) /Q |Vu(t)|? de < /Q |Vz|? do + HN ! <SZ\ (U Su(t1)>> .
=1

Passing to the sup on t¢i,...,t;, we deduce in fact the thesis. We obtain (6.33) using the
same arguments of Lemma 6.1; defining

, . 1
Ji=qzxe U U [0*Er no*EL ] t, Inin [u(x)] > il

yeeny

m=1,....,k \a1,ax€A*

where EF and Ay, are defined as the corresponding sets for u(t), following [14], we cover J;
in such a way that for all x; € J; there exists [ with x; € Sy,) and

HY L U Sue) \Suen | N Qi | <or
r=1,....k

So in each @Q); there exists u(t;) such that Ule Su(t,) N Q; is essentially (with respect to the
measure HY 1) S,y N Q;. Recalling that v, (t) < vy (t;) for all 1 =1,...,k, we have

[ 0al)Funlt)P o < [+ va00)*) T (t) P de < C.
’ Q/
and so it is readily seen that the arguments of Lemma 6.1 can be adapted to prove (6.33).

7. A FINAL REMARK

The previous results can be extended to recover the case of non isotropic surface energies,
i.e., energies of the form

(7.1) /Q|Vu|2dx—|—/r<p(yx)dHN*1(x)

where v, is the normal to I' at z, and ¢ is a norm on RY. In fact all the previous arguments
are based on Theorem 2.3 concerning the elliptic approximation and on Theorem 2.4 about
the density of piecewise smooth functions with respect to the total energy. An elliptic
approximation of Ambrosio-Tortorelli type of (7.1) has been proved in [13], while a density
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result of piecewise smooth functions with respect to non-isotropic surface energies has been
proved in [10]. We conclude that all the previous theorems can be modified in order to treat
the more general energy (7.1).
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