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Abstract. The classical Sobolev embedding theorem of the space of functions of bounded variation

BV (Rn) into Ln′ (Rn) is proved in a sharp quantitative form.

1. Introduction

A fundamental tool in the study of partial differential equations is the Sobolev inequality

nω1/n
n ‖f‖Ln′ ≤

∫
Rn

|∇f(x)| dx , ∀f ∈ C∞c (Rn) . (1.1)

Here n ≥ 2, n′ = n/(n − 1) and ωn denotes the measure of the unit ball B of Rn. As well-known, (1.1)
is equivalent to the classical isoperimetric inequality (see e.g. [4], sect. 5.6). This last inequality states
that the perimeter P (E) of a Borel set E ⊆ Rn of finite measure is necessarily larger than the perimeter
of a ball with the same measure, namely that

nω1/n
n |E|1/n′ ≤ P (E) . (1.2)

A sharp quantitative form of the isoperimetric inequality has been established in our recent paper [6],
following the line of research started by Bernstein [1] and Bonnesen [2], and later carried over by Osser-
man [11], [12], Fuglede [5], Hall, Hayman and Weitsman [8] and Hall [7]. More precisely, we have proved
the following strengthening of (1.2),

nω1/n
n |E|1/n′

(
1 +

λ∗(E)2

K(n)

)
≤ P (E) , 0 < |E| <∞ , (1.3)

where K(n) is a constant depending only on the dimension and λ∗(E) is the Fraenkel asymmetry of E,

λ∗(E) := min
{
|E∆(x+ rB)|

|E|
: rnωn = |E| , x ∈ Rn

}
,

which measures how far E is from being a ball. Inequality (1.3) is sharp in the sense that the term λ∗(E)2

cannot be replaced by λ∗(E)q for any q < 2 (as one can check by taking E to be an ellipsoid arbitrarily
close to a ball).

In this paper we extend the quantitative inequality (1.3) to the functional case. To this aim, if
f ∈ BV (Rn), we denote by ‖Df‖ = |Df |(Rn) the total variation of the distributional derivative Df .
Thus, if f ∈W 1,1(Rn), ‖Df‖ =

∫
Rn |∇f |. Moreover, simple approximation arguments show that (1.1) is

equivalent to
nω1/n

n ‖f‖Ln′ ≤ ‖Df‖, ∀f ∈ BV (Rn) . (1.4)

It is well-known that equality holds in (1.4) if and only if f = aχx+rB for some a ∈ R, x ∈ Rn and r > 0.
Therefore, in analogy with the Fraenkel asymmetry, it is natural to introduce the functional asymmetry,
a quantity measuring how far a generic function f ∈ BV (Rn) is from being optimal for (1.4), setting

λ(f) := min

{
‖f − aχx+rB‖n′

Ln′

‖f‖n′

Ln′
: |a|n

′
rnωn = ‖f‖n′

Ln′ , a ∈ R , x ∈ Rn

}
(1.5)

(the fact that the above minimum exists is proved in Lemma B.1). Notice that λ(f) is invariant with
respect to both rescaling of the coordinates, and multiplication by a constant; moreover, λ(f) ≤ 2n′ for
any f . The main result of the paper is the following.
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Theorem 1.1. There exists a dimensional constant C = C(n) such that

nω1/n
n ‖f‖Ln′

(
1 +

λ(f)2

C(n)

)
≤ ‖Df‖ (1.6)

for every f ∈ BV (Rn).

Andrea Cianchi [3] has recently obtained an estimate similar to (1.6) in which the exponent 2 in
λ(f)2 is replaced by a slightly larger one depending on the dimension. Notice, however, that –as for
the quantitative isoperimetric inequality (1.3)– the exponent 2 is sharp, as one can check testing the
inequality on characteristic functions of ellipsoids.

When (1.6) is evaluated at f = χE it furnishes an alternative version of (1.3), where the Fraenkel
asymmetry λ∗(E) of the set E is replaced by the functional asymmetry of its characteristic function λ(χE ).
The two inequalities are however equivalent as on the one hand we have trivially that λ(χE ) ≤ λ∗(E),
while on the other hand it holds λ∗(E) ≤ 2n′+1λ(χE ), as shown in Lemma B.2.

Inequality (1.6) can be restated equivalently as

λ(f) ≤ C(n)
√
δ(f) , ∀f ∈ BV (Rn) , (1.7)

where δ(f) is the Sobolev deficit of f ,

δ(f) :=
‖Df‖

nω
1/n
n ‖f‖Ln′

− 1 .

Notice that δ(f) has the same scaling invariant properties as λ(f).
As shown in section 4, in order to prove (1.7) it is not restrictive to assume that f is nonnegative.

In this case, the underlying strategy is to replace the generic function f with a more symmetric function
g; to be effective, this reduction has to be done in such a way that the inequality (1.7) for f follows by
establishing the same inequality for the more symmetric function g. For instance, this could be done if

λ(f) ≤ C(n)λ(g), δ(g) ≤ C(n)δ(f).

These two requirements are obviously in competition: transforming f into a more symmetric function g
lowers its deficit δ(f), but also its asymmetry λ(f). Therefore, keeping this remark in mind, it is clear
that one has to choose how to symmetrize f in such a way that λ(f) does not become too small. The
first step in this symmetrization process is to pass from f to a n−symmetric function g, (i.e., a function
which is symmetric with respect to n orthogonal hyperplanes), in such a way that

λ(f) ≤ C(n)
(
λ(g) +

√
δ(f)

)
, δ(g) ≤ C(n)δ(f) , (1.8)

see Theorem 2.1. We remark that a similar starting point was carried over in [6] when dealing with sets;
however, in the present case the proof is harder.

The second step is to pass from a n−symmetric function to a spherically symmetric one; in fact, it can
be proved (Theorem 2.2) that if g is n-symmetric and g? denotes its symmetric decreasing rearrangement,
then a particularly convenient quantitative version of the Polya-Szegö inequality

∫
Rn |∇g| ≥

∫
Rn |∇g?|

holds true. More precisely we prove that, for a n−symmetric g, whenever ‖g‖Ln′ = 1 and δ(g) ≤ 1 we
have ∫

Rn

|g − g?|n
′
≤ C(n)

√
‖Dg‖ − ‖Dg?‖ . (1.9)

We remark that the assumption that g is n−symmetric is needed in order to obtain an estimate of
‖g − g?‖Ln′ as in (1.9); indeed, in the general case, the right hand side can be 0 and yet g 6= g?.

Since the Polya-Szegö inequality implies that δ(g?) ≤ δ(g), (1.8) and (1.9) can be combined to reduce
the proof of Theorem 1.1 to the case when f is spherically symmetric and decreasing. In this particular
case, a delicate geometrical construction shows that (1.7) holds indeed in the stronger form

λ(f) ≤ C(n)δ(f) ,

see Theorem 3.1.
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2. Reduction to the spherically symmetric case

We start by specifying the natural context in which (1.1) should be considered. The space BV (Rn)
of the functions of bounded variation is defined as the space of those functions f in L1

loc(Rn) such that
there exists a sequence fh ∈ C∞c (Rn) with fh → f a.e. and sup

∫
Rn |∇fh| < +∞. Notice that, from this

definition, it follows that Df is a Rn−valued Radon measure and that f ∈ Ln′ ; moreover, one can always
construct the sequence fh in such a way that fh converges to f in Ln′ and

∫
Rn |∇fh| → |Df |(Rn) =: ‖Df‖.

This shows in particular that (1.1) implies (1.4). We shall also consider BV +(Rn) = {f ∈ BV (Rn) : f ≥
0}.

Let us define the symmetric decreasing rearrangement f? of a function f ∈ BV +(Rn) as the unique
spherically symmetric function f? such that for all t > 0 the set {x : f?(x) > t} is the ball centered at
the origin with

|{x : f?(x) > t}| = |{x : f(x) > t}|.

We say that f ∈ BV +(Rn) is a spherically symmetric decreasing function if f = f?.
Given a function f ∈ BV (Rn), we will say that f is k−symmetric, with 1 ≤ k ≤ n, if f is symmetric

with respect to the first k coordinate hyperplanes, i.e. if f(x) = f(x − 2xiei) for every x ∈ Rn and
1 ≤ i ≤ k. Here and in the following ei, 1 ≤ i ≤ n, are the elements of the canonical basis of Rn. The
goal of this section is to prove the two following theorems. Here and in the sequel, by C = C(n) we
denote a constant depending only on the dimension n whose value may increase from line to line.

Theorem 2.1. Let f ∈ BV +(Rn). There exists a n-symmetric function g ∈ BV +(Rn) such that

λ(f) ≤ C(n)(λ(g) +
√
δ(f)) , δ(g) ≤ 2nδ(f) .

Theorem 2.2. Let f ∈ BV +(Rn) be n-symmetric. Then∫
Rn

|f − f?|n
′
≤ C(n)‖Df‖n′−1/2

√
‖Df‖ − ‖Df?‖ . (2.1)

Moreover,

λ(f) ≤ C(n)(λ(f?) +
√
δ(f)). (2.2)

We point out that, though our strategy for improving (1.6) will be to pass first to a n−symmetric
function, and then to its symmetric rearrangement, for technical reasons we shall prove first Theorem 2.2
and then Theorem 2.1.

The first result we need in the proof of the above theorems is an elementary lemma that expresses
the Lq distance of two functions in terms of the distance of their level sets.

Lemma 2.3. Let f, g ∈ Lq(Rn) with q ≥ 1. Then∫
Rn

|f(x)− g(x)|q dx =
∫ +∞

−∞

∫
{f>t}∆{g>t}

|f(x)− g(x)|q−1 dx dt , (2.3)

and moreover

‖f − g‖Lq(Rn) ≤
∫ +∞

−∞

∣∣{f > t}∆{g > t})
∣∣1/q

dt . (2.4)

Proof. By Fubini’s Theorem,∫
{f>g}

|f(x)− g(x)|q dx =
∫∫

{(x,t): f(x)>t≥g(x)}
|f(x)− g(x)|q−1 dx dt

=
∫ +∞

−∞

∫
{f>t≥g}

|f(x)− g(x)|q−1 dx dt

=
∫ +∞

−∞

∫
{f>t}\{g>t}

|f(x)− g(x)|q−1 dx dt,
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from which (2.3) follows. To conclude, set Et = {f > t}∆{g > t}; then∫
Rn

|f(x)− g(x)|q dx =
∫ +∞

−∞

∫
Et

|f(x)− g(x)|q−1 dx dt ≤
∫ +∞

−∞
|Et|1/q

( ∫
Et

|f(x)− g(x)|q dx
)1−1/q

dt

≤
( ∫

Rn

|f(x)− g(x)|q dx
)1−1/q

∫ +∞

−∞
|Et|1/q dt ,

and (2.4) follows. �

We now prove Theorem 2.2.

Proof. (of Theorem 2.2). Thanks to (2.4) we have

‖f − f?‖Ln′ ≤
∫ ∞

0

d(t)1/n′ dt , (2.5)

where we put for brevity d(t) = |{f > t}∆{f? > t}|. Let µ(t) = |{f > t}| be the distribution function of
f . By the Coarea Formula and by (1.3)

‖Df‖ =
∫ ∞

0

P ({f > t}) dt ≥
∫ ∞

0

nω1/n
n µ(t)1/n′

(
1 +

λ∗({f > t})2

K

)
dt . (2.6)

Since {f? > t} is a ball of measure µ(t),∫ ∞

0

nω1/n
n µ(t)1/n′ dt =

∫ ∞

0

P ({f? > t}) dt = ‖Df?‖ . (2.7)

Furthermore {f > t} is a n-symmetric set, so by Lemma 2.2 in [6], which is the analogue of Lemma 2.4
below with λ∗ in place of λ, we find

2nλ∗({f > t}) ≥ d(t)
µ(t)

. (2.8)

In conclusion we have proved that, by (2.6) and (2.7),∫ ∞

0

(
d(t)
µ(t)

)2

µ(t)1/n′ dt ≤ 4nK

nω
1/n
n

(
‖Df‖ − ‖Df?‖

)
.

We apply the Hölder inequality with the exponent 2n′ to get∫ ∞

0

d(t)1/n′ dt =
∫ ∞

0

(
d(t)
µ(t)

)1/n′

µ(t)1/n′ dt

≤
( ∫ ∞

0

(
d(t)
µ(t)

)2

µ(t)1/n′ dt

)1/2n′( ∫ ∞

0

µ(t)1/n′ dt

)1/(2n′)′

.

Since again by (2.6) ∫ ∞

0

µ(t)1/n′ dt ≤ 1

nω
1/n
n

‖Df‖,

gathering (2.5) and (2.8) we prove (2.1).
Since λ(f) and δ(f) are invariant by multiplication by constants, to prove (2.2) we may assume ‖f‖Ln′ = 1.
By definition λ(f) ≤ 2n′ , so inequality (2.2) is trivial if δ(f) ≥ 1. Otherwise, from (1.5), from the
triangular inequality, and from the general fact that (a + b)n′ ≤ 2n′−1(an′ + bn

′
) for any a, b ≥ 0, it

follows that
λ(f) ≤ 2n′−1

(
‖f − f?‖n′

Ln′ + λ(f?)
)
.

Inequality (2.2) then follows because, by (2.1),∫
Rn

|f − f?|n
′
≤ C‖Df‖n′−1/2

√
‖Df‖ − ‖Df?‖ ≤ C|1 + δ(f)|n

′−1/2
√
δ(f).

�
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Next we pass to prove that in evaluating the asymmetry of a k−symmetric function, we can restrict
to the class of the optimal functions for (1.1) with the same symmetries. More precisely, for every H ⊂ Rn

we set

λ(f |H) := min

{
‖f − aχx+rB‖n′

Ln′

‖f‖Ln′
: |a|n

′
rnωn = ‖f‖n′

Ln′ , a ∈ R , x ∈ H

}
, (2.9)

and then prove the following lemma. Notice that the same argument used in the proof of Lemma B.1
shows that also the minimization problem on the right hand side of (2.9) has a solution.

Lemma 2.4. Let H = {x : xi = 0, 1 ≤ i ≤ k} be the intersection of the first k coordinate hyperplanes
and let f be a k-symmetric function. Then

λ(f |H) ≤ 3n′λ(f) .

Proof. Without loss of generality we may assume that ‖f‖Ln′ = 1; let then x ∈ Rn, a ∈ R and r > 0
be such that λ(f) = ‖f − aχx+rB‖n′

Ln′ . We consider the projection z of x over H, and denote by y the
point obtained by reflecting x with respect to H. We also set, for any w ∈ Rn, gw = aχw+rB . By the
symmetry of f we deduce that

λ(f) = ‖f − gx‖n′

Ln′ = ‖f − gy‖n′

Ln′ .

Therefore

λ(f |H) ≤ ‖f − gz‖n′

Ln′ ≤
(
‖f − gx‖Ln′ + ‖gx − gz‖Ln′

)n′

.

By construction

‖gx − gz‖Ln′ ≤ ‖gx − gy‖Ln′ ≤ ‖gx − f‖Ln′ + ‖f − gy‖Ln′ = 2λ(f)1/n′ .

Then the result follows. �

In the sequel we will often make use of the following continuity result, which is a non-quantitative
version of Theorem 1.1.

Lemma 2.5. For every ε > 0 there is δ > 0 such that, if δ(f) ≤ δ, then λ(f) ≤ ε.

Proof. Let {fh} ⊆ BV (Rn) be such that δ(fh) → 0. Without loss of generality, we may assume that
‖fh‖Ln′ = 1; by Theorem A.1 we may also assume, up to a rescaling and a translation as in (A.1), which
does not change neither ‖fh‖Ln′ nor δ(fh), nor λ(fh), that fh → f in Ln′(Rn) for some f ∈ BV (Rn)
with δ(f) = 0 and so λ(f) = 0. Since g 7→ λ(g) is continuous in Ln′ , we conclude that λ(fh) → 0 as
claimed. �

We are now going to prove Theorem 2.1. The main idea is that given two orthogonal directions we can
always modify our function so to make it symmetric with respect to at least one of the two directions,
in such a way that the required estimates hold true; this immediately leads to the construction of a
(n− 1)−symmetric function. The same strategy was adopted in the case of sets [6]; however, the passage
from n − 1 to n symmetries, that was somehow trivial in the case of sets, becomes now more delicate,
and will be treated by a different argument.

We start by proving the following lemma.

Lemma 2.6. For every f ∈ BV +(Rn), there exists a (n − 1)-symmetric function g ∈ BV +(Rn) such
that

λ(f) ≤ C(n)λ(g) , δ(g) ≤ 2n−1δ(f) .

Proof. Without loss of generality we assume that ‖f‖Ln′ = 1. For every k ∈ N, 1 ≤ k ≤ n we consider
an hyperplane Hk of the form {x : xk = sk} for some sk ∈ R, such that, denoting H+

k = {x : xk > sk}
and H−

k = {x : xk < sk}, one has ∫
H+

k

fn′ =
∫

H−
k

fn′ =
1
2
.
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We let Tk : Rn → Rn be the reflection with respect to Hk and define

f+
k (x) :=

{
f(x), x ∈ H+

k ,

f(Tk(x)), x ∈ H−
k ,

f−k (x) :=
{
f(Tk(x)) , x ∈ H+

k ,

f(x) , x ∈ H−
k .

Then f+
k , f

−
k ∈ BV +(Rn) and they are both symmetric with respect to the hyperplane Hk. Moreover

‖Df‖ ≥
‖Df+

k ‖+ ‖Df−k ‖
2

.

This inequality is indeed an equality if f ∈ C∞c (Rn); the general case of a BV function can be obtained
by approximation. Therefore, we always have

max{δ(f+
k ), δ(f−k )} ≤ 2δ(f) . (2.10)

We now consider a pair of functions g+
k and g−k optimal for (2.9), so that

λ(f+
k |Hk) =

∫
Rn

|f+
k − g+

k |
n′ , λ(f−k |Hk) =

∫
Rn

|f−k − g−k |
n′ .

Then

λ(f) ≤
∫

Rn

|f − g+
k |

n′ =
∫

H+
k

|f+
k − g+

k |
n′ +

∫
H−

k

|f−k − g+
k |

n′

≤ 2n′−1

( ∫
H+

k

|f+
k − g+

k |
n′ +

∫
H−

k

|f−k − g−k |
n′ +

∫
H−

k

|g+
k − g−k |

n′
)
.

(2.11)

We state the following two claims:

Claim 1. There exist two constants C1 and δ̄ depending only on n such that, if δ(f) ≤ δ̄, then∫
Rn

|gσ
i − gτ

j |n
′
≤ C1

∫
Hσ

i ∩Hτ
j

|gσ
i − gτ

j |n
′
, (2.12)

whenever 1 ≤ i < j ≤ n, σ, τ ∈ {+,−}.
Claim 2. If δ(f) ≤ δ̄, for every pair of indexes 1 ≤ i < j ≤ n, there exists k ∈ {i, j} such that∫

H−
k

|g+
k − g−k |

n′ ≤ 4n′C1

( ∫
H+

k

|f+
k − g+

k |
n′ +

∫
H−

k

|f−k − g−k |
n′

)
. (2.13)

The proof is now divided in three steps: in the first one we show how the second claim implies the
thesis; in the second step we show how the second claim descends from the first one; in the third step we
eventually prove the first claim.

Step I. The second claim implies the thesis.
Assume that the second claim holds and δ(f) ≤ δ̄. Then for every i, j with 1 ≤ i < j ≤ n there is
k ∈ {i, j} such that (2.13) holds. By (2.11) we find

λ(f) ≤ C

( ∫
H+

k

|f+
k − g+

k |
n′ +

∫
H−

k

|f−k − g−k |
n′

)
= C

(
λ(f+

k |Hk)
2

+
λ(f−k |Hk)

2

)
≤ C

(
λ(f+

k ) + λ(f−k )
)
,

(2.14)

where in the last inequality we have applied Lemma 2.4 together with the fact that f+
k and f−k are

symmetric with respect to the hyperplane Hk. By (2.10) and (2.14) we conclude that whenever 1 ≤ i <

j ≤ n there exist k ∈ {i, j} and σ ∈ {+,−} such that

λ(f) ≤ Cλ(fσ
k ) , δ(fσ

k ) ≤ 2δ(f) .

Furthermore the function fσ
k is symmetric with respect to the hyperplane Hk, hence it is 1− symmetric

up to a translation and a relabelling of the axes. The Theorem then follows iterating this basic procedure
n− 1 times.
Finally, if δ(f) ≥ δ̄ it suffices to take a (n− 1)−symmetric function g such that δ(g) ≤ 2n−1δ̄, λ(g) > 0.
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Step II. The first claim implies the second one.
Let us assume that the first claim holds, take i = 1, j = 2 for simplicity and introduce

hk := g+
k χH+

k

+ g−k χH−
k

.

Thanks to the first claim,∫
Rn

|h1(x)− h2(x)|n
′
dx ≥

∫
H+

1 ∩H+
2

|h1(x)− h2(x)|n
′
dx =

∫
H+

1 ∩H+
2

|g+
1 (x)− g+

2 (x)|n
′
dx

≥ 1
C1

∫
Rn

|g+
1 (x)− g+

2 (x)|n
′
dx.

Similarly,∫
Rn

|h1(x)− h2(x)|n
′
dx ≥

∫
H−

1 ∩H+
2

|h1(x)− h2(x)|n
′
dx =

∫
H−

1 ∩H+
2

|g−1 (x)− g+
2 (x)|n

′
dx

≥ 1
C1

∫
Rn

|g−1 (x)− g+
2 (x)|n

′
dx.

Therefore, ∫
Rn

|g+
1 (x)− g−1 (x)|n

′
dx ≤ 2n′C1

∫
Rn

|h1(x)− h2(x)|n
′
dx ,

and similarly ∫
Rn

|g+
2 (x)− g−2 (x)|n

′
dx ≤ 2n′C1

∫
Rn

|h1(x)− h2(x)|n
′
dx .

On the other hand,∫
Rn

|h1(x)− h2(x)|n
′
dx ≤ 2n′−1

( ∫
Rn

|h1(x)− f(x)|n
′
dx+

∫
Rn

|h2(x)− f(x)|n
′
dx

)
= 2n′−1

( ∫
H+

1

|g+
1 (x)− f+

1 (x)|n
′
dx+

∫
H−

1

|g−1 (x)− f−1 (x)|n
′
dx

+
∫

H+
2

|g+
2 (x)− f+

2 (x)|n
′
dx+

∫
H−

2

|g−2 (x)− f−2 (x)|n
′
dx

)
.

Therefore there exists i ∈ {1, 2} such that∫
H+

i

|g+
i (x)− f+

i (x)|n
′
dx+

∫
H−

i

|g−i (x)− f−i (x)|n
′
dx ≥ 1

2n′

∫
Rn

|h1(x)− h2(x)|n
′
dx

≥ 1
4n′C1

∫
Rn

|g+
i (x)− g−i (x)|n

′
dx,

so that (2.13) follows.

Step III. The first claim is true.
To show the first claim, we first state the following simple estimate, whose proof is very similar to that
of Lemma 2.4 in [6].
There exist two dimensional constants σ and C1 such that, if F = aχx+rB and G = bχy+sB and the
following assumptions hold,

•
∫

Rn F
n′ =

∫
Rn G

n′ = 1;
• x ∈ ∂I and y ∈ ∂J , where I and J are two orthogonal half-spaces;
•

∫
I∩J

Fn′ ≥ 1/8 and
∫

I∩J
Gn′ ≥ 1/8;

• ‖F −G‖Ln′ ≤ σ;

(2.15)

then ∫
Rn

|F −G|n
′
≤ C1

∫
I∩J

|F −G|n
′
. (2.16)

Inequality (2.12) follows from (2.16) with F = gσ
i and G = gτ

j , I = Hσ
i and J = Hτ

j . So we only need
to check that assumptions (2.15) hold; in fact, the first two are obvious by construction. Concerning
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the third one, we observe that it follows easily whenever λ(f) is sufficiently small; and this is true, by
Lemma 2.5, if δ ≤ δ̄.
In order to check the last condition, we begin by showing that λ(f |Hi) is controlled by λ(f). To this aim,
let g = dχz+tB a function such that ‖g‖Ln′ = 1 and λ(f) = ‖f − g‖n′

Ln′ . Denote by ĝi = dχ
zi+tB

, where
zi is the projection of z on Hi, and assume, to fix the ideas, that z ∈ H+

i . Then

λ(f |Hi) ≤ ‖f − ĝi‖n′

Ln′ ≤
(
‖f − g‖Ln′ + ‖g − ĝi‖Ln′

)n′

=
(
λ(f)1/n′ + ‖g − ĝi‖Ln′

)n′

. (2.17)

Since g and ĝi are characteristic functions of equal balls multiplied by the same constant d, simple
geometric arguments show that

‖g − ĝi‖n′

Ln′ ≤ C

∫
H+

i

|g − ĝi|n
′
dx = C

∫
H+

i

|gn′ − ĝn′

i | dx ≤ C ′
∣∣∣∣ ∫

H+
i

gn′ − ĝn′

i dx

∣∣∣∣
= C ′

∣∣ ‖g‖n′

Ln′ (H+
i )
− ‖f‖n′

Ln′ (H+
i )

∣∣ ≤ C ′′‖g − f‖Ln′ (H+
i ) ≤ C ′′λ(f)1/n′ .

This inequality together with (2.17) implies that λ(f |Hi) ≤ Cλ(f)1/n′ ; clearly, the same is true for
λ(f |Hj). Notice now that if g̃i realizes the minimum in the definition of λ(f |Hi),

‖f+
i − f‖n′

Ln′ =
∫

H−
i

|f+
i − f |n

′
dx ≤ 2n′−1

( ∫
H−

i

|f+
i − g̃i|n

′
dx+

∫
H−

i

|g̃i − f |n
′
dx

)
= 2n′−1

( ∫
H+

i

|f − g̃i|n
′
dx+

∫
H−

i

|g̃i − f |n
′
dx

)
= 2n′−1λ(f |Hi) ≤ Cλ(f)1/n′ .

A similar estimate holds replacing f+
i by f−i or f±j . As a consequence of the above estimate we have also

that

λ(fσ
i |Hi) ≤ 2n′−1

(
λ(f |Hi) + ‖fσ

i − f‖n′

Ln′
)
≤ Cλ(f)1/n′ .

Finally from the last two estimates we have

‖gσ
i − gτ

j ‖Ln′ ≤ ‖gσ
i − fσ

i ‖Ln′ + ‖fσ
i − f‖Ln′ + ‖f − fτ

j ‖Ln′ + ‖fτ
j − gτ

j ‖Ln′ ≤ Cλ(f)1/n′2 ,

proving –provided δ(f) ≤ δ̄– the last assumption in (2.15), hence the first claim. �

Proof. (of Theorem 2.1). As we have already done before, we may assume without loss of generality
that ‖f‖Ln′ = 1 and δ(f) ≤ 1. Moreover, by Lemma 2.6, it is also possible to assume that f is (n− 1)-
symmetric. Let Hn, H±

n , and f±n be defined as in the proof of that Lemma, however in the sequel to
simplify the notation we suppress the index n. Up to a translation we can assume that H = {x : xn = 0},
so that f+ and f− are n-symmetric. We recall that by (2.10) δ(f±) ≤ 2δ(f); hence, the theorem will be
achieved once we show that

λ(f) ≤ C
(
λ(f+) +

√
δ(f)

)
. (2.18)

To this end, let g± be two functions realizig λ(f±|{0}). Then by Lemma 2.4

λ(f) ≤
∫

Rn

|f − g+|n
′
=

1
2

(
‖f+ − g+‖n′

Ln′ + ‖f− − g+‖n′

Ln′

)
≤ 1

2
‖f+ − g+‖n′

Ln′ + 2n′−2
(
‖f− − f+‖n′

Ln′ + ‖f+ − g+‖n′

Ln′

)
≤ C

(
λ(f+|{0}) + ‖f− − f+‖n′

Ln′

)
≤ C

(
λ(f+) + ‖f− − f+‖n′

Ln′

)
.

(2.19)

Let f+? and f−? be the symmetric decreasing rearrangements of f+ and f− respectively, then by (2.1)
in Theorem 2.2, δ(f) ≤ 1 and (2.10), we have∫

Rn

|f+? − f+|n
′
≤ C

√
δ(f+) ≤ C

√
δ(f)
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and similarly for f−. Therefore,∫
Rn

|f+ − f−|n
′
≤ C

( ∫
Rn

|f+? − f−?|n
′
+

∫
Rn

|f+? − f+|n
′
+

∫
Rn

|f−? − f−|n
′
)

≤ C

( ∫
Rn

|f+? − f−?|n
′
+

√
δ(f)

)
.

By this last estimate and by (2.19) we deduce

λ(f) ≤ C

(
λ(f+) +

√
δ(f) +

∫
Rn

|f+? − f−?|n
′
)
.

Therefore, in order to prove (2.18), and hence the theorem, we just need to show that∫
Rn

|f+? − f−?|n
′
≤ C

√
δ(f) . (2.20)

By (2.4) we find ∫
Rn

|f+? − f−?|n
′
≤

(∫ ∞

0

∣∣{f+? > t
}
∆

{
f−? > t

}∣∣1/n′

dt

)n′

. (2.21)

Since {f±? > t} are balls of center 0 and measure 2|{f > t} ∩H±| =: 2µ±(t), we have∣∣{f+? > t
}
∆

{
f−? > t

}∣∣ = 2|µ+(t)− µ−(t)|

On the other hand µ(t) = µ+(t) + µ−(t); thus, defining µmax(t) = max{µ+(t), µ−(t)}, by the Coarea
Formula and the isoperimetric inequality we find

‖Df‖ = |Df |(Rn) =
∫ ∞

0

P (f > t) dt ≥ nω1/n
n

∫ ∞

0

µ(t)1/n′ dt

= nω1/n
n

∫ ∞

0

21/n′
(
µ+(t) + µ−(t)

2

)1/n′

dt ≥ nω1/n
n

∫ ∞

0

µmax(t)1/n′ dt .

(2.22)

As q = 1/n′ ∈ (0, 1), by an easy computation we have for every 0 < a < b(
a+ b

2

)q

≥ aq + bq

2
+
q(1− q)

8
bq−2(b− a)2;

so,

‖Df‖ ≥ nω1/n
n

∫ ∞

0

2q (µ+(t))q + (µ−(t))q

2
dt+

1
C

∫ ∞

0

µmax(t)q−2|µ+(t)− µ−(t)|2 dt .

Recalling again that |{f±? > t}| = 2µ±(t) and that these level sets are balls, we find

nω1/n
n

∫ ∞

0

2q(µ+(t))q =
∫ ∞

0

P (f±? > t) dt = ‖Df±?‖ .

Therefore we conclude that

‖Df‖ ≥ ‖Df+?‖+ ‖Df−?‖
2

+
1
C

∫ ∞

0

µmax(t)q−2|µ+(t)− µ−(t)|2 dt ,

i.e.,

δ(f) ≥ δ(f+?) + δ(f−?)
2

+
1
C

∫ ∞

0

µmax(t)q−2|µ+(t)− µ−(t)|2 dt .

The first two terms are non negative, thus

Cδ(f) ≥
∫ ∞

0

µmax(t)q−2|µ+(t)− µ−(t)|2 dt .



10 N. FUSCO, F. MAGGI, AND A. PRATELLI

Eventually, by (2.21) and recalling (2.22) it is(∫
Rn

|f+? − f−?|n
′
)q

≤ 2q

∫ ∞

0

|µ+(t)− µ−(t)|q dt = 2q

∫ ∞

0

(
|µ+(t)− µ−(t)|

µmax(t)

)q

µmax(t)q dt

≤ 2q

(∫ ∞

0

µmax(t)q dt

)1−q/2 (∫ ∞

0

|µ+(t)− µ−(t)|2

µmax(t)2
µmax(t)q dt

)q/2

≤ C‖Df‖1−q/2

(∫ ∞

0

|µ+(t)− µ−(t)|2µmax(t)q−2 dt

)q/2

≤ Cδ(f)q/2

and the proof of (2.20), therefore of the theorem, is achieved. �

Remark 2.7. Notice that in (2.18) λ(f+) can be replaced by λ(f−), hence the n−symmetric function g

in the statement of Theorem 2.1 can be arbitrarily chosen equal to f+ or f−.

3. The spherically symmetric case

In this section we are concerned with the case of spherically symmetric decreasing functions.

Theorem 3.1. Let f ∈ BV +(Rn) be a spherically symmetric decreasing function. Then

λ(f) ≤ C(n)δ(f) .

Proof. Without loss of generality we may assume that δ(f) ≤ δ∗ for a suitable small constant δ∗, and
that f ∈ C∞c (Rn), f ≥ 0, with f(x) = u(|x|) for u : [0,∞) → [0,∞) such that u(r) = 0 if r ≥ M and
u′(r) < 0 on (0,M). By a rescaling and a multiplication by a constant we can also require that∫

B

fn′ =
∫

Rn\B
fn′ =

1
2

∫
Rn

fn′ , u(1) = 1 , (3.1)

so that

‖f‖n′

Ln′ = 2
∫

B

fn′ ≥ 2ωn . (3.2)

By Lemma 2.5 we may assume λ(f) ≤ ε(n), for ε(n) as small as we wish. We claim that, provided ε(n)
is small enough, then ∫

Rn

fn′ ≤ C(n) , (3.3)

for a constant C(n) independent from f . To show this, let m = ‖f‖n′

Ln′ and let h = αχrB be such that
‖h‖Ln′ = ‖f‖Ln′ , and

‖f − h‖n′

Ln′

m
= λ(f |{0}) ≤ 3n′λ(f) ≤ 3n′ε(n) . (3.4)

If α ≤ 2, then (3.4) implies 3n′ε(n)m ≥
∫

B∩{f>2}(f − 2)n′ , therefore

m

2
=

∫
B

fn′ ≤ 2n′ωn +
∫

B∩{f>2}
fn′ ≤ 2n′ωn + 2n′−1

(
2n′ωn +

∫
B∩{f>2}

(f − 2)n′
)

≤ 4n′ωn + 2n′−13n′ε(n)m,

and in conclusion m ≤ C(n) provided ε(n) is small enough. On the other hand the case α ≥ 2 can be
excluded as soon as ε(n) is small enough, for by (3.4), if α ≥ 2, we have

3n′ε(n)m ≥
∫

Rn\B
|h− f |n

′
≥

∫
Rn\B

fn′ =
m

2
.

Therefore (3.3) is proved. Consider now the function g0 = χcB , where c is such that
∫

Rn g
n′

0 =
∫

Rn f
n′ ;

note that, by (3.2), c ≥ 21/n and moreover

λ(f) ≤ 1
‖f‖Ln′

∫
Rn

|f − g0|n
′
≤ C

∫
Rn

|f − g0|n
′
.
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Therefore the theorem is proved by showing that∫
Rn

|f − g0|n
′
≤ Cδ(f) . (3.5)

To this end we now introduce a step function g related to f in a special way. We first define v : [0,∞) →
[0,∞) by

v(r) = (1 + a)χ
[0,1]

(r) + χ
(1,b]

(r) , r ≥ 0 ,

where a ≥ 0 and b ≥ 1 are chosen so that

(1 + a)n′ωn = (bn − 1)ωn =
1
2

∫
Rn

fn′ ; (3.6)

note that, in fact, b ≥ 21/n by (3.2). We set g(x) = v(|x|), so g ∈ BV +(Rn), it is spherically symmetric,
decreasing and, as an immediate consequence of (3.6), it satisfies∫

B

gn′ =
∫

Rn\B
gn′ =

1
2

∫
Rn

fn′ . (3.7)

Thanks to (3.7) it is more convenient to compare f with g rather than with g0. The proof of (3.5), hence
of the theorem, will be achieved by proving the following two estimates:∫

Rn

|g0 − g|n
′
≤ Cδ(f) , (3.8)∫

Rn

|f − g|n
′
≤ Cδ(f) . (3.9)

We now split the proof into several steps.

Step I. ‖Dg‖ = nωn(a+ bn−1) ≤ ‖Df‖, hence δ(g) ≤ δ(f).
The first equality is a simple computation; concerning the inequality ‖Dg‖ ≤ ‖Df‖, notice first that,
by (3.1) and (3.7), χBf and χBg have the same Ln′ norm. Recalling that characteristic functions of ball
are optimal for the Sobolev inequality, we deduce

|Df |(B) = ‖DχBf‖ − nωn ≥ ‖D(χBg)‖ − nωn = nωna.

Similarly

|Df |(Rn \B) = |D(χB + χRn\B
f)|(Rn) ≥ |D(χB + χRn\B

g)|(Rn) = nωnb
n−1 ,

and thus ‖Dg‖ ≤ ‖Df‖ follows. The fact that δ(g) ≤ δ(f) is immediate as ‖f‖Ln′ = ‖g‖Ln′ .

Step II. 0 ≤ a ≤ Cδ(f) and 21/n ≤ b ≤ c ≤ 21/n + Cδ(f) .
First of all notice that since f is bounded in Ln′ by (3.3), (3.6) yields that a and b are bounded. If
{fh} is a sequence such that δ(fh) → 0, hence δ(gh) → 0, then the functions {gh} are equibounded
in L∞(Rn), have equibounded supports and ‖Dgh‖ are bounded. Therefore, we may assume that gh

converges strongly in Ln′(Rn) to some function ĝ such that δ(ĝ) = 0, thus ĝ = αχrB . Recalling that
bh ≥ 21/n, we have α = 1, hence ah → 0. This proves that a can be taken as small as we wish provided
δ(f) is small enough. Next we note that, as a ≥ 0, the inequality b ≤ c follows from

ωnc
n =

∫
Rn

gn′

0 =
∫

Rn

fn′ =
∫

Rn

gn′ = ωn(1 + a)n′ + ωn(bn − 1) ≥ ωnb
n .

Moreover

ωnc
n =

∫
Rn

gn′

0 =
∫

Rn

fn′ = 2
∫

B

gn′ = 2ωn(1 + a)n′ .

Thus the inequality c ≤ 21/n+Cδ(f) will follow immediately from a ≤ Cδ(f). To prove this last estimate,
we apply (3.6) to deduce

b = (1 + (1 + a)n′)1/n = 21/n +
a

(n− 1)21/n′
+ o(a) .
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On the one hand, if we let γ = 2−1/n′ + 2−1 > 1, then

‖Dg‖ = nωn(a+ bn−1) = nωn

(
a+ 21/n′

(
1 +

a

2
+ o(a)

))
= nωn21/n′ (1 + γa+ o(a)) ;

on the other hand, by (3.6) ‖g‖Ln′ = (2ωn)1/n′(1 + a). Therefore, by Step I,

δ(f) ≥ δ(g) =
1 + γa+ o(a)

(1 + a)
− 1 =

(γ − 1)a
1 + a

+ o(a) .

This proves that a ≤ Cδ(f), and therefore concludes the proof of Step II.

Step III. Proof of (3.8).
This is a pretty easy consequence of Step II, as∫

Rn

|g0 − g|n
′
= ωna

n′ + ωn(cn − bn) .

The remaining steps are now devoted to the proof of (3.9).

Step IV.
∫

r0B
|f − g|n′ ≤ Cδ(f), where r0 = min{r ≥ 0 : u(r) ≤ 2}.

This is trivial if r0 = 0; otherwise, we claim

rn
0 ≤

2n′

2n′ − 1
a ≤ Cδ(f) . (3.10)

Indeed, on the one hand we have, thanks to (3.1), (3.7) and Step II,∫
B

fn′ =
∫

B

gn′ = ωn(1 + a)n′ ≤ ωn(1 + 2n′a) ,

while on the other hand, by definition of r0,∫
B

fn′ ≥ |r0B|2n′ + |B \ r0B| ≥ ωn2n′rn
0 + ωn(1− rn

0 ) = ωn

(
(2n′ − 1)rn

0 + 1
)
,

so that (3.10) follows. Therefore, as f ≥ 2 ≥ 1 + a = g on r0B,∫
r0B

|f − g|n
′
≤

∫
r0B

fn′ =
∫

B

fn′ −
∫

B\r0B

fn′ ≤ ωn(1 + 2n′a)− ωn(1− rn
0 ) = ωn(2n′a+ rn

0 ) .

The proof of Step IV is then concluded by applying Step II and (3.10).

Step V.
∫

B
|f − g|n′ ≤ Cδ(f).

As
∫

B
fn′ =

∫
B
gn′ and f ≥ g on r0B, it follows that∫

B\r0B

fn′ ≤
∫

B\r0B

gn′ ≤ (1 + 2n′a)|B \ r0B| .

Since 1 ≤ f ≤ 2 on B \ r0B,∫
B\r0B

fn′ =
∫

B\r0B

(1 + (f − 1))n′ ≥
∫

B\r0B

(1 + n′(f − 1)) ≥
∫

B\r0B

(1 + n′(f − 1)n′) .

By the last two estimates∫
B\r0B

(f − g0)n′ =
∫

B\r0B

(f − 1)n′ ≤ 2a|B \ r0B| ≤ Cδ(f).

We conclude the proof of Step V thanks to (3.8) and to Step IV.

Step VI. Defining r1 by u(r1) = 1/2, one has∫
Rn\B

|f − g|n
′
≤

∫
Rn\r1B

fn′ +
∫

r1B\B
(1− fn′) + ωn(max{rn

1 , b
n} −min{rn

1 , b
n}) . (3.11)

Let us begin with r1B \B. If r1 ≤ b then∫
r1B\B

|f − g|n
′
=

∫
r1B\B

(1− f)n′ ≤
∫

r1B\B
(1− fn′) ,
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as 0 ≤ f ≤ 1 on Rn \B and therefore (1− f)n′ ≤ 1− f ≤ 1− fn′ . On the other hand if r1 ≥ b then∫
r1B\B

|f − g|n
′
=

∫
r1B\bB

fn′ +
∫

bB\B
(1− f)n′ =

∫
r1B\bB

(
fn′ − (1− f)n′

)
+

∫
r1B\B

(1− f)n′

≤ ωn(rn
1 − bn) +

∫
r1B\B

(1− fn′) .

Therefore ∫
r1B\B

|f − g|n
′
≤ ωn(max{rn

1 , b
n} − bn}) +

∫
r1B\B

(1− fn′) . (3.12)

Passing now to Rn \ r1B, again if b ≤ r1, we have∫
Rn\r1B

|f − g|n
′
=

∫
Rn\r1B

fn′ .

If else b ≥ r1 then∫
Rn\r1B

|f − g|n
′
=

∫
Rn\bB

fn′ +
∫

bB\r1B

(1− f)n′ =
∫

Rn\r1B

fn′ +
∫

bB\r1B

(
(1− f)n′ − fn′

)
≤

∫
Rn\r1B

fn′ + ωn(bn − rn
1 ) .

Therefore ∫
Rn\r1B

|f − g|n
′
≤ ωn(max{rn

1 , b
n} − rn

1 }) +
∫

Rn\r1B

fn′ . (3.13)

Adding up (3.12) and (3.13) we find (3.11).

Step VII. Proof of (3.9).
This step will conclude the proof of the theorem. Thanks to Step V, in order to prove (3.9) it suffices
to estimate the right hand side of (3.11) by Cδ(f). To this end, we modify f into a new function
f1(x) = u1(|x|), with

u1(r) = u(r)χ
[0,1]

+ χ
[1,s1]

+
1
2
χ

[s1,s2]
,

where s1 ≤ r1 ≤ s2 are uniquely determined by∫
r1B

fn′ =
∫

r1B

fn′

1 ,

∫
Rn\r1B

fn′ =
∫

Rn\r1B

fn′

1 . (3.14)

As in Step I it can be easily checked that ‖Df‖ ≥ ‖Df1‖, hence δ(f) ≥ δ(f1). Moreover, arguing exactly
as in Step II and recalling Step V, we have that if δ(f) → 0 then f1 converges strongly in Ln′ to χ

21/nB
,

hence s1, s2 → 21/n, so that t1 = b− s1 and t2 = s2 − b converge to 0. By (3.14)∫
Rn\r1B

fn′ =
∫

Rn\r1B

fn′

1 = ωn
sn
2 − rn

1

2n′
≤ ωn

sn
2 − sn

1

2n′
≤ C(t1 + t2) + o(t1 + t2) . (3.15)

Similarly, again by (3.14),∫
r1B\B

fn′ =
∫

r1B\B
fn′

1 = ωn(sn
1 − 1) + ωn

rn
1 − sn

1

2n′
= ωn(rn

1 − 1)− ωn

(
1− 1

2n′

)
(rn

1 − sn
1 )

so that ∫
r1B\B

1− fn′ = ωn

(
1− 1

2n′

)
(rn

1 − sn
1 ) ≤ C(sn

2 − sn
1 ) ≤ C(t1 + t2) + o(t1 + t2) . (3.16)

Therefore, by (3.15) and by (3.16), thanks to Step VI it follows∫
Rn\B

|f − g|n
′
≤ C(t1 + t2) + o(t1 + t2) . (3.17)

Now we show that
t1 = ηt2 + o(t2) with η =

1
2n′ − 1

< 1. (3.18)
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Indeed by (3.1), (3.6) and (3.14)

ωn(bn − 1) =
∫

Rn\B
gn′ =

∫
Rn\B

fn′ =
∫

Rn\B
fn′

1 = ωn(sn
1 − 1) + ωn

sn
2 − sn

1

2n′
;

hence, adding on both sides ωn and dividing by ωnb
n, since t1, t2 → 0 as δ(f) → 0,

1 =
(

1− t1
b

)n

+
1

2n′

((
1 +

t2
b

)n

−
(

1− t1
b

)n)
= 1− n

t1
b

+
n(t2 + t1)

2n′b
+ o(t1 + t2) .

Therefore

t1 =
t2

2n′ − 1
+ o(t1 + t2) ,

and (3.18) easily follows. In order to prove (3.9), thanks to (3.17) and to (3.18), it remains to show that
t2 ≤ Cδ(f).
To this aim, we have

|Df1|(Rn \B)− |Dg|(Rn \B) = nωn
sn−1
1 + sn−1

2

2
− nωnb

n−1

=
nωnb

n−1

2

((
1− t1

b

)n−1

+
(

1 +
t2
b

)n−1

− 2
)

=
n(n− 1)ωnb

n−2

2
(t2 − t1) + o(t2) =

n(n− 1)ωnb
n−2(1− η)

2
t2 + o(t2) .

Therefore

t2 + o(t2) ≤ C
(
|Df1|(Rn \B)− |Dg|(Rn \B)

)
≤ C

(
‖Df1‖ − ‖Dg0‖+ nωn(cn−1 − bn−1)

)
≤ C

(
‖Df‖ − ‖Dg0‖+ δ(f)

)
≤ Cδ(f) .

where we have used Step II and the fact that

‖Df‖ − ‖Dg0‖ = nω1/n
n ‖f‖Ln′ δ(f) ≤ Cδ(f).

The proof is then achieved. �

4. Proof of Theorem 1.1

We gather the results from the previous sections in order to prove Theorem 1.1.

Proof. (of Theorem 1.1). Let f ∈ BV (Rn) and, without loss of generality, let us assume that ‖f‖Ln′ = 1.
We want to further reduce to the case in which f does not change sign showing that f is “close” either
to |f | or to −|f |, in the sense that

min
{ ∫

Rn

|f + |f ||n
′
,

∫
Rn

|f − |f ||n
′
}
≤ 2n′−1

21/n − 1
δ(f) , δ(|f |) = δ(−|f |) ≤ δ(f) . (4.1)

The second estimate is an immediate consequence of the elementary inequality ‖D(±|f |)‖ ≤ ‖Df‖.
Concerning the first estimate, we remark that it can be rewritten as

min
{ ∫

{f>0}
fn′ , 1−

∫
{f>0}

fn′
}
≤ 1

2(21/n − 1)
δ(f) ,

and this is true since, by the Sobolev inequality and the concavity of t 7→ t1/n′ + (1− t)1/n′ − 1, one has

δ(f) =
1

nω
1/n
n

(
‖Df+‖+ ‖Df−‖

)
− 1 ≥

( ∫
{f>0}

|f |n
′
)1/n′

+
(

1−
∫
{f>0}

|f |n
′
)1/n′

− 1

≥ 21/n − 1
1/2

min
{ ∫

{f>0}
fn′ , 1−

∫
{f>0}

fn′
}
.
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By (4.1), to show the theorem it is admissible to assume that f ∈ BV +(Rn), with ‖f‖Ln′ = 1; we then
apply Theorem 2.1, finding a n-symmetric function g ∈ BV +(Rn) such that λ(f) ≤ C

(
λ(g) +

√
δ(f)

)
and δ(g) ≤ Cδ(f). By Theorem 2.2 and by Theorem 3.1 we deduce

λ(f) ≤ C
(
λ(g?) +

√
δ(f)

)
≤ C

(
δ(g?) +

√
δ(f)

)
;

finally, thanks to the Polya-Szegö inequality δ(g?) ≤ δ(g) the thesis follows as δ(g) ≤ Cδ(f). �

Appendix A. A compactness result

In this section we prove a compactness result for minimizing sequences of the Sobolev imbedding
Theorem for p = 1. This extends an analogous result stated, for p > 1, in [9]. The proof given here
follows very closely the one of [13, Theorem 4.9] and is presented for the sake of completeness.

Theorem A.1. Let fh ∈ BV (Rn) with ‖fh‖Ln′ = 1 and δ(fh) → 0. There exist xh ∈ Rn and rh > 0
such that, up to a subsequence, the rescaled-translated functions

gh(x) := rn−1
h fh

(
rh(x− xh)

)
(A.1)

converge strongly in Ln′(Rn) to some function f ∈ BV (Rn) with ‖Df‖ = nω
1/n
n .

Note that the above rescaling does not change neither the Ln′ norm nor the total variation; moreover,
the functions gh in (A.1) converge weakly to f ∈ BV (Rn) and the total variations ‖Dgh‖ converge to
‖Df‖.

Proof. (of Theorem A.1). Let us consider the sequence of probability measures νh = |fh|n
′
dx. For every

h ∈ N we can find xh ∈ Rn, rh > 0 such that

νh(xh + rhB) =
1
2
, νh(x+ rB) =

1
2

=⇒ r ≥ rh.

Therefore, still denoting by fh the rescaled-translated functions defined by (A.1), we may assume that,
for any h,

νh(B) =
1
2
, νh(x+ rB) <

1
2
∀ r < 1, x ∈ Rn . (A.2)

We apply now Lions’ concentration-compactness lemma (see [9, pag. 115ff], [13, Lemma 4.3]) to the
sequence νh. Up to a subsequence, there are three possibilities:

(i) vanishing: for every r > 0

lim
h→∞

sup
x∈Rn

νh(x+ rB) = 0;

(ii) dichotomy: there exists λ ∈ (0, 1) such that for any ε > 0 there exist R > 0 and a sequence yh

such that, for any R′ > R, we have, definitively,

νh(yh +RB) > λ− ε , νh(Rn \ (yh +R′B)) > 1− λ− ε .

(iii) compactness: there exist yh such that for any ε > 0 there is R > 0 with the property that for all
h

νh(yh +RB) ≥ 1− ε .

By the equality in (A.2) we can exclude case (i).
In order to exclude also case (ii), notice that it would imply the existence of a sequence ψh obtained by
suitably rescaling-translating the fh’s such that ‖ψh‖Ln′ = 1, δ(ψh) → 0 and∫

B

|ψh|n
′
> λ− ε,

∫
Rn\2B

|ψh|n
′
> 1− λ− ε
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for h large enough. Let now ϕ ∈ C∞c (2B) with 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in a neighborhood of B. Then by
the Sobolev inequality we find

‖Dψh‖ = |D(ϕψh)|(B) + |Dψh|(2B\B) + |D((1− ϕ)ψh)|(Rn \ 2B)

= ‖D(ϕψh)‖ − |D(ϕψh)|(2B\B) + |Dψh|(2B\B) + ‖D((1− ϕ)ψh)‖ − |D((1− ϕ)ψh)|(2B\B)

≥ nω1/n
n

(
‖ϕψh‖Ln′ + ‖(1− ϕ)ψh‖Ln′

)
− 2

∫
2B\B

ψh|∇ϕ| .

If we let h→∞ we deduce

nω1/n
n ≥ nω1/n

n

(
(λ− ε)1/n′ + (1− λ− ε)1/n′

)
− 2(2ε)1/n′‖∇ϕ‖Ln(2B\B) ;

letting ε→ 0, by the strict concavity of t 7→ t1/n′ and 0 < λ < 1 we find a contradiction. We have then
shown that the sequence fh can be assumed to satisfy (A.2), as well as to be in case (iii).

Note that, when ε < 1/2 in (iii), it must be B ∩ (yh + RB) 6= ∅ and therefore, up to replacing R with
1 + 2R, we can restate (iii) in the following way: for every ε there is R > 0 such that

νh(RB) ≥ 1− ε . (A.3)

By this estimate, applying the usual compactness Theorem for BV functions on bounded open sets and a
standard diagonalization argument, we get the existenxe of f ∈ BV (Rn) such that (up to subsequences)
fh → f in Lq

loc(Rn) for every q < n′ and weakly in Ln′ . We can also assume that νh
∗ ν for some

measure ν and, by (A.3), ν(Rn) = 1. Notice that (A.2) gives

ν(x+ rB) ≤ 1
2

for any x ∈ Rn, r < 1. (A.4)

We can now introduce the measures µh = |Dfh| and assume µh
∗ µ. Notice that since fh → f in

L1
loc(Rn), |Df | ≤ µ, hence ‖Df‖ ≤ ‖µ‖ ≤ nω

1/n
n . We will conclude once we prove that ‖f‖Ln′ = 1.

Indeed, this fact will imply at once that fh → f strongly in Ln′(Rn) and that ‖Df‖ = nω
1/n
n . From [10,

Lemma 1.1] (see also [13, Lemma 4.8]) there exist zj ∈ Rn and αj ≥ 0 such that

(a) ν = |f |n′ dx+
∑

j∈N αjδzj ;

(b) µ ≥ |Df |+ nω
1/n
n

∑
j∈N α

1/n′

j δzj
.

By the Sobolev inequality and the assumption δ(fh) → 0,

nω1/n
n = lim

h→∞
‖Dfh‖ ≥ ‖µ‖ ≥ ‖Df‖+ nω1/n

n

∑
j∈N

α
1/n′

j ≥ nω1/n
n

(
‖f‖Ln′ +

∑
j∈N

α
1/n′

j

)
≥ nω1/n

n

(
‖f‖n′

Ln′ +
∑

j∈N
αj

)1/n′

= nω1/n
n .

Therefore equality holds, and in particular exactly one element of {αj} ∪ {‖f‖n′

Ln′} is different from 0,
i.e. it is equal to 1. However, by (A.4), αj ≤ 1/2 for any j, thus αj = 0 for all j and ‖f‖n′

Ln′ = 1 as
desired. �

Appendix B. Elementary properties of λ(f)

We start by proving that in the definition (1.5) of λ(f) the infimum on the right-hand side is attained.

Lemma B.1. Let f ∈ Ln′(Rn), f 6= 0. Then the minimization problem

λ(f) := inf

{
‖f − aχx+rB‖n′

Ln′

‖f‖n′

Ln′
: |a|n

′
rnωn = ‖f‖n′

Ln′ , a ∈ R , x ∈ Rn

}
,

has a solution.
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Proof. We may assume without loss of generality that ‖f‖Ln′ = 1. We claim that λ(f) < 2. To this aim,
notice that since f 6= 0 we may always assume (up to a translation and a change of sign) that f(0) > 0
and that

lim
r→0

1
rn

∫
rB

|f(x)− f(0)|n
′
dx = 0.

Making use of the above equation, we fix a sequence rh → 0 so that the functions fh(y) = f(rhy) converge
in Ln′(B) and a.e. in B to the constant value f(0). For all h denote by ah the positive number such that
an′

h r
n
hωn = 1. Let us show that there exists h such that ‖f − ahχrhB‖n′

Ln′ < 2. In fact, if this is not true

we have in particular that ‖f − ah‖n′

Ln′ (rhB)
≥ 1 for all h and, by rescaling,

rn
h

∫
B

|fh(y)− r1−n
h ω−1/n′

n |n
′
dy ≥ 1 for all h ,

which in turn gives immediately that∫
B

(
|1− ω1/n′

n rn−1
h fh(y)|n

′
− 1

)
dy ≥ 0 for all h .

Notice that ∣∣∣|1− ω
1/n′

n rn−1
h fh(y)|n′ − 1

∣∣∣
rn−1
h

≤ C(n) max{|fh(y)|, rh|fh(y)|n
′
} .

Therefore, the functions on the left hand side of this inequality are equi-integrable and thus, since
rn−1
h fh(y) → 0 for a.e. y ∈ B, we easily get

−f(0)n′ω(n′+1)/n′

n = lim
h→∞

∫
B

|1− ω
1/n′

n rn−1
h fh(y)|n′ − 1
rn−1
h

dy ≥ 0 ,

which is a contradiction, since f(0) > 0. Hence, λ(f) < 2.
Let us now consider a minimizing sequence ah χxh+rhB for λ(f). Up to a subsequence, we may assume
that rh converge to some value r ∈ [0,∞]. Let us prove that 0 < r <∞. In fact,∫

Rn

|f − ah χxh+rhB |
n′ =

∫
xh+rhB

|f − ah|n
′
+

∫
Rn\(xh+rhB)

|f |n
′

≥

[
1−

( ∫
xh+rhB

|f |n
′
)1/n′

]n′

+
∫

Rn\(xh+rhB)

|f |n
′
;

(B.1)

then, if r = 0, since |(xh + rhB)| → 0, passing to the limit in this inequality we would conclude that
λ(f) ≥ 2, which is impossible. Similarly, if r = ∞, we have that for every R > 0∫

Rn

|f − ah χxh+rhB |
n′ =

∫
RB

|f − ah χxh+rhB |
n′ +

∫
Rn\RB

|f − ah χxh+rhB |
n′

≥

∣∣∣∣∣
( ∫

RB

|f |n
′
)1/n′

− |ah||(xh + rhB) ∩RB|1/n′

∣∣∣∣∣
n′

+

∣∣∣∣∣ |ah||(xh + rhB) \RB|1/n′ −
( ∫

Rn\RB

|f |n
′
)1/n′

∣∣∣∣∣
n′

.

Since |ah||(xh + rhB) ∩RB| → 0, letting first h→∞ and then R→∞, from the previous inequality we
get again λ(f) ≥ 2. This proves that 0 < r <∞ and this in turn implies that ah converges to a finite value
a 6= 0. Finally, if the sequence xh were unbounded, from (B.1) we would get again λ(f) ≥ 2. This shows
that also xh converges (up to a subsequence) to some x ∈ Rn and that λ(f) = ‖f − aχx+rB‖n′

Ln′ . �

We conclude by proving the next comparison lemma.

Lemma B.2. Let E be a Borel subset of Rn with finite measure. Then λ(χE ) ≤ λ∗(E) ≤ 2n′+1λ(χE ).
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Proof. The first inequality is trivial. Concerning the second one, without loss of generality we can assume
that |E| = 1 and that

λ(χE ) =
∫
|χE − aχrB |

n′ .

If a ≤ 1/2 then

λ(χE ) ≥
∫

E

|χE − aχrB |
n′ ≥

∫
E

1
2n′

=
2

2n′+1
≥ λ∗(E)

2n′+1
.

Otherwise let s > 0 be such that ωns
n = |E| = 1; if a ∈ [1/2, 1], by an′ωnr

n = 1 we deduce s ≤ r, and
therefore

λ∗(E) ≤ |E∆sB| = 2|sB \ E| ≤ 2|rB \ E| = 2
an′

∫
rB\E

an′ ≤ 2n′+1λ(χE ) .

In the end, if a ≥ 1 then s ≥ r and therefore

λ∗(E) ≤ |E∆sB| = 2|E \ sB| ≤ 2|E \ rB| = 2
∫

E\rB

|χE − aχrB |
n′ ≤ 2λ(χE ) .

�
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