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1 Introduction
The aim of this paper is the extension to an in�nite-dimensional framework of the theory of �ows
associated to weakly di�erentiable (with respect to the spatial variable x) vector �elds b(t, x).
Starting from the seminal paper [30], the �nite-dimensional theory had in recent times many
developments, with applications to �uid dynamics [40], [41], [26], to the theory of conservation
laws [5], [3], and it covers by now Sobolev and even bounded variation [1] vector�elds, under
suitable bounds on the distributional divergence of bt(x) := b(t, x). Furthermore, in the case
of W 1,p

loc vector �elds with p > 1, even quantitative error estimates have been found in [22]; we
refer to the Lecture Notes [2] and [6], and to the bibliographies therein, for the most recent
developments on this subject. Our paper �lls the gap, pointed out in [2], between this family
of results and those available in in�nite-dimensional spaces, where only exponential integrability
assumptions on ∇bt have been considered so far.

Before passing to the description of our results in Wiener spaces, we brie�y illustrate the
heuristic ideas underlying the above-mentioned �nite-dimensional results. The �rst basic idea is
not to look for pointwise uniqueness statements, but rather to the family of solutions to the ODE
as a whole. This leads to the concept of �ow map X(t, x) associated to b i.e. a map satisfying
X(0, x) = x and Ẋ(t, x) = bt(X(t, x)). It is easily seen that this is not an invariant concept,
under modi�cation of b in negligible sets. This leads to the concept of Lr-regular �ow: we give
here the de�nition adopted in this paper when (E, ‖ · ‖) is a separable Banach space endowed
with a Gaussian measure γ; in the �nite-dimensional theory (E = RN ) other reference measures
γ could be considered as well (for instance the Lebesgue measure [30], [1]).

De�nition 1.1 (Lr-regular b-�ow). Let b : (0, T ) × E → E be a Borel vector �eld. If X :
[0, T ] × E → E is Borel and 1 ≤ r ≤ ∞, we say that X is a Lr-regular �ow associated to b if
the following two conditions hold:
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(i) for γ-a.e. x ∈ X the map t 7→ ‖bt(X(t, x))‖ belongs to L1(0, T ) and

X(t, x) = x+
∫ t

0
bτ (X(τ, x)) dτ ∀ t ∈ [0, T ]. (1)

(ii) for all t ∈ [0, T ] the law of X(t, ·) under γ is absolutely continuous with respect to γ, with
a density ρt in Lr(γ), and supt∈[0,T ] ‖ρt‖r <∞.

In (1), the integral is understood in Bochner's sense, namely

〈e∗,X(t, x)− x〉 =
∫ t

0
〈e∗, bτ (X(τ, x))〉 dτ ∀ e∗ ∈ E∗.

It is not hard to show that (see Remark 4.2), because of condition (ii), this concept is indeed
invariant under modi�cations of b, and so it is appropriate to deal with vector �elds belonging
to Lp spaces. On the other hand, condition (ii) involves all trajectories X(·, x) up to γ-neglibigle
sets, so the best we can hope for, using this concept, is existence and uniqueness of X(·, x) up
to γ-negligible sets.

The second basic idea is the the concept of �ow is directly linked, via the theory of charac-
teristics, to the transport equation

d

dt
f(s, x) + 〈bs(x),∇xf(s, x)〉 = 0 (2)

and to the continuity equation
d

dt
µt + div(btµt) = 0. (3)

The �rst link has been exploited in [30] to transfer well-posedness results from the transport
equation to the ODE, getting uniqueness of L∞-regular (with respect to Lebesgue measure) b-
�ows in RN (see [19] for the generalization of this approch to the case of a Gaussian measure).
This is possible because the �ow maps (s, x) 7→ X(t, s, x) (here we made also explicit the
dependence on the initial time s, that we kept equal to 0 in De�nition 1.1) solve (2) for all
t ∈ [0, T ].

Here, in analogy with the approach initiated in [1] (see also [33] for a stochastic counterpart
of it, where (3) becomes the forward Kolmogorov equation), we prefer to deal with the continuity
equation, which seems to be more natural in a probabilistic framework. The link between the
ODE and (3) is based on the fact that any positive �nite measure η in C

(
[0, T ];E

)
concentrated

on solutions to the ODE is expected to give rise to a weak solution to (3) (if the divergence
operator is properly understood), with µt given by the marginals of η at time t: indeed, (3)
describes the evolution of a probability density under the action of the �velocity �eld� b. We
shall call these measures η generalized b-�ows. Our goal will be, as in [1], [33], to transfer
well-posedness informations from the continuity equation to the ODE, getting existence and
uniqueness results of the Lr-regular b-�ows, under suitable assumptions on b.

We have to take into account an intrinsic limitation of the theory of Lr-regular b-�ows that
is typical of in�nite-dimensional spaces (see for instance [47]): even if b(t, x) ≡ v were constant,
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the �ow map X(t, x) = x+ tv would not leave γ quasi-invariant, unless v belongs to a particular
subspace of E, the so-called Cameron-Martin space H of (E, γ), see (7) for its precise de�nition.
So, from now on we shall assume that b takes its values in H. However, thanks to a suitable
change of variable, we will treat also some non H-valued vector �elds, in the same spirit as in
[43], [13] (see also [35], [47]).

We recall that H can be endowed with a canonical Hilbertian structure 〈·, ·〉H that makes the
inclusion of H in E compact; we �x an orthonormal basis (ei) of H and we shall denote by bi

the components of b relative to this basis (however, all our results are independent of the choice
of (ei)).

With this choice of the range of b, whenever µt = utγ the equation (3) can be written in the
weak sense as

d

dt

∫

E
ut dγ =

∫

E
〈bt,∇φ〉Hut dγ ∀φ ∈ Cyl(E, γ), (4)

where Cyl(E, γ) is a suitable space of cylindrical functions induced by (ei) (see De�nition 2.3).
Furthermore, a Gaussian divergence operator divγc can be de�ned as the adjoint in L2(γ) of the
gradient along H:

∫

E
〈c,∇φ〉H dγ = −

∫

E
φdivγc dγ ∀φ ∈ Cyl(E, γ).

Another typical feature of our Gaussian framework is that L∞-bounds on divγ do not seem
natural, unlike those on the Euclidean divergence in RN when the reference measure is the
Lebesgue measure: indeed, even if b(t, x) = c(x), with c : RN → RN smooth and with bounded
derivatives, we have divγc = divc−〈c, x〉 which is unbounded, but exponentially integrable with
respect to γ.

We can now state the main result of this paper:

Theorem 1.2 (Existence and uniqueness of Lr-regular b-�ows). Let p, q > 1 and let b : (0, T )×
E → H be satisfying:

(i) ‖bt‖H ∈ L1
(
(0, T );Lp(γ)

)
;

(ii) for a.e. t ∈ (0, T ) we have bt ∈ LDq
H(γ;H) with

∫ T

0

(∫

E
‖(∇bt)sym(x)‖qHS dγ(x)

)1/q

dt <∞, (5)

and divγbt ∈ L1
(
(0, T );Lq(γ)

)
;

(iii) exp(c[divγbt]−) ∈ L∞(
(0, T );L1(γ)

)
for some c > 0.

If r := max{p′, q′} and c ≥ rT , then the Lr-regular �ow exists and is unique in the following
sense: any two Lr-regular �ows X and X̃ satisfy

X(·, x) = X̃(·, x) in [0, T ], for γ-a.e. x ∈ E.
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Furthermore, X is Ls-regular for all s ∈ [1, cT ] and the density ut of the law of X(t, ·) under γ
satis�es ∫

(ut)s dγ ≤
∥∥∥∥
∫

E
exp

(
Ts[divγbt]−

)
dγ

∥∥∥∥
L∞(0,T )

∀ s ∈ [1,
c

T
].

In particular, if exp(c[divγbt]−) ∈ L∞(
(0, T );L1(γ)

)
for all c > 0, then the Lr-regular �ow exists

globally in time, and is Ls-regular for all s ∈ [1,∞).

The symmetric matrix (∇bt)sym, whose Hilbert-Schmidt norm appears in (5), corresponds
to the symmetric part of the derivative of bt, de�ned in a weak sense by (22): notice that, in
analogy with the �nite dimensional result [18], no condition is imposed on the antisymmetric part
of the derivative, which need not be given by a function; this leads to a particular function space
LDq(γ;H) (well studied in linear elasticity in �nite dimensions, see [46]) which is for instance
larger than the Sobolev space W 1,q

H (γ;H), see De�nitions 2.4 and 2.6. Also, we will prove that
uniqueness of X holds even within the larger class of generalized b-�ows.

Let us explain �rst the main di�erences between our strategy and the techniques used in [23],
[24], [25], [43], [13] for autonomous (i.e. time independent) vector �elds in in�nite-dimensional
spaces. The standard approach for the existence of a �ow consists in approximating the vector
�eld b with �nite-dimensional vector �elds bN , constructing a �nite-dimensional �ow XN , and
then passing to the limit as N → ∞. This part of the proof requires quite strong a-priori
estimates on the �ows to have enough compactness to pass to the limit. To get these a-priori
estimates, the assumptions on the vector �eld, instead of the hypotheses (i)-(iii) in Theorem 1.2,
are:

‖b‖H ∈
⋂

p∈[1,∞)

Lp(γ),

exp(c‖∇b‖L(H,H)) ∈ L1(γ) for all c > 0,

exp(c|divγb|) ∈ L1(γ) for some c > 0,

where ‖∇b‖L(H,H) denotes the operator norm of ∇b from H to H. So, apart from the minor fact
that we allow a measurable time dependence of b, the main di�erence between these results and
ours is that we replace exponential integrability of the operator norm of ∇b by q-integrability of
the (stronger) Hilbert-Schmidt norm of ∇bt (or, as we said, of its symmetric part).

Let us remark for instance that, just for the existence part of a generalized b-�ow, the
hypothesis on divγ b could be relaxed to a one sided bound, as we did. Indeed, this assumption
allows to prove uniform estimates on the density of the approximating �ows, see for instance
Theorem 6.1. On the other hand, the proof of the uniqueness of the �ow strongly relies on the
fact that one can use the approximating �ows XN also for negative times.

Our strategy is quite di�erent from the above one: the existence and uniqueness of a regular
�ow will be proved at once in the following way. First of all, the existence of a generalized b-�ow
η, even without the regularity assumption (5), can be obtained thanks to a tightness argument for
measures in C

(
[0, T ];E

)
and proving uniform estimates on the density of the �nite-dimensional

approximating �ows. Then we prove uniqueness in the class of generalized b-�ows. This implies
as a byproduct that η is induced by a �deterministic� X, thus providing the desired existence and
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uniqueness result. Moreover the �exibility of this approach allows us to prove the stability of the
Lr-regular �ow under smooth approximations of the vector �eld, and thanks to the uniqueness
we can also easily deduce the semigroup property.

The main part of the paper is therefore devoted to the proof of uniqueness. As we already
said, this depends on the well-posedness of the continuity equation (4). Speci�cally, we will
show uniqueness of solutions ut in the class L∞

(
(0, T );Lr(γ)

)
. The key point, as in the �nite-

dimensional theory, is to pass from (4) to

d

dt

∫

E
β(ut) dγ =

∫

E
〈bt,∇φ〉Hβ(ut) dγ +

∫

E
[β(ut)− utβ′(ut)]divγbt dγ ∀φ ∈ Cyl(E, γ), (6)

for all β ∈ C1(R) with β′(z) and zβ′(z)−β(z) bounded, and then to choose as function β suitable
C1 approximations of the positive or of the negative part, to show that the equation preserves
the sign of the initial condition. The passage from (4) to (6) can be formally justi�ed using the
rule

divγ(vc) = vdivγc + 〈∇v, c〉H
and the chain rule∇β(u) = β′(u)∇u, but it is not always possible. It is precisely at this place that
the regularity assumptions on bt enter. The �nite-dimensional strategy involves a regularization
argument (in the space variable only) and a careful analysis of the �commutators� (with v = ut,
c = bt)

rε(c, v) := eε〈c,∇Tεv〉H − Tε(divγ(vc)),

where ε is the regularization parameter and Tε is the regularizing operator. Already in the �nite-
dimensional theory (see [30], [1]) a careful estimate of rε is needed, taking into account some
cancellation e�ects. These e�ects become even more important in this framework, where we
use as a regularizing operator the Ornstein-Uhlenbeck operator (32) (in particular the semigroup
property and the fact that Tt is self-adjoint from Lp(γ) to Lp′(γ) will play an important role). The
core of our proof is indeed Section 6.2, where we obtain commutator estimates in RN independent
of N , and therefore suitable for an extension, via the canonical cylindrical approximation, to E.

The paper is structured as follows: �rst we recall the main notation needed in the paper. In
Section 3 we prove the well-posedness of the continuity equation, while in Section 4 we prove
existence, uniqueness and stability of regular �ows. The results of both sections rely on some
�nite dimensional a-priori estimates that we postpone to Section 6. Finally, to apply our results
also in more general situations, in Section 5 we see how our results can be extended to the case
non H-valued vector �elds.

2 Main notation and preliminary results
Measure-theoretic notation. All measures considered in this paper are positive, �nite and
de�ned on the Borel σ-algebra. Given f : E → F Borel and a measure µ in E, we denote by f#µ
the push-forward measure in F , i.e. the law of f under µ. We denote by χA the characteristic
function of a set A, equal to 1 on A, and equal to 0 on its complement.
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We consider a separable Banach space (E, ‖ · ‖) endowed with a Gaussian measure γ, i.e.
(e∗)#γ is a Gaussian measure in R for all e∗ ∈ E∗. We shall assume that γ is centered and
non-degenerate, i.e. that

∫
E x dγ(x) = 0 and γ is not supported in a proper subspace of E.

We recall (see [38]) that, by Fernique's theorem,
∫
E exp(c‖x‖2) dγ(x) < ∞, whenever 2c <

sup‖e∗‖≤1 ‖〈e∗, x〉‖L2(γ).
Cameron-Martin space. We shall denote by H ⊂ E the Cameron Martin space associated to
(E, γ). It can be de�ned [12, 38] as

H :=
{∫

E
φ(x)x dγ(x) : φ ∈ L2(γ)

}
. (7)

The non-degeneracy assumption assumption on γ easily implies that H is a dense subset of E.
If we denote by i : L2(γ) → H ⊂ E the map φ 7→ ∫

E φ(x)x dγ(x), and by K the kernel of i, we
can de�ne the Cameron-Martin norm

‖i(φ)‖H := min
ψ∈K

‖φ− ψ‖L2(γ),

whose induced scalar product 〈·, ·〉H satis�es

〈i(φ), i(ψ)〉H =
∫

E
φψ dγ ∀φ ∈ L2(γ), ∀ψ ∈ K⊥. (8)

Notice also that i(〈e∗, x〉) ∈ K⊥ for all e∗ ∈ E∗, because
∫

E
〈e∗, x〉ψ(x) dγ(x) = 〈e∗,

∫

E
xψ(x) dγ(x)〉 = 0 ∀ψ ∈ K.

Since i is not injective in general, it is often more convenient to work with the map j : E∗ → H,
dual of the inclusion map of H in E (i.e. j(e∗) is de�ned by 〈j(e∗), h〉H = 〈e∗, h〉 for all h ∈ H).
The set j(E∗) is obviously dense in H (for the norm ‖ · ‖H), and j is injective thanks to the
density of H in E; furthermore, choosing φ(x) = 〈e∗, x〉 in (8), we see that i(〈e∗, x〉) = j(e∗).
As a consequence the vector space {〈e∗, x〉 : e∗ ∈ E∗} is dense in K⊥. Since ‖i(〈e∗, x〉)‖ ≤(∫
E ‖x‖2 dγ

)1/2‖〈e∗, x〉‖L2(γ) = ‖i(〈e∗, x〉)‖H, the inclusion of H in E is continuous, and it is not
hard to show that it is also compact (see [12, Corollary 3.2.4]).

This setup becomes much simpler when (E, ‖ · ‖) is an Hilbert space:
Remark 2.1 (The Hilbert case). Assume that (E, ‖·‖) is an Hilbert space. Then, after choosing
an orthonormal basis in which the covariance operator (x, y) 7→ ∫

E〈x, z〉〈y, z〉 dγ(z) is diagonal,
we can identify E with `2, endowed with the canonical basis εi, and the coordinates xi of x ∈ `2
relative to εi are independent, Gaussian and with variance λ2

i (with λi > 0 by the non-degeneracy
assumption). Then, the integrability of ‖x‖2 implies that

∑
i λ

2
i is convergent, e∗i = εi (here we

are using the Riesz isomorphism to identify `2 with its dual), ei = λiεi and the Cameron-Martin
space is

H :=

{
x ∈ `2 :

∞∑

i=1

(xi)2

λ2
i

<∞
}
.

The map j : `2 → H is given by (xi) 7→ (λixi).
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Let us remark that, although we constructed H starting from E, it is indeed H which plays
a central role in our results; according to the Gross viewpoint, this space might have been taken
as the starting point, see [12, �3.9] and Section 4.4 for a discussion of this fact.
Finite-dimensional projections. The above-mentioned properties of j allow the choice of
(e∗n) ⊂ E∗ such that (j(e∗n)) is a complete orthonormal system in H. Then, setting en := j(e∗n),
we can de�ne the continuous linear projections πN : E → H by

πN (x) :=
N∑

k=1

〈e∗k, x〉ek
(

=
N∑

k=1

〈ek, x〉Hek for x ∈ H
)
. (9)

The term �projection� is justi�ed by the fact that, by the second equality in (9), πN |H is indeed
the orthogonal projection on

HN := span
(
e1, . . . , eN

)
. (10)

From now such a basis (ei) of H will be �xed, and we shall denote by vi the components of
v ∈ H relative to this basis. Also, for a given Borel function u : E → R, we shall denote by ENu
the conditional expectation of u relative to the σ-algebra generated by 〈e∗1, x〉, . . . , 〈e∗N , x〉. The
following result follows by martingale convergence theorems, because the σ�algebra generated
by 〈e∗i , x〉 is the Borel σ-algebra (see also [12, Corollary 3.5.2]):
Lemma 2.2. For all p ∈ [1,∞) and u ∈ Lp(γ) we have ENu→ u γ-a.e. and in Lp(γ).

According to these projections, we can de�ne the space Cyl(E, γ) of smooth cylindrical func-
tions (notice that this de�nition depends on the choice of the basis (en)).
De�nition 2.3 (Smooth cylindrical functions). Let C∞b (RN ) be the space of smooth functions
in RN , bounded together with all their derivatives. We say that φ : E → R is cylindrical if

φ(x) = ψ
(〈e∗1, x〉, . . . , 〈e∗N , x〉

)
(11)

for some integer N and some ψ ∈ C∞b (RN ).
If v ∈ E and φ : E → R we shall denote by ∂vφ the partial derivative of φ along v,

wherever this exists. Obviously, cylindrical functions are di�erentiable in�nitely many times in
all directions: if φ is as in (11), the �rst order derivative is given by

∂vφ(x) =
N∑

i=1

∂ψ

∂zi

(〈e∗1, x〉, . . . , 〈e∗N , x〉
)〈e∗i , v〉. (12)

If v ∈ H the above formula becomes

∂vφ(x) =
N∑

i=1

∂ψ

∂zi

(〈e∗1, x〉, . . . , 〈e∗N , x〉
)〈ei, v〉H,

and this allows to de�ne the gradient of φ as an element of H:

∇φ(x) :=
N∑

i=1

∂ψ

∂zi

(〈e∗1, x〉, . . . , 〈e∗N , x〉
)
ei ∈ H.
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Gaussian divergence and di�erentiability along H. Let b : E → H be a vector �eld with
‖b‖H ∈ L1(γ); we say that a function divγb ∈ L1(γ) is the Gaussian divergence of b (see for
instance [12, �5.8]) if

∫

E
〈∇φ, b〉H dγ = −

∫

E
φdivγb dγ ∀φ ∈ Cyl(E, γ). (13)

In the �nite-dimensional space E = RN endowed with the standard Gaussian we have, by an
integration by parts,

divγb = div b− 〈b, x〉. (14)
We recall the integration by parts formula

∫

E
∂j(e∗)φdγ =

∫

E
φ〈e∗, x〉 dγ ∀φ ∈ Cyl(E, γ), ∀ e∗ ∈ E∗. (15)

This motivates the following de�nitions: if both u(x) and u(x)〈e∗, x〉 belong to L1(γ), we call
weak derivative of u along j(e∗) the linear functional on Cyl(E, γ)

φ 7→ −
∫

E
u∂j(e∗)φdγ +

∫

E
uφ〈e∗, x〉 dγ. (16)

As in the classical �nite-dimensional theory, we can de�ne Sobolev spaces by requiring that
these functionals are representable by Lq(γ) functions, see Chapter 5 of [12] for a more complete
discussion of this topic.

De�nition 2.4 (Sobolev space W 1,q
H (γ)). If 1 ≤ q ≤ ∞, we say that u ∈ L1(γ) belongs to

W 1,q
H (E, γ) if u(x)〈e∗, x〉 ∈ L1(γ) for all e∗ ∈ E∗ and there exists g ∈ Lq(γ;H) satisfying
∫

E
u∂j(e∗)φdγ +

∫

E
φ〈g, j(e∗)〉H dγ =

∫

E
uφ〈e∗, x〉 dγ ∀ e∗ ∈ E∗, ∀φ ∈ Cyl(E, γ). (17)

The condition u(x)〈e∗, x〉 ∈ L1(γ) is automatically satis�ed whenever u ∈ Lp(γ) for some
p > 1, thanks to the fact that the law of 〈e∗, x〉 under γ is Gaussian, so that 〈e∗, x〉 ∈ Lr(γ) for
all r <∞.

We shall denote, as usual, the (unique) weak derivative g by ∇u and its components 〈g, ei〉H
by ∂iu, so that (17) becomes

∫

E
u∂iφdγ +

∫

E
φ∂iu dγ =

∫

E
uφ〈e∗i , x〉 dγ ∀ i ≥ 1, ∀φ ∈ Cyl(E, γ). (18)

We recall that a continuous linear operator L : H → H is said to be Hilbert-Schmidt if ‖L‖HS ,
de�ned as the square root of the trace of LtL, is �nite. Accordingly, if Lij = 〈L(ei), ej〉H is the
symmetric matrix representing L : H → H in the basis (ei), we have that L is of Hilbert-Schmidt
class if and only if

∑
ij L

2
ij is convergent, and

‖L‖HS =
√∑

ij

L2
ij . (19)
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The following proposition shows that bounded continuous operators from E to H are of
Hilbert-Schmidt class, when restricted to H. In particular our results apply under p-integrability
assumptions on ∇bt when the operator norm between E and H is used.

Proposition 2.5. Let L : E → H be a linear continuous operator. Then the restriction of L to
H is of Hilbert-Schmidt class and ‖L‖HS ≤ C‖L‖L(E,H), with C depending only on E and γ.

Proof. By [12, Theorem 3.5.10] we can �nd a complete orthonormal system (fn) of H such that∑
n ‖fn‖2 =: C < +∞. Denoting by ‖L‖ the operator norm of L from E to H, we have then

‖L‖2
HS =

∑

i,j

(〈L(fi), fj〉H)2 =
∑

i

‖L(fi)‖2
H ≤ ‖L‖2

∑

i

‖fi‖2 = C‖L‖2.

From now on, we shall denote by Lp(γ;H) the space of Borel maps c : E → H such that
‖c‖H ∈ Lp(γ). Given the basis (ei) of H, we shall denote by ci the components of c relative to
this basis.

De�nition 2.6 (The space LD(γ;H)). If 1 ≤ q ≤ ∞, we say that c ∈ L1(γ;H) belongs to
LDq(γ;H) if:

(a) for all h = j(e∗) ∈ H, the function 〈c, h〉H has a weak derivative in Lq(γ) along h, that we
shall denote by ∂h〈c, h〉H, namely

∫

E
〈c, h〉H∂hφdγ +

∫

E
φ∂h〈c, h〉H dγ =

∫

E
〈c, h〉Hφ〈e∗, x〉 dγ ∀φ ∈ Cyl(E, γ); (20)

(b) the symmetric matrices

(∇c)sym
ij (x) :=

1
4
[
∂(ei+ej)(c

i + cj)(x)− ∂(ei−ej)(c
i − cj)(x)

]
(21)

satisfy ∫

E
‖(∇c)sym‖qHS dγ <∞.

If all components ci of c belongs to W 1,q
H (γ) then the function (∇c)sym

ij in (21) really corre-
sponds to the symmetric part of (∇c)ij = ∂jc

i, and this explains our choice of notation. However,
according to our de�nition of LDq(γ;H), the vector �elds c in this space need not have compo-
nents ci in W 1,q

H (γ). Moreover, from (21) we obtain that (∂icj +∂jc
i)/2 are representable by the

Lq(γ) functions (∇c)sym
ij , namely

∫

E

1
2
(ci∂jφ+ cj∂iφ) dγ +

∫

E
φ(∇c)sym

ij dγ =
∫

E

1
2
(ci〈e∗j , x〉+ cj〈e∗i , x〉)φdγ ∀φ ∈ Cyl(E, γ).

(22)
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Remark 2.7 (Density of cylindrical functions). We recall that Cyl(E, γ) is dense in all spaces
W 1,p
H (γ), 1 ≤ p < ∞. More precisely, if 1 ≤ p, q < ∞, any function u ∈ W 1,p

H (γ) ∩ Lq(γ) can
be approximated in Lq(γ) by cylindrical functions un with ∇un → ∇u strongly in Lp(γ;H). In
the case p = ∞, convergence of the gradients occurs in the weak∗ topology of L∞(γ;H). These
density results can be proved �rst in the �nite-dimensional case and then, thanks to Lemma 2.2,
in the general case.

Remark 2.8. In the sequel we shall use the simple rule

divγ(bu) = udivγb + 〈b,∇u〉H,

valid whenever divγb ∈ Lp(γ), u ∈ Lp′(γ), b ∈ Lq(γ;H) and u ∈W 1,q′
H (γ). The proof is a direct

consequence of Remark 2.7.

Remark 2.9 (Invariance of divγ , W 1,q
H (γ), LDq(γ)). The de�nitions of Gaussian divergence,

Sobolev space and LD space, as given, involve the space Cyl(E, γ), which depends on the choice
of the complete orthonormal basis (ei). However, an equivalent formulation could be given
using the space C1

b (E, γ) of functions that are Frechet di�erentiable along all directions in H,
with a bounded continuous gradient: indeed, cylindrical functions belong to C1

b (E, γ), and since
C1
b (E, γ) is contained in W 1,∞

H (γ), thanks to Remark 2.7 the functions in this space can be
well approximated (in all spaces Lp(γ) with p < ∞, and with weak∗ convergence in L∞(γ) of
gradients) by cylindrical functions. A similar remark applies to the continuity equation, discussed
in the next section.

3 Well posedness of the continuity equation
Let I ⊂ R be an open interval. In this section we shall consider the continuity equation in I×E,
possibly with a source term f , i.e.

d

dt
(utγ) + divγ(btutγ) = fγ. (23)

This equation has to be understood in the weak sense, namely we require that t 7→ ∫
E utφdγ is

absolutely continuous in I and

d

dt

∫

E
utφdγ =

∫

E
〈bt,∇φ〉Hut dγ +

∫

E
fφ dγ a.e. in I, ∀φ ∈ Cyl(E, γ). (24)

The minimal requirement necessary to give a meaning to (24) is that u, f and |u|‖b‖H belong to
L1

(
I;L1(γ)

)
, and we shall always make assumptions on u, f and b to ensure that these properties

are satis�ed.
Sometimes, to simplify our notation, with a slight abuse we drop γ and write (23) just as

d

dt
ut + divγ(btut) = f.
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However, we always have in mind the weak formulation (24), and we shall always assume that
f ∈ L1

(
I;L1(γ)

)
.

Since we are, in particular, requiring all maps t 7→ ∫
E utφdγ to be uniformly continuous in I,

the map t 7→ ut is weakly continuous in I, with respect to the duality of L1(γ) with Cyl(E, γ).
Therefore, if I = (0, T ), it makes sense to say that a solution ut of the continuity equation starts
from ū ∈ L1(γ) at t = 0:

lim
t↓0

∫

E
utφdγ =

∫

E
ūφ dγ ∀u ∈ Cyl(E, γ). (25)

Theorem 3.1 (Well-posedness of the continuity equation). (Existence) Let b : (0, T )× E → H
be satisfying

‖bt‖H ∈ L1
(
(0, T );Lp(γ)

)
for some p > 1 (26)

and
exp(c[divγbt]−) ∈ L∞(

(0, T );L1(γ)
)

for some c > Tp′. (27)
Then, for any nonnegative ū ∈ L∞(γ), the continuity equation has a nonnegative solution ut with
u0 = ū satisfying (as a byproduct of its construction)

∫
(ut)r dγ ≤ ‖ū‖rL∞(γ)

∥∥∥∥
∫

E
exp

(
Tr[divγbt]−

)
dγ

∥∥∥∥
L∞(0,T )

∀ r ∈ [1,
c

T
], t ∈ [0, T ]. (28)

(Uniqueness) Let b : (0, T )× E → H be satisfying (26), bt ∈ LDq(γ;H) for a.e. t ∈ (0, T ) with
∫ T

0

(∫

E
‖(∇bt)sym‖qHS dγ

)1/q

dt <∞ (29)

for some q > 1, and
divγbt ∈ L1

(
(0, T );Lq(γ)

)
. (30)

Then, setting r = max{p′, q′}, if c ≥ Tr the continuity equation (23) in (0, T ) × E has at most
one solution in the function space L∞

(
(0, T );Lr(γ)

)
.

De�nition 3.2 (Renormalized solutions). We say that a solution ut of (23) in I × E is renor-
malized if

d

dt
β(ut) + divγ(btβ(ut)) = [β(ut)− utβ

′(ut)]divγbt + fβ′(ut) (31)

in the sense of distributions in I × E, for all β ∈ C1(R) with β′(z) and zβ′(z)− β(z) bounded.

In the sequel we shall often use the Ornstein-Uhlenbeck operator Tt, de�ned for u ∈ L1(γ)
by Mehler's formula

Ttu(x) :=
∫

E
u(e−tx+

√
1− e−2ty) dγ(y). (32)

In the next proposition we summarize the main properties of the OU operator used in this
paper, see Theorem 1.4.1, Theorem 2.9.1 and Proposition 5.4.8 of [12].
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Proposition 3.3 (Properties of the OU semigroup). Let Tt be as in (32).

(i) ‖Ttu‖Lp(γ) ≤ ‖u‖Lp(γ) for all u ∈ Lp(γ), p ∈ [1,∞], t ≥ 0, and equality holds if u is
nonnegative and p = 1.

(ii) Tt is self-adjoint in L2(γ) for all t ≥ 0. More generally, if 1 ≤ p ≤ ∞, we have
∫

E
vTtu dγ =

∫

E
uTtv dγ ∀u ∈ Lp(γ), ∀ v ∈ Lp′(γ). (33)

(iii) For all p ∈ (1,∞), t > 0 and u ∈ Lp(γ) we have Ttu ∈W 1,p
H (γ) and

‖∇Ttu‖Lp(γ;H) ≤ C(p, t)‖u‖Lp(γ). (34)

(iv) For all p ∈ [1,∞] and u ∈W 1,p
H (γ) we have ∇Ttu = e−tTt∇u.

(v) Tt maps Cyl(E, γ) in Cyl(E, γ) and Ttu→ u in Lp(γ) as t ↓ 0 for all u ∈ Lp(γ), 1 ≤ p <∞.

In the same spirit of (16), we can now extend the action of the semigroup from L1(γ) to
elements ` in the algebraic dual of Cyl(E, γ) as follows:

〈Tt`, φ〉 := 〈`, Ttφ〉 φ ∈ Cyl(E, γ).

This is an extension, because if ` is induced by some function u ∈ L1(γ), i.e. 〈`, φ〉 =
∫
E φu dγ

for all φ ∈ Cyl(E, γ), then because of (33) Tt` is induced by Ttu, i.e. 〈Tt`, φ〉 =
∫
E φTtu dγ for

all φ ∈ Cyl(E, γ). In general we shall say that Tt` is a function whenever there exists (a unique)
v ∈ L1(γ) such that 〈Tt`, φ〉 =

∫
E vφ dγ for all φ ∈ Cyl(E, γ).

In the next lemma we will use this concept when ` is the Gaussian divergence of a vector
�eld c: indeed, ` can be thought via the formula − ∫

E〈c,∇φ〉H dγ as an element of the dual
of Cyl(E, γ). Our �rst proposition provides a su�cient condition ensuring that Tt(divγc) is a
function.

Lemma 3.4. Assume that r ∈ (1,∞) and c ∈ Lr(γ;H). Then Tt(divγc) is a function in Lr(γ)
for all t > 0.

Proof. We use Proposition 3.3(iii) to obtain

|〈Tt(divγc), φ〉| = |〈divγc, Ttφ〉| ≤
∫

E
‖c‖H‖∇Ttφ‖H dγ ≤ C(q, t)‖c‖Lr(γ;H)‖φ‖Lr′ (γ)

for all φ ∈ Cyl(E, γ), and we conclude.

In the sequel we shall denote by (Λ(p))p the p-th moment of the standard Gaussian in R, i.e.

Λ(p) :=
(

(2π)−1/2

∫

R
|x|pe−|x|2/2 dx

)1/p

. (35)
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Proposition 3.5 (Commutator estimate). Let c ∈ Lp(γ;H) ∩ LDq(γ;H) for some p > 1,
1 ≤ q ≤ 2, with divγc ∈ Lq(γ). Let r = max{p′, q′} and set

rε = rε(v, c) := eε〈c,∇Tε(v)〉 − Tε(divγ(vc)). (36)

Then, for ε > 0 and v ∈ Lr(γ) we have

‖rε‖L1(γ) ≤ ‖v‖Lr(γ)

[
Λ(p)ε√
1− e−2ε

‖c‖Lp(γ;H) +
√

2‖divγc‖Lq(γ) + 2‖‖(∇c)sym‖HS‖Lq(γ)

]
. (37)

Finally, −rε → vdivγc in L1(γ) as ε ↓ 0.

Proof. The a-priori estimate (37), which is indeed the main technical point of this paper, will
be proved in the Section 6 in �nite-dimensional spaces. Here we will just mention how the
�nite-dimensional approximation can be performed.

Let us �rst assume that v ∈ L∞. Since vc ∈ Lp(γ;H), the previous lemma ensures that rε
is a function. Keeping c �xed, we see that if vn → v strongly in Lr(γ) then rε(vn, c) → rε(v, c)
in the duality with Cyl(E, γ), and since the L1(γ) norm is lower semicontinuous with respect to
convergence in this duality, thanks to the density of cylindrical functions we see that it su�ces
to prove (37) when v is cylindrical. Keeping now v ∈ Cyl(E, γ) �xed, we consider the vector
�elds

cN :=
N∑

i=1

ENciei.

We observe that (13) gives divγcN = EN (divγc), while (22) gives (∇cN )sym = EN (∇c)sym.
Thus, by Jensen's inequality for conditional expectations we obtain ‖cN‖Lp(γ;H) ≤ ‖c‖Lp(γ;H)

and
∫

E
|divγcN |q dγ ≤

∫

E
|divγc|q dγ,

∫

E
‖(∇cN )sym‖qHS dγ ≤

∫

E
‖(∇c)sym‖qHS dγ.

Now, assuming that v depends only on 〈e∗1, x〉, . . . , 〈e∗M , x〉, if we choose a cylindrical test function
φ depending only on 〈e∗1, x〉, . . . , 〈e∗N , x〉, with N ≥ M (with no loss of generality, because v is
�xed), we get

∫

E
rε(v, c)φdγ =

∫

E
rε(v, cN )φdγ ≤ sup |φ|

∫

E
|rε(v, cN )| dγ

≤ sup |φ|‖v‖Lr(γ)

[
Λ(p)ε√
1− e−2ε

‖cN‖Lp(γ;H) +
√

2‖divγcN‖Lq(γ) + 2‖‖(∇cN )sym‖HS‖Lq(γ)

]

≤ sup |φ|‖v‖Lr(γ)

[
Λ(p)ε√
1− e−2ε

‖c‖Lp(γ;H) +
√

2‖divγc‖Lq(γ) + 2‖‖(∇c)sym‖HS‖Lq(γ)

]
.

This means that, once we know (37) in �nite-dimensional spaces, we obtain that the same
inequality holds in all Wiener spaces for all v ∈ L∞(γ). Finally, to remove also this restriction
on v, we consider a sequence (vn) ⊂ L∞(γ) converging in Lr(γ) to v and we notice that, because
of (37), rε(vn, c) is a Cauchy sequence in L1 converging in the duality with Cyl(E, γ) to rε(v, c).
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The strong convergence of rε can be achieved by a density argument. More precisely, if q > 1
(so that r < ∞), since rε(v, c) = rε(v − φ, c) + rε(φ, c), by (37) and the density of cylindrical
functions in Lr(γ), we need only to consider the case when v = φ is cylindrical. In this case

rε = 〈c, Tε∇φ〉 − Tε(φdivγc + 〈c,∇φ〉)
and its convergence to −φdivγc is an obvious consequence of the continuity properties of Tε.

In the case q = 1 (that is r = ∞), the approximation argument is a bit more involved. Since
we will never consider L∞-regular �ows, we give here just a sketch of the proof. We argue as in
[41]: we write rε(v, c) = rε(v, c− c̃) + rε(v − ṽ, c̃) + rε(ṽ, c̃), with ṽ and c̃ smooth and bounded
with all their derivatives. Using (37) twice, we �rst choose c̃ so that rε(v, c−c̃) is small uniformly
in ε, and then, since now c̃ is smooth with bounded derivatives, it su�ces to choose ṽ close to v
in Ls for some s > 1 to make rε(v − ṽ, c̃) small. We can now conclude as above.

The following lemma is standard (both properties can be proved by a smoothing argument;
for the second one, see [12, Corollary 5.4.3]):

Lemma 3.6 (Chain rules). Let β ∈ C1(R) with β′ bounded.

(i) If u, f ∈ L1
(
I;L1(γ)

)
satisfy d

dtu = f in the weak sense, then d
dtβ(u) = β′(u)f , still in the

weak sense.

(ii) If u ∈W 1,p
H (γ) then β(u) ∈W 1,p

H (γ) and ∇β(u) = β′(u)∇u.
Theorem 3.7 (Renormalization property). Let b : I × E → H be satisfying the assumptions
of the uniqueness part of Theorem 3.1, with I in place of (0, T ). Then any solution ut of the
continuity equation (23) in L∞

(
I;Lr(γ)

)
, with r = max{p′, q′}, is renormalized.

Proof. In the �rst step we prove the renormalized property assuming that ut ∈ W 1,r
H (γ) for a.e.

t, and that both ut and ‖∇ut‖H belong to L∞
(
I;Lr(γ)

)
. Under this assumption, Remark 2.8

gives that divγ(btut) = utdivγbt + 〈bt,∇ut〉H, therefore
d

dt
ut = −utdivγbt + 〈bt,∇ut〉H ∈ L1

(
I;L1(γ)

)
.

Now, using Lemma 3.6 and Remark 2.8 again, we get
d

dt
β(ut) = −β′(ut)utdivγbt − β′(ut)〈bt,∇ut〉H

= [β(ut)− β′(ut)ut]divγbt − β(ut)divγbt − 〈bt,∇β(ut)〉H
= [β(ut)− β′(ut)ut]divγbt − divγ(btβ(ut)).

Now we prove the renormalization property in the general case. Let us de�ne uεt := e−εTε(ut);
since Tε is self-adjoint in the sense of Proposition 3.3(ii) and Tε maps cylindrical functions into
cylindrical functions, the continuity equation d

dtut + divγ(btut) = 0 gives, still in the weak sense
of duality with cylindrical functions,

d

dt
uεt + e−εTε[divγ(btut)] = 0.
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Recalling the de�nition (36), we may write

d

dt
uεt + divγ(btuεt ) = e−εrε + uεtdivγbt.

Denoting by f ε the right hand side, we know from Proposition 3.5 that fε → 0 in L1
(
(0, T );L1(γ)).

Taking into account that uεt and ‖∇uεt‖H belong to L∞
(
I;Lrγ)

)
(by Proposition 3.3(iii)), from

the �rst step we obtain

d

dt
β(uεt ) + divγ(btβ(uεt )) = [β(uεt )− uεtβ

′(uεt )]divγbt + β′(uεt )f
ε

for all β ∈ C1(R) with β′(z) and zβ′(z) − β(z) bounded. So, passing to the limit as ε ↓ 0 we
obtain that ut is a renormalized solution.

Proof of Theorem 3.1. (Existence) It can be obtained as a byproduct of the results in
Section 4: Theorem 4.5 provides a generalized �ow, i.e. a positive �nite measure η in the space
of paths Ω(E), whose marginals (et)#η at all times have a density uniformly bounded in Lr(γ),
and (e0)#η = ūγ. Then, denoting by ut the density of (et)#η with respect to γ, Proposition 4.8
shows that ut solve the continuity equation.

(Uniqueness) By the linearity of the equation, it su�ces to show that ū = 0 implies ut ≤ 0
for all t ∈ [0, T ] for all solutions u ∈ L∞

(
(0, T );Lr(γ)

)
. We extend ut and bt to the interval

I := (−1, T ) by setting ut = ū and bt = 0 for all t ∈ (−1, 0], and it is easy to check that this
extension preserves the validity of the continuity equation (still in the weak form).

We choose, as a C1 approximation of the positive part, the functions βε(z) equal to
√
z2 + ε2−

ε for z ≥ 0, and null for z ≤ 0. Thanks to Theorem 3.7, we can apply (31) with β = βε, with
the test function φ ≡ 1, to obtain

d

dt

∫

E
βε(ut) dγ =

∫

E
[βε(ut)− utβ

′
ε(ut)]divγbt dγ ≤ ε

∫

E
[divγbt]− dγ,

where we used the fact that−ε ≤ βε(z)−zβ′ε(z) ≤ 0. Letting ε ↓ 0 we obtain that d
dt

∫
E u

+
t dγ ≤ 0

in (−1, T ) in the sense of distributions. But since ut = 0 for all t ∈ (−1, 0), we obtain u+
t = 0

for all t ∈ [0, T ).

4 Existence, uniqueness and stability of the �ow
In this section we discuss the problems of existence and uniqueness of a �ow associated to
b : [0, T ]×E → H, and we discuss its main properties.

4.1 Existence of a generalized b-�ow
It will be useful, in order to establish our �rst existence result, a de�nition of �ow more general
than De�nition 1.1. In the sequel we shall denote by Ω(E) the space of continuous maps from
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[0, T ] to E, endowed with the sup norm. Since E is separable, Ω(E) is complete and separable.
We shall denote by

et : Ω(E) → E, et(ω) := ω(t)

the evaluation maps at time t ∈ [0, T ].
If 1 ≤ α ≤ ∞, we shall also denote by ACα(E) ⊂ Ω(E) the subspace of functions ω satisfying

ω(t) = ω(0) +
∫ t

0
g(s) ds ∀ t ∈ [0, T ] (38)

for some g ∈ Lα(
(0, T );E

)
. The function g, that we shall denote by ω̇, is uniquely determined

up to negligible sets by (38): indeed, if t̄ is a Lebesgue point of g then 〈e∗, g(t̄)〉 coincides with
the derivative at t = t̄ of the real-valued absolutely continuous function t 7→ 〈e∗, ω(t)〉, for all
e∗ ∈ E∗.
De�nition 4.1 (Generalized b-�ows and Lr-regularity). If b : [0, T ] × E → E, we say that a
probability measure η in Ω(E) is a �ow associated to b if:

(i) η is concentrated on maps ω ∈ AC1(E) satisfying the ODE ω̇ = b(t, ω) in the integral
sense, namely

ω(t) = ω(0) +
∫ t

0
bτ (ω(τ)) dτ ∀ t ∈ [0, T ]; (39)

(ii) (e0)#η = γ.

If in addition there exists 1 ≤ r ≤ ∞ such that, for all t ∈ [0, T ], the image measures (et)#η
are absolutely continuous with respect to γ with a density in Lr(γ), then we say that the �ow is
Lr-regular.

Remark 4.2 (Invariance of b-�ows). Assume that η is a generalized L1-regular b-�ow and b̃ is a
modi�cation of b, i.e., for a.e. t ∈ (0, T ) the set Nt := {bt 6= b̃t} is γ-negligible. Then, because of
L1-regularity we know that, for a.e. t ∈ (0, T ), ω(t) /∈ Nt η-almost surely. By Fubini's theorem,
we obtain that, for η-a.e. ω, the set of times t such that ω(t) ∈ Nt is negligible in (0, T ). As a
consequence η is a b̃-�ow as well.

Remark 4.3 (Martingale solutions of ODEs). We remark that the notion of generalized �ow
coincides with the Stroock-Varadhan's notion of martingale solutions for stochastic di�erential
equations in the particular case when there is no noise (so that the stochastic di�erential equation
reduces to an ordinary di�erential equations), see for instance [45] and [33, Lemma 3.8].

From now on, we shall adopt the convention ‖v‖H = +∞ for v ∈ E \ H.

Proposition 4.4 (Compactness). Let K ⊂ E be a compact set, C ≥ 0, α ∈ (1,∞) and let
F ⊂ ACα(E) be the family de�ned by:

F :=
{
ω ∈ ACα(E) : ω(0) ∈ K,

∫ T

0
‖ω̇‖αH dt ≤ C

}
.

Then F is compact in Ω(E).
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Proof. Let us �x an integer h, and split [0, T ] in the h equal intervals Ii := [iT/h, (i + 1)T/h],
i = 0, . . . , h − 1. We consider the family Fh obtained by replacing each curve ω(t) in F with
the continuous �piecewise a�ne� curve ωh coinciding with ω at the endpoints of the intervals Ii
and with constant derivative, equal to T

h

∫
Ii
ω̇(t) dt, in all intervals (iT/h, (i + 1)T/h). We will

check that each family Fh is relatively compact, and that sup |ω−ωh| → 0 as h→∞, uniformly
with respect to ω ∈ F . These two facts obviously imply, by a diagonal argument, the relative
compactness of F .

The family Fh is easily seen to be relatively compact: indeed, the initial points of the curve lie
in the compact set K, and since {∫I0 ω̇(t) dt}ω∈F is uniformly bounded in H, the compactness of
the embedding ofH in E shows that also the family of points {ωh(T/h)}ω∈F is relatively compact;
continuing in this way, we prove that all families of points {ωh(iT/h)}ω∈F , i = 0, . . . , h− 1, and
therefore the family Fh, are relatively compact.

Fix ω ∈ F ; denoting by L the norm of the embedding of H in E, we have

‖ω(t)− ωh(t)‖ ≤
∫ t

iT/h
‖ω̇(τ)− ω̇h(τ)‖ dτ ≤ 2L

∫ t

iT/h
‖ω̇(τ)‖H dτ ≤ 2LC1/α

(
T

h

)1−1/α

for all t ∈ [iT/h, (i + 1)T/h]. This proves the uniform convergence of ωh to ω as h → ∞, as ω
varies in F .

Finally, we have to check that F is closed. The stability of the condition ω(0) ∈ K under
uniform convergence is obvious. The stability of the second condition can be easily obtained
thanks to the re�exivity of the space Lα

(
(0, T );H)

.

Theorem 4.5 (Existence of Lr-regular generalized b-�ows). Let b : [0, T ]×E → H be satisfying
the assumptions of the existence part of Theorem 3.1. Then there exists a generalized b-�ow η,
Lr-regular for all r ∈ [1, c/T ]. In addition, the density ut of (et)#η with respect to γ satis�es

∫
(ut)r dγ ≤

∥∥∥∥
∫

exp
(
Tr[divγbt]−

)
dγ

∥∥∥∥
L∞(0,T )

∀ t ∈ [0, T ]. (40)

Proof. Step 1. (�nite-dimensional approximation) Let bN : [0, T ] × E → HN be de�ned by∑N
i=1 biNei, where

biN (t, ·) := ENbit, 1 ≤ i ≤ N, t ∈ [0, T ].

Arguing as in the proof of Proposition 3.5, we have the estimates
∫ T

0

(∫

E
‖(bN )t‖pH dγ(x)

)1/p

dt ≤
∫ T

0

(∫

E
‖bt‖pH dγ(x)

)1/p

dt, (41)

∥∥∥∥
∫

E
exp

(
c[divγ(bN )t]−

)
dγ(x)

∥∥∥∥
L∞(0,T )

≤
∥∥∥∥
∫

E
exp

(
c[divγbt]−

)
dγ(x)

∥∥∥∥
L∞(0,T )

. (42)

By applying Theorem 6.1 to the �nite-dimensional �elds b̃N given by the restriction of bN
to [0, T ]×HN , we obtain a generalized �ow σN in HN (i.e. a positive �nite measure in Ω(HN ))
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associated to b̃N . Using the inclusion map iN of HN in H we obtain a generalized �ow ηN :=
(iN )#σN associated to bN . In addition, (42) and the �nite-dimensional estimate (57) give

sup
t∈[0,T ]

sup
N≥1

∫

E
(uNt )r dγ ≤ ‖ū‖rL∞(γ)

∥∥∥∥
∫

E
exp

(
Tr[divγbt]−

)
dγ

∥∥∥∥
L∞(0,T )

, (43)

with uNt equal to the density of (et)#ηN with respect to γ.
Step 2. (Tightness and limit �ow η). We call coercive a functional Ψ if its sublevel sets {Ψ ≤ C}
are compact. Since (EN ūγ) is a tight family of measures, by Prokhorov theorem we can �nd (see
for instance [45]) a coercive functional Φ1 : E → [0,+∞) such that supN

∫
E Φ1EN ū dγ <∞. We

choose α ∈ (1, p) such that (p/α)′ ≤ c/T (this is possible because we are assuming that p′T < c)
and consider the functional

Φ(ω) :=

{
Φ1(ω(0)) +

∫ T
0 ‖ω̇(t)‖αH dt if ω ∈ ACp(E);

+∞ if ω ∈ Ω(E) \ACα(E).
(44)

Thanks to Proposition 4.4 and the coercivity of Φ1, Φ is a coercive functional in Ω(E). Since
∫

Ω(E)
Φ(ω) dηN (ω) =

∫

E
Φ1(x)EN ū(x) dγ(x) +

∫ T

0

∫

Ω(E)
‖(bN )t(ω(t))‖αH dηN (ω) dt

=
∫

E
Φ1(x)EN ū(x) dγ(x) +

∫ T

0

∫

E
‖(bN )t(x)‖αHuNt (x) dγ(x) dt

we can apply Hölder inequality with the exponents p/α and (p/α)′, (41), (42) and (43) to obtain
that

∫
Φ dηN is uniformly bounded. So, we can apply again Prokhorov theorem to obtain that

(ηN ) is tight in Ω(E). Therefore we can �nd a positive �nite measure η in Ω(E) and a family
of integers Ni →∞ such that ηNi

→ η weakly, in the duality with Cb
(
Ω(E)

)
. In the sequel, to

simplify our notation, we shall assume that convergence occurs as N →∞. Obviously, because
of (43), η is Lr-regular and, more precisely, (40) holds.
Step 3. (η is a b-�ow). It su�ces to show that

∫

Ω(E)
1 ∧ ‖ω(t)− ω(0)−

∫ t

0
bs(ω(s)) ds‖ dη = 0 (45)

for any t ∈ [0, T ]. The technical di�culty is the integrand in (45), due to the lack of regularity
of bt, is not continuous in Ω(E); the truncation with the constant 1 is used to have a bounded
integrand. To this aim, we prove �rst that

∫

Ω(E)
1 ∧ ‖ω(t)− ω(0)−

∫ t

0
cs(ω(s)) ds‖ dη ≤

∫ T

0

∫

E
‖bs(x)− cs(x)‖us(x) dγ(x) ds (46)

for any bounded continuous function c. Then, choosing a sequence (cn) converging to b in
L1

(
(0, T );Lp(γ;E)

)
, and noticing that

∫

Ω(E)

∫ T

0
‖bs(ω(s))− (cn)s(ω(s))‖ ds dη =

∫ T

0

∫

E
‖bs(x)− (cn)s(x)‖us(x) dγ(x) ds→ 0,
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we can pass to the limit in (46) with c = cn to obtain (45).
It remains to show (46). This is a limiting argument based on the fact that (45) holds for

bN , ηN :
∫

Ω(E)
1 ∧ ‖ω(t)− ω(0)−

∫ t

0
cs(ω(s)) ds‖ dη

= lim
N→∞

∫

Ω(E)
1 ∧ ‖ω(t)− ω(0)−

∫ t

0
cs(ω(s)) ds‖ dηN

= lim
N→∞

∫

Ω(E)
1 ∧ ‖

∫ t

0
(bN )s(ω(s))− cs(ω(s)) ds‖ dηN

≤ lim sup
N→∞

∫ T

0

∫

E
‖(bN )s(x)− cs(x)‖uNs (x) dγ(x) ds =

∫ T

0

∫

E
‖bs(x)− cs(x)‖us(x) dγ(x) ds.

In order to obtain the last equality we added and subtracted ‖bs − cs‖uNs , and we used the
strong convergence of bN to b in L1

(
(0, T );Lp(γ;E)

)
and the weak∗ convergence of uNs to us in

L∞
(
(0, T );Lp

′
(γ;E)

)
.

4.2 Uniqueness of the b-�ow
The following lemma provides a simple characterization of Dirac masses (i.e. measures concen-
trated at a single point), for measures in Ω(E) and for families of measures in E.
Lemma 4.6. Let σ be a positive �nite measure in Ω(E). Then σ is a Dirac mass if and only if
(et)#σ is a Dirac mass for all t ∈ Q ∩ [0, T ].
A Borel family {νx}x∈E of positive �nite measures in E (i.e. x 7→ νx(A) is Borel in E for all
A ⊂ E Borel) is made, for γ-a.e. x, by Dirac masses if and only if

νx(A1)νx(A2) = 0 γ-a.e. in E, for all disjoint Borel sets A1, A2 ⊂ E. (47)

Proof. The �rst statement is a direct consequence of the fact that all elements of Ω(E) are
continuous maps, which are uniquely determined on Q ∩ [0, T ]. In order to prove the second
statement, let us �x an integer k ≥ 1 and a countable partition (Ai) of Borel sets with diam(Ai) ≤
1/k (its existence is ensured by the separability of E). By (47) we obtain a γ-negligible Borel
set Nk satisfying νx(Ai)νx(Aj) = 0 for all x ∈ E \Nk. As a consequence, the support of each of
the measures νx, as x varies in E \ Nk, is contained in the closure of one of the sets Ai, which
has diameter less than 1/k. It follows that νx is a Dirac mass for all x ∈ E \⋃

kNk.

Theorem 4.7 (Uniqueness of Lr-regular generalized b-�ows). Let b : [0, T ]×E → H be satisfying
the assumptions of the uniqueness part of Theorem 3.1, let r = max{p′, q′} and assume that
c ≥ rT . Let η be a Lr-regular generalized b-�ow. Then:
(i) for γ-a.e. x ∈ E, the measures E(η|ω(0) = x) are Dirac masses in Ω(E), and setting

E(η|ω(0) = x) = δX(·,x), X(·, x) ∈ Ω(E), (48)

the map X(t, x) is a Lr-regular b-�ow, according to De�nition 1.1.

19



(ii) Any other Lr-regular generalized b-�ow coincides with η. In particular X is the unique
Lr-regular b-�ow.

Proof. (i) We set ηx := E(η|ω(0) = x). Taking into account the �rst statement in Lemma 4.6, it
su�ces to show that, for t̄ ∈ Q ∩ [0, T ] �xed, the measures νx := E((et̄)#η|ω(0) = x) = (et̄)#ηx
are Dirac masses for γ-a.e. x ∈ E. Still using Lemma 4.6, we will check the validity of (47).
Since νx = δx when t̄ = 0, we shall assume that t̄ > 0.

Let us argue by contradiction, assuming the existence of a Borel set L ⊂ E with γ(L) > 0
and disjoint Borel sets A1, A2 ⊂ E such that both νx(A1) and νx(A2) are positive for x ∈ L.
We will get a contradiction with Theorem 3.1, building two distinct solutions of the continuity
equation with the same initial condition ū ∈ L∞(γ). With no loss of generality, possibly passing
to a smaller set L still with positive γ-measure, we can assume that the quotient β(x) :=
νx(A1)/νx(A2) is uniformly bounded in L. Let Ωi ⊂ Ω(E) be the set of trajectories ω which
belong to Ai at time t̄; obviously Ω1 ∩ Ω2 = ∅ and we can de�ne positive �nite measures ηi in
Ω(E) by

η1 :=
∫

L
χΩ1ηx dγ(x), η2 :=

∫

L
β(x)χΩ2ηx dγ(x).

By Proposition 4.8, both η1 and η2 induce, via the identity uitγ = (et)#ηi, a solution to the
continuity equation which is uniformly bounded (just by comparison with the one induced by η)
in Lr(γ). Moreover, both solutions start from the same initial condition ū(x) = νx(A1)χL(x).
On the other hand, by the de�nition of Ωi, u1

t̄γ is concentrated in A1 while u2
t̄γ is concentrated

in A2, therefore u1
t̄ 6= u2

t̄ . So, uniqueness of solutions to the continuity equation is violated.
(ii) If σ is any other Lr-regular generalized b-�ow, we may apply statement (i) to the �ows σ,
to obtain that for γ-a.e. x also the measures E(σ|ω(0) = x) are Dirac masses; but since the
property of being a generalized �ow is stable under convex combinations, also the measures

1
2
E(η|ω(0) = x) +

1
2
E(σ|ω(0) = x) = E

(η + σ

2
|ω(0) = x

)

must be Dirac masses for γ-a.e. x. This can happen only if E(η|ω(0) = x) = E(σ|ω(0) = x) for
γ-a.e. x.

The connection between solutions to the ODE Ẋ = bt(X) and the continuity equation is
classical: in the next proposition we present it under natural regularity assumptions in this
setting.

Proposition 4.8. Let η be a positive �nite measure in Ω(E) satisfying:

(a) η is concentrated on paths ω ∈ AC1(E) such that ω(t) = ω(0) +
∫ t
0 bs(ω(s)) ds for all

t ∈ [0, T ];

(b)
∫ T
0

∫
Ω(E) ‖ω̇(t)‖H dη(ω) dt <∞.

Then the measures µt := (et)#η satisfy d
dtµt + divγ(btµt) = 0 in (0, T )×E in the weak sense.
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Proof. Let φ(x) = ψ(〈e∗1, x〉, . . . , 〈e∗N , x〉) be cylindrical. By (a) and Fubini's theorem, for a.e.
t the following property holds: the maps 〈e∗i , ω(t)〉, 1 ≤ i ≤ N , are di�erentiable at t, with
derivative equal to 〈e∗i , bt(ω(t))〉, for η-a.e. ω. Taking (12) into account, for a.e. t we have

d

dt

∫

E
φdµt =

d

dt

∫

Ω(E)
ψ(〈e∗1, ω(t)〉, . . . , 〈e∗N , ω(t)〉) dη

=
N∑

i=1

∫

Ω(E)

∂ψ

∂zi
(〈e∗1, ω(t)〉, . . . , 〈e∗N , ω(t)〉)〈e∗i , ω̇(t)〉 dη

=
N∑

i=1

∫

Ω(E)

∂ψ

∂zi
(〈e∗1, ω(t)〉, . . . , 〈e∗N , ω(t)〉)〈ei, bt(ω(t))〉H dη

=
∫

E
〈∇φ, bt〉H dµt.

In the previous identity we used, to pass to the limit under the integral sign, the property

lim
h→0

〈e∗i ,
ω(t+ h)− ω(t)

h
〉 = 〈e∗i , ω̇(t)〉 in L1(η), for 1 ≤ i ≤ N,

whose validity for a.e. t is justi�ed by assumption (b). The same assumption also guaranteees
(see for instance [2, �3] for a detailed proof) that t 7→ ∫

E φdµt is absolutely continuous, so its
pointwise a.e. derivative coincides with the distributional derivative.

4.3 Stability of the b-�ow and semigroup property
The methods we used to show existence and uniqueness of the �ow also yield stability of the �ow
with respect to approximations (not necessarily �nite-dimensional ones) of the vector �eld. In
the proof we shall use the following simple lemma (see for instance Lemma 22 of [2] for a proof),
where we use the notation id× f for the map x 7→ (x, f(x)).

Lemma 4.9 (Convergence in law and in probability). Let F be a metric space and let fn, f :
E → F be Borel maps. Then fn → f in γ-probability if and only if id× fn → id× f in law.

Theorem 4.10 (Stability of Lr-regular b-�ows). Let p, q > 1, r = max{p′, q′} and let bn, b :
(0, T )× E → H be satisfying:

(i) bn → b in L1
(
(0, T );Lp(γ;H)

)
;

(ii) for a.e. t ∈ (0, T ) we have (bn)t, bt ∈ LDq
H(γ;H) with

sup
n∈N

∫ T

0

(∫

E
‖(∇(bn)t)sym(x)‖qHS dγ(x)

)1/q

dt <∞ (49)

and divγ(bn)t and divγbt belong to L1
(
(0, T );Lq(γ)

)
;

(iii) exp(c[divγ(bn)t]−) are uniformly bounded in L∞
(
(0, T );L1(γ)

)
for some c ≥ Tr.
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Then, denoting by Xn (resp. X) the unique Lr regular bn-�ows (resp. b-�ow) we have

lim
n→∞

∫

E
sup
[0,T ]

‖Xn(·, x)−X(·, x)‖ dγ(x) = 0. (50)

Proof. Let us denote the generalized bn-�ows ηn induced by Xn, namely the law under γ
of x 7→ Xn(·, x). The uniform estimates (iii), together with the boundedness of ‖bn‖H in
L1

(
(0, T );Lp(γ)

)
imply, in view of (40),

sup
n∈N

∫
(unt )

r dγ ≤ sup
n∈N

∥∥∥∥
∫

exp
(
Tr[divγbnt ]

−)
dγ

∥∥∥∥
L∞(0,T )

<∞ ∀ t ∈ [0, T ], (51)

where unt is the density of (et)#ηn = X(t, ·)#γ with respect to γ. In addition, by the same
argument used in Step 2 of the proof of Theorem 4.5 we have

sup
n∈N

∫

Ω(E)
Φ(ω) dηn(ω) <∞,

where Φ is de�ned as in (44), with α ∈ (1, p) and Φ1 : E → [0,∞) γ-integrable and coercive.
This estimate implies the tightness of (ηn). If η is a limit point, in the duality with Cb(Ω(E)),

of ηn, the same argument used in Step 3 of the proof of Theorem 4.5 gives that η is a generalized
b-�ow. In addition, the uniform estimates (51) imply that η is Lr-regular. As a consequence we
can apply Theorem 4.7 to obtain that η is the law of the Ω(E)-valued map x 7→ X(·, x), and
more precisely that E(η|ω(0) = x) = δX(·,x) for γ-a.e. x. Therefore, by the uniqueness of X, the
whole sequence (ηn) converges to η and Xn converge in law to X.

In order to obtain that x 7→ Xn(·, x) converge in γ-probability to x 7→ X(·, x) we use
Lemma 4.9 with F = Ω(E), so we have to show that id×Xn(·, x) converge in law to id×X(·, x).
For all ψ ∈ Cb

(
E × Ω(E)

)
we have

∫

E
ψ(x,Xn(·, x)) dγ(x) =

∫

Ω(E)
ψ(e0(ω), ω) dηn →

∫

Ω(E)
ψ(e0(ω), ω) dη =

∫

E
ψ(x,X(·, x)) dγ(x),

and this proves the convergence in law.
Finally, by adding and subtracting x, we can prove (50) provided we show that sup[0,T ] |X(·, x)−

x| ∈ L1(γ) and sup[0,T ] |Xn(·, x)−x| are equi-integrable in L1(γ). We prove the second property
only, because the proof of the �rst one is analogous. Starting from the integral formulation of
the ODE, Jensen's inequality gives sup[0,T ] |Xn(·, x)− x|α ≤ Tα−1

∫ T
0 ‖bτ (Xn(τ, x))‖ dτ and by

integrating both sides with respect to γ, Fubini's theorem gives
∫

E
sup
[0,T ]

|Xn(·, x)− x|α dγ(x) ≤ Tα−1

∫

E

∫ T

0

∫

E
‖bτ‖αunτ dγ dτ.

Choosing α > 1 such that (p/α)′ ≤ c/T (this is possible because we are assuming that c >
p′T ) and applying the Hölder inequality with the exponents p/α and (p/α)′ we obtain that
sup[0,T ] |Xn(·, x)− x| are equibounded in Lα(γ).
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Under the same assumptions of Theorem 4.7, for all s ∈ [0, T ] also a unique Lr-regular �ow
Xs : [s, T ] × E → E exists, characterized by the properties that τ 7→ Xs(τ, x) is an absolutely
continuous map in [s, T ] satisfying

Xs(t, x) = x+
∫ t

s
bτ

(
Xs(τ, x)

)
dτ ∀ t ∈ [s, T ] (52)

for γ-a.e. x ∈ E, and the regularity condition Xs(τ, ·)#γ = fτγ, with fτ ∈ Lr(γ) uniformly for
τ ∈ [s, T ]. This family of �ow maps satis�es the semigroup property:

Proposition 4.11 (Semigroup property). Under the same assumptions of Theorem 4.7, the
unique Lr-regular �ows Xs starting at time s satisfy the semigroup property

Xs (t,Xr(s, x)) = Xr(t, x) for γ-a.e. x ∈ E, ∀ 0 ≤ r ≤ s ≤ t ≤ T . (53)

Proof. Let r, s, t be �xed. By combining the �nite-dimensional projection argument of Step
1 of the proof of Theorem 4.5, with the smoothing argument used in Step 2 of the proof of
Theorem 6.1 we can �nd a family of vector �elds bn converging to b in L1

(
(0, T );Lp(γ;H)

)
and

satisfying the uniform bounds of Theorem 4.10, whose (classical) �ows Xn satisfy the semigroup
property (see (62))

Xs
n (t,Xr

n(s, x)) = Xr
n(t, x) for γ-a.e. x ∈ E, ∀ 0 ≤ r ≤ s ≤ t ≤ T . (54)

We will pass to the limit in (54), to obtain (53). To this aim, notice that (50) of Theorem 4.10
immediately provides the convergence in L1(γ) of the right hand sides, so that we need just
to show convergence in γ-measure of the left hand sides. Notice �rst that the convergence
in γ-measure of Xr

n(s, ·) to Xr(s, ·) implies the convergence in γ-measure of ψ(Xr
n(s, ·)) to

ψ(Xr(s, ·)) for any Borel function ψ : E → R (this is a simple consequence of the fact that,
by Lusin's theorem, we can �nd a nondecreasing sequence of compact sets Kn ⊂ E such that
ψ|Kn is uniformly continuous and γ(E \Kn) ↓ 0, and of the fact that the laws of Xr

x(s, ·) are
uniformly bounded in Lr(γ)), so that choosing ψ(z) := Xs(t, z), and adding and subtracting
Xs(t,Xn(s, x)), the convergence in γ-measure of the right hand sides of (54) to Xs (t,Xr(s, x))
follows by the convergence in γ-measure to 0 of

Xs
n (t,Xr

n(s, x))−Xs (t,Xr
n(s, x)) .

Denoting by ρn the density of the law of Xr
n(s, ·), we have

∫

E
1 ∧ ‖Xs

n (t,Xr
n(s, x))−Xs (t,Xr

n(s, x)) ‖ dγ(x) =
∫

E
1 ∧ ‖Xs

n(t, y)−Xs(t, y)‖ρn(y) dγ(y),

and the right hand side tends to 0 thanks to (50) and to the equi-integrability of (ρn).

The semigroup property allows also to construct a unique family of �ows Xs : [s, T ]×E×E
even in the case when the assumption (27) is replaced by

exp(c[divγbt]−) ∈ L∞(
(0, T );L1(γ)

)
for some c > 0.
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The idea is to compose the �ows de�ned on su�ciently short intervals, with length T ′ satisfying
c > rT ′. It is easy to check that this family of �ow maps is uniquely determined by the semigroup
property (53) and by the local regularity property

Xs(t, ·)#γ ¿ γ with a density in Lr(γ) for all t ∈ [s,min{s+ T ′, T}], s ∈ [0, T ].
Globally in time, the only property retained is Xs(t, ·)#γ ¿ γ for all t ∈ [s, T ].

4.4 Convergence of �nite-dimensional �ows
Assume that we are given vector �elds bN : [0, T ]× RN → RN satisfying, for some p, q > 1 the
assumptions (i), (ii), (iii) of Theorem 1.2 (with E = H = RN ) relative to the standard Gaussian
γN in RN , with norms uniformly bounded by constants independent of N . Let us assume that
bN is a consistent family, namely the conditional expectation of the projection of (bN+1)t on
RN , given x1, . . . , xN , is (bN )t. Let XN : [0, T ]× RN → RN be the associated bN -�ows.

In this section we brie�y illustrate how the stability results of this paper can be used to prove
the convergence of XN and to characterize their limit.

To this aim, let us denote by γp the product of standard Gaussians in the countable product
R∞, and notice that the consistency assumption provides us with a unique vector �eld b :
[0, T ] × R∞ → R∞ such that, denoting by EN the conditional expectation with respect to
x1, . . . , xN and by πN : R∞ → RN the canonical projections, the identities ENπNbt = (bN )t
hold. In order to recover a Wiener space we �x a sequence (λi) ∈ `2 and de�ne

E :=

{
(xi) :

∞∑

i=1

λ2
i (x

i)2 <∞
}
.

The space E can be endowed with the canonical scalar product, and obviously γp(E) = 1, so
that b can be also viewed as a vector �eld in E and the induced measure γ in E is Gaussian.
According to Remark 2.1, its Cameron-Martin space H can be identi�ed with `2. Then, we can
apply the stability Theorem 4.10 (viewing, with a slight abuse, bN as vector �elds in E and,
consequently, their �ows XN as �ows in E which leave xN+1, xN+2, . . . �xed) to obtain that XN

converge to the �ow X relative to b in L1(γ;E). It follows that

lim
N→∞

∫

R∞

√√√√
∞∑

i=1

λ2
i |Xi

N (t, x)−Xi(t, x)|2 dγp(x) = 0 ∀ t ∈ [0, T ], ∀ (λi) ∈ `2. (55)

Finally, notice that also X could be de�ned without an explicit mention to E, working in (R∞, γp)
in place of (E, γ). According to this viewpoint, E plays just the role of an auxiliary space, and
deliberately we wrote (55) without an explicit mention to it.

5 An extension to non H-valued vector �elds
In [43], [13], the authors consider the following equation:

X(t, x) = Q̃tx+
∫ t

0
Qt−sbs(X(s, x)) ds. (56)
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Here (Qt)t∈R is a strongly continuous group of orthogonal operator onH, and Q̃t : E → E denotes
the measurable linear extension of Qt to E (which always exists and preserves the measure γ,
see for instance [36]). Observe that, thanks to the Duhamel formula, (56) formally corresponds
to the equation

Ẋ(t, x) = LX(t, x) + bt(X(t, x)),

where L denotes the generator of the group (i.e. Q̇t = LQt).
The de�nition of Lr-regular �ow can be extended in the obvious way to (56). Let us now see

how our results allow to prove existence and uniqueness of Lr-regular �ows under the assumptions
of Theorem 1.2 (observe that this forces in particular r > 1).

Let X(t, x) be a solution of (56), and de�ne Y (t, x) := Q̃−tX(t, x). Then we have

Y (t, x) = x+
∫ t

0
Q−sbs(X(s, x)) ds

= x+
∫ t

0
Q−sbs(Q̃sY (s, x)) ds.

Therefore Y is a �ow associated to the vector �eld ct(x) := Q−tbt(Q̃tx). Moreover Y is still
a Lr-regular �ow. Indeed, if ut ∈ Lr(γ) denotes the density of the law of X(t, ·), then, for all
φ ∈ Cyl(E, γ), we have

∫
φ(Y (t, x)) dγ(x) =

∫
φ(Q̃−tX(t, x)) dγ(x) =

∫
φ(Q̃−tx)ut(x) dγ(x)

≤ ‖ut‖Lr(γ)‖φ ◦ Q̃t‖Lr′ (γ) = ‖ut‖Lr(γ)‖φ‖Lr′ (γ).

Since r > 1, this implies that Y is Lr-regular. On the other hand we remark that, using the same
argument, one obtains that, if Y is a Lr-regular �ow associated to c, then X(t, x) := Q̃tY (t, x)
is a Lr-regular �ow for (56).

We have therefore shown that there is a one-to-one correspondence between Lr-regular �ows
for (56) and Lr-regular �ows associated to c. To conclude the existence and uniqueness of Lr-
regular �ows for (56), it su�ces to observe that, thanks to the orthogonality of Qt and the
measure-preserving property of Q̃t, if b satis�es all the assumptions in Theorem 1.2, then so does
c thanks to the identities ‖ct(x)‖H = ‖bt(Q̃tx)‖H, ‖(∇ct)sym(x)‖HS = ‖(∇bt)sym(Q̃tx)‖HS , and
divγ ct(x) = divγ bt(Q̃tx).

Indeed, let us check the formula for the symmetric part of the derivative, the proof of the
one concerning the divergence being similar and even simpler. Let h = j(e∗) ∈ H and notice
that Qth = j(f∗), where 〈f∗, y〉 = 〈e∗, Q̃−t(y)〉. Using Remark 2.9 and the fact that φ 7→ φ ◦ Q̃t
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maps Cyl(E, γ) into C1
b (E, γ), for φ ∈ Cyl(E, γ) we get

∫

E
〈ct, h〉H∂hφdγ =

∫

E
〈bt(Q̃tx), Qth〉H∂hφ(x) dγ(x)

=
∫

E
〈bt(y), Qth〉H(∂hφ) ◦ Q̃−t(y) dγ(y) =

∫

E
〈bt(y), Qth〉H∂Qth(φ ◦ Q̃−t)(y) dγ(y)

= −
∫

E
∂Qth〈bt, Qth〉Hφ ◦ Q̃−t dγ(y) +

∫

E
〈bt(y), Qth〉Hφ ◦ Q̃−t〈f∗, y〉 dγ(y)

= −
∫

E
[∂Qth〈bt, Qth〉H] ◦ Q̃tφdγ(x) +

∫

E
〈ct(x), h〉Hφ〈e∗, x〉 dγ(x).

This proves that ∂h〈ct, h〉H = ∂Qth〈bt, Qth〉H ◦ Q̃t, and using the fact that Qt maps orthonormal
bases of H in orthonormal bases of H we get ‖(∇ct)sym‖HS = ‖(∇bt)sym‖HS ◦ Q̃t.

6 Finite-dimensional estimates
This section is devoted to the proof of the crucial a-priori bounds (28) and (37) in �nite-
dimensional Wiener spaces. So, we shall assume that E = H = RN and, only in this section,
denote by x · y the scalar product in RN , and by |x| the Euclidean norm (corresponding to the
norm of the Cameron-Martin space). Also, only in this section we shall denote by γ the standard
Gaussian in RN , product of N standard Gaussians in R, and by

∫
integrals on the whole of RN .

The sums
∑

i (resp.
∑

i,j) will always be understood with i (resp. i and j) running from 1 to
N .

6.1 Upper bounds on the �ow density
In this subsection we show the existence part of Theorem 3.1 in �nite-dimensional Wiener spaces
E = H = RN .

Theorem 6.1. Let b : (0, T ) × RN → RN be satisfying the assumptions of the existence part
of Theorem 3.1. Then, for any r ∈ [1, c/T ] there exists a generalized Lr-regular b-�ow η. Its
density ut satis�es also

∫
(ut)r dγ ≤

∥∥∥∥
∫

exp
(
Tr[divγbt]−

)
dγ

∥∥∥∥
L∞(0,T )

∀ t ∈ [0, T ]. (57)

Proof. Step 1. Here we consider �rst the case when bt are smooth, with
∫ T
0 ‖∇bt‖L∞(B) dt �nite

for all bounded open sets B ⊂ RN . Under this assumption, for all x ∈ RN the unique solution
X(·, x) to the ODE Ẋ(t, x) = bt(X(t, x)), with the initial condition X(0, x) = x, is de�ned
until some maximal time τ(x) ∈ (0, T ]. Obviously, by the maximality of τ(x), if

lim sup
t↑τ(x)

|X(t, x)| < +∞

then τ(x) = T and the solution is continuous in [0, T ].
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Let us �x s ∈ [0, T ). We denote Es the set {τ > s} and notice that standard stability results
for ODE's with a locally Lipschitz vector �eld ensure that Es is open and that x 7→ X(t, x) is
smooth in Es for t ∈ [0, s]. Furthermore, from the identity ∇̇xX(t, x) = ∇bt(X(t, x))∇xX(t, x),
obtained by spatial di�erentiation of the ODE (see [2] for details), one obtains

J̇X(t, x) = divbt(X(t, x))JX(t, x) x ∈ Es, t ∈ [0, s], (58)

where JX(t, x) is the determinant of ∇xX(t, x).
We �rst compute a pointwise expression for the measure X(t, ·)#(χEsγ) for t ∈ [0, s]. By the

change of variables formula, the density ρst of X(t, ·)#(χEsγ) with respect to L N is linked to
the initial density ρ̄s by

ρst (X(t, x)) =
ρ̄s(x)

JX(t, x)
,

where ρ̄s(y) := χEs(y)e
−|y|2/2. Denoting by ust the density of X(t, ·)#(χEsγ) with respect to γ,

we get
ust

(
X(t, x)

)
=

ρ̄s(x)
JX(t, x)

e|X(t,x)|2/2. (59)

So, taking the identity (58) into account, we obtain
d

dt
ust

(
X(t, x)

)
= −divγbt

(
X(t, x)

) ρ̄s(x)
JX(t, x)

e|X(t,x)|2/2 = −divγbt
(
X(t, x)

)
ust

(
X(t, x)

)
.

By integrating the ODE, for t ∈ [0, s] we get

ust
(
X(t, x)

)
= χEs(x) exp

(
−

∫ t

0
divγbτ

(
X(τ, x)

)
dτ

)

≤ χEs(x) exp
(∫ t

0
[divγbτ

(
X(τ, x)

)
]− dτ

)
.

We can now estimate ‖ust‖Lr(γ) as follows:
∫

(ust )
r dγ =

∫
(ust )

r−1ust dγ ≤
∫

exp
(

(r − 1)
∫ t

0
[divγbτ

(
X(τ, x)]−

)
dτ

)
χEs(x) dγ(x)

≤
∫

1
t

∫ t

0
exp

(
t(r − 1)[divγbτ

(
X(τ, x)

)
]−

)
dτχEs(x) dγ(x)

=
1
t

∫ t

0

∫
exp

(
t(r − 1)[divγbτ

(
X(τ, x)

)
]−

)
χEs(x) dγ(x) dτ

≤ 1
t

∫ t

0

∫
exp

(
T (r − 1)[divγbτ (y)]−

)
usτ (y) dγ(y) dτ.

Now, set Λ(t) :=
∫ t
0 ‖usτ‖rLr(γ) dτ and apply the Hölder inequality to get

Λ′(t) ≤ 1
t

(∫ t

0

∫
exp

(
Tr[divγbτ (y)]−

)
dγ(y) dτ

)1/r′

Λ1/r(t) (60)

≤ Kt1/r
′−1Λ1/r(t) = Kt−1/rΛ1/r(t),
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with K := ‖ ∫
exp

(
Tr[divγbt]−

)
dγ‖1/r′

L∞(0,T ). An integration of this di�erential inequality yields
Λ(t) ≤ Kr′t, which inserted into (60) gives

∫
(ust )

r dγ ≤
∥∥∥∥
∫

exp
(
Tr[divγbt]−

)
dγ

∥∥∥∥
L∞(0,T )

∀ t ∈ [0, s], ∀ s ∈ [0, T ). (61)

Now, let us prove that the �ow is globally de�ned in [0, T ] for γ-a.e. x: we have indeed
∫

sup
[0,τ(x))

|X(t, x)− x| dγ(x) ≤
∫ ∫ τ(x)

0
|bt(X(t, x))| dt dγ(x) =

∫ T

0

∫

Et

|bt(X(t, x))| dγ(x) dt

=
∫ T

0

∫
|bt|utt dγ dt.

Using (61) with s = t, we obtain that
∫

sup
[0,τ(x))

|X(t, x)− x| dγ(x) is �nite, so that τ(x) = T and

X(·, x) is continuous up to t = T for γ-a.e. x. Letting s ↑ T in (61) we obtain (57).
Denoting as in (52) by Xs the �ow starting at time s, we also notice (this is useful in

the proof, by approximation, of the semigroup property in Proposition 4.11) that the pointwise
uniqueness of the �ow implies the semigroup property

Xs (t,Xr(s, x)) = Xr(t, x) ∀ 0 ≤ r ≤ s ≤ t ≤ T (62)

for all x where Xr(·, x) is globally de�ned in [r, T ].
Step 2. In this step we remove the regularity assumptions made on b, considering the vector
�elds bε de�ned by biε(t, ·) := Tεb

i
t. It is immediate to check that the �elds bε satisfy the regularity

assumptions made in Step 1, so the existence of a Lr-regular bε-�ow ηε satisfying
∫

(uεt )
r dγ ≤

∥∥∥∥
∫

exp
(
Tr[divγ(bε)t]−

)
dγ

∥∥∥∥
L∞(0,T )

(63)

is ensured by Step 1. In (63) the functions uεt are, as usual, the densities of (et)#ηε with respect
to γ. Now, since divγ((bε)t) = e−εTε(divγbt), we may apply Jensen's inequality to get

∫
(uεt )

r dγ ≤
∥∥∥∥
∫

exp
(
e−εTr[divγbt]−

)
dγ

∥∥∥∥
L∞(0,T )

. (64)

Since ∫ T

0

(∫
‖bε(t, x)‖pH dγ

)1/p

dt ≤
∫ T

0

(∫
‖b(t, x)‖pH dγ

)1/p

dt,

the same tightness argument used in the proof of Theorem 4.5 to pass from �nitely many to
in�nitely many dimensions provides us with a b-�ow η satisfying (57): any weak limit point η
of ηε as ε ↓ 0.
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6.2 Commutator estimate
This subsection is entirely devoted to the proof of the commutator estimate (37) in �nite-
dimensional Wiener spaces.

We will often use the �Gaussian rotations�

(x, y) 7→ (z, w) :=
(
e−εx+

√
1− e−2εy,−

√
1− e−2εx+ e−εy

)
, (65)

mapping the product measure γ(dx) × γ(dy) into γ(dz) × γ(dw). Indeed, the transformations
above preserve the Lebesgue measure in RN × RN (being their Jacobian identically equal to 1)
and |x|2 + |y|2 = |z|2 + |w|2.

We now state two elementary Gaussian estimates. The �rst one
(∫

|l · w|p dγ(w)
)1/p

= |l|
(∫

|w1|p dγ(w)
)1/p

= Λ(p)|l| ∀ l ∈ RN , (66)

with Λ depending only on p, is a simple consequence of the rotation invariance of γ.

Lemma 6.2. Let A : RN → RN be a linear map and c ∈ R. Then, if q ≤ 2, we have
(∫ ∣∣〈Aw,w〉 − c

∣∣q dγ(w)
)1/q

≤
√

2‖Asym‖HS + |trA− c|. (67)

Proof. Obviously we can assume that A is symmetric. By rotation invariance, we can also assume
that A is diagonal, and denote by λ1, . . . , λN its eigenvalues. We have then

∫ ∣∣∑

i

λi(wi)2 − c
∣∣2 dγ(w) =

∫ [∑

ij

λiλj(wi)2(wj)2 − 2c
∑

i

λi(wi)2 + c2
]
dγ(w)

= 3
∑

i

λ2
i +

∑

i6=j
λiλj − 2c

∑

i

λi + c2

= 2
∑

i

λ2
i +

∑

ij

λiλj − 2c
∑

i

λi + c2

= 2
∑

i

λ2
i +

(∑

i

λi − c
)2
.

If q = 2 we take the square roots of both sides and we conclude; if q ≤ 2 we apply the Hölder
inequality.

Henceforth, a vector �eld c ∈ Lp(γ;RN ) ∩ LDq
H(γ;RN ) and a function v ∈ Lr(γ) will be

�xed, with r = max{p′, q′} and p > 1, 1 ≤ q ≤ 2. Our goal is to prove the estimate

‖rε‖L1(γ) ≤ ‖v‖Lr(γ)

[
Λ(p)ε√
1− e−2ε

‖c‖Lp(γ;RN ) + 21/q′‖divγc‖Lq(γ) + 21/q′√2‖‖(∇c)sym‖HS‖Lq(γ)

]
,

(68)
where

rε := eεc · ∇vε − Tε(divγ(vc)). (69)
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Since 21/q′ ≤ √
2, this yields the �nite-dimensional version of (37).

In this setup the Ornstein-Uhlenbeck operator vε := Tεv takes the explicit form

vε(x) :=
∫
v(e−εx+

√
1− e−2εy) dγ(y) =

∫
v(z)ρε(x, z) dγ(z)

with

ρε(x, z) :=
1

(1− e−2ε)N/2
exp(−|e

−εx− z|2
2(1− e−2ε)

) exp(
|z|2
2

)

=
1

(1− e−2ε)N/2
exp(−|e

−εx|2 − 2ε−εx · z + |e−εz|2
2(1− e−2ε)

).

This implies that

∇vε(x) =
∫
v(z)∇xρε(x, z) dγ(z) = −e−ε

∫
e−εx− z

1− e−2ε
f(z)ρε(x, z) dγ(z)

= e−ε
∫
v(e−εx+

√
1− e−2εy)

y√
1− e−2ε

dγ(y). (70)

Let us look for a more explicit expression of the commutator in (69). To this aim, we show �rst
that Tε(divγ(vc)) is a function, and

Tε(divγ(vc))(x) =
∫

(vc)(e−εx+
√

1− e−2εy) · y√
1− e−2ε

dγ(y)− Tε(z · vc)(x). (71)

If c and v are smooth, this is immediate to check: indeed, thanks to (14), we need only to show
that

Tε(div (vc))(x) =
∫

(vc)(e−εx+
√

1− e−2εy) · y√
1− e−2ε

dγ(y).

The latter is a direct consequence of (70) (with v replaced by vci) and of the relation ∂iTε(vci) =
e−εTε(∂i(vci)). If v and c are not smooth, we argue by approximation.

Therefore, taking (70) and (71) into account, we have that rε(x) is given by
∫
v(e−εx+

√
1− e−2εy)

c(x)− c(e−εx+
√

1− e−2εy)√
1− e−2ε

· y dγ(y)

+
∫
v(e−εx+

√
1− e−2εy)c(e−εx+

√
1− e−2εy) · (e−εx+

√
1− e−2εy) dγ(y)

=
∫
v(e−εx+

√
1− e−2εy)√

1− e−2ε

{
c(x) · y − c(e−εx+

√
1− e−2εy) · (e−2εy − e−ε

√
1− e−2εx)

}
dγ(y).

Now, using the abbreviations αε(x, y) := v(e−εx+
√

1− e−2εy), βε := ε/
√

1− e−2ε, we interpo-
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late and write −rε(x) as

1√
1− e−2ε

∫
αε(x, y)

d

dt

∫ 1

0
c(e−tεx+

√
1− e−2εty) · (e−2tεy − e−tε

√
1− e−2tεx) dt dγ(y)

= βε

∫
αε(x, y) (72)

∫ 1

0

[∑

ij

(
∂jc

i(e−tεx+
√

1− e−2tεy)[e−tε
√

1− e−2tεxi − e−2tεyi][e−tεxj − e−2tε

√
1− e−2tε

yj ]
)

+
∑

i

(
ci(e−tεx+

√
1− e−2tεy)[(e−tε

√
1− e−2tε − e−3tε

√
1− e−2tε

)xi − 2e−2tεyi]
)]

dt dγ(y)

=: βε
∫
αε(x, y)(Aε(x, y) +Bε(x, y)) dγ(y), (73)

where, adding and subtracting
∑

i

ci(e−tεx+
√

1− e−2tεy)
e−2tε

√
1− e−2tε

(e−tεxi +
√

1− e−2tεyi),

we have set

Aε(x, y) :=
∫ 1

0

(∑

ij

∂jc
i(e−tεx+

√
1− e−2tεy)[e−tε

√
1− e−2tεxi − e−2tεyi][e−tεxj − e−2tε

√
1− e−2tε

yj ]

−
∑

i

ci(e−tεx+
√

1− e−2tεy)
e−2tε

√
1− e−2tε

(e−tεxi +
√

1− e−2tεyi)
)
dt,

Bε(x, y) :=
∫ 1

0

∑

i

(
ci(e−tεx+

√
1− e−2tεy)e−tε[

√
1− e−2tεxi − e−tεyi]

)
dt.

Let us estimate βε
∫ ∫ |αεBε| dγdγ �rst: the change of variables (65) and Fubini's theorem give

βε

∫ ∫
|αεBε| dγ(x) dγ(y) ≤ βε

∫ 1

0
e−εt

∫ ∫
|v(z)|∣∣

∑

i

ci(z)wi
∣∣ dγ(z) dγ(w) dt.

Using (66) with f = c(z), we get

βε

∫ ∫
|αεBε| dγ(x) dγ(y) ≤ βε

∫ ∫
|v(z)|

∣∣∣∣
∑

i

ci(z)wi
∣∣∣∣ dγ(z) dγ(w) ≤ βεΛ(p)‖c‖Lp(γ;RN )‖v‖Lp′ (γ).

(74)
Now, we estimate βε

∫ ∫ |αεAε| dγ dγ; again, we use the change of variables (65) to write

e−tε
√

1− e−2tεxi − e−2tεyi = −e−tεwi, e−tεxj − e−2tε

√
1− e−2tε

yj = − e−tε√
1− e−2tε

wj .
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Therefore we get

βε

∫ ∫
|αεAε| dγ(x) dγ(y)

≤ βε

∫ 1

0

∫ ∫
|v(z)|

∣∣∣∣
∑

ij

∂jc
i(z)

e−2tε

√
1− e−2tε

wiwj −
∑

i

ci(z)
e−2tε

√
1− e−2tε

zi
∣∣∣∣ dγ(z) dγ(w) dt

=
∫ ∫

|v(z)|
∣∣∣∣
∑

ij

∂jc
i(z)wiwj −

∑

i

ci(z)zi
∣∣∣∣ dγ(z) dγ(w),

where we used the identity
∫ 1

0

e−2tε

√
1− e−2tε

dt =
√

1− e−2ε

ε
= β−1

ε .

Eventually we use (67) with A = ∇c(z) and c = c(z) · z to obtain

βε

∫ ∫
|αεAε| dγ(x) dγ(y) ≤ ‖v‖Lq′ (γ)

(∫ ∫ ∣∣∑

ij

∂jc
i(z)wiwj −

∑

i

ci(z)zi
∣∣q dγ(w) dγ(z)

)1/q

≤ 21−1/q‖v‖Lq′ (γ)

(∫ √
2
q‖‖(∇c)sym‖HS‖q + |divγc|q dγ(z)

)1/q

≤ 21−1/q‖v‖Lq′ (γ)

(√
2‖‖(∇c)sym‖HS‖Lq(γ) + ‖divγc‖Lq(γ)

)
. (75)

Combining (72), (74) and (75), we have proved (68).
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