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Abstract. The isoperimetric inequality for the first eigenvalue of the Laplace operator
with Robin boundary conditions was recently proved by Daners in the context of Lips-
chitz sets. This paper introduces a new approach to the isoperimetric inequality, based
on the theory of special functions of bounded variation (SBV). We extend the notion of
the first eigenvalue λ1 for general domains with finite volume (possibly unbounded and
with irregular boundary), and we prove that the balls are the unique minimizers of λ1

among domains with prescribed volume.
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1. Introduction

If Ω ⊂ RN is open, bounded and with a sufficiently smooth boundary (N ≥ 2), the Robin
eigenvalue problem for the Laplace operator is given by

(1.1)

{
−∆u = λu in Ω
∂u
∂ν + βu = 0 on ∂Ω,

where β > 0 and ν denotes the outer normal on ∂Ω. It is well known that the eigenvalue problem
(1.1) admits an increasing and divergent sequence of solutions (λn(Ω))n≥1. Moreover the first
eigenvalue λ1(Ω) is characterized variationally as

(1.2) λ1(Ω) = min
u∈W1,2(Ω)

u 6=0

∫
Ω
|∇u|2 dx+ β

∫
∂Ω
u2 dHN−1∫

Ω
u2 dx

,

where the boundary term is intended in the sense of traces.
The minimum of λ1 among the class of bounded Lipschitz sets with prescribed volume is

achieved on balls, i.e.,

(1.3) λ1(B) ≤ λ1(Ω),

where B is a ball such that |B| = |Ω|. The isoperimetric inequality (1.3) is sometimes referred
to as the Faber-Krahn inequality for Robin problems. It has been proved by Bossel [3] for planar
smooth domains, and by Daners [9] for Lipschitz domains in higher dimensions. Concerning the
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uniqueness of minimizers, Daners and Kennedy [10] have shown that the balls are the unique
minimizers within the class of C2-domains, and the same result among the family of Lipschitz
domains has been obtained by Bucur and Daners [5] (also for the case of the p-Laplacian operator,
see moreover [7]). These results rely upon a direct comparison between B and Ω which is carried
out by means of a level set representation for the first eigenvalue together with rearrangement
techniques.

Concerning domains with non-smooth boundary, the problem of defining λ1 has been dealt
by Daners in [8]. Clearly, both the PDE version (1.1) and the Rayleigh quotient (1.2) involve
boundary terms which are not easily defined for general domains. Daners employs the abstract
completion V (Ω) of the space

V0(Ω) := W 1,2(Ω) ∩ C(Ω) ∩ C∞(Ω)

under the norm
‖u‖V := ‖u‖W 1,2(Ω) + ‖u‖L2(∂Ω;HN−1)

to provide a Hilbert-space functional setting for a generalization of the boundary value problem
(1.1) (here HN−1 denotes the (N − 1)-dimensional Hausdorff measure). The boundary terms are
determined under the completion by those of the functions in V0(Ω), which are simply given by
the restriction on ∂Ω in view of their continuity. The spectrum of the generalized problem has the
same features of the classical one, so that the lowest eigenvalue is taken by definition as the first
Robin eigenvalue of Ω. The validity of (1.3) within this generalized context is not obvious.

The aim of the paper is to establish variationally inequality (1.3), where Ω is an open domain
with prescribed volume m > 0, and λ1(Ω) is suitably defined if Ω is unbounded or not smooth (see
Definition 4.2 and relation (1.5) below). The associated uniqueness result is that if Ω is optimal
for λ1, then Ω is a ball up to negligible sets (Theorem 4.4). Moreover, if (Ωn)n∈N is minimizing
sequence for λ1, i.e., λ1(Ωn)→ λ1(B), then up to translating Ωn the symmetric difference between
Ωn and B has a volume which tends to zero (Proposition 6.5).

The starting point of our approach is the following observation. Let Ω be bounded and with
Lipschitz boundary, and let us extend u ∈ W 1,2(Ω) to the entire space by setting u = 0 outside
Ω. The extended function, still denoted by u, could present discontinuities across ∂Ω, and can be
studied in the framework of the theory of functions of bounded variation. More precisely we have
that u2 belongs to the space of special functions of bounded variation SBV (RN ) introduced by De
Giorgi and Ambrosio [11] to deal with free discontinuity problems (see Section 2). The Rayleigh
quotient for u ∈W 1,2(Ω) can be rewritten in SBV-terms as

(1.4)

∫
RN |∇u|

2 dx+ β
∫
Ju

[(u+)2 + (u−)2] dHN−1∫
RN u

2 dx
,

where ∇u is the approximate gradient of u, Ju is the set of discontinuity points of u, and u± are
the traces of u on Ju from the two sides (see Section 2 for the precise definitions of ∇u, Ju and
u±).

The optimization of λ1 leads thus naturally to the minimization of (1.4) on a suitable class of
functions of SBV -type which we denote by SBV

1
2 (RN ), and whose support has volume less or

equal than m. More precisely we let u vary in the space

SBV
1
2 (RN ) := {u : RN → [0,+∞[ is measurable and u2 ∈ SBV (RN )}.

The above analysis of the Rayleigh quotients suggests to extend the notion of first eigenvalue for
a general open set Ω with finite volume by setting (see Definition 4.2)

(1.5) λ1(Ω) := min

{∫
RN |∇u|

2 dx+ β
∫
Ju

[(u+)2 + (u−)2] dHN−1∫
RN u

2 dx
: u ∈ SBV 1

2 (RN ), u 6= 0,

|supp(u) \ Ω| = 0,HN−1(Ju \ ∂Ω) = 0
}
,

where supp(u) = {u 6= 0} denotes the support of u. If Ω is bounded and Lipschitz regular, then
λ1(Ω) coincides with the usual first eigenvalue. For bounded but irregular sets, we have that λ1(Ω)
is in general lower than the first eigenvalue proposed by Daners in [8] (see Section 4). Clearly if λ
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denotes the infimum of (1.4) on the functions in SBV
1
2 (RN ) whose support has a volume less or

equal than m, we have
λ ≤ λ1(Ω)

for every open set with |Ω| = m.
In Section 5 we prove that the infimum λ is achieved on a function u ∈ SBV

1
2 (RN ) (see

Theorem 4.5): this is done by means of a concentration-compactness argument together with
compactness and lower semicontinuity properties in SBV

1
2 (RN ) which we establish in Section 3.

In Section 6, on the basis of an Euler-Lagrange equation (Proposition 6.1), we prove (Theorem
4.6) that such a minimizer has a support which is equal to a ball B of volume m, and after a
suitable renormalization it coincides with the first eigenfunction of B inside the ball. Then the
isoperimetric inequality (1.3) follows since λ = λ1(B), together with the associated uniqueness
result.

We conclude the Introduction noting that by means of the same arguments (suitably changing
the functional spaces of SBV-type), we can prove the isoperimetric inequality (1.3) also for the
first eigenvalue of the p-Laplacian operator with p ∈]1,+∞[, generalizing to arbitrary domains the
result of [5].

The paper is organized as follows. In Section 2 we fix the notation and recall some basic facts
from the theory of functions of bounded variation. Section 3 is devoted to the study of the space
SBV

1
2 (RN ). In Section 4 we define the first Robin eigenvalue for an open set with finite measure

by means of our SBV-approach, and we state the corresponding isoperimetric inequality. The
optimization of the Rayleigh quotient (1.4) is carried out in Section 5, while the structure of
minimizers and the convergence of a minimizing sequence to a ball are studied in Section 6.

2. Notation and preliminaries

Throughout the paper, Br(x) will denote the open ball of center x ∈ RN and radius r > 0. If
E ⊂ RN , we will denote its volume by |E|, and 1E will stand for its characteristic function, i.e.,
1E(x) = 1 if x ∈ E and 1E(x) = 0 if x 6∈ E. For A ⊆ RN open set and p ≥ 1, Lp(A) will denote
the usual Lebesgue space of p-summable functions, while W 1,p(A) will denote the Sobolev space of
functions in Lp(A) whose derivative in the sense of distributions is p-summable. Moreover ‖u‖∞
will stand for the sup-norm of u, while supp(u) will denote the set {u 6= 0}, well defined up to
zero Lebesgue measure. Finally we will use the following notation: for a, b ∈ R

a ∧ b := min{a, b} and a ∨ b := max{a, b}.

In the rest of the section we recall some basic facts about fine properties of measurable maps
and about functions of bounded variation.

Approximate continuity and differentiability. Let u : RN → R be a measurable function
and let x ∈ RN . We set

u+(x) := inf{t ∈ R : x ∈ {u > t}0}
and

u−(x) := sup{t ∈ R : x ∈ {u < t}0}.
Here E0 for E measurable set in RN stands for the set of points y ∈ RN with zero density with
respect to E, that is such that

lim sup
r→0+

|E ∩Br(y)|
rN

= 0.

The values u+(x) and u−(x) are called the upper and lower essential limits of u at x. If they
coincide and are equal to l, we say that l is the essential limit of u at x and we write

l = ap lim
y→x

u(y).

The function u is said approximately continuous at x if the essential limit of u at x exists and is
equal to u(x), that is if u+(x) = u−(x) = u(x). Notice that if u ∈ L1

loc(RN ) and x is a Lebesgue
point for u with Lebesgue value l, then l is also the approximate limit of u at x.
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The set
Ju := {x ∈ RN : u−(x) < u+(x)}

is called the jump set of u.
We say that u is approximately differentiable at x if there exists a vector ξ ∈ RN such that

ap lim
y→x

u(y)− u(x)− ξ · (y − x)
|y − x|

= 0.

If such a vector ξ exists, it turns out that it is unique and it is called the approximate gradient
of u at x, and is denoted by ∇u(x). It is easily seen that approximate differentiability implies
approximate continuity.

It follows from the definition that if two measurable functions u and v coincide on a measurable
subset E, then u and v share the same upper and lower essential limits on any point of density
1 of E, that is at almost every point of E in view of Lebesgue density theorem. Moreover u
is approximately differentiable at a point of density 1 of E if and only if v is approximately
differentiable, and their approximate gradient are equal. In particular it follows that if u = c
on a measurable set E with c ∈ R, then u is approximately differentiable for a.e. x ∈ E with
∇u(x) = 0.

We will use the following stability properties which easily follow from the above definitions. Let
g : R→ R be a continuous function. Then

(g ◦ u)+(x) = g(u+(x)), (g ◦ u)−(x) = g(u−(x))

if g is increasing, while

(g ◦ u)+(x) = g(u−(x)), (g ◦ u)−(x) = g(u+(x))

if g is decreasing. In particular we infer Jg◦u ⊆ Ju. If g is differentiable and u is approximately
differentiable at x we have the following chain rule formula:

∇(g ◦ u)(x) = g′(u(x))∇u(x).

Functions of bounded variation. Let A ⊆ RN be an open set. We say that u ∈ BV (A) if
u ∈ L1(A) and its derivative in the sense of distributions is a finite Radon measure on A, i.e.,
Du ∈Mb(A; RN ). BV (A) is called the space of functions of bounded variation on A. BV (A) is a
Banach space under the norm ‖u‖BV (A) := ‖u‖L1(A) + ‖Du‖Mb(A;RN ). We refer the reader to [1]
for an exhaustive treatment of the space BV .

Concerning the fine properties, a function u ∈ BV (A) (or better every representative of u) is
a.e. approximately differentiable on A, with approximate gradient ∇u ∈ L1(A; RN ). Moreover,
the jump set Ju is a (N − 1)-rectifiable set, i.e., Ju ⊆ ∪i∈NMi up to a HN−1-negligible set, with
Mi a C1-hypersurface in RN . The measure Du admits the following representation for every Borel
set B ⊆ A:

Du(B) =
∫
B

∇u dx+
∫
Ju∩B

(u+ − u−)νu dHN−1 +Dcu(B),

where νu(x) is the normal to Ju at x, and Dcu is singular with respect to the Lebesgue measure
and concentrated outside Ju. Dcu is usually referred to as the Cantor part of Du. The normal
νu coincides HN−1-a.e. on Ju with the normal to the hypersurfaces Mi. The direction of νu(x)
is chosen in such a way that u±(x) is the approximate limit of u at x on the sets {y ∈ RN :
νu(x) · (y−x) ≷ 0}. Moreover, u± coincide HN−1-almost everywhere on Ju with the traces γ±(u)
of u on Ju which are defined by the following Lebesgue-type limit quotient relation

lim
r→0

1
rN

∫
B±r (x)

|u(x)− γ±(u)(x)| dx = 0

where B±r (x) := {y ∈ Br(x) : νu(x) · (y − x) ≷ 0} (see [1, Remark 3.79]).
If A is bounded and with a Lipschitz boundary, then BV (A) ↪→ LN/N−1(A). Moreover, the

following compactness result holds: if (un)n∈N is bounded in BV (A), there exist u ∈ BV (A) and
a subsequence (unk)k∈N such that

unk → u strongly in L1(A)
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and
Dunk → Du weakly* in the sense of measures.

We say in this case that unk
∗
⇀ u weakly* in BV (A).

We say that u ∈ SBV (A) if u ∈ BV (A) and Dcu = 0. SBV (A) is called the space of special
function of bounded variation on A. This space is very useful in free discontinuity problems in
view of the following compactness and lower-semicontinuity result due to L. Ambrosio (see [1,
Theorems 4.7-4.8]).

Theorem 2.1. Let A ⊂ RN be open and bounded, p ∈]1,+∞[, and let (un)n∈N be a sequence in
SBV (A) such that

(2.1) sup
n

∫
A

|∇un|p dx+HN−1(Jun) + ‖un‖∞ < +∞.

Then there exist u ∈ SBV (A) with ∇u ∈ Lp(A; RN ) and a subsequence (unk)k∈N such that

unk → u strongly in L1(A),

∇unk → ∇u weakly in Lp(A; RN )
and

HN−1(Ju) ≤ lim inf
n→∞

HN−1(Jun).

From the proof of Ambrosio’s Theorem, we infer that the conclusions still hold provided that
in place of (2.1) we have un

∗
⇀ u weakly* in BV (A), (∇un)n∈N is bounded in Lp(A; RN ) and

supnHN−1(Jun) < +∞. In this case we say that un ⇀ u weakly in SBV (A).

3. The space SBV
1
2 (RN ): compactness and lower semicontinuity results

In this section we define and prove the principal properties of the function space we will use to
study the optimization of the first eigenvalue for the Robin boundary value problem.

Definition 3.1. We say that u ∈ SBV 1
2 (RN ) if u is nonnegative almost everywhere and u2 ∈

SBV (RN ).

We note that the exponent 1/2 is not connected to any concept of fractional derivative. More-
over, the exponent does not refer to the summability of ∇u as for the spaces SBV p, p > 1,
frequently employed in problems arising in fracture mechanics, for which ∇u is p-summable.

The following lemma concerns some fine properties of functions in SBV
1
2 (RN ).

Lemma 3.2. Let u ∈ SBV 1
2 (RN ). Then the following facts hold.

(a) u is a.e. approximately differentiable with approximate gradient ∇u such that

(3.1) ∇u2 = 2u∇u a.e. in RN .

(b) The jump set Ju is HN−1-rectifiable and a normal νu can be chosen in such a way that

Dj(u2) = [(u+)2 − (u−)2] νu dHN−1 Ju.

(c) For every ε > 0 we have u ∨ ε ∈ SBV (Ω) for every bounded open set Ω ⊂ RN .

Proof. Let ε > 0 and let Ω be a bounded open set in RN . By the chain rule in BV [1, Theorem
3.96], we have that v := u2 ∨ ε2 = (u ∨ ε)2 ∈ SBV (Ω). By taking the square root, again by the
chain rule in BV , we deduce that u ∨ ε ∈ SBV (Ω). Point (c) is thus proved.

Since u ∈ L2(RN ), almost all points in RN are Lebesgue points of u, and in particular points
of approximate continuity. Let us fix a Lebesgue representative of u, i.e., let u(x) be equal to the
Lebesgue value if x is a Lebesgue point, and let u(x) = 0 otherwise. Let En := {x ∈ Ω : u(x) >
1/n}. Since u = u ∨ (1/n) on En, and u ∨ (1/n) is a.e. approximately differentiable on Ω since
it belongs to SBV (Ω), we get that u is a.e. approximately differentiable on En. Moreover, u is
a.e. approximately differentiable on E0 := {x ∈ Ω : u(x) = 0} with zero approximate gradient.
Since Ω = E0 ∪

⋃
n≥1En, we conclude that u is a.e. approximately differentiable on Ω. As Ω is
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arbitrary, we get the approximate differentiability on RN , and equality (3.1) follows by composition
arguments (see Section 2), so that point (a) is proved.

Point (b) follows again by composition arguments (see Section 2): since u is positive, Ju = Ju2

so that the HN−1-rectifiability and we can choose νu = νu2 so that the representation formula for
Dj(u2) holds. The proof of the lemma is now complete. �

The main result of the section is the following theorem.

Theorem 3.3. Let (un)n∈N be a sequence in SBV
1
2 (RN ) and let C > 0 be such that for every

n ∈ N

(3.2)
∫

RN
|∇un|2 dx+

∫
Jun

[(u+
n )2 + (u−n )2] dHN−1 +

∫
RN

u2
n dx ≤ C.

Then there exist u ∈ SBV 1
2 (RN ) and a subsequence (unk)k∈N such that the following facts hold.

(a) Compactness: unk → u strongly in L2
loc(RN ).

(b) Lower semicontinuity: for every open set A ⊆ RN we have

(3.3)
∫
A

|∇u|2 dx ≤ lim inf
k→∞

∫
A

|∇unk |2 dx

and

(3.4)
∫
Ju∩A

[(u+)2 + (u−)2] dHN−1 ≤ lim inf
k→∞

∫
Junk

∩A
[(u+

nk
)2 + (u−nk)2] dHN−1.

Proof. The idea is to consider vn := u2
n ∈ SBV (RN ), and to infer the result from compactness in

BV and the lower semicontinuity properties in SBV . Let us divide the proof in several steps. In
the following, Ω ⊂ RN will be an open bounded set.

Step 1. Recall that by Lemma 3.2

(3.5) ∇vn = 2un∇un
and

(3.6) Djvn = [(u+
n )2 − (u−n )2]νunHN−1 Jun .

Notice that (vn)n∈N is bounded in BV (RN ). In fact this follows from (3.5) and (3.6) in view of
the bound (3.2). We deduce that there exists v ∈ BV (RN ) and a subsequence (vnk)k∈N such that

(3.7) vnk
∗
⇀ v locally weakly∗ in BV (RN ).

By the compact embedding of BV into L1 for bounded and Lipschitz domains we get in particular

vnk → v strongly in L1
loc(RN ).

By setting u :=
√
v (recall that v ≥ 0 on RN ), we have u ∈ L2(RN ) and

(3.8) unk → u strongly in L2
loc(RN ).

Step 2. For every ε > 0 we have

(3.9) uεnk → u ∨ ε strongly in L2(Ω),

where uεnk := unk ∨ ε. Notice that by composition (see Section 2) we have

(3.10) ∇uεnk = ∇unk1{unk>ε} in Ω,

so that (∇uεnk)k∈N is bounded in L2(Ω; RN ). Moreover, by (3.2) and Lemma 3.2 we deduce that

HN−1(Juεn) ≤ 1
ε2

∫
Jun

[(u+
n )2 + (u−n )2] dHN−1 ≤ C

ε2
.
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As a consequence, concerning the jump part Djuεnk of the derivative of uεnk , we have that there
exists Cε > 0 such that for every k

|Djuεnk |(Ω) =
∫
Juεnk

∩Ω

|(uεnk)+ − (uεnk)−| dHN−1

≤
∫
Juεnk

∩Ω

{Cε + [(uεnk)+]2 + [(uεnk)−]2} dHN−1 ≤ CεC

ε2
+ 2C.

By (3.9) and the remark after Ambrosio’s Theorem 2.1, we deduce that u∨ ε ∈ SBV (Ω) for every
ε > 0, and

(3.11) uεnk ⇀ u ∨ ε weakly in SBV (Ω),

i.e., separate convergence for the absolutely continuous and the jump part of the derivative holds.

Step 3. In view of the bound (3.2), up to a further subsequence we may assume that

(3.12) ∇unk ⇀ Φ weakly in L2(RN ; RN ).

Let ∇u be the approximate gradient of u. By (3.8) and (3.10) we deduce that for a.e. ε > 0

∇uεnk ⇀ Φ1{u>ε} weakly in L2(Ω; RN ).

In view of (3.11) we deduce that for a.e. ε > 0

Φ1{u>ε} = ∇u1{u>ε} in Ω.

Since Ω is arbitrary, we conclude that

(3.13) ∇u =

{
Φ a.e. on {u > 0}
0 a.e. on {u = 0}.

By lower semicontinuity we get∫
Ω

|∇u|2 dx ≤
∫

Ω

|Φ|2 dx ≤ lim inf
k→∞

∫
Ω

|∇unk |2 dx

so that, since Ω is arbitrary, (3.3) follows.

Step 4. We claim that v = u2 ∈ SBV (RN ) with

(3.14) ∇v = 2u∇u
and

(3.15) Djv = [(u+)2 − (u−)2]νu dHN−1 Ju.

Indeed, since v ∈ BV (RN ), (3.15) follows directly from the definition of Djv and by the relation
v = u2. In particular, we get

(3.16)
∫
Ju

[(u+)2 − (u−)2] dHN−1 < +∞.

Let us set vε := v ∨ ε2 for ε > 0. By the chain rule in BV [1, Theorem 3.96] we have that
vε ∈ BV (Ω), and vε

∗
⇀ v weakly* in BV (Ω) as ε→ 0. Since vε = (u ∨ ε)2, and u ∨ ε ∈ SBV (Ω),

again by the chain rule in BV we get vε ∈ SBV (Ω) with

(3.17) ∇vε = 2(u ∨ ε)∇u1{u>ε} in Ω

and

(3.18) Djvε = [(u+ ∨ ε)2 − (u− ∨ ε)2]νu dHN−1 (Ju ∩ Ω).

Since ∇u ∈ L2(Ω; RN ) by (3.13), from (3.17) we deduce that

∇vε → 2u∇u strongly in L1(Ω; RN )

as ε→ 0. By (3.18), (3.16) and the monotone convergence theorem we have

Djvε → [(u+)2 − (u−)2]νu dHN−1 (Ju ∩ Ω) strongly in Mb(Ω; RN )
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as ε→ 0. This entails that Dv is the sum of an absolutely continuous measure and of a measure
concentrated on Ju, which is an HN−1-rectifiable set in view of Lemma 3.2. We infer that the
Cantor part Dcv of Dv vanishes, since Dcv is singular with respect to the Lebesgue measure and
cannot charge sets which are σ-finite with respect to HN−1. We conclude that v ∈ SBV (Ω). Since
Ω is arbitrary, we deduce that the claim holds. As a consequence u ∈ SBV 1

2 (RN ), so that point
(a) follows in view of (3.8).

Step 5. By (3.7), (3.14) and (3.15), we have that

Dvnk
∗
⇀ Dv = 2u∇u dx+ [(u+)2 − (u−)2]νu dHN−1 Ju

locally weakly* in the sense of measures in RN . Notice that

Davnk = 2unk∇unk ⇀ 2u∇u weakly in L1(Ω; RN ).

Indeed, for every ϕ ∈ L∞(Ω; RN ) we get using (3.8),(3.12) and (3.13)

lim
k→∞

∫
Ω

2unk∇unk · ϕdx =
∫

Ω

2uΦ · ϕdx =
∫

Ω

2u∇u · ϕdx.

As a consequence we conclude that

Djvnk
∗
⇀ Djv weakly∗ in Mb(Ω; RN ).

Let vεnk and vε be equal to the positive part of (vnk−ε) and (v−ε) respectively, where ε > 0. By
the chain rule in BV, and in view also of the bound (3.2), we can apply the lower semicontinuity
result [4, Theorem 2.12] to the sequence (vεnk)k∈N obtaining∫

Jvε∩Ω

|(vε)+|+ |(vε)−| dHN−1 ≤ lim inf
k→∞

∫
Jvεnk

∩Ω

|(vεnk)+|+ |(vεnk)−| dHN−1.

Since ε is arbitrary we get∫
Jv∩Ω

|v+|+ |v−| dHN−1 ≤ lim inf
k→∞

∫
Jvnk

∩Ω

|v+
nk
|+ |v−nk | dH

N−1

so that inequality (3.4) follows as Ω is also arbitrary. The proof of the theorem is now complete. �

An immediate consequence of Theorem 3.3 is given by the following proposition which will be
used in connection with the definition of the first Robin eigenvalue for arbitrary domains.

Proposition 3.4. Let Ω ⊆ RN be open with |Ω| < +∞, and let β > 0. Then the minimum
problem

min

{∫
RN |∇u|

2 dx+ β
∫
Ju

[(u+)2 + (u−)2] dHN−1∫
RN u

2 dx
: u ∈ SBV 1

2 (RN ), u 6= 0,

|supp(u) \ Ω| = 0,HN−1(Ju \ ∂Ω) = 0
}

admits a solution.

Proof. Let (un)n∈N be a minimizing sequence. By rescaling we can assume that ‖un‖L2(RN ) = 1
for every n ∈ N. By comparing un with a smooth function with compact support in Ω we get that∫

RN
|∇un|2 dx+

∫
Jun

[(u+
n )2 + (u−n )2] dHN−1 +

∫
RN

u2
n dx ≤ C

for some C > 0. By Theorem 3.3 we deduce that there exists u ∈ SBV 1
2 (RN ) such that up to a

subsequence

(3.19) un → u strongly in L2
loc(RN )
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and

(3.20)
∫

Ω

|∇u|2 dx+ β

∫
Ju∩Ω

[(u+)2 + (u−)2] dHN−1

≤ lim inf
n→∞

∫
Ω

|∇un|2 dx+ β

∫
Jun∩Ω

[(u+
n )2 + (u−n )2] dHN−1.

Since |supp(un) \ Ω| = 0, we deduce that |supp(u) \ Ω| = 0. Moreover, in view of the Sobolev-
Gagliardo-Nirenberg inequality in BV (RN ) applied to u2

n we get

‖u2
n‖LN/N−1(RN ) ≤ CN |D(u2

n)|(RN ) = CN

[∫
RN

2|un∇un| dx+
∫
Jun

|(u+
n )2 − (u−n )2| dHN−1

]

≤ CN

[∫
RN
|∇un|2 dx+

∫
Jun

[(u+
n )2 + (u−n )2] dHN−1 +

∫
RN

u2
n dx

]
≤ CNC < +∞,

where CN depends only on the dimension N . We infer that (un)n∈N is bounded in L2N/N−1(RN ).
Similarly we get that u ∈ L2N/N−1(RN ). Since for every ball BR(0) with R > 0 we have in view
of Hölder inequality

‖un − u‖L2(RN ) = ‖un − u‖L2(Ω) ≤ ‖un − u‖L2(Ω∩BR(0)) + ‖un − u‖L2(Ω\BR(0))

≤ ‖un − u‖L2(Ω∩BR(0)) + C̃|Ω \BR(0)|1/N

for some C̃ > 0, by (3.19) and the assumption |Ω| < +∞ we conclude that

un → u strongly in L2(RN ).

In particular ‖u‖L2(RN ) = 1, so that u 6= 0. Moreover, by the lower semicontinuity (3.4) applied
to A := RN \ ∂Ω we get that HN−1(Ju \ Ω) = 0. We conclude that u is an admissible function
and (3.20) entails that u is a minimum point for the problem.

�

We conclude the section by commenting on the connection between our space SBV
1
2 (RN ) and

the function space which Daners [8] uses for his approach to the study of the Robin boundary
value problem on arbitrary domains.

Let A be an open and bounded set in RN . Let us consider

V0(A) := {u ∈W 1,2(A) ∩ C(Ā) ∩ C∞(A) : ‖u‖V < +∞},

where

‖u‖2V := ‖∇u‖2L2(A;RN ) + ‖u|∂A‖2L2(∂A;HN−1).

Daners considers in his paper [8] the completion V (A) of V0(A) under the ‖ · ‖V norm. An
important feature of this space is that it is compactly embedded into L2(A). The proof of this
fact is due to Maz’ja [15, Corollary 4.11.1/2] and relies on the embedding V (A) ↪→ L2N/N−1(A),
which he proves using the coarea formula and the classical isoperimetric inequality, and on the
compact embedding of W 1,2(A) into L2

loc(A).
The space V (A) is linked to our space SBV

1
2 (RN ). The key point is to observe that if u ∈ V0(A),

and we extend u to zero outside A (still denoting the function by u) we obtain essentially an element
of SBV

1
2 (RN ). More precisely, since u is not necessarily positive, we have v := u2 ∈ SBV (RN ),

with ∇v = 2u∇u1A (we think ∇u extended to zero outside A for example) and Jv ⊂ ∂A. The
embedding into L2N/N−1(A) is then quite easy to obtain using the standard BV-theory. Indeed,
thank to the continuity of u on Ā, the points of Jv have positive density with respect to Ā and
RN \ Ā, and we have for x ∈ Jv

v+(x) = u2(x) and v−(x) = 0.
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It follows that

(3.21) |Dv|(RN ) = ‖2u∇u1A‖L1(RN ;RN ) +
∫
Jv

(v+)2 dHN−1

≤ ‖2u∇u‖L1(A;RN ) +
∫
∂A

u2 dHN−1 < +∞.

From the embedding of BV (RN ) into LN/N−1(RN ) we deduce that

‖u2‖LN/N−1(A) ≤ CN
[
‖2u∇u‖L1(A;RN ) +

∫
∂A

u2 dHN−1

]
≤ CN

[
b‖u‖2L2(A) +

1
b
‖∇u‖2L2(A;RN ) +

∫
∂A

u2 dHN−1

]
where b > 0. Hölder inequality and the choice of a sufficiently small b entail the embedding of
V0(A) into L2N/N−1(A). By density, the embedding extends to the whole space V (A).

Let us prove the claim on v = u2. Since we can work separately with the positive and the
negative part of u, we can assume u ≥ 0. Let us fix ε > 0. Since ‖u‖V < +∞, we deduce that

HN−1(∂εA) ≤ 4
ε2
‖u|∂A‖2L2(∂A;HN−1) < +∞,

where ∂Aε is the compact set given by ∂εA := {x ∈ ∂A : u(x) ≥ ε/2}. Let {Uη}η>0 be a family
of open neighborhoods of ∂εA with ∩η>0Uη = ∂εA, and let {Bηri(xi)}i=1,...,n be a finite family of
balls covering ∂Aε, with ∪ni=1Bri(xi) ⊆ Uη and such that

(3.22)
n∑
i=1

ωN−1r
N−1
i ≤ (1 + η)HN−1(∂εA).

Let uε be the positive part of (u− ε), and vη be defined as

vη :=

{
u2
ε in A \

⋃n
i=1 B̄

η
ri(xi)

0 otherwise in RN .

It turns out easily that vη ∈ SBV (RN ) with support compactly contained in A, and with

∇vη = 2uε∇u1A\Sn
i=1 B̄

η
ri

(xi)

and Jvη ⊆
⋃n
i=1 ∂B

η
ri(xi). In view of (3.22), we can apply Ambrosio’s compactness theorem to

vη → wε := u2
ε as η → 0, deducing that wε ∈ SBV (RN ) with ∇wε = 2uε∇u1A and Jwε ⊆ ∂εA.

Moreover, since u is continuous on Ā, the points of Jwε have positive density with respect to A
and RN \ Ā and

Djwε = u2
ενwε HN−1 Jwε .

In particular we get that
|Djwε| ≤ µ := u2HN−1 ∂A.

Since µ is concentrated on ∪n≥1∂1/nA which is σ-finite with respect to HN−1, by letting ε → 0
we deduce that v ∈ SBV (RN ), so that the claim follows.

Inequality (3.21) shows that in order to bound the BV norm of v it suffices to control the
integral of u2 only on the points of ∂A which have positive density with respect to Ā and RN \ Ā.
The information carried by the integral of u2 on the rest of ∂A is irrelevant for the embedding of
V0(A) into L2N/N−1(A), and with this respect taking the abstract completion of V0(A) with respect
to ‖ · ‖V (which gives an Hilbert space isometric to a subspace of W 1,2(A) × L2(∂A,HN−1)) is
redundant. This is connected to a remark by Daners [8, Remark 3.2, point (d)]. He notices that the
embedding V (A) ↪→ L2N/N−1(A) could fail to be injective, because of the possible existence of a
sequence un ∈W 1,2(A)∩C(Ā)∩C∞(A) with un → 0 strongly in W 1,2(A) and

∫
∂A
u2
n dHN−1 6→ 0.

Such a phenomenon can indeed occur as was shown by Arendt and Warma in [2] by employing
arguments from capacity theory. Our analysis indicates that the problem can be caused by the
points of ∂A which have not positive density with respect to Ā or RN \Ā, as the following example
shows.
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Let us consider A ⊂ R3 defined in the following way. Let Rk := [ak, bk] × [0, 1] × [0, ck] with
a0 = 0, ak+1 = bk and

∑
k |bk − ak| = 1. For each k, let us consider the set Ck given by the

union of (k − 1) closed cylinders with axis parallel to the z-axis, whose height is 1, and with a
circular base with radius rk < bk−ak

2 centered at the points (ak+bk
2 , ik , 0) with i = 1, . . . , k−1. Let

vn(x, y, z) := 1
1−xn (x− xn)+, where xn :=

∑n
k=0(bk − ak). We choose ck and rk so small that by

setting

A := int
∞⋃
k=1

(Rk ∪ Ck)

we have
∑
k[HN−1(∂Rk) +HN−1(∂Ck)] < +∞ and ‖∇vn‖L2(A;R3) → 0 as n → ∞. Notice that

the square Q := {1} × [0, 1] × [0, 1] is contained in ∂A, since the points of Q are accumulation
points for the family of cylinders given by the Ck’s. The construction can be carried out in such
a way that the points of Q have zero density with respect to Ā. Moreover we have vn = 1 on Q.
As a consequence

∫
∂A
u2
n dHN−1 ≥ 1 for every n, and so it cannot converge to 0 as n→∞. Since

by general density results we can smooth out vn to obtain un with the same boundary data and
with vanishing W 1,2 norm, the result follows.

4. Isoperimetric inequality for Robin problems on arbitrary open sets

Let us fix β > 0. Given Ω ⊂ RN open, bounded and with Lipschitz boundary, the first eigenvalue
λ1(Ω) for the Laplacian on Ω with Robin boundary conditions is given by the minimization of the
following Rayleigh quotient

(4.1) λ1(Ω) = min
u∈W1,2(Ω)

u 6=0

∫
Ω
|∇u|2 dx+ β

∫
∂Ω
u2 dHN−1∫

Ω
u2 dx

,

where the boundary term is intended in the sense of traces. The minimum is achieved on the linear
space generated by an eigenfunction ψ1 which is positive in Ω: we assume that ψ1 has unitary
norm in L2(Ω), and we refer to ψ1 as the first eigenfunction.

Lemma 4.1. Let Ω ⊂ RN be open, bounded and with Lipschitz boundary, and let ψ1 be the
associated first eigenfunction of the Robin boundary value problem. Then the function

u1(x) :=

{
ψ1(x) if x ∈ Ω
0 if x 6∈ Ω

belongs to SBV
1
2 (RN ). Moreover Ju1 ⊆ ∂Ω and∫

RN |∇u1|2 dx+ β
∫
Ju1

[(u+
1 )2 + (u−1 )2] dHN−1∫

RN u
2
1 dx

=

∫
Ω
|∇ψ1|2 dx+ β

∫
∂Ω
ψ2

1 dHN−1∫
Ω
ψ2

1 dx
= λ1(Ω).

Proof. Since ψ2
1 ∈ W 1,1(Ω) ∩ C1(Ω) ∩ C(Ω) and Ω has a Lipschitz boundary, we deduce from [1,

Theorem 3.87] that u2
1 ∈ SBV (RN ) with Ju2

1
⊆ ∂Ω and

(u2
1)+ = ψ2

1 and (u2
1)− = 0.

Since u1 ≥ 0, we deduce that u1 ∈ SBV
1
2 (RN ) together with the result on the Rayleigh quotients.

�

The preceding Lemma together with Proposition 3.4 suggests the following definition for the
first eigenvalue of a general open domain with finite volume (possibly unbounded and irregular).

Definition 4.2 (The first Robin eigenvalue for a general domain). Let Ω ⊆ RN be open
with |Ω| < +∞. We set

(4.2) λ1(Ω) := min

{∫
RN |∇u|

2 dx+ β
∫
Ju

[(u+)2 + (u−)2] dHN−1∫
RN u

2 dx
: u ∈ SBV 1

2 (RN ), u 6= 0,

|supp(u) \ Ω| = 0,HN−1(Ju \ ∂Ω) = 0
}
.



12 D. BUCUR AND A. GIACOMINI

If Ω is bounded and with Lipschitz boundary, the definition reduces to the classical one given
in (4.1). If Ω has an irregular boundary, definition (4.2) permits to overcome the problem that
the trace on the boundary for Sobolev functions is not easily defined.

Remark 4.3. As mentioned in the Introduction, Daners [8] defines the first eigenvalue of Ω by
taking the infimum of the Rayleigh quotient appearing in (4.1) on the space

V0(Ω) := W 1,2(Ω) ∩ C(Ω) ∩ C∞(Ω).

(The boundary term is simply the restriction of the function on ∂Ω.) The connection with our
definition has been exploited in the comments after Theorem 3.3 in Section 3: our arguments show
that λ1(Ω) is lower or equal than the one proposed by Daners.

We notice that our definition of λ1(Ω) permits to deal with richer geometrical situations: for
example, if Ω contains a compact smooth crack K, our definition of λ1(Ω \K) involves functions
whose traces from the two sides of K can be different, as it is natural by looking at Ω \K as limit
of Lipschitz domains with holes shrinking on K. On the contrary, the definition of Daners involves
functions which extend continuously on K.

We conclude the remark by noting that Daners approach is shaped in such a way to provide a
functional framework in which a generalized boundary value problem of Robin’s type can be settled,
allowing to speak of higher order eigenvalues. Our SBV-approach is well suited (and natural) just
for defining the first eigenvalue because the functional space involved in the definition of λ1 is not
a Hilbert space (if ∂Ω is “too large”).

Let m > 0 be given, and let us set

Am(RN ) := {Ω ⊂ RN : Ω is open with |Ω| = m}.

The main result of the paper is the following.

Theorem 4.4 (Isoperimetric inequality for Robin problems). Let B be a ball of volume
m > 0. Then

(4.3) λ1(B) ≤ λ1(Ω)

for every Ω ∈ Am(RN ). Moreover, equality holds if and only if Ω is a ball up to a negligible set.

The proof of Theorem 4.4 will be achieved by studying the variational problem

(4.4) inf
u∈Fm(RN )
u 6=0

∫
RN |∇u|

2 dx+ β
∫
Ju

[(u+)2 + (u−)2] dHN−1∫
RN u

2 dx

where

(4.5) Fm(RN ) := {u ∈ SBV 1
2 (RN ) : |supp(u)| ≤ m}

and where the space SBV
1
2 (RN ) is given by Definition 3.1. Directly from the very definition of λ

we get that

(4.6) λ ≤ inf
Ω∈Am(RN )

λ1(Ω).

The proof of the isoperimetric inequality for λ1 relies on the following results which we prove
in Section 5 and 6 respectively.

Theorem 4.5 (Minimization of the Rayleigh quotient). The minimum problem

(4.7) min
u∈Fm(RN )
u 6=0

∫
RN |∇u|

2 dx+ β
∫
Ju

[(u+)2 + (u−)2] dHN−1∫
RN u

2 dx

admits a solution.
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Theorem 4.6 (Minimizers are balls). Let u ∈ Fm(RN ) be a minimizer of the Rayleigh quotient
(4.7) with ‖u‖L2(RN ) = 1, and let λ > 0 be the associated minimum value. Then there exists a ball
B ⊂ RN of volume m such that λ = λ1(B) and

(4.8) u = ψ11B ,

where λ1(B) is the first eigenvalue and ψ1 is the associated first eigenfunction of the classical
Robin problem (1.1).

In view of the preceding results, the proof of Theorem 4.4 is straightforward.

Proof of Theorem 4.4. Inequality (4.3) follows from (4.6) and the fact that λ = λ1(B) in view of
Theorem 4.6. Concerning the uniqueness, let Ω be such that λ1(Ω) = λ1(B). Let u ∈ SBV 1

2 (RN )
be a function whose Rayleigh quotient is equal to λ1(Ω). Then u is a minimizer of (4.7) on
Fm(RN ). By Theorem 4.6 we infer that it coincides with the first positive eigenfunction of a ball
B̃ of volume m, extended to zero outside B̃. Since B̃ ⊆ Ω (the first eigenfunction is positive) and
|Ω| = |B̃| = m, we conclude that Ω = B̃ up to a negligible set, so that the proof is concluded. �

Remark 4.7. Since the minimum λ of (4.7) is attained on a function u ∈ Fm(RN ) in view of
Theorem 4.5, by employing the density result [6] we could prove directly that

λ = inf{λ1(Ω) : Ω ⊂ RN is open, bounded, with Lipschitz boundary, and |Ω| ≤ m}

without invoking the relation λ = λ1(B) entailed by Theorem 4.6. The preceding equality shows
that problem (4.4) is in a certain sense a relaxation of the optimization problem for λ1 on the class
of Lipschitz domains with a volume constraint.

5. Optimization of the Rayleigh quotient

This section is devoted to the proof of Theorem 4.5. In order to prove the result, we need some
preliminary lemmas. Recall that Fm(RN ) is defined in (4.5).

Lemma 5.1. Let u ∈ Fm(RN ) and t ∈]0, 1[. By setting v(x) := u(tx) for every x ∈ RN , we have
v ∈ Fm/tN (RN ) and

(5.1)

∫
RN |∇v|

2 dx+ β
∫
Jv

[(v+)2 + (v−)2] dHN−1∫
RN v

2 dx

≤ t
∫

RN |∇u|
2 dx+ β

∫
Ju

[(u+)2 + (u−)2] dHN−1∫
RN u

2 dx
.

Proof. Clearly v ∈ Fm/tN (RN ). Moreover, straightforward calculations show that∫
RN
|∇v|2 dx = t2−N

∫
RN
|∇u|2 dx,∫

RN
v2 dx = t−N

∫
RN

u2 dx,

and ∫
Jv

[(v+)2 + (v−)2] dHN−1 = t1−N
∫
Ju

[(u+)2 + (u−)2] dHN−1.

Then we obtain∫
RN |∇v|

2 dx+ β
∫
Jv

[(v+)2 + (v−)2] dHN−1∫
RN v

2 dx
=
t2
∫

RN |∇u|
2 dx+ tβ

∫
Ju

[(u+)2 + (u−)2] dHN−1∫
RN u

2 dx

≤ t
∫

RN |∇u|
2 dx+ β

∫
Ju

[(u+)2 + (u−)2] dHN−1∫
RN u

2 dx

so that the proof of (5.1) is concluded. �
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Lemma 5.2. Let u ∈ Fm(RN ) be such that
∫

RN u
2 dx = L > 0 and∫

RN
|∇u|2 dx+

∫
Ju

[(u+)2 + (u−)2] dHN−1 = M > 0.

Then there exist y ∈ RN such that

(5.2) |supp(u) ∩Q1(y)| ≥
(

S

M(1 + 1/L) + 2

)N
where S depends only on N , and Q1(y) is an open unit cube centered at y.

Proof. Let us adapt to our SBV-context an idea by H. Brezis reported in E.H. Lieb’s paper [12,
Section 3]. Since Ju is HN−1-rectifiable in view of Lemma 3.2, we can find z ∈ RN such that the
grid z + ξ + ∂Q1, with ξ ∈ ZN and Q1 the unit cube centered at the origin, intersects Ju on a
HN−1-negligible set. We clearly can find y = z + ξ̄ ∈ RN such that

(5.3)
∫
Q1(y)

u2 dx 6= 0

and

(5.4)
∫
Q1(y)

|∇u|2 dx+
∫
Ju∩Q1(y)

[(u+)2 + (u−)2] dHN−1 ≤ K
∫
Q1(y)

u2 dx,

where K = M (1 + 1/L). Since by definition u2 ∈ SBV (RN ), the immersion of BV (Q1(y)) into
LN/N−1(Q1(y)) entails that there exists S > 0 depending only on N such that

S‖u2‖LN/N−1(Q1(y)) ≤ ‖u2‖BV (Q1(y))

= 2
∫
Q1(y)

|u||∇u| dx+
∫
Ju∩Q1(y)

[(u+)2 − (u−)2] dHN−1 +
∫
Q1(y)

u2 dx

≤
∫
Q1(y)

[|∇u|2 + u2] dx+
∫
Ju∩Q1(y)

[(u+)2 + (u−)2] dHN−1 +
∫
Q1(y)

u2 dx

so that in view of (5.4) and by applying Hölder inequality we get

S

(∫
Q1(y)

u
2N
N−1 dx

)N/N−1

≤ (K + 2)
∫
Q1(y)

u2 dx

≤ (K + 2)

(∫
Q1(y)

u
2N
N−1 dx

)N/N−1

|supp(u) ∩Q1(y)|1/N .

In view of (5.3) we conclude that

|supp(u) ∩Q1(y)|1/N ≥ S

K + 2

so that (5.2) follows. �

Lemma 5.3. Let (un)n∈N be a sequence in Fm(RN ) such that

lim inf
n→∞

∫
RN

u2
n dx > 0.

Then

lim inf
n→∞

∫
RN
|∇un|2 dx+ β

∫
Jun

[(u+
n )2 + (u−n )2] dHN−1 > 0.

Proof. By contradiction, let (unk)k∈N be a subsequence such that

(5.5) lim
k→∞

∫
RN

u2
nk
dx = L > 0
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and

lim
k→∞

∫
RN
|∇unk |2 dx+ β

∫
Junk

[(u+
nk

)2 + (u−nk)2] dHN−1 = 0.

Since by definition vn := u2
n ∈ SBV (RN ), by Sobolev inequality for the embedding of BV (RN )

into LN/N−1(RN ) we get for k large

C‖u2
nk
‖LN/N−1(RN ) ≤ |Du2

nk
|(RN ) = 2

∫
RN
|unk ||∇unk | dx+

∫
Junk

[(u+
nk

)2 − (u−nk)2] dHN−1

≤ 2(
√
L+ 1)

(∫
RN
|∇unk |2 dx

)1/2

+
∫
Junk

[(u+
nk

)2 + (u−nk)2] dHN−1 → 0

so that
unk → 0 strongly in L2N/N−1(RN ).

Since |supp(unk)| ≤ m for every k ∈ N, by Hölder inequality we deduce that unk → 0 strongly in
L2(RN ), which is against (5.5). �

We are now in a position to prove Theorem 4.5.

Proof of Theorem 4.5. The proof of the Theorem involves a compactness-vanishing-dichotomy al-
ternative in the framework of the concentration-compactness principle of P.L. Lions [13, 14].

Let (un)n∈N be a minimizing sequence in Fm(RN ) for problem (4.7), and let λ be the associated
value of the infimum. By Lemma 5.1 we may assume that for every n ∈ N

|supp(un)| = m,

and (renormalizing)

(5.6)
∫

RN
u2
n dx = 1.

In view of Lemma 5.3, we get λ > 0.
Following [14], for every R > 0 let us set

Qn(R) := sup
y∈RN

∫
BR(y)

u2
n dx.

Clearly Qn : [0,+∞[→ [0,+∞[ is a sequence of monotone functions. Up to a subsequence, in view
of Helly’s theorem, we may assume that

Qn → Q pointwise on [0,+∞[

for a suitable monotone increasing function Q : [0,+∞[→ [0,+∞[. We will have different alter-
natives depending on the behaviour of Q(R). Following Lions, if Q ≡ 0, we say that vanishing
occurs, while if limR→+∞Q(R) = α with 0 < α < 1, we say that dichotomy occurs. In the
following we show that vanishing and dichotomy cannot occur, so that limR→+∞Q(R) = 1, i.e.,
we have compactness, and this leads to a solution of the problem.

We divide the proof in three steps.

Step 1: Vanishing cannot occur. We claim that it is not possible that Q(R) ≡ 0, i.e., for
every R > 0

(5.7) lim
n→∞

sup
y∈RN

∫
BR(y)

u2
n dx = 0.

Since ∫
RN
|∇un|2 dx+ β

∫
Jun

[(u+
n )2 + (u−n )2] dHN−1 =: Mn → λ > 0,

by Lemma 5.2 we can find yn ∈ RN and C > 0 such that

(5.8) lim inf
n→∞

|supp(un) ∩Q1(yn)|1/N ≥ C.
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Since by (5.7) we have

(5.9) lim
n→∞

∫
Q1(yn)

u2
n dx = 0,

it is not restrictive (up to reducing Q1(yn) if necessary, which is possible in view of (5.8)) to assume
that the trace γ(u2

n) of u2
n ∈ SBV (RN ) on the boundary of Q1(yn) converges to zero strongly in

L1(∂Q1(yn)), i.e.,

(5.10) lim
n→∞

∫
∂Q1(yn)

γ(u2
n) dx = 0.

Let us consider wn := un1RN\Q1(yn) ∈ SBV
1
2 (RN ). Notice that by (5.9) we have

lim
n→∞

∫
RN

w2
n dx = 1.

Moreover we have∫
RN
|∇wn|2 dx+ β

∫
Jwn

[(w+
n )2 + (w−n )2] dHN−1

=
∫

RN\Q1(yn)

|∇un|2 dx+ β

∫
Jun\Q̄1(yn)

[(u+
n )2 + (u−n )2] dHN−1 + β

∫
∂Q1(yn)

γ(u2
n) dHN−1

≤Mn + β

∫
∂Q1(yn)

γ(u2
n) dHN−1.

By (5.10) we conclude that (wn)n∈N is a minimizing sequence for the main problem (4.7). But
this cannot be the case because in view of (5.8) we have that

|supp(wn)| = (1− ε)m

with ε > 0, so that using the rescaling property (5.1) we obtain a contradiction.

Step 2: Dichotomy cannot occur. Let us assume that limR→+∞Q(R) = α with 0 < α < 1.
Following [14], for every ε > 0 we can find two radial cut off functions ϕn, ψn : RN → [0, 1] with
‖∇ϕn‖∞, ‖∇ψn‖∞ ≤ ε,

lim
n→∞

dist(supp(ϕn), supp(1− ψn)) = +∞,

and we can find yn ∈ RN such that by setting vn := ϕn(· + yn)un and wn := (1 − ψn)(· + yn)un
we have

‖u2
n − v2

n − w2
n‖L1(RN ) ≤ ε,

(5.11)
∣∣∣∣∫

RN
v2
n dx− α

∣∣∣∣ ≤ ε and
∣∣∣∣∫

RN
w2
n dx− (1− α)

∣∣∣∣ ≤ ε.
A straightforward calculation shows that

(5.12) lim inf
n→∞

∫
RN

[|∇un|2 − |∇vn|2 − |∇wn|2] dx ≥ e(ε),

where e(ε) → 0 as ε → 0. On the other hand, since Jvn ⊆ Jun , Jwn ⊆ Jun and v±n , w
±
n ≤ u±n , we

get

(5.13) lim inf
n→∞

∫
Jun

(u+
n )2 + (u−n )2 dHN−1 −

∫
Jvn

(v+
n )2 + (v−n )2 dHN−1

−
∫
Jwn

(w+
n )2 + (w−n )2 dHN−1 ≥ 0.
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We conclude that for n large∫
RN |∇un|

2 dx+ β
∫
Jun

[(u+
n )2 + (u−n )2] dHN−1∫

RN u
2
n dx

≥ e(ε) + (1− 2ε)·

·

∫
RN |∇vn|

2 dx+
∫

RN |∇wn|
2 dx+ β

∫
Jvn

[(v+
n )2 + (v−n )2] dHN−1 + β

∫
Jwn

[(w+
n )2 + (w−n )2] dHN−1∫

RN v
2
n dx+

∫
RN w

2
n dx

.

Up to a subsequence we thus may assume that for n large∫
RN |∇un|

2 dx+ β
∫
Jun

[(u+
n )2 + (u−n )2] dHN−1∫

RN u
2
n dx

≥ e(ε) + (1− 2ε)

∫
RN |∇vn|

2 dx+ β
∫
Jvn

[(v+
n )2 + (v−n )2] dHN−1∫

RN v
2
n dx

.

By passing to the limit we obtain

(5.14)
λ− e(ε)
1− 2ε

≥ lim inf
n→∞

∫
RN |∇vn|

2 dx+ β
∫
Jvn

[(v+
n )2 + (v−n )2] dHN−1∫

RN v
2
n dx

.

If ε is small enough, inequalities (5.12), (5.13) and (5.11) together with Lemmas 5.3 and 5.2
imply that for n large

|supp(wn)| ≥
(

S

λ(1 + 1/(1− α+ ε)) + 2

)N
=: ηεm,

where ηε ∈]0, 1[ and S depends only on N . Clearly, since a similar lower bound holds also for
supp(vn), we get ηε → η, with η ∈]0, 1[ depending only on α, λ, and m. As a consequence we get
that for n large

|supp(vn)| ≤ (1− ηε)m,
so that in view of Lemma 5.1 and (5.14) we deduce that

(1− ηε)
λ− e(ε)
1− 2ε

≥ λ,

which is impossible if ε is small enough. This proves that dichotomy cannot occur, and the proof
of Step 2 is concluded.

Step 3: Compactness and conclusion. In view of Steps 1 and 2, we have that

lim
R→∞

Q(R) = 1,

i.e., we are in the compact case. Following [14], there exist yn ∈ RN such that by setting

vn(x) := un(x+ yn)

we have up to a subsequence

(5.15) vn ⇀ u weakly in L2(RN )

for some u ∈ L2(RN ) and

(5.16) lim sup
n→∞

∫
RN\BR(0)

v2
n dx ≤ ε(R)

with ε(R)→ 0 as R→ +∞.
Since vn satisfies the assumptions of Theorem 3.3, we deduce that u ∈ SBV 1

2 (RN ) and vn → u
strongly in L2

loc(RN ). Let us fix R > 0. By (5.16) we deduce∫
BR(0)

u2 dx = lim
n→∞

∫
BR(0)

v2
n dx ≥ 1− ε(R).
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Sending R→ +∞ we conclude ∫
RN

u2 dx = 1

so that by (5.15) and (5.6)

(5.17) vn → u strongly in L2(RN ).

This entails u ∈ Fm(RN ). Moreover, by the lower semicontinuity result given in Theorem 3.3 we
deduce∫

RN
|∇u|2 dx+ β

∫
Ju

[(u+)2 + (u−)2] dHN−1

≤ lim inf
n→∞

∫
RN
|∇un|2 dx+ β

∫
Jun

[(u+
n )2 + (u−n )2] dHN−1 = λ,

so that, in view of (5.17) and (5.6) we infer that u ∈ Fm(RN ) is a minimizer of the main problem
(4.7). The proof of Theorem 4.5 is now concluded. �

Remark 5.4. From the proof of Theorem 4.5 we deduce the following result: if un ∈ Fm(RN ) is
a minimizing sequence for (4.7), then up to a subsequence and to a translation un → u strongly
in L2(RN ) for some minimizer u ∈ Fm(RN ) of (4.7).

6. Structure of minimizers

This section is devoted to the proof of Theorem 4.6. In order to get the result, we will follow
the strategy employed in [5] which we adapt to our SBV-context.

Let u ∈ Fm(RN ) be a minimizer of (4.7) such that ‖u‖L2(RN ) = 1, and let λ > 0 be the
associated minimum value. In what follows we will identify functions v ∈ SBV 1

2 (RN ) with their
approximately continuous representatives, i.e., we let v(x) be equal to the approximate limit at
x if x 6∈ Jv, and let v(x) = 0 if x ∈ Jv. Moreover, we will consider ∇v = 0 on the negligible set
where v is not approximately differentiable.

Let us set for t ≥ 0
Ut := {x ∈ RN : u(x) > t}.

By Coarea Formula in BV [1, Theorem 3.40] applied to u2, it turns out that for a.e. t > 0 the
set Ut has finite perimeter: we denote by ∂∗Ut its reduced boundary. Moreover, Ut has also finite
volume for every t > 0.

Proposition 6.1 (Euler-Lagrange equation). Let t > 0 and v ∈ SBV
1
2 (RN ) be such that

|supp(v) \ Ut| = 0, ‖v‖∞ < +∞, Jv ⊆ Ju and∫
Ju\Jv

v2 dHN−1 < +∞.

Then the following equality holds:

(6.1)
∫

RN
∇u · ∇v dx+ β

∫
Ju

[u+γ+(v) + u−γ−(v)] dHN−1 = λ

∫
RN

uv dx,

where γ±(v) are the traces of v on the rectifiable set Ju oriented by the normal νu.

Proof. Let s ∈ R be so small that the variation u+ sv belongs to Fm(RN ). Since Ju+sv ⊆ Ju, the
Rayleigh quotient for u+ sv may be written as follows

(6.2)

∫
RN |∇u+ s∇v|2 dx+ β

∫
Ju+sv

[(γ+(u) + sγ+(v))2 + (γ−(u) + sγ−(v))2] dHN−1∫
RN (u+ sv)2 dx

.

Notice that there exists a countable set B such that for s 6∈ B
(6.3) HN−1(Ju \ Ju+sv) = 0.

Indeed, the sets
Ju and D := {x ∈ Ju : γ+(u)(x) 6= γ−(u)(x)}
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coincide up to a HN−1-negligible set, and the same holds for

Ju+sv and Ds := {x ∈ Ju : γ+(u+ sv)(x) 6= γ−(u+ sv)(x)}.
Notice that the sets D \Ds are disjoint for every s 6= 0: indeed if x ∈ D \Ds we have

γ+(u) 6= γ−(u) and γ+(u+ sv)(x) = γ−(u+ sv)(x),

so that γ+(v)(x) 6= γ−(v)(x) and

s = −γ
+(u)(x)− γ−(u)(x)
γ+(v)(x)− γ−(v)(x)

,

i.e., s has a precise value. By general arguments of measure theory, we conclude that only for a
countable number of s 6= 0 the sets D \Ds have positive HN−1-measure. If denote by B such a
countable set of values, relation (6.3) follows.

For s 6∈ B we deduce that (6.2) can be rewritten in the following form∫
RN |∇u+ s∇v|2 dx+ β

∫
Ju

[(γ+(u) + sγ+(v))2 + (γ−(u) + sγ−(v))2] dHN−1∫
RN (u+ sv)2 dx

:= g(s).

The Euler-Lagrange equation (6.1) follows now by exploiting the fact that g(s) ≥ g(0) with s 6∈ B,
and recalling that γ+(u)(x) = u+(x) and γ−(u)(x) = u−(x) for HN−1-a.e. x ∈ Ju. �

For every Borel function ϕ : RN → [0,+∞[ we set for those t for which Ut has finite perimeter
and has finite positive volume

H(Ut, ϕ) :=
1
|Ut|

[
−
∫
Ut

ϕ2 dx+
∫
∂∗Ut\Ju

ϕdHN−1

+ β
(
HN−1(Ju ∩ {u+ > t}) +HN−1(Ju ∩ {u− > t})

) ]
,

whenever the expression is well defined. The functional H is similar to the functional HΩ employed
in [9] and in [5]: in our context also “jump terms” appear. Notice that only the values of ϕ on Ut
and ∂∗Ut are involved in the definition.

For every t > 0 we have
|∇u|
u
∈ L2(Ut).

We need some lemmas.

Lemma 6.2. For a.e. t > 0 the following equality holds

(6.4) λ = H

(
Ut,
|∇u|
u

)
.

Proof. Following [5], we derive (6.4) from the Euler-Lagrange equation (6.1) by choosing suitable
variations v. For every ε > 0 let us consider

vε :=
1
u

min
{

1,
max{0, u− t}

ε

}
,

where t > 0 is such that Ut has finite perimeter and has finite positive volume: we know that
almost every t matches these requirements. As ε→ 0 we obtain

vε →
1
u

1Ut pointwise a.e. on RN .

Since vε is a good test for the Euler-Lagrange equation of u, we get

(6.5)
∫

RN
∇u · ∇vε dx+ β

∫
Ju

[u+γ+(vε) + u−γ−(vε)] dHN−1 = λ

∫
RN

uvε dx.

Notice that by monotone convergence

(6.6) lim
ε→0

∫
RN

uvε dx = |Ut|.
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Let us consider the first term on the left-hand side. In the following calculations we will repeatedly
use the fact that if ψ is an approximately differentiable function and E is a level set of ψ, then
∇ψ = 0 almost everywhere on E. By the chain rule in BV [1, Theorem 3.96] we get

(6.7)
∫

RN
∇u · ∇vε dx =

∫
Ut+ε

∇u∇
(

1
u

)
dx+

1
ε

∫
Ut\Ut+ε

∇u∇
(

1− t

u

)
dx

= −
∫
Ut+ε

|∇u|2

u2
dx+

t

ε

∫
Ut\Ut+ε

|∇u|2

u2
dx.

Notice that in view of the coarea formula in BV [1, Theorem 3.40] (applied for example to
u ∨ t ∈ SBVloc(RN )) we have

(6.8)
∫
Ut\Ut+ε

|∇u|2

u2
dx =

∫
Ut\Ut+ε

|∇u|
u2
|∇u| dx =

∫
(Ut\Ut+ε)\Ju

|∇u|
u2

d|Du|

=
∫ t+ε

t

∫
∂∗Us\Ju

|∇u|
u2

dHN−1 ds.

We deduce that for a.e. t > 0

(6.9) lim
ε→0+

t

ε

∫
Ut\Ut+ε

|∇u|2

u2
dx = t

∫
∂∗Ut\Ju

|∇u|
u2

dHN−1 =
∫
∂∗Ut\Ju

|∇u|
u

dHN−1

and

(6.10) lim
ε→0+

∫
Ut+ε

|∇u|2

u2
dx =

∫
Ut

|∇u|2

u2
dx.

Coming back to the jump-term in (6.5) we have by the property of traces under composition∫
Ju

[u+γ+(vε) + u−γ−(vε)] dHN−1

=
∫
Ju

[
u+ 1

u+
min

{
1,

max{0, u+ − t}
ε

}
+ u−

1
u−

min
{

1,
max{0, u− − t}

ε

}]
dHN−1

=
∫
Ju

[
min

{
1,

max{0, u+ − t}
ε

}
+ min

{
1,

max{0, u− − t}
ε

}]
dHN−1.

By monotone convergence we conclude that

(6.11) lim
ε→0+

∫
Ju

[u+γ+(vε) + u−γ−(vε)] dHN−1

= HN−1(Ju ∩ {u+ > t}) +HN−1(Ju ∩ {u− > t}).

By taking the limit as ε→ 0 in (6.5) in view of (6.6)-(6.11) we obtain precisely (6.4) for a.e. t > 0,
so that the proof is concluded. �

Lemma 6.3. Let ϕ : RN → [0,+∞[ be a Borel function such that ϕ ∈ L2(Ut) for every t > 0. Set

(6.12) w := ϕ− |∇u|
u

and F (t) :=
∫
Ut

w
|∇u|
u

dx.

Then F :]0,+∞[→ R is locally absolutely continuous and

(6.13) H(Ut, ϕ) ≤ λ− 1
t|Ut|

d

dt
(t2F (t))

for a.e. t ∈]0,+∞[. Moreover, there is strict inequality (6.13) if and only if ϕ 6= |∇u|
u in Ut on a

set of positive measure.
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Proof. By the level set representation (6.4) of λ we get for a.e. t > 0 (using also the inequality
a2 − b2 ≥ 2b(a− b) for a, b ∈ R)

H(Ut, ϕ) = λ+
1
|Ut|

[∫
∂∗Ut\Ju

w dHN−1 −
∫
Ut

(
ϕ2 − |∇u|

2

u2

)
dx

]

≤ λ+
1
|Ut|

[∫
∂∗Ut\Ju

w dHN−1 − 2
∫
Ut

w
|∇u|
u

dx

]

= λ+
1
|Ut|

[∫
∂∗Ut\Ju

w dHN−1 − 2F (t)

]
.

Moreover strict inequality holds if and only if ϕ 6= |∇u|
u in Ut on a set of positive measure. We

claim that F (t) is locally absolutely continuous and for a.e. t > 0

(6.14) F ′(t) = −1
t

∫
∂∗Ut\Ju

w dHN−1.

Then it follows that

H(Ut, ϕ) ≤ λ+
1
|Ut|

(−tF ′(t)− 2F (t)) = λ− 1
t|Ut|

d

dt
(t2F (t))

which is precisely (6.13).
In order to conclude the proof we have to check claim (6.14). By the coarea formula in BV [1,

Theorem 3.40] we get for every t > 0

F (t) =
∫
Ut

w
|∇u|
u

dx =
∫
Ut\Ju

w

u
d|Du| =

∫ +∞

t

∫
∂∗Us\Ju

w

u
dHN−1 ds

=
∫ +∞

t

1
s

∫
∂∗Us\Ju

w dHN−1 ds,

so that F (t) is locally absolutely continuous and claim (6.14) holds. �

Lemma 6.4. Let ϕ : RN → [0,+∞[ be a Borel function such that ϕ ∈ L2(RN ) ∩ L∞(RN ) and

ϕ 6= |∇u|
u

on a subset of positive measure of supp(u).

Then there exists S ⊂]0,+∞[ of positive measure such that for every t ∈ S

λ > H(Ut, ϕ).

Proof. By contradiction let
λ ≤ H(Ut, ϕ)

for a.e. t > 0. By (6.13) we infer
d

dt
(t2F (t)) ≤ 0

where F (t) is defined in (6.12). Moreover we have strict inequality for t small enough since the
union of Ut exhausts supp(u). We claim that

(6.15) lim
t→+∞

t2F (t) = 0.

From this we infer that limt→0+ t2F (t) > 0. But since

F (t) =
∫
Ut

w
|∇u|
u

dx =
∫
Ut

ϕ
|∇u|
u

dx−
∫
Ut

|∇u|2

u2
dx ≤

∫
Ut

ϕ
|∇u|
u

dx ≤ 1
t

∫
Ut

ϕ|∇u| dx

≤ 1
t
‖ϕ‖L2(RN )‖∇u‖L2(RN )

we get limt→0+ t2F (t) ≤ 0, which is absurd.
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In order to conclude the proof we need to check claim (6.15). Notice that for every t > 0

t2
∫
Ut

ϕ
|∇u|
u

dx ≤
∫
Ut

uϕ|∇u| dx ≤ ‖ϕ‖∞‖u‖L2(Ut)‖∇u‖L2(Ut;RN )

and

t2
∫
Ut

|∇u|2

u2
dx ≤

∫
Ut

|∇u|2 dx ≤ ‖∇u‖2L2(Ut;RN ).

From

t2F (t) = t2
∫
Ut

ϕ
|∇u|
u

dx− t2
∫
Ut

|∇u|2

u2
dx

we infer that claim (6.15) holds, so that the proof is concluded. �

We are now in a position to prove Theorem 4.6.

Proof of Theorem 4.6. Let B(0) be a ball centered at 0 with volume m and radius R, and let λ1

be the first eigenvalue and φ1 the first eigenfunction of the associated Robin problem: clearly λ1

is invariant under translations of B(0). Moreover λ1 ≥ λ by inequality (4.6).
The proof will follow by dearranging |∇φ1|/φ1 on the support of u to get a function ϕ to be

employed in connection with Lemma 6.4. We divide the proof in several steps.

Step 1. The function φ1 is smooth up to the boundary of B(0), and it is radial decreasing with

lim
|x|→R

φ1(x) > 0.

Moreover it turns out that (see for instance [5])

x 7→ β(x) :=
|∇φ1(x)|
φ1(x)

is radial increasing with

β(0) = 0 and β(x) = β for |x| = R.

Let
βr := β(x) for |x| = r.

Let r(t) be the radius of the ball centered at 0 with volume |Ut|. Let us consider ϕ : RN →]0,+∞[
defined as

ϕ(x) := βr(t) if u(x) = t > 0,
and ϕ = 0 otherwise. The function ϕ is the dearrangement of β on the support of u in the sense
that the radial rearrangement of ϕ gives back β. By construction ϕ is Borel measurable with
ϕ ∈ L2(RN ) ∩ L∞(RN ).

Step 2. We claim that

(6.16) H(Ut, ϕ) ≥ λ1 ≥ λ
for t > 0 outside a countable set. Indeed, concerning the volume terms appearing in H(Ut, ϕ) we
have

(6.17)
∫
Ut

ϕ2 dx =
∫
Br(t)(0)

|∇φ1|2

φ2
1

dx,

and

(6.18)
∫
∂∗Ut\Ju

ϕdHN−1 =
∫
∂∗Ut\Ju

βr(t) dHN−1 = βr(t)HN−1(∂∗Ut \ Ju).

Equality (6.17) follows by general properties of the radial decreasing rearrangement. The first
equality in (6.18) follows by the definition of ϕ.

The jump term appearing in H(Ut, ϕ), for t outside a countable set, can be expressed as

β
(
HN−1(Ju ∩ {u+ ≥ t}) +HN−1(Ju ∩ {u− ≥ t})

)
.
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Recalling that |Ut| = |Br(t)(0)| and β ≥ βr(t), we infer

(6.19) H(Ut, ϕ) =
1

|Br(t)|

[
−
∫
Br(t)(0)

|∇φ1|2

φ2
1

dx+ βr(t)HN−1(∂∗Ut \ Ju)

+ β
(
HN−1(Ju ∩ {u+ ≥ t}) +HN−1(Ju ∩ {u− ≥ t})

) ]
≥ 1
|Br(t)|

[
−
∫
Br(t)(0)

|∇φ1|2

φ2
1

dx+ βr(t)HN−1(∂∗Ut \ Ju) + βr(t)HN−1(∂∗Ut ∩ Ju)
]

=
1

|Br(t)|

[
−
∫
Br(t)(0)

|∇φ1|2

φ2
1

dx+ βr(t)HN−1(∂∗Ut)
]

By the classical isoperimetric inequality we have that

HN−1(∂∗Ut) ≥ HN−1(∂Br(t)(0))

so that we deduce

(6.20) H(Ut, ϕ) ≥ 1
|Br(t)|

[
−
∫
Br(t)(0)

|∇φ1|2

φ2
1

dx+ βr(t)HN−1(∂Br(t)(0))
]

=
1

|Br(t)|

[
−
∫
Br(t)(0)

|∇φ1|2

φ2
1

dx+
∫
∂Br(t)(0)

|∇φ1|
φ1

dHN−1

]
= λ1,

where the last equality follows by the level set representation of the first Robin eigenvalue for
regular domains in the special case of the ball [5, Proposition 2.3]. Since λ1 ≥ λ, inequality (6.16)
follows.

Step 3. Let us assume that ϕ 6= |∇u|
u on a subset of positive measure of supp(u). By Lemma 6.4

we deduce that
λ > H(Ut, ϕ)

for t ∈ S with |S| > 0. But for a.e. t ∈ S we have by Step 2 that

λ > H(Ut, ϕ) ≥ λ1 ≥ λ

which is absurd. We infer that

ϕ =
|∇u|
u

a.e. on supp(u).

In view of Lemma 6.2 we deduce that λ1 = λ. Moreover, the inequalities appearing in (6.19) and
(6.20) are equalities for t > 0 outside a negligible set E. In particular for t 6∈ E

HN−1(∂∗Ut) = HN−1(∂Br(t)).

As |Ut| = |Br(t)|, we conclude by the classical isoperimetric inequality that Ut is a ball up to a
negligible set. As a consequence, since

supp(u) =
⋃
t6∈E

Ut,

we conclude that supp(u) is a ball B up to a negligible set (t can vary in a countable set of values).
Referring again to the inequalities in (6.19) which are now equalities, for t 6∈ E such that

β > βr(t) we get that

HN−1(∂∗Ut ∩ Ju) = 0.

For t 6∈ E such that β = βr(t), we have that |Ut| = |B|, so that Ut = B = supp(u) up to a negligible
set: in particular we have ∂∗Ut = ∂B. Since by general results on the jump set of a BV function
Ju ⊂

⋃
s∈Q ∂

∗Us with Q at most countable, we deduce that

HN−1(Ju \ ∂B) = 0.
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As a consequence the restriction of u to B belongs to W 1,2(B) because the jump part of the
derivative of u is supported on ∂B. Since

λ1 = λ =

∫
RN |∇u|

2 dx+
∫
Ju

[(u+)2 + (u−)2] dHN−1∫
RN u

2 dx
=

∫
B
|∇u|2 dx+

∫
∂B

u2 dHN−1∫
B
u2 dx

,

where the surface integral is intended in the usual sense of traces in Sobolev spaces, we conclude
that u = ψ1 on B, where ψ1 is the first eigenfunction associated to λ1. The representation (4.8)
is thus proved and the proof is complete. �

The following result is a consequence of Theorem 4.6.

Proposition 6.5. Let (Ωn)n∈N be a sequence in Am(RN ) such that λ1(Ωn)→ λ1(B), where B is
a ball such that |B| = m. Then up to translating Ωn we have

(6.21) 1Ωn → 1B strongly in L1(RN ),

that is the symmetric difference between Ωn and B has a volume which tends to zero.

Proof. Let un ∈ SBV
1
2 (RN ) be a minimizer for the problem (4.2) defining λ1(Ωn). In view of

Remark 5.4 and of Theorem 4.6, we have that up to a translation (the passage to a subsequence
is not necessary in view of the structure of the minimizers)

un → ψ11B strongly in L2(RN ),

where ψ1 is the first (classical) eigenfunction for the ball B. For a.e. 0 < t < minB̄ ψ1 we have

1{un>t} → 1B strongly in L2(RN ).

Since {un > t} is contained in Ωn up to a negligible set, and |Ωn| = |B| = m, we infer that (6.21)
holds, so that the proof is concluded. �
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