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Abstract

We study a variational problem describing an incoherent interface between a rigid
inclusion and a linearly elastic matrix. The elastic material is allowed to slip relative
to the inclusion along the interface, and the resulting mismatch is penalized by an
interfacial energy term that depends on the surface gradient of the relative displace-
ment. The competition between the elastic and interfacial energies induces a threshold
effect when the interfacial energy density is non-smooth: small inclusions are coherent
(no mismatch); sufficiently large inclusions are incoherent. We also show that the re-
laxation of the energy functional can be written as the sum of the bulk elastic energy
functional and the tangential quasiconvex envelope of the interfacial energy functional.

1 Introduction

In two-phase solids, for instance metal alloys, one of the phases is often segregated into
inclusions distributed in the other phase’s matrix.

Since the phases generally have different crystalline structure and composition, their
stress-free states are often related by a transformation strain involving a dilation or a
contraction. Therefore, the presence of new-phase particles generates a stress field in
the matrix, and elastic energy accumulates in the system. The stored elastic energy
increases with the size of the inclusions, and when these are large enough the elastic
energy may be decreased by allowing the particles to break away from the matrix, by
a process which essentially involves the nucleation or migration of dislocations at the
interface. This process has an energetic cost, and it is the competition between this
cost and the stored elastic energy which determines the threshold effect.

This phenomenon is quite common in metal alloys, and it has been demonstrated
experimentally in a variety of systems, such as Cu-Co, Fe-Cu, Cu-Al, Mg-Al (see the
review paper by MATTHEWS [21]). For instance, in plastically deformed Cu-Co and
Fe-Cu the critical radius has been actually determined.

A simplified mathematical description of this process is feasible, by reckoning the
effect of interfacial dislocations into an interfacial energy density term which penalizes
the mismatch between the phases at the interface. The concept of interfacial mismatch
is better understood by viewing the phases as crystalline materials with different lattice
parameters. Then the mismatch is simply the difference between the actual (i.e.,
deformed) lattice parameters of the two phases at the interface. When there is no
mismatch, so that the crystalline structures are continuous across the interface, we say
that the interface is coherent, and incoherent otherwise.



Using the notion of interfacial energy, we may formulate a simple variational model
in which the total energy functional is the sum of this interfacial contribution, penal-
izing incoherency, and the usual elastic energy term. The competition between the
elastic and interfacial energy determines the threshold effect.

In this paper we study this variational problem: we show that the existence of a
critical size for coherency is directly related to the smoothness of the interfacial energy
density, and give sufficient conditions for the existence of minimizers in terms of the
quasiconvexity (convexity in the 2-dimensional case) of the interfacial energy function.

Precisely, we model the new-phase particle as a rigid inclusion €2 in an infinite 3-
dimensional elastic matrix, within the linear approximation. The displacement u is a
vector field on R? \ ©, which is constrained to be tangential to the boundary of the
inclusion, i.e., w-n = 0 on 92, with n the outward unit normal to 9§2. This guarantees
that cavitation does not occur at the interface.

When u = 0 on 0, we say that the inclusion is coherent, and incoherent otherwise.
We take as a measure of incoherency the tangential gradient Dgu of the displacement
on 9, since

u=0 onodQ & Dsu=0 onofl

For a complete description and a motivation of this choice of the measure of incoherency
see CERMELLI AND GURTIN [6], which gives a complete model for incoherent interfaces
in the nonlinear setting.

To take into account the transformation strain between the inclusion and the matrix
(for crystalline solids, the difference in equilibrium lattice parameters), we assume that
the elastic energy density has the form ¢(E — Eg) = $(E — Eq) - C[E — E)), with
C the elasticity tensor, E the infinitesimal strain tensor, and Ey the transformation
strain.

We assume that the interfacial energy density f depends on Dgu and on the ori-
entation of the interface with respect to the matrix; since the orientation is measured
by the interfacial normal n = n(x), with € 02, we may write

f = f(ﬂ?,DS’LL),

The problem we discuss in this paper is the minimization of the functional

F(u) = / o(E — Eq)dv+ flz, Dsu)da,
JR3\Q Jog
on the space of functions u € VVl(l)f(RS\Q; R3) such that E(u)— Eg € L?(R?\ ; R3%3)
and u|pn € WH(00; R?), with the constraint u|sg - n = 0. We treat the case ¢ > 1,
but it is necessary to restrict to ¢ > 2 in the degenerate case when 92 is a surface of
revolution.

A central result of ours relates the smoothness of f at Dgu = 0 to the threshold
effect: we prove that if the interfacial energy is a smooth function of Dgu, the inclusion
can never be coherent, irrespective of its size. On the other hand, when the energy is
non-smooth, there exist two critical values for a typical diameter ¢ of €2, say ¢; and
f5, such that when the inclusion is sufficiently small, and ¢ < ¢;, the minimum of the
functional exists and the interface is coherent, but for £ > ¢ the interface cannot be
coherent. In this connection note that the few explicit forms of the interfacial energy
function resulting from microscopic calculations (VAN DER MERWE AND FLETCHER
ET AL. [24]-[13]) are indeed non-smooth and non-convex.



Our second main result is the explicit computation of the relaxed energy functional,
and the discussion of existence. We prove that, granted convexity of the bulk energy,
existence is determined by the convexity properties of the interfacial energy functional
only, since the relaxed energy functional splits as the sum of the relaxed bulk and
interface functionals. It turns out that the appropriate type of convexity needed in
this context is the tangential quasi-converification Or f of the interfacial energy f,

Orf(z, V) = inf{ /Q F. V- Voplm) dn : o€ W&’“(@;Tm@»} ,

introduced by DACOROGNA, FONSECA, MALY AND TRIVISA in [9] for functionals
defined on mappings from the Euclidean space to manifolds. Here 77, (0€2) is the tangent
plane to 9Q at x, and @ the unit square in T, ().

We have the following existence result: assume that € is not a surface of revolution
and g > 1, or that 2 is a surface of revolution and ¢ > 2; then, if the interfacial energy
f(z,-) is tangentially quasiconvex (so that f = Qrf), a minimizer of the functional
F(v) exists in an appropriate space.

In a simplified 2-dimensional setting, for which Q C R?, write s for an arc parameter
on 0F2, and ' for the derivative of u|y, with respect to s. The interfacial energy is
now a function f = f(s,u’), which reduces to a function of u' in the isotropic case,
when explicit dependencies on the orientation of the interface are excluded. In this
simpler case, the notion of quasiconvexity is replaced by the notion of convexity, and
we have the stronger result that, if the interfacial energy is isotropic and convez in /,
then there exists a minimizer of the energy functional.

The first theoretical treatment of the threshold effect for spherical inclusions was
established in 1940 by MOTT AND NABARRO [22], who calculated the energy associated
to incoherency as the energy required to nucleate dislocations at the interface. Later,
Cahn and Larché treated a similar problem, penalizing incoherency by an interfacial
energy depending on the misfit between the phases (cf. LARCHE AND CAHN [19], CAHN
AND LARCHE [5]). The notion of an interfacial energy depending on misfit had in fact
been introduced earlier by VAN DER MERWE ET AL. AND FLETCHER [12] [13] [24] [25]
126] [11].

More recently, the direct methods of the calculus of variations have been applied
to study the transition from coherency to incoherency in a similar, but simpler, 2-
dimensional setting, namely a deformable film on a rigid substrate. In this simplified
context, the effect of the lack of convexity and non-smoothness of the interfacial en-
ergy density on the structure of the solution has first been recognized by LEO AND HU
[20], who proposed a special non-convex and non-smooth interfacial energy density to
describe fine incoherent patches and the threshold effect. A complete analysis of the
problem for thin films is presented in CERMELLI, GURTIN AND LEONI [7], where the
direct methods of the calculus of variations have been used to study a large class of
interfacial energy functions, and to classify them according to the behavior of the min-
imizing sequences. There the simple geometry of an epitaxial film on a rigid inclusion
allows one to use the full force of the calculus of variations to obtain information more
detailed than in the case of a 3-dimensional inclusion. Precisely, the lack of convexity
of the interfacial energy density is related to the formation of fine microstructures at
the interface: depending on the growth exponent of the energy density, the minimizing
sequences either present an oscillatory behavior, and determine an associated Young
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measure, or concentrate on small sets and are thus associated with a defect measure.
On the other hand, when the interfacial energy is convex, a smooth solution does ex-
ists. These three kinds of solutions correspond physically to different fine structures
of the phase interface: Young measures model an interface in which stress relaxation
occurs by alternating smaller and smaller coherent and incoherent regions; defect mea-
sures correspond to finely dispersed infinitesimal jumps in the displacement, and thus
to interfacial dislocations; a smooth solution may correspond to a ’glassy’ interface in
which the crystalline structure of the phases is completely lost at the phase boundary.

Unfortunately, such wealth of information cannot be obtained so easily in the three-
dimensional setting studied here, since the mathematical features of the two cases (film
on a rigid substrate and rigid inclusion in an infinite matrix) are different and, unlike
the convex case, very little is known about quasiconvexity. Moreover, for an inclusion,
the curvature of the interface affects the transition from coherency to incoherency as
well as the fine structure of the interface.

2 Preliminaries

Let Q, the rigid inclusion, be an open, bounded, connected subset of R? with smooth
boundary 9. The displacement field is a regular function u : R3\ Q — R3, with strain
E = 1(Vu+ Vu'); when necessary, we denote the strain associated with u by E(u).
Let

¢ = ¢(E — Eq) = 3(E — Eo) - C[E — E (2.1)

denote the elastic energy density per unit area, with C the elasticity tensor and Eq a
constant fixed transformation strain. We denote by

T = C[E — EJ

the Cauchy stress, and write T = T(u) when it becomes necessary to make explicit
the dependence on u. We assume that C' is positive definite, i.e.,

E - C[E] >0, (2.2)

for all symmetric E # 0, a condition that guarantees the convexity of the elastic energy
density ¢ (since ¢ is quadratic, see e.g. [§]).
Denoting by n = n(x) the outward unit normal to 02 at &, with corresponding
tangent plane
T,(0Q) ={veR®: v-n(zx) =0},
we assume that

u-n=>0 on 0f), (2.3)

so that w is tangential to 0%, i.e., u(x) € 1T, (0N2) for = € .

To introduce the surface energy we need to define the surface gradient of the trace
of u on 9. Given a vector field w on 02 the surface gradient of w at a point &g € 92
is the linear operator Dgw = Dgw(zq) : Ty, (0Q) — R? given by

(Dsw)t = —w(xz(s))|



with = : (=48,8) C R — 0 any regular curve with £(0) = ¢ and ©(0) = ¢. If w is the
trace of u at 0f), the surface gradient of w is just the projection on the tangent plane
of the trace of Vu:

Dgu = (Vu)P,

where P = 1 — n ® n is the projection operator onto the tangent plane. At a fixed
point, the linear operator Dgu maps the tangent plane at that point into R3, but it is
convenient to extend it to a linear operator of R? in itself, such that (Dgu)n = 0. With
this convention, it is straightforward to define the pointwise norm of Dgwu through

|Dsu| = \/tr [(Dsu) T Dsl.
A displacement field on R? \ Q is coherent if it vanishes on 9, or equivalently if
Dsu=0 ondf. (2.4)

To prove this equivalence, note that if Dgu =0 on 0} then w is constant on 0{2, and
this is incompatible with the constraint » - n = 0 unless u = 0, identically.

When u, or equivalently Dgu, does not vanish identically, we say that the inclusion
is incoherent.

To penalize incoherency, we introduce an interfacial energy density f, per unit
area of Jf), which depends both on the orientation of the boundary (to account for
anisotropy), and on the surface gradient of the displacement u. Thus f is, a priori, a
function of (n, Dgu), with domain {(n, V) € R3 x R3*3 : |n| = land Vn = 0}. But
since 0F2 is fixed and n = n(x) is therefore assigned, we may also write the interfacial
energy density as a function

f = f(m,Ds’U,)

defined on ¥ = {(z, V) € 00 x R3*3 : Vn(z) = 0}.

In general, we assume that f is continuous, f(x, V) > 0if V # 0 and f(x,0) =0
for every & € 0 (so that a coherent displacement is an absolute minimum of the
interfacial energy density), and the growth condition

1
VI =D < fl@ V)< K(VI'+1), q=1 (2.5)
holds for all (z, V) € X, with K a positive constant.

Our aim is to minimize the functional

Flu) = / o(E — Eo)dv+ | f(=, Dsu)da, (2.6)
Jr3\Q Jog

on the space of sufficiently regular displacement fields  on R? \ Q, such that (2.3)

holds. More precisely, we minimize F'(u) on the space

W = {ueWYR\ uRY), E(u) — Eg € L*(R?\ Q;R?*?),

loc

ulpo € WH(OQ;R?), and ulsq-n =0 }.
We also denote the space of coherent displacements by

Wo={ueW, ulpn=0}. (2.7)



We conclude this section with some properties on the surface gradient which will
be used in the sequel. Denoting by Dgu = P Dgwu the intrinsic derivative of w, and by
B = —Dgn the Weingarten map, (2.3) implies that

Dsu = Dsu+n® Bu. (2.8)

This decomposition shows that incoherency is due to two essentially different mecha-
nisms: the relative deformation of the phases within the interface, as measured by the
intrinsic derivative term ﬁgu, which does not depend on the curvature of the inter-
face, and the mismatch due to the relative rotation of the materials at the interface,
as measured by n ® Bu, a term which identically vanishes on flat portions of 0f2.

Let now (U,x) be a chart on 99, with U C 09 and x : U — R2 and write
R = x(U) C R%. We shall use, as shorthand, the notation x(&) := x (&) for £ € R, and
&(z) := x!(z) for ¢ € U. Moreover, we write

I=1I(x):= Dsx(x): T,(0Q) — R?

for the associated isomorphism between the tangent space at & and the parameter
space R2.

Consider a function v : U — R3 such that v - n = 0. Since v(z) € T, (09), the
function v admits a local representation w : R — R? defined by

w(€) = I(x€)v(xE€) &  o@):=1"(z)wE()), (2.9)

for £ € R and « € U. Differentiating the second relation above on 92 and noting that
Dg(-) = Ve(-)I, we find

Dsv(x(€)) = I ((£)) Vew(§)I((§)) + R(€, w), (2.10)

with R(&, w) a complicated expression that is linear in w and that involves the Christof-
fel symbols and the Weingarten map.

3 Korn and Poincaré Inequalities

Classically, Korn’s inequality states that the L? norm of E(u) is equivalent to the
W12 norm of u on a bounded domain, if w vanishes on a region of the boundary with
positive area. We here extend this result to vector fields that do not necessarily vanish
at the boundary, but satisfy the constraint (2.3).

More precisely, we now show that, when 9€) is not a surface of revolution, the
constraint u - n = 0 on 91 is sufficient to ensure the validity of Korn’s inequality on
bounded domains containing the inclusion 2. If 92 is a surface of revolution, then a
W12-bound on u also requires a bound on Dgu on 99.

As a preliminary result, recall that a surface of revolution § may be characterized
by its invariance with respect to rotations about a given axis, i.e., there exist vectors
w and € such that if & € S then y =&+ R(z — &) € S, with R any rotation with axis
w. In other words, S contains, with any one of its points, also a circle through this
point, with center on a given axis.

In what follows we denote by Bj, the open ball of R? centered at the origin and of
radious L > 0.



Proposition 3.1. Let Q C R?, fir L > 0 so that Q C By, and consider u € WH2(Byp \
Q;R3) such that u-n =0 on 0Q.

If 092 is not a surface of revolution, then there is a constant C (depending on L)
such that

HUHIQ/I/1>2(BL\Q;R3) < CHEH%Q(BL\Q;R3X3)'

Alternatively, if OS2 is a surface of revolution, and u|yn € Wha(0Q; R3), with q > 2,
then there is a constant C (also depending on L) such that

||u||{2/V1~2(BL\Q;]R3) < C (HDSuH%q(aQ;R3X3) + ||E||%2(BL\Q§R3X3)> .

Proof. We follow the proof of DAUTRAY AND LIONS [10], and expand only those steps
which depart from the original proof. First recall the basic estimate (Theorem 7.3.1,
page 414, Volume II [10])

lullfre s, ame) < const.(|B(w)|[ 725, amsxs) + 1ull72( 5,0 0ms)- (3.1)

Next, note that, if E(u) =0 in Bz \ 2 and w-n = 0 on 01, then either uw = 0 in
B\ Q or 092 is a surface of revolution. In fact, if E(u) = 0, then w is a rigid motion

u(z) =a+w X x, x € B \Q,

with @ and w constant vectors. By (2.3), the restriction of u to 9Q is a tangential
vector field, and therefore its integral lines must be contained in 0. ( The field u is
complete since 02 is compact.) But the integral lines of » with initial point a given
x are helices with axis w:

z(s) = ta + &+ R(t)(zo — &), teR,

with @ = |w| (e w)w, £ = |w| %w x a, and R(s) a rotation about w of angle |w|t.
Note that, since 9 is bounded, a = 0.

Assume that w # 0, and choose an arbitrary xg € 9. Then the above formula
implies that @ = & + R(xg — &) for any rotation R with axis w, and this implies that
022 must be a surface of revolution.

Hence, if € is not a surface of revolution, we must have w = 0, and this, together
with a; = 0, implies that w = 0 on B\ 2. We have thus proved that E(u) = 0 implies
that u = 0 for any w € W12(By \ Q;R?) compatible with (2.3). We may now proceed
as in [10] to show the validity of the estimate

HUH%Q(BL\Q;R3) < ConSt'HEH%?(BL\Q;R3><3)’

an estimate that implies Korn’s inequality, but the argument is standard and need not
be given here (see [10]).

To prove Korn’s inequality when 0S2 is a surface of revolution, note first that E(u) =
0in Br\Q and Dgu = 0 on 99 imply that w = 0 on B\ Q. In fact, since Dgu = 0 on
0 implies that w = 0 on 9€2, then u = 0 everywhere, since « is a rigid displacement.

The last step of the proof is to show that, when ¢ > 2,

HUH%%BL\Q;RS) < COHSt-(HDSUH(ILq(aQ;RSXB) + HEH%Q(BL\Q;R3><3))7
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from which, granted (3.1), the second part of the thesis follows. Assume, for contra-
diction, that the above estimate does not hold. Then there is a sequence {uy} such
that

n(HDSuanLq(aQ;RMS) + HE(un)H%Q(BL\Q;R3><3)) < HunH%Q(BL\Q;R%’

and thus, since ¢ > 2,
n(||DSun||%2(aﬂ;R3X3) + HE(un)H%?(BL\Q;]Ri”Xi”)) < COHSt-||un||%2(BL\Q;R3)7

and dividing both sides of the above inequality by ||un||%2 (B \Q;R3) this is equivalent
to the existence of a sequence { @y}, with ||,|[z2(p,\q;r3) = 1, such that

~ - 1

||DSUn||%2(aQ;JR3x3) + ||E(un)||%2(BL\Q;R3x3) < const. -

Thus ||DS'&TZ||L2(8Q;R3X3) — 0 and ||E(’&n)||L2(BL\Q;R3><3) — 0. Since by (31) the
sequence {i,} is bounded in W1H2(By, \ Q;R?), it converges weakly to a limit @ in
WH2(By \ Q;R?). This implies that E(@,) — E(@) in L*(By, \ Q;R**3) and, by the

lower semicontinuity of the norm, E(@%) = 0. A similar procedure shows also that
Dgu = 0 on 0§2. Hence, by the argument given above, we may conclude that & = 0
on By \ .

On the other hand, @, — @ in WH2(By \ Q;R?), so that @, — @ strongly in
L2(BL \ Q;R3). But since H'&nH%Q( )= 1, this implies that H'&H%Q(BL\Q;RS) =1,

BL\Q;RB
which is the desired contradiction.

O

Remark 3.2. Korn’s inequality on bounded domains always holds for 02 an arbitrary
surface (possibly of revolution) when w is coherent.

We prove here a version of Poincaré inequality for vector fields on 9€2. The proof
follows HEBEY [17], with minor modifications.

Proposition 3.3. Let u € WY R3) for 1 < ¢ < 2, and let T C 9Q be an open
subset with positive area. Then there is a constant C (depending on I') such that

v — r||Lapars) < CllDsulLo@ars), (32)

with 1/
Ur = — / uda.
T Jr

Proof. Let g € (1,2). As in the proof of Korn’s inequality, we must prove that
Jnf | Dsul Laaarexs) > 0,

with i
H={uecW"OQR?) : %]l Le(aosrs) = 1 and / uda = 0}.
JI
Then, since g > 1, and by Rellich Theorem, a minimizing sequence for || Dsu|| 14(a0;r3)
on H converges weakly in W14(9€; R?) and strongly in LI(9€2; R?) to a function u € H.
But since jF uwda = 0 and the area of I' is positive, w cannot be constant, and this
yields the desired conclusion.



Let ¢ = 1. We prove the assertion for a scalar field u € WH1(9Q; R), which may be
identified to one of the components of u in a fixed basis of R3. Note first that, since
0f is compact, there exists a Green function G(x,y) for the surface Laplacian Ag,
such that

u(e) = — uda + G(z,y)Asu(y) day. (3.3)
109 Jaq Jog
Define h : 90 — R such that
1 1
ASh‘ = Ta~T _XF7
09| [T

with xr the characteristic function of I', and note that, granted (3.3), h is a smooth
function on 9. Moreover, the identity

/ hASuda—/ uAghda =0,
J O JOQ

implies that
/ hAguda — ugg + upr = 0,
J o8

and adding both sides of this equality to (3.3), we obtain

U(ZE) =ur + H(SE, y>ASu(y) da’!h
J O
with H(z,y) = G(z,y) + h(y). The proof now proceeds as in ([17]): the above
inequality implies that

/ lu — @ip| da < / / \DsH(x, y)||Dsuly)| das da,
J OO J OO JOQ

which implies the desired inequality, granted the growth properties of the Green func-
tion and the fact that h is smooth.
O

The preceding result allows to prove a stronger version of Poincaré inequality for
tangential vector fields.

Corollary 3.4. Let u € WH9(9Q; R3) for 1 < q < 2, such that w-n = 0. Then there
is a constant C' such that

lwllLa@ars) < CllDsullpaanrs*3)- (3.4)

Proof. First note that, since 02 is bounded, there is an xg € 0¢2 such that the principal
curvatures A\ (o), A2(xo) (the eigenvalues of the Weingarten map) are both positive.
Hence, there exists an open domain I' C 992, with positive Hausdorff measure, such that
A1(zx), Aa(x) > 0 for & € I', which implies, by the minimax property of the eigenvalues,
that there is a positive constant b such that |B(z)s(xz)| > b|s(x)| for any tangent
vector field on I', uniformly in & € I'. Hence

/ \Dsulda > / |Dsu|da = / \/|f)su|2+|Bu|2dazb/ |u| da.
J OO JI JI JI
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But the Poincaré inequality (3.2) implies that,

3 > 1 3 q
/ |lu|?da < ¢ </ |Dsul? da + — / uda > ,
Jog Joo INRWY

for some constant c¢1, and the thesis follows from Holder’s inequality.

4 Coherent displacements

In this section we prove the existence and uniqueness of a minimizer of the elastic
energy functional on the space of coherent displacements, and characterize it in terms

of the limit of sequences of coherent minimizers on bounded domains.
For fixed L such that € C By, let

Wy ={ueWh(BL\ &4R?) : ulpg =0}, (4.1)

and .
Ff(u) = ./B “ o(E — Eq) dv. (4.2)

Since ¢ is strictly convex, standard arguments, together with Korn’s inequality (see
Remark 3.2), imply that there exists a unique minimizer u% of F¥ on W. Note that
ul satisfies the Euler equations

DivT(uk)=0 in Bp\Q,

T(ul)n =0 on 0B. (4.3)
Theorem 4.1. For any sequence L,, — oo and any fized L such that Q C By,
ulr — ug, in Wk,
where e, s the unique minimizer on Wy of the energy functional
EFy(u) = / o(E — Eg) dv. (4.4)
Jr3\Q

Proof. Fix any v € W, for which Fy(v) < oo, and consider a sequence {uf»} with
L, — 4o0. Then, for L, > L,
Fy(uly) < Fy(ugy) < Fy(v) < Fo(v) < oo. (4.5)
Hence, by Korn’s inequality on bounded domains (see Remark 3.2), the sequence {uCLO”
is bounded in W{, so that (passing to a subsequence) ulr — u® in Wk, for some
ul e W§
0 .

Now, for L' > L, apply (4.5) to the above subsequence, and extract a subsequence
converging weakly to ul in WOL’, and thus also in WOL. By the uniqueness of the limit,
ul = ul in By, \ Q. Hence there exists a function ., € T/Vli’f(Rg' \ Q;R?) in R3\ Q
such that, for any L, ue = w” in By \  and

ulr —wue, i WE(BL\ O R?).

co loc
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By the lower semicontinuity of F¥(u) and (4.5), we have

FO (teo) < hmlanO ( ) < Fy(v)

n—-+4oo
for any L, so that Fo(ue) < Fo(v), and by the arbitrariness of v € Wy it follows that

Fo(ueo) = vrg{l/{r/lo Fy(v).
It is easy to verify, again by the strictly convexity of ¢ and Korn'’s inequality in bounded
domains, that wuc, is unique.
Next we prove regularity and strong convergence. Fix Ly < L such that Q C By,
and note that Div T(uk») = 0 in B \ Q. Let ¥ be a smooth function such that ¢ =1
in Br, \ Q and ¢ = 0 in R?\ By, and let v = ¢uZ. Then

DlvT( By=f in Bp\Q,
on 9(Br\Q),

where f = C(E(uk,))Vy + Div [C(uk @ V).
By Theorem 2.3 in [16]

HULHH’“H(BL\Q;R3) < cost. (|| Hkal(BL\Q;R3) + H'ULHLQ(BL\Q;H@)):

and, since f is linear in u2 and Vul,

this implies that
lugoll e (B, sy < cost. (Vug |l an1 (s 0ms) + 1ol 2 (5,\0:m9))-

Taking k = 1 and applying this inequality to uZ", and noting that the sequence {uk»} is
bounded in W12(By \ Q;R?), it follows that {ulnr} is also bounded in H?(By, \ ©; RS)
Applylng this procedure iteratively, and using the arbitrariness of Lg, we find that
ulr is bounded in H*(Bp, \ Q;R3) for any k and any Lg. The same procedure also
shows that u., € H¥(Br, \ ©;R3) for any k and Lg. Hence, by Rellich’s Theorem, the
sequence {ulr} converges strongly to ue in H*(By \ Q; R3) for any &k and L.

O

Corollary 4.2. For any sequence L,, — oo,
T(ulmyn — T(ue)n
strongly in L*(99).

Proof. Since the sequence {ulr} converges strongly to ue, in H*(Bz, \ ;R3) for any
k and Lo, the traces of {ulr} and {Vulr} on 0Q also converge strongly in H*(9Q)
for any k.

O

Remark 4.3. Given 7 € W19(9%;R?) such that 7 - n = 0, let u, be the unique

minimizer of Fy(u) on the subspace of W such that u|sq = 7. Then results completely
analogous to Theorems 4.1 and 4.2 hold for any sequence {uX"} of local minimizers.
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5 Threshold effect

In order to study the effect of the size of the inclusion, we rescale the functional using as
a parameter a characteristic length £ such that |0Q| = ¢2; through the transformation

.1
T=-uw,

14

the domain Q is mapped into a new region Q such that |9Q| = 1 and |Q] = |Q|/£°.

Thus letting

(&) = %u(ﬁfb),

we have Vi, = Vu, and the rescaled energy functional becomes
Fla) =06 / o(E —Eo)dv+* | f(&, Dg@)da,
JR3\Q Jo%y
and this suggests the introduction of the functional
. 1/
Folu) = / o(E — Eqg)dv+ - flz,Dsu)da, (5.1)
JR3\Q t Jan

where we have omitted the tilde, so that |0€2| = 1. Note that the functional Fy coincides
with Fy on the subspace Wy of coherent displacements.

The next result, which is central, relates the threshold effect to the smoothness
of the interfacial energy density: when the interfacial energy is non smooth a small
inclusion is coherent as long as its size does not exceed a threshold value.

Theorem 5.1. Assume that
f(z, V) > A|V]| (5.2)

for all (z, V) € X, with |V| < 1, where A is a positive constant. Then there is an £y
such that for € < £y the inclusion is coherent; i.e., the functional Fy has a minimum
in W, and the minimizer is the coherent displacement ue,.

Proof. We split the proof in two steps:
Step 1 . We prove that

Fo(u) — Fu(ue) > — | T(uco)n-uda—i—%/ (@, Dsu) da (5.3)
J O J O

for any u € W. For every L such that Q C By, let
Wt ={uec WH(Br \ % R?) : wlgn € WH(OQ;R?) and ulpg - n =0}, (5.4)

By the divergence theorem, we have, for uw € WZ,

Riw-Fiwh) = @+ [ Tubn-(u—ul)da
-. L
- Div T(ul) - (u — uk) dv
JBL\Q
- T(ufo)n ’ (’U, - u£0> daa
J O

12



where () is a nonnegative quantity. Since u’ satisfies the Euler equations (4.3), this
implies that, for any u € W,

Bl (u) — B (ul) > — [ T(ul)n-uda. (5.5)
J o0

Fix L and take a sequence L,, — +oco. Then

Fy™(u) — Fy™ (ue) < Fo(u) — By (ugg),

for L, > L, so that
Fo(u) — Fdj(uL") > — T(ulr)n - uda. (5.6)
JOQ
By Theorem 4.2,

T(ulr)n - wda — T(tUeo)n - uda, (5.7)
J 052 J 0802

and the last integral is independent of L. Thus, taking the limit in (5.6), and using
the lower-semicontinuity of FOL and Theorem 4.1, we obtain

Fo(u) — Fl(uw) > — | T(ue)n - uda,
JOQ
and since this relation holds for any L, this yields the desired result.

Step 2. Note that, by (5.3),

Fi(w) = Folugo) > /

4 002

(%f(m, Dgu) — T()]u]) da,

where 79 = supgq | P T(ueo)n|, and where we have used the fact that w is tangential to
0R. In view of the continuity of f, the growth conditions (2.5) and (5.2), and the fact
that f(x, V) > 0 for V # 0, there is a constant B > 0 such that

f(xz, V) > B|V| forall V.
Consequently,
" (B
Fi(u) — Fo(ue) > / —|Dgu| — m0|u| | da;
Jaa \ ¢
but, by Poincaré inequality (3.4),
[ Dsull L1 aorsx3y = CllullLaa;rs)-
Hence,
BC
Fiw) = Fiue) = [l onzs (5 . )

BC

and the right hand side of this expression is nonnegative for £ < ¢y = Eut

O

The following result shows that: (i) coherency is lost when the inclusion is suffi-
ciently large, and (ii) when the interfacial energy is smooth, the inclusion can never be
coherent, no matter how small its size.

13



Theorem 5.2. Assume that
flz, V) < A VP, p=>1, (5.8)

for all (x, V) € X, with |V| < 1, where Ay is a positive constant. Then there exists
01 > 0 such that if p =1 and £ > {1, or if p > 1 (and no restriction on ¢), then the
inclusion cannot be coherent.

Proof. Let u,, as in Remark 4.3, be the unique minimizer of Fy(w) on the subspace
of W such that u|sg = 7, and let uZ be the minimizer of F{*(w) on the subspace of
WL such that u|sn = 7. We prove that we may choose T such that Fy(u,) < Fy(ue).
Again we split the proof into two steps:

Step 1. We first prove that

Fo(ur) — Fo(teo) < — %[BQC[E(U.,.)}n - ur da

In fact, for any L such that Q C By,

B )~ Bl = [ o) B(ul)

(5.10)
+ ] Td) - (B(l) - B(ad) do.
JB\Q

Applying the divergence theorem, and recalling that both wl and u% are smooth
minimizers and satisfy their respective Euler equations, we find

Fy (ur) = Fg'(ug,) = - %._/59 ClE(uz) — E(ug,)n - ur da

T CcO

— [ T(ub)n-utda,
JoN
and thus

T

Fy (ug) = Fy (ug,) = = § faq CIE(up)]n - uz da

[ ciBuL) - Bojn-ulda o)
002

Choosing a sequence L,, — 400, we take the limit of the right-hand side of (5.11) using

Theorem 4.2 and Remark 4.3; the result is the surface integrals in (5.9) (recall that

u, =7 on 0X2). Moreover,

Fy (ugg) < Fy (ueo) < Foluco),
and for fixed Lg, the functional FOL0 is lower semicontinuous; thus, using Theorem 4.1
Lo < limi Lo lny < 1im i Ln ¢, Ln
Fy®(ur) < liminf Fy® (uz") < lim inf F5™ (uz"),
and taking the limit of the left-hand side of (5.11), we obtain
Fy°(ur) — Fotteo) < — 3 [50 CIE(ur)]n - ur da

— C’[%E(uco) — Eo|n - ur da,
JOQ
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which implies (5.9) since Lg is arbitrary.
Next note that, for any ¢ > 0, u,r = ou,, where we have used the linearity of the
Euler equations. Thus, applying (5.9) to u,,, we find that

2 o
Fo(upr) — Fo(ue) < — % | ClE(u,)n - ur da
2 Joa
-0 Cl3E(uc) — Eoln - u, da.

J OS2

Choosing
T= PC[%E(’U,CO) — Egn,

and noting that

1/ 1 )
- / f(®, Dsuyr)da < = BpP / |DsT|Pda,
¢ Jag 4 Joq

we find that y
Fy(tgr) — Fi(uc) < ag* — Bo+ 7 o,

where «, 3, v are constants, with G and - positive. If p > 1, for any fixed ¢ we may
choose ¢ such that the above expression is strictly negative. If p = 1 take ¢ = v/0.
Then for £ > £1 and p sufficiently small,

Fitgr) = Fifua) < 2 (a0 = (e - 1)) <o

and this implies the desired result.

6 Compactness for ¢ > 1

In this section we study the convergence of the minimizing sequences. We assume that
g > 1 in the growth condition (2.5).

Theorem 6.1. Assume that either § is not a surface of revolution, or that € is a
surface of revolution and q > 2. Let {un} C W be a minimizing sequence for F on W,
i.e.

liminf F(u,) = inf F(v).

n—00 veW

Then there is a subsequence (not relabeled) and a function w € W such that

u, —u i WP (RP\ R, wunloq — ulaq  in WHI(OQR?),

E(u,) — Ey — E(u)— Eg in L*(R3\ Q;R¥3). (6.1)

Proof. Let u, be a minimizing sequence for F' on W. By the coerciveness of the bulk
and interfacial energy densities (see (2.5)), it follows that
E(u,) — Eq is bounded in  L*(R3\ Q;R3*?) .
Dgsuy, is bounded in  LY(90Q; R3*3), (6.3)
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The first assertion implies that a subsequence (not relabeled) of { E(u,)—Eq} converges
weakly in L2(R3\ Q;R3*3) to a tensor field E — Eg € L*(R3\ Q;R3*3). By Korn’s
inequality, the sequence u,, is bounded in W12(By, \ ;R3), for any ball By, such that
B D Q. Hence the traces of u, are uniformly bounded in L?(9€;R3). We claim
that they are actually uniformly bounded in W14(9Q; R3). Indeed by (6.3) this follows
from the Poincaré inquality (3.4) when ¢ < 2. When ¢ > 2, by the Sobolev Immersion
Theorem (see e.g. [17]) we know that W12(9Q; R3) is contained in LP(9Q;R3) for any
p > 1 and, in particular, in L9(9Q; R3). Since the traces of {u,} are uniformly bounded
in WhH2(9Q; R3) it follows that they are uniformly bounded in L(9Q;R3) and thus,
again by (6.3), in W14(9€; R?), and the claim is proved.

A simple diagonalization argument, analogous to the procedure used in Theorem
4.1, allows to extract a subsequence (not relabeled) {u,,} such that w, converges weakly
in V[/l(l)f (R3\ Q;R?) to some function u and the traces of {u,} converge weakly in
WL4(9Q; R3) to the trace of u. Since E(u,) — Eqg — E(u) — Eq in L2(R3\ Q; R3*3),
it follows that E(u) = E.

To conclude the proof it remains to show that u-n = 0 on 0). By weak convergence,
for any ¢ € C1(OQ;R),

Yy, - nds — Yu-nds, (6.4)
JOQ JOQ

and since u, - n = 0 on 9€), the proof is complete.
|

Remark. When ¢ = 1 in Theorem 6.1 the situation is more delicate, as a mini-
mizing sequence converges to a limit function « which is only of bounded variation on
the boundary, i.e. ulsgo € BV (9Q;R?).

7 Relaxation

For simplicity, throughout this section we assume that

4
- 7.1
¢> 3 (7.1)

Actually, it can be shown that the integral representation formula (7.3) obtained below
continues to hold when ¢ > 1, but when 1 < ¢ < %, the proofs are rather technical and
go beyond the scope of this paper. The situation is quite different when g = 1, since,
as we remarked in the previous section, a priori we only know that u|gsn € BV (09; R?)
for the limit function u of a minimizing sequence, so that in the integral representation
formula one would need to take into account extra terms due to the singular part of
the measure Dgu (cf., e.g., [15]). In view of the compactness result of the previous
section, for uw € W define

loc
1—00

Flu) = inf{]imian(un) Hupy CW, wy, —u in L (R3\ ;RY),
’u,n’ag — ’u,‘aQ in Wl’q(aQ;RB),

E(u,) — Ey — E(u)— Ey in L*(R3\ Q;R3X3)}.
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In the next theorem we show that we may separately relax the elastic and the sur-
face energies, and characterize the relaxed surface energy functional in terms of the
tangential quasi-convexification Qrf of f, defined by

QTf(ma V)

= inf{/. f(@, V+Vpp(m)dn : ¢ € W&’“(Q;Tw(GQ))}, (7.2)
JQ

with 73, (0Q) the tangent plane to 9 at @, and @ the unit square in 7, (9€2). The def-
inition introduced here is similar to the notion of tangential convexification introduced

by DACOROGNA ET AL. [9], for functionals defined on mappings from the Euclidean
space to manifolds.

Theorem 7.1. For u e W,

Flu) = / o(B(u)— Bo)dv+ | OQrf(m, Dsu)da. (7.3)
Jra\Q Joa

The following Lemma uses ideas of KRISTENSEN [18] and FONSECA AND MALY
(14].

Lemma 7.2. Consider a sequence {u,} C WH2(98) converging weakly in W14(9Q)
to ulaq for some function w € WY2(Q). Then for any ball By, with By, O Q, there is a
sequence {vy,} C WH2(Bp \ Q) such that {|[Vv,|?} is equi-integrable, v,|oq = un, and
v, — uw in WH3H(BL \ Q).

Proof of Lemma 7.2. By replacing u,, with u, — u, if necessary, we may assume that
u = 0. By (7.1) and the Sobolev Immersion Theorem for fractional Sobolev spaces (see
e.g. ADAMS [2]), the following continuous inclusion holds

Whe(90) ¢ W'329(9Q).

Hence
1-2 24
up, € W 30°2%(90)

with

[ < CJunllwr.aa0) -

_2 3 >
w3 29aq)

Moreover, since the mapping
W (B \ Q) — W (00)

is linear, continuous and onto, we may find v, € le%q(BL \ Q) such that v, = u, on
o) and

(7.4)

[[onl

< Clul

3 2 3 .
W1’7q(BL\Q Wlfﬁ’?q(aﬂ)

Hence the sequence {v,} is uniformly bounded in Wl’%q(BL \ Q) and, in particular,
since ¢ > 4/3 it follows that {|Vuv,|?} is equi-integrable. O
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Proof of Theorem 7.1. Since g is convex, classical lower semicontinuity results give
Flu) > / o(E — Eg)dv+ Fi1(u),
JR3\Q

with
Fi(u) == inf{liminf f(x, Dsvy)da : {v,} € WHI(OQ; R?),
n—0od J o

vp-n=0, v, — ulpg in Wl’q(BQ;Rg)}.

To prove the opposite inequality, fix ¢ > 0 and let {v,} € W19(9Q;R3) be such
that v, - m = 0, v, — ulspg in WH4(9Q; R?) and

lim f(x,Dgvy)da < Fr(u) +e. (7.5)

n—o JoQ
Fix By, so that By, D Q. Since {w,} is uniformly bounded in Wh4(9;R3), by the
previous lemma we may find a bounded sequence {9,} C W12(B \ Q;R3) such that
{|E(9,)|*} is equi-integrable, ,|s0 = v, and ¥, — w in WH2(Bp \ Q; R3). Denoting,
for every t > 0,  := {x € B\ Q| dist(x, 0Q) < t}, we fix some § > 0 small and define
the subsets Ls := Qas \ 5. Consider a smooth cut-off function s € C3° (226510, 1))
such that ¥s = 1 on Qs. As the thickness of the strip Ls is of order §, we have an
upper bound of the form ||Vis| peo(r,) < C/6. Define

Wy, = Y5 Oy, + (1 — 1/)5)’11,

Clearly this sequence belongs to W, converges to w in the sense (6.1), and satisfies
w,, = v, on 0f). On the other hand, by the quadratic growth of ¢,

Fw) < [ o(Bu) = Bodo+ [ fa. Dyo,)dot
JR3\Qs Joo

+C(/ |E () — Eo|? dv—i—/ |E(u) — Eo|* dv
S5

JLs
1 [ .
+6_p./L§ By, — ul? dv).

Thus, passing to the limit in n, we have, by (7.5),

Flu) < ./]1.@3\9 o(E(u) — Eo)dv+ Fi(u) + ¢

+C’(liminf/ |E(9,) — Eo|? dv+/ |E(u) — Eg|? dv),
Y]

n—0o0 . L6

where we have used the fact that 9, — w in L?*(Br \ Q;R?). Since {|E(%,)|*} is
equi-integrable, by letting § go to zero we obtain

Flu) < ‘/H;\Q o(E(u) — Eq)dv+ Fi(u) +¢.

It now suffices to let e — 07.
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To find an integral representation of Fi, let A(02) be the class of all relatively open
subsets of JQ. For any open set A € A(92) we define

Fir(u; A) = inf{liminf/ f(x, Dsvy)da = {v,} € WHI(A;R?),
JA

n—00
v,-n=0, v, —ulq4 in Wl’q(A;Rg)}.

It may be shown that F(u;-) is the restriction to A(0f2) of a Radon measure. Without
the constraint v, - n = 0 on admissible sequences, the proof of this result is standard
in the Calculus of Variations, see e.g Lemma 3.1.3 and Theorem 1.0.4 of [4]. Using the
fact that if w-n =0 and v-n = 0 then (pu+ (1 — ¢)v)-n = 0 for any scalar function
@, it is easy to see that the proofs of Lemma 3.1.3 and Theorem 1.0.4 of [4] can be
carried over in our context.

Since the outward unit normal n to J€) is continuous, the domain of f, namely
Y = {(z,V) € 90 x R¥3 : Vn(z) = 0}, is closed in R? x R3*3. Thus by Tiesze
Extension Theorem we may extend f continuously to all of R? x R3*3 in such a way
that the growth condition (2.5) continues to hold in R® x R3*3. In what follows we
identify f with its extension.

Fix xg € 09, let U be a neighborhood of xy on 0, with corresponding chart
x: U C 00 — R? and let R = x(U) C R2. Consider a function v € Wh4(U; R?), with
v-n =0, and let w(§) := I(x(§))v(x(€)) denote its local representation (cf. (2.9)).
We then have

/ﬂan@»mz/fm@xmwm@mJ@ms
JU . R
_ ./Rg(s,w@),vgw(s)) e,

with J(&) := det I"!(x(£)) and where the integrand g : R x R? x R?*2 — [0,00) is
defined by (cf. (2.10))

g€ w,Z) = f(x(§), I (x(£)ZI(x(£)) + R(&, w)) J(£),
with R(€, w) defined as in (2.10). Thus

Filu;U) = inf{liminf / g (& wn(€), Vew,(8)) d& : {w,} Cc WH(R;R?)
n—o JR
w, — w in Wl’q(R;RQ)},

where w € Wh4(R;R?) is the function associated to u|y;. Classical relaxation results
(see e.g. [1] and [8]) now yield

ﬂmmzé%@m&wwm@,

where the function Qg is the quasiconvex envelope of g. It may be shown that for each
fixed (&g, wo, Zo) € R x R? x R?*2,

Qg (507 w07 ZO)

~ inf {i / 9 (€0 wo, Zo + Vep(£)) dé - o € W&"”(R;R?)} -
|R| Jr
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On the other hand, this expression may also be written as

J(&y)inf {ﬁ /Rf (20, I5'Vep(&) o+ 15 ZoIo + R(&), wo)) dE

€ Wy™(RsR?) },
where g = x(§) and Io := I(x(§;)). Recall that Iy induces a linear map between
T, (09) and R? defined by & = Ign, for n € Ty, (09Q), and assume that R C R? is the

image through Iy of the unit square Q) C Ty, (9€?). Then any function ¢ € WOI’OO(R; R?)
corresponds to a function ¢ € Wol’oo(Q;TwO (092)) defined by

P(n) := Iy o(Lom),

so that
I, 'Vep(Ion)Io = Vap(n).

We may transform the integrals over R to integrals over () in the expression given
above for Qg, which becomes

J(&o) inf{/;gf (o, Vayth(m) + I ' ZoLo + R(&p, wo)) dn :

W € W™ (Q5 T (99)) |
where we have used the identity det Iy = |R|, and this implies that

Qg (507 ’U)O,ZO) = J(&O)QTJC (m07161ZOIO + R(£07 ’U)O)) 5

where we have used the definition (7.2) of tangential quasiconvexification. In particular,

Qg (& w(§), Vew(§)) = J(§)Qr f(=(£), Dsu(z(£)),

so that i
fl(u;U):/ Qrf(x, Dgu)da.
JU
Since Fi(u;-) is the restriction to A(0Q) of a Radon measure, if we consider
A € A(9) with Lipschitz boundary and if for each ¢ > 0, we define Ay := {z €
Al dist(x, A) > t}, then Fy(u;0A4;) = 0 for £! a.e. ¢ > 0. Thus, since € is compact,

we may find a finite number of local charts {D,..., Dy} such that F(u;0D;) = 0
and

Hence

L .
Fi(u) = F1(u;0Q) = g Fi(u; D;) = Z / Qrf(x,Dsu(x))da
i=1 j=1 "

=1 D;

— [ 0rf(z, Dsu())da.
J o

20



As an immediate application of Theorems 6.1 and 7.1 we have

Corollary 7.3 (Existence of minimizers). Assume Q C R3, and that either
is not a surface of revolution and q > 1, or that  is a surface of revolution and
q > 2. Assume also that the interfacial energy f(x,-) is tangentially quasiconvex (so
that f = Qrf). Then the minimization problem

inf F'
ol ()

admits a solution uw € W.

8 Two-dimensional case

The results of the preceding sections apply to plane strain, but since in that case the
interface is one dimensional, quasiconvexity is replaced by convexity in the expression
of the relaxed interfacial energy functional.

Let Q C R?, denote by s € [0,¢] the counterclockwise arc parameter on Jf2, and
by o' the derivative of u(s) with respect to s on 9Q. In general, we use the notation
() = dis for functions on 9€). Let ¢ and m be the unit tangent and outward unit normal
to 0f), with t pointing in the direction of increasing s. We assume that u is tangential
to 0f2, so that writing

u="Ut on 0,

we have

u =U't+ kUn, (8.1)
where & is the curvature of 9. (We have used the identity ¥ = kn.) We denote by
f=f(s,u)

the interfacial energy density per unit length of 3€). We assume that f is continuous,
f(s,w) >0 for w# 0, f(s,0) =0, and the growth condition (2.5) holds.

The results in the preceding sections apply here, but we now have a somewhat
simpler characterization of the relaxed interfacial energy functional.

We define the tangential convezification of f, denoted by Crf = Crf(s, w), to be
the convex envelope of the function

W= f(s,w+ Wi(s)),
computed at W = 0, i.e, by Caratheodory’s Theorem,

Crf(s,w)=1inf {\f(s, w + Wit(s)) + (1 — MAf(s,w + Wat(s)) :
AW1 + (1 — \)Wy = 0} .

For an alternative characterization, note that each function f : [0,4] x R? — R induces
a function g : (0,¢) x R x R — [0, 00) defined by

g(s, U, V) := f(s,Vt(s) + k(s) Un(s)), (8.2)
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for every (s,U, V) € [0,4] x R x R. For each fixed (s,U), let ¢g** be the convex envelope
of g(s,U,+). Since g** is, for each (s,U), the convex envelope of the real function

Vi f(s,Vi(s) + k(s)Un(s)),

for each fixed (s,U), and this function (by Caratheéodory’s Theorem) coincides with
the tangential convexification of f,

CTf(S7 ’LU) = g**(sa U7 V)7

with U and V defined by w =V t(s) + k(s) Un(s).

The following theorem, analogous to Theorem 7.1, shows that the role of the tan-
gential quasiconvexification is now played by the tangential convexification, and that,
when f is isotropic, so that f = f(u') does not depend on s, the tangential convexifi-
cation of f coincides with the convex envelope f**.

Theorem 8.1. Let Q) be a bounded domain in R2. Then, for uc W,

f(u):/ o(B(u)— Eo)da+ | Crf(s,u)ds. (8.3)
Jr2\Q Joa

Moreover, when f = f(w) is independent of s, then
Crf(s, w) := [ (w).
Proof. To prove the first assertion, note that, granted (8.2), we may write the relaxed

interfacial energy functional in Theorem 7.1 as Fi(u) = G(U), where

-{
G(U) :inf{liminf/ g(s,Up, UlYds : {U,} € WH((0,6);R),

n—oo 0

U, —U in Wl’q((O,E);R)}.
Classical relaxation results (see e.g. [8]) give

y
6) = /0 (s, U, U") ds, (8.4)

where for each fixed (sg, Up) € (0,¢) xR the function g**(sg, Up, -) is the convex envelope
of

9(s0,Uo, ) = f (0, t(s0) + £(s0) Uon(so)) -

To prove the second assertion we must show that, when f = f(w) is independent
of s, then for any s € [0,¢] and U,V € R,

g**(s, U, V) = f**(w),

with w = Vt(s) + k(s)Un(s). We first prove that f is convex if and only if g(s, U, ) is
convex. Assume that f is convex, and choose A € (0,1). Then

9(s, U \V1+ (1 =N)WV2) = f(Awy + (1 - A)ws)
< Af(w) + (1= A) f(w2)
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= )‘9(57 U7 ‘/1> + (1 - )\)9(5, U7 ‘/2)7

with w1 = Vit(s) + k(s)Un(s) and wa = Vat(s) + k(s)Un(s). Conversely, assume that
g(s,U,) is convex, and choose w1, wo arbitrary in R2. Then there is an sy € [0, £] such

that
wo — Wy
(s0) P n(so) = t(so) X k,

and note that wy - n(sg) = wa - n(sg). Hence, if k(sg) # 0, we may define

Vi = w1 - ts0), Va = wsy - Uso), U= wl;qi(go(;()) N wz"fi(go(;())

so that wy = V1t(so) + k(so)Un(sp) and wg = Vat(sg) + k(so)Un(sg). Thus

f()\'w1 + (1 — )\)’U)Q) = 9(50, U, \Vi + (1 — )\)‘/2)
< )‘9(807 Ua‘/l) + (1 - )‘)9(807 Ua‘/Q)
= Af(w1) + (1= A) fwa).

If k(sp) = 0, we may choose sy such that there is a sequence s, — sg such that

k(sp) # 0. Then, letting Vi, = wy - t(sy), Vo, = wa - t(sy), Uiy = %:5)") and

Usp = wi‘g:i"), we have
FQAwi + (1 = Nwsz) =g(sn, A\U1n + (1 = N)Uszp, AWVip + (1 — XN)Va )
<A (8 AUty + (1 = NUzp, Vig)
+ (1 =N)g(sn, AU + (L= NUap, Var)
=Af(w1n) + (1= N) f(wan),

where

w1 p = Vipt(sn) + 6(sn) AVin + (1 = N)Uzn)n(sy),

’

wo p = ‘/Q,nt(sn) + K(Sn) ()\Ul,n + (1 — )\)UQ n)n(sn),

»

so that
w1, — wp and  wo, — wa

as n — o0o. The continuity of f then yields the desired result. The fact that ¢**(s, U, -)
coincides with f** follows from the definition of convex envelope as the supremum over
all the convex minorants of a given function.
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Note added to proof After this paper was completed, we learned of a paper of
D. KINDERLEHRER AND G. VERGARA-CAFFARELLI (The Relaxation of functionals
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with surface energies, Asymptotic Anal. 2 (1989) 279-298) in which they considered a
functional of the form

E(u) = / Y(z,u,Vu)de+ | f(z,u,Vu)da, ueC'(GR"),
Jo Joa
and proved that

or@imm) T o ) (

/I QY(x,uw, Vu)dx + | Qf(xz,u, Vu) da) ,
Q J O

where Qv and Qf are the quasiconvex envelopes of ¢ and f. They also show an
interesting property, suggested by De Giorgi, namely, that stationary points of the
functional seek the minimum value of f in the normal direction for a given value of the
tangential gradient.
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