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Abstract

We find conditions ensuring the existence of the one-sided Minkowski content for d-dimensional
closed sets in Rd, in connection with regularity properties of their boundaries. Moreover, we provide
a class of sets stable under finite unions for which the one-sided Minkowski content exists. It follows,
in particular, that finite unions of sets with Lipschitz boundary and a type of sets with positive
reach belong to this class. We find analogous conditions, stable under finite unions as well, for the
existence of the mean one-sided Minkowski content of random closed sets. Finally, an application to
birth-and-growth stochastic processes is briefly discussed.
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1 Introduction

This paper is concerned with the so-called one-sided Minkowski content SM(A) of a compact set A ⊂ Rd.
It is defined, whenever the limit exists, by

lim
r↓0

Hd(Ar \A)
r

.

Here we denote by Ar the closed r-neighborhood of A, and by Hk the Hausdorff k-dimensional measure
in Rd; to make the presentation of our results lighter, we do not give here formal definitions and we refer
for this and other (typically standard) notation to the next section. If for any x ∈ ∂A the set A is locally
representable as the subgraph of a sufficiently smooth function, it is intuitive that this limit gives the
surface measure of ∂A, namely Hd−1(∂A). It is also intuitive that in many situations this coincides with
the (two-sided or usual) Minkowski content Md−1(∂A), namely

lim
r↓0

Hd((∂A)r)
2r

,

an object on which many more results are available in the literature.
Our goals, which are motivated by problems in stochastic geometry described in more detail in the sec-

ond part of this introduction (in particular from the analysis of the so-called birth-and-growth stochastic
processes) are:
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(a) to find general conditions ensuring the existence of the one-sided Minkowski content;

(b) to find a class of sets S stable under finite unions for which the one-sided Minkowski content is defined.
The first goal can be considered as a variation of the more classical theme for the Minkowski content.

In this analysis, besides the topological boundary ∂A, also the smaller essential boundary ∂∗A (i.e. the
set of points where the density is neither 0 nor 1) plays an important role. We can prove for instance
in Theorem 14 that, whenever the Minkowski content exists and it coincides with Hd−1(∂∗A), then the
one-sided Minkowski content exists, and has the same value. This criterion can be applied, for instance,
to show that the one-sided Minkowski content exists for all sets A with a Lipschitz boundary. But,
the existence of the content is only loosely related to the regularity of the boundary: for instance we
characterize in Theorem 28, among all sets with positive reach, those for which the one-sided Minkowski
content coincides with Hd−1(∂∗A). Notice that for sets of positive reach a complete polynomial expansion
of r 7→ Hd(Ar) is available, the so-called Steiner formula: therefore the one-sided Minkowski content
always exists, and corresponds to the first coefficient in this expansion. In connection with the most
recent developments on this subject we mention the paper [12], where the authors present a generalization
of the Steiner formula to closed sets; nevertheless such general formula is not polynomial in r, and so
the existence of the one-sided Minkowski content cannot be obtained directly, without assuming further
regularity conditions. We also mention the paper [16], where existence of the one-sided Minkowski content
is proved for finite unions

⋃
iAi of sets Ai with positive reach such that all possible finite intersections

of the Ai’s have positive reach as well.
The second goal is more demanding, as simple examples show that regularity properties of the bound-

ary are not stable under unions. The same is true (see Example 2) for other typical regularity conditions
considered in geometric measure theory, as positive reach, or Hd−1(∂A \ ∂∗A) = 0 (which implies, by
the theory of sets of finite perimeter, that an approximate normal exists at Hd−1-a.e. point of ∂A).
Nevertheless, we are able to identify two conditions, both stable under finite unions: the first one, see
(2), is a kind of quantitative non-degeneracy condition which prevents ∂A from being too sparse; simple
examples (see Example 3) show that SM(A) can be infinite, and Hd−1(∂A) arbitrarily small, when this
condition fails. The second condition, in analogy with the above mentioned Theorem 14, is the existence
of the one-sided Minkowski content and its coincidence with Hd−1(∂∗A). The proof of stability of these
two conditions, given in Theorem 19, is one of the main contributions of this paper: it requires a careful
measure-theoretic analysis of the regions where the boundaries of the sets intersect, either with same or
with opposite normals.

With the role of “surface measure”, the one-sided Minkowski content is important in many problems
arising from real applications. Moreover, it may be seen as derivative of the volume of a set with respect
to its Minkowski enlargement, so that, for a time-dependent closed set, which can be taken as model
for evolution problems, the one-sided Minkowski content turns to be related to evolution equations for
relevant quantities associated to the model (see, e.g., [4, 14, 18].) Clearly, several real situations are
studied by stochastic models (see, e.g., [19], and [13] for further applications). In a stochastic setting we
deal with random closed sets and their expected volumes; so we introduce the mean one-sided Minkowski
content of a random closed set Θ in Rd, i.e. a measurable map from a probability space (Ω,F,P) to the
space of closed subsets in Rd (see Section 6), as the limit (whenever it exists)

lim
r↓0

E[Hd(Θr \Θ)]
r

. (1)

The problem is now to find general conditions for the existence of the mean one-sided Minkowski
content. Starting from the results obtained in the deterministic case, we obtain sufficient conditions on a
random compact set ensuring the existence of the mean one-sided Minkowski content and its coincidence
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with E[SM(Θ)]. Moreover, our results are stated in a local form, see in particular Theorem 32, and are
therefore applicable to random closed sets as well. In addition, they are all stable under finite unions; this
feature is particularly relevant, for instance, in connection with the so-called birth-and-growth stochastic
processes. These processes, briefly described in the final part of this paper, correspond to a random
union of sets in Rd which evolve in time according to a given growth model; the (local) mean densities
of volume and of the one-sided Minkowski content are fundamental to obtain deterministic evolution
equations, which are of a great interest in applications (see [7] and references therein).

2 Notation and preliminaries

In this section, after giving some basic notation, we recall some definitions and results, mainly belonging
to the area of geometric measure theory, that will be used in the paper.

We work in the Euclidean space Rd, d ≥ 2, endowed with the usual norm ‖ ·‖ and scalar product (·, ·).
For s ≥ 0, we denote by Hs the Hausdorff measure of dimension s; in particular, Hd is the Lebesgue
measure in Rd. BRd denotes the Borel σ-algebra of Rd. Given a subset A of Rd, ∂A will be its topological
boundary, Ac the complement set of A, intA and clA the interior and the closure of A, respectively.
For r ≥ 0 and x ∈ Rd, Br(x) is the closed ball with center x and radius r; finally, for every n we set
bn = Hn(B1(0)), i.e. the volume of the unit ball in Rn.

A crucial notion in this paper is the parallel set of a subset of Rd. Let A ⊂ Rd be closed and let r ≥ 0;
the parallel set of A at distance r, denoted by Ar, is defined by

Ar = {x ∈ Rd : dist(x,A) ≤ r} .

Ar is also known as the Minkowski enlargement of A and can be characterized as

Ar = A+Br(0) = {x+ y : x ∈ A , y ∈ Br(0)} .

Definition 1 (Upper and lower Minkowski content) Let S ⊂ Rd be a closed set and let n be an
integer with 0 ≤ n ≤ d. The upper and lower n-dimensional Minkowski contents M∗n(S), Mn

∗ (S) are
defined by

M∗n(S) := lim sup
r↓0

Hd(Sr)
bd−nrd−n

, Mn
∗ (S) := lim inf

r↓0

Hd(Sr)
bd−nrd−n

respectively. If M∗n(S) = Mn
∗ (S) <∞ their common value is denoted by Mn(S) and S is said to admit

n-dimensional Minkowski content.

Mn is a measure of the area of “n-dimensional sets”, alternative to the n-dimensional Hausdorff
measure. It poses as natural problems its existence and its comparison with Hn. In the literature there
are some general results concerning these problems, related to rectifiability properties of the involved
sets; let us mention some of them. We say that a compact set S ⊂ Rd is n-rectifiable if it is representable
as the image of a compact set K ⊂ Rn, with f : Rn → Rd Lipschitz.

The following theorem is proved in [10] (p. 275).

Theorem 2 Mn(S) = Hn(S) for any compact n-rectifiable set S ⊂ Rd.

The following remark shows that (d − 1)-rectifiable sets are always contained in the support of a
probability measure satisfying a suitable uniform (d−1)-dimensional lower bound. The existence of such
a probability measure is the key to provide the extension of Theorem 2 to more general classes of sets.
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Remark 3 Any n-rectifiable compact set S ⊂ Rd satisfies the following property: there exist γ > 0 and
a probability measure η in Rd satisfying

η(Br(x)) ≥ γrn ∀r ∈ (0, 1), ∀x ∈ S. (2)

Indeed, let us represent S = f(K) and let us assume, with no loss of generality, that the Lipschitz
constant L of f is strictly positive. Let K ′ := K1/L and c := Hn(K ′); the probability measure η(B) :=
c−1Hn(K ′ ∩ f−1(B)) satisfies (2) with γ = bnc

−1L−n because

η(Br(f(x))) ≥ 1
c
Hn(Br/L(x)) =

bn
cLn

rn ∀x ∈ K, ∀r ∈ (0, 1).

Under the same hypothesis of density lower bound considered in the previous remark, Theorem 2 can
be extended to countably Hn-rectifiable compact sets. Remind that a set S ⊂ Rd is said to be countably
Hn-rectifiable if there exist countably many n-dimensional Lipschitz graphs Γi ⊂ Rd such that S \ ∪iΓi

is Hn-negligible. The following result is proved in [3] (p. 110).

Theorem 4 Let S ⊂ Rd be a countably Hn-rectifiable compact set and assume that (2) holds for some
γ > 0 and some Radon measure η in Rd which is absolutely continuous with respect to Hn. Then
Mn(S) = Hn(S).

A simple example of set S such that Mn(S) does not exist for any n ∈ [0, d) is given in [3], p. 109
(see also Example 3 in Section 5). These examples show that countable rectifiability is not sufficient for
the existence of the Minkowski content.

In the sequel we will use the following proposition (see [1]), which ensures that condition (2) is sufficient
to find an upper bound for M∗n.

Proposition 5 Let S be a compact subset of Rd such that

η(Br(x)) ≥ γrn ∀r ∈ (0, 1), x ∈ S

holds for some γ > 0 and some probability measure η in Rd. Then

Hd(Sr)
bd−nrd−n

≤ 1
γ

2n4d bd
bd−n

∀r ∈ (0, 2).

Throughout this paper we will encounter several ways to measure the boundary of a subset of Rd;
one of them is given by the notion of perimeter, due to De Giorgi.

Definition 6 (Perimeter) Let E be a Hd-measurable set of Rd and let D ⊆ Rd be an open set. We say
that E has finite perimeter in D if the distributional derivative of the characteristic function of E, DχE,
is an Rd-valued finite Radon measure in D. The perimeter of E in D, denoted by P (E,D), is defined as
the total variation |DχE | in D, namely:

P (E,D) := |DχE |(D).

Roughly speaking, sets of finite perimeter are those whose characteristic function has bounded varia-
tion; we refer to [3] for an exhaustive treatment of this subject. In the sequel we will write P (E) instead
of P (E,Rd). As next step we recall the notion of essential boundary of a set, which turns out to be closely
related to sets of finite perimeter; we start from the definition of densities.
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Definition 7 (d-dimensional densities) Let E be an Hd-measurable set in Rd. The upper and lower
d-dimensional densities of E at x are respectively defined by

Θ∗
d(E, x) := lim sup

r↓0

Hd(E ∩Br(x))
bdrd

, Θ∗d(E, x) := lim inf
r↓0

Hd(E ∩Br(x))
bdrd

.

If Θ∗
d(E, x) = Θ∗d(E, x) their common value is denoted by Θd(E, x).

For every t ∈ [0, 1] and every Hd-measurable set E ⊂ Rd let Et := {x ∈ Rd : Θd(E, x) = t}.

Definition 8 (Essential boundary) Let E be an Hd-measurable set in Rd. The essential boundary
∂∗E of E is the set

∂∗E = Rd \ (E0 ∪ E1) .

As a consequence of general theorems on sets with finite perimeter (see §3.5 in [3]) we have the
following result, which can be used to compute the perimeter measure in terms of the (d−1)-dimensional
Hausdorff measure. In its statement and in the sequel we adopt the notation Hn

|B for the restriction of
Hn to B, i.e. Hn

|B(E) = Hn(B ∩ E) for all Borel sets E ⊂ Rd.

Theorem 9 If E has finite perimeter in an open set D ⊂ Rd, then the measures |DχE | and Hd−1
|∂∗E

coincide on the Borel subsets of D. In particular P (E,D) = Hd−1(D ∩ ∂∗E).

We conclude this section with the following spherical differentiation result (see for instance [3], p. 78,
for the proof).

Theorem 10 (Hausdorff and Radon measures) Let D ⊆ Rd be an open set, µ a positive Radon
measure in D and n ∈ {1, . . . , d}. Then for any t ∈ (0,∞) and any Borel set B ⊆ D the following
implications hold:

lim sup
r↓0

µ(Br(x))
bnrn

≥ t ∀x ∈ B =⇒ µ ≥ tHn
|B

lim inf
r↓0

µ(Br(x))
bnrn

≤ t ∀x ∈ B =⇒ µ ≤ 2ntHn
|B .

A useful consequence of the first implication is the following: if µ and n are as above

B ∈ BD, µ(B) = 0 =⇒ lim
r↓0

µ(Br(x))
bnrn

= 0 for Hn-a.e. x ∈ B. (3)

Putting B = (∂∗E)c in (3) and using Theorem 9 we deduce that

P (E,Br(x)) = o(rd−1) for Hd−1-a.e. x ∈ Rd \ ∂∗E. (4)

On the other hand, we have the density property (see Theorem 3.59 in [3])

lim
r↓0

P (E,Br(x))
bd−1rd−1

= 1 for Hd−1-a.e. x ∈ ∂∗E. (5)

A class of sets that will be considered are those with Lipschitz boundary. In our terminology, a compact
set A has Lipschitz boundary if for every boundary point x there exists a neighborhood U of x such that
A ∩ U is the epigraph of a Lipschitz function. The following proposition is proved for instance in [3] (p.
159).
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Proposition 11 If A ⊂ Rd is a compact set with Lipschitz boundary then Hd−1(∂A) <∞, A has finite
perimeter in Rd and P (A) = Hd−1(∂A).

We also recall that the following inequality holds without any regularity or topological assumption on
A:

P (A) ≤ Hd−1(∂A). (6)

3 The one-sided Minkowski content

In this section we introduce the notion of one-sided Minkowski content of a set and we investigate the
connections of this quantity with other boundary measurements.

As mentioned in Section 1, a problem of interest in many real applications is the existence and the
computation of the following limit:

lim
r↓0

Hd(Ar \A)
r

, (7)

for a given closed subset A of Rd. Note that if A has Hausdorff dimension dimHA < d, then Hd(Ar \A) =
Hd(Ar); thus in this case conditions on A for the existence of the above limit are the same which guarantee
the existence of the (d−1)-dimensional Minkowski content, widely studied in literature. We will consider
instead the case when A is a d-dimensional set with Hd(A) > 0. In this case the limit in (7) may be seen
as the one-sided Minkowski content of ∂A since Ar \A coincides with the outer Minkowski enlargement
at distance r of ∂A.

Definition 12 (Upper and lower one-sided Minkowski content) Let A ⊂ Rd be a closed set. We
define the upper and lower one-sided Minkowski contents SM∗(A) and SM∗(A), respectively, as

SM∗(A) := lim sup
r↓0

Hd(Ar \A)
r

, SM∗(A) := lim inf
r↓0

Hd(Ar \A)
r

.

If SM∗(A) = SM∗(A) < ∞, we denote by SM(A) their common value and we say that A admits
one-sided Minkowski content.

Let E be a subset of Rd; we denote by dE : Rd → R the signed distance function from E, defined as
follows:

dE(x) := dist(x,E)− dist(x,Ec)

(where “dist” denotes the usual distance function). Note that dEc(x) = −dE(x) and

{x ∈ Rd : x ∈ (∂E)r} = {x ∈ Rd : |dE(x)| ≤ r}. (8)

It is well known that dE is a Lipschitz function; in particular it is almost everywhere differentiable in Rd,
with |∇dE(x)| = 1 for any point x where it is differentiable (see for instance [2], p. 11). According to
the co-area formula ((2.74) in [3]) for any Borel function g : Rd → [0,∞] we have∫

E

g(x)|∇f(x)|dx =
∫ +∞

−∞

(∫
E∩{f=t}

g(y)dHd−1(y)

)
dt. (9)
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Choosing g(x) ≡ 1 and f = dE in the above equation, we have

Hd((∂E)r) =
∫

(∂E)r

dx =
∫

(∂E)r

|∇dE(x)|dx

(9)
=

∫ +∞

−∞
Hd−1({x ∈ (∂E)r : dE(x) = t})dt

(8)
=

∫ r

−r

Hd−1({x : dE(x) = t})dt. (10)

Similarly we have

Hd(Er \ E) =
∫ r

0

Hd−1({x : dE(x) = t})dt. (11)

The next statement is an easy exercise.

Lemma 13 Let {an} and {bn} be sequences in R. If

lim sup
n→∞

(an + bn) ≤ (a+ b), lim inf
n→∞

an ≥ a, lim inf
n→∞

bn ≥ b,

then lim
n→∞

an = a, lim
n→∞

bn = b.

Now we are able to show the existence of the one-sided Minkowski content when the two-sided
Minkowski content exists and coincides with the perimeter and with the Hausdorff measure of the bound-
ary.

Theorem 14 Let E ⊂ Rd be of finite perimeter; assume that ∂E admits (d− 1)-dimensional Minkowski
content Md−1(∂E) and that it coincides with P (E). Then E admits one-sided Minkowski content and
SM(E) = P (E).

Proof. We notice first that Md−1(∂E) implies that ∂E is Lebesgue negligible; therefore {dE < t} and
{dE > −t} converge locally in measure (see for instance [3], p. 144, for the definition) to E and Ec,
respectively, as t ↓ 0. Let

ar :=
1
r

∫ r

0

Hd−1({x : dE(x) = t})dt, br :=
1
r

∫ 0

−r

Hd−1({x : dE(x) = t})dt.

Then we have

lim sup
r↓0

(ar + br) = lim sup
r↓0

1
r

∫ r

−r

Hd−1({x : dE(x) = t})dt

(10)
= 2 lim sup

r↓0

Hd((∂E)r)
2r

= 2Md−1(∂E) = 2P (E).

Furthermore

lim inf
r↓0

ar = lim inf
r↓0

1
r

∫ r

0

Hd−1({x : dE(x) = t})dt

= lim inf
r↓0

∫ 1

0

Hd−1({x : dE(x) = tr})dt

≥
∫ 1

0

lim inf
r↓0

Hd−1({x : dE(x) = tr})dt,
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by Fatou’s Lemma. By (6) we get

lim inf
r↓0

ar ≥
∫ 1

0

lim inf
r↓0

P ({x : dE(x) < tr})dt ≥
∫ 1

0

P (E)dt = P (E),

where we have used the lower semi-continuity of the map E 7→ P (E,D) with respect to the local conver-
gence in measure in D (see [3], p. 144). Similarly

lim inf
r↓0

br ≥ P (Ec) = P (E).

Using Lemma 13 we conclude SM(E)
(11)
= lim

r↓0
ar = P (E). �

Corollary 15 If E is a compact subset of Rd with Lipschitz boundary then

SM(E) = P (E) = Hd−1(∂E) < +∞.

Proof. By Proposition 11 we know that P (E) = Hd−1(∂E), while from Theorem 4 it follows that
Md−1(∂E) = Hd−1(∂E). Thus Theorem 14 applies and we have SM(E) = P (E). �

3.1 A class of sets stable under finite unions

Definition 16 (The class S) Let S be the class of compact subsets E of Rd such that:

(i) there exist γ > 0 and a probability measure η such that

η(Br(x)) ≥ γrd−1 ∀x ∈ ∂E, ∀r ∈ (0, 1); (12)

(ii) E admits one-sided Minkowski content and SM(E) = P (E).

The class S contains, for instance, all sets E with Lipschitz boundary. Indeed, it is not hard to check
that condition (i) holds, for some γ > 0, with η equal to a suitable multiple of Hd−1

|∂E , while (ii) is a direct
consequence of Corollary 15.

Remark 17 Taking into account Theorem 10, condition (i) in Definition 16 implies that ∂E has finite
Hd−1 measure, and therefore that E has finite perimeter. For this reason we did not impose finiteness of
perimeter in the definition.

Lemma 18 Let G ⊂ Rd be a Borel set and assume that there exist γ > 0 and a probability measure η
such that

η(Br(x)) ≥ γrd−1 ∀x ∈ ∂G, ∀r ∈ (0, 1). (13)

Then

lim sup
r↓0

Hd((∂G)r ∩G ∩Bρ(x))
r

= o(ρd−1) (14)

for Hd−1-a.e. x ∈ G0 ∩ ∂G.
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Proof. Let ε > 0 be fixed. Since for all x ∈ G0 ∩ ∂G we have

lim
r↓0

Hd(G ∩Br(x))
bdrd

= 0 ,

by Egorov’s Theorem we can find a compact set Kε ⊂ G0 ∩ ∂G such that

η(G0 ∩ ∂G \Kε) < ε and Hd(G ∩Br(x)) ≤ rdω(r) ∀x ∈ Kε, (15)

with lim
r↓0

ω(r) = 0. Clearly η((Rd \Kε) ∩Kε) = 0; thus by (3) we may claim that

η((Rd \Kε) ∩Bρ(x)) = o(ρd−1) for Hd−1-a.e. x ∈ Kε. (16)

Let x ∈ Kε such that (16) holds; consider the set E = {y ∈ ∂G ∩ B2ρ(x) : dist(y,Kε) > r}, with
r ∈ (0, 1), r < ρ. Besicovitch covering theorem implies that there exist a set I, at most countable, and
an integer number ξ depending only on d such that

E ⊂
⋃
i∈I

Br(xi)

with xi ∈ E, and every point of Rd belongs at most to ξ balls. Let card (I) be the cardinality of I; we
have

γrd−1card (I) =
∑
i∈I

γrd−1 ≤
∑
i∈I

η(Br(xi)) ≤ ξη((∂G ∩B2ρ(x))r \Kε),

so that
card (I) ≤ ξγ−1r1−dη((∂G ∩Bρ(x))r \Kε). (17)

As a consequence

Hd(Er) ≤ Hd(
⋃
i∈I

B2r(xi))
(17)

≤ ξγ−1r1−dη((∂G ∩Bρ(x))r \Kε)bd(2r)d

= 2dξγ−1bdrη((∂G ∩B2ρ(x))r \Kε).

Therefore

lim sup
r↓0

Hd(Er)
r

≤ 2dξγ−1bdη(∂G ∩Bρ(x) \Kε) ≤ 2dξγ−1bdη(Rd ∩B2ρ(x) \Kε)
(16)
= o(ρd−1). (18)

Note that (∂G)r ∩ Bρ(x) ⊆ Er ∪Kε
2r. Indeed, for any y ∈ (∂G)r ∩ Bρ(x) there exists z ∈ ∂G such that

dist(y, z) < r, and then z ∈ ∂G ∩ Br+ρ(x) ⊂ ∂G ∩ B2ρ(x). If dist(z,Kε) > r, then z ∈ E and y ∈ Er;
if dist(z,Kε) ≤ r, then y ∈ Kε

2r. Using this inclusion, we can deduce (14) from (18) provided we show
that Hd(Kε

2r ∩ G) = o(r). Let {B2r(xj)}j∈J be a covering of Kε such that xj ∈ Kε for all j ∈ J , and
dist(xi, xj) > 2r for any i 6= j. It follows that Br(xi) ∩Br(xj) = ∅ for any i 6= j and

γrd−1card (J) =
∑
j∈J

γrd−1 ≤
∑
j∈J

η(Br(xj)) ≤ η(Rd) = 1.

As a consequence card (J) ≤ γ−1r1−d, and

Hd(Kε
2r ∩G) ≤ Hd(

⋃
j∈J

(B4r(xj) ∩G))
(15)

≤ γ−1r1−d(4r)dω(4r) = o(r).
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In this way we proved (14) for Hd−1-a.e. x ∈ Kε. Now let εi = 1/i, i = 1, 2, . . ., and consider the
union B of the compact sets Kεi ; we know that η(G0 ∩ ∂G \ B) = 0, and that (14) holds for Hd−1-a.e.
x ∈ B. Theorem 10 and condition (13) imply that η ≥ γb−1

d−1H
d−1
|∂G ; thus Hd−1(G0 ∩ ∂G \B) = 0 and the

claim of the lemma follows. �

Theorem 19 The class S is stable under finite unions.

Proof. Let E1, E2 ∈ S and let E be their union. Clearly, E is compact and it is easy to check that
condition (i) of Definition 16 holds with η := (η1 +η2)/2 and γ := min{γ1, γ2}/2 (here ηi and γi, i = 1, 2,
satisfy condition (i) relative to Ei).

The verification of the stability of condition (ii) is much less trivial. By the co-area formula, as shown
in the proof of Theorem 14, we know that SM∗(F ) ≥ P (F ) for any F ⊂ Rd, thus condition (ii) is satisfied
if SM∗(E) ≤ P (E). In order to prove this inequality let us localize it, defining

SM∗(F,B) := lim inf
r↓0

|(Fr \ F ) ∩B|
r

, SM∗(F,C) := lim sup
r↓0

|(Fr \ F ) ∩ C|
r

,

for any open set B and any closed set C in Rd. Again by the co-area formula, we have that

SM∗(F,B) ≥ P (F,B) (19)

for any open subset B of Rd. As a consequence, for every closed set C ⊂ Rd we have

SM∗(F,C) ≤ SM∗(F )− SM∗(F,Cc) ≤ P (F )− P (F,Cc) = P (F,C) ∀F ∈ S. (20)

Further, it is easy to check that SM∗(F,C) is sub-additive with respect to both F and C; so by (20) we
have

SM∗(E,C) ≤ SM∗(E1, C) + SM∗(E2, C) ≤ P (E1, C) + P (E2, C) (21)

for every closed set C ⊂ Rd.
In the sequel it will also be useful a stronger version of the sub-additivity, namely

SM∗(E,Bρ(x)) + P (E1 ∩ E2, intBρ(x)) ≤ SM∗(E1, Bρ(x)) + SM∗(E2, Bρ(x)). (22)

Using the identity 1E1∪E2 + 1E1∩E2 = 1E1 + 1E2 and the inequality

1(E1∪E2)r
+ 1(E1∩E2)r

≤ 1(E1)r
+ 1(E2)r

we obtain

SM∗(E,Bρ(x)) + SM∗(E1 ∩ E2, intBρ(x)) ≤ SM∗(E1, Bρ(x)) + SM∗(E2, Bρ(x)),

which implies (22) taking into account (19).
Note also that ∂∗E ⊂ ∂∗E1∪∂∗E2 and that, by Proposition 2.85 in [3], for Hd−1-a.e. x ∈ ∂∗E1∩∂∗E2

the generalized inner normal νE1(x) and νE2(x) to E1 and E2 respectively (see [3]), are opposite or equal.
As a consequence, for Hd−1-a.e. x ∈ ∂∗E1 ∪ ∂∗E2, we have that one of the following facts occurs.

1. x ∈ E1. In this case we have that SM∗(E,Bρ(x)) = o(ρd−1), Hd−1-a.e. Indeed, if x 6∈ ∂E then
SM∗(E,Bρ(x)) = 0 for ρ sufficiently small; if x ∈ ∂E Lemma 18 applies with G = Ec and observing that
Hd((Er \E)∩Bρ(x)) ≤ Hd((∂G)r∩G∩Bρ(x)). Notice that this case includes all points x ∈ ∂∗E1∩∂∗E2,
with νE1(x) = −νE2(x).
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2. x ∈ ∂∗E1 \ ∂∗E2 and x /∈ E1. In this case x ∈ (E2)0 and therefore x ∈ ∂∗E. We have also

SM∗(E,Bρ(x)) ≤ bd−1ρ
d−1 + o(ρd−1) = P (E,Bρ(x)) + o(ρd−1),

Hd−1-a.e. This is a direct consequence of (21) and (5) (applied to E1 and E) and (4) (applied to E2).
3. x ∈ ∂∗E2\∂∗E1 and x /∈ E1. As in the previous case we have that SM∗(E,Bρ(x)) ≤ P (E,Bρ(x))+

o(ρd−1), Hd−1-a.e.
4. x ∈ ∂∗E1∩∂∗E2, with νE1(x) = νE2(x). In this case E, E1, E2 and E1∩E2 have density 1/2 at x and

we can apply (22) and (5) (to E1, E2, E and E1∩E2) to obtain SM∗(E,Bρ(x)) ≤ P (E,Bρ(x))+o(ρd−1),
Hd−1-a.e.

For any ε > 0 let us define µε := ε|DχE1 |+ ε|DχE2 |+ |DχE |. We have proved before that

lim sup
ρ↓0

SM∗(E,Bρ(x))
µε(Bρ(x))

≤ 1 for Hd−1-a.e. x ∈ ∂∗E1 ∪ ∂∗E2. (23)

Mimicking the proof of differentiation theorems for measures, with a sub-additive set function in the
numerator (instead of a measure), we are going to use (23) to show that SM∗(E) ≤ P (E) (notice that
the ε term in µε takes into account points which are not in ∂∗E, while in the union of the two essential
boundaries). By Vitali-Besicovitch covering Theorem (see e.g. [3], p. 52), for any δ > 0 there exists a
finite covering C1, . . . , CN of ∂∗E1 ∪ ∂∗E2 where the Ci’s are disjoint closed balls of Rd, such that

µε((∂∗E1 ∪ ∂∗E2) \ ∪iCi) < εδ.

Note that µε((∂∗E1 ∪ ∂∗E2) \ ∪iCi) = µε(Rd \ ∪iCi). The balls Ci’s can be chosen with centers in
∂∗E1 ∪ ∂∗E2 such that the fraction in (23) does not exceed (1 + δ), and further with µε(∂Ci) = 0. Thus
we have

SM∗(E,Ci) ≤ (1 + δ)µε(Ci), i = 1, . . . , N.

Let C := Rd \ (
⋃N

i=1 intCi); it follows from by (21) that

SM∗(E,C) ≤ |DχE1 |(C) + |DχE2 |(C) ≤ µε(C)
ε

< δ.

Hence,

SM∗(E) ≤ SM∗(E,C) + SM∗(E,
N⋃

i=1

Ci) ≤ δ +
N∑

i=1

SM∗(E,Ci)

≤ δ + (1 + δ)
N∑

i=1

µε(Ci) = δ + (1 + δ)µε(
N⋃

i=1

Ci) (24)

= δ + (1 + δ)(εP (E1) + εP (E2) + P (E)).

Finally, by taking the limit in (24) as δ ↓ 0, and then as ε ↓ 0, we see that SM∗(E) ≤ P (E) which proves
condition (ii). �

Using the same local contents SM∗ and SM∗ introduced in the proof of Theorem 19, a local existence
result for the one-sided Minkowski content can be proved.

Proposition 20 Let E be a closed subset of Rd such that SM(E) = P (E). Then, for any open set A
such that P (E, ∂A) = 0,

lim
r↓0

Hd((Er \ E) ∩A)
r

= P (E,A).
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Proof. By the same argument in the proof of Theorem 19 we know that for any B, C ⊂ Rd, open and
closed respectively,

SM∗(E,B) ≥ P (E,B), SM∗(E,C) ≤ P (E,C),

and, by assumption, P (E, ∂A) = 0. Hence,

lim inf
r↓0

Hd((Er \ E) ∩A)
r

≥ P (E,A) = P (A, clA) ≥ lim sup
r↓0

Hd((Er \ E) ∩A)
r

.

�

In particular Proposition 20 can be applied to any set in S and yields the following corollary.

Definition 21 (The class Sloc) Let us denote by Sloc the class of closed sets E such that for any R > 0
there exists F ∈ S with (E∆F ) ∩BR(0) = ∅.

Heuristically, this class corresponds to the sets that locally coincide with sets in S.

Corollary 22 If E ∈ Sloc, then

lim
r↓0

Hd((Er \ E) ∩A)
r

= P (E,A)

for any open set A ⊂ Rd with P (E, ∂A) = 0. In particular

lim
r↓0

Hd((Er \ E) ∩BR(0))
r

= P (E,BR(0))

for every R > 0 with at most countably many exceptions.

Proof. By the assumption of the lemma, there exists F ∈ S such that the symmetric difference F∆E
has no intersection with A1. Then (Er \E) ∩A = (Fr \ F ) ∩A for any r < 1, and by Proposition 20 we
have

lim
r↓0

Hd((Er \ E) ∩A)
r

= P (F,A) = P (E,A).

The last part of the statement follows by the fact that the set of radii R > 0 such that Hd−1(∂E ∩
∂BR(0)) > 0 is at most countable. �

We close this section pointing out some simpler “regularity” properties that are stable under finite
unions. A natural one, often considered in topology, is E = cl (intE) (for instance in this way we rule out
sets made by pieces of different dimensions); since most of our results are concerned with the essential
boundary, we consider a weaker, and therefore more general, condition, namely ∂E = cl (∂∗E).

Lemma 23 Let A, B be closed subsets of Rd such that cl (∂∗A) = ∂A and cl (∂∗B) = ∂B. Then cl (∂∗(A∪
B)) = ∂(A ∪B).

Proof. We need only to show, arguing by contradiction, that ∂(A ∪ B) is contained in the closure of
∂∗(A ∪ B). Recalling that the distributional derivative of the characteristic function is concentrated on
the essential boundary, if x belongs to ∂(A ∪ B) but not to cl(∂∗(A ∪ B)), then 1A∪B is a.e. equal to
a constant c in a neighborhood U of x. If c = 1, then A ∪ B is dense in U , and being closed we obtain
that A ∪ B ⊃ U . Therefore x /∈ ∂(A ∪ B). If c = 0, then both A and B have a Lebesgue negligible
intersection with U , so that x belongs neither to the closure of ∂∗A nor to the closure of ∂∗B. It follows
that x /∈ ∂A ∪ ∂B, which contains ∂(A ∪B). �
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4 One-sided Minkowski content of sets with positive reach

We start by recalling the definition of set with positive reach introduced by Federer in [9]. For A ⊂ Rd

closed, let Unp(A) be the set of points having a unique projection (or foot-point) on A:

Unp(A) := {a ∈ Rd : ∃!x ∈ A s.t. dist(x,A) = ‖a− x‖}.

The definition of Unp(A) implies the existence of a projection mapping ξA : Unp(A) → A which assigns
to x ∈ Unp(A) the unique point ξA(x) ∈ A such that dist(x,A) = ‖x− ξA(x)‖. For every a ∈ A we set:

reach(A, a) = sup{r > 0 : Br(a) ⊂ Unp(A)}.

The reach of A is then defined by:

reach(A) = inf
a∈A

reach(A, a),

and A is said to be a set with positive reach if reach(A) > 0.
Let us briefly recall the notions of tangent and normal cone that will be used later. If A is a compact

set and x ∈ A, the tangent and the normal spaces to A at x are, respectively:

tan(A, x) = {0} ∪
{
u : ∀ ε > 0 ∃ y ∈ A s.t. 0 < ‖y − x‖ < ε ,

∥∥∥∥ y − x

‖y − x‖
− u

‖u‖

∥∥∥∥ < ε

}
,

nor(A, x) = {v : (u, v) ≤ 0 , ∀u ∈ tan(A, x)} .

One of the main features of sets with positive reach is that they obey a (local and global) Steiner
formula. The following statement is part of Theorem 5.6 in [9].

Theorem 24 If A ⊂ Rd and reach(A) > 0, then there exist unique Radon measures ψ0, ψ1, . . . , ψd over
Rd such that, for 0 ≤ r < reach(A),

Hd({x : dist(x,A) ≤ r and ξA(x) ∈ B}) =
d∑

m=0

rd−mbd−mψm(B), (25)

whenever B is a Borel set of Rd.

The Radon measures ψ0, ψ1, . . . , ψd are called curvature measures associated with A, and their sup-
ports are contained in A. Formula (25) is a local Steiner formula for A. Choosing B = A and assuming
that ψ0(A), ψ1(A), . . . , ψd(A) are finite (which happens for instance if A is compact) we obtain a global
Steiner formula

Hd(Ar) =
d∑

m=0

rd−mbd−mΦm(A), (26)

where Φi(A) = ψi(A), i = 0, 1, . . . , d, are called total curvatures of A. As a straightforward consequence,
if A is a compact set and reach(A) > 0 then A admits one-sided Minkowski content and

SM(A) = 2Φd−1(A). (27)

Sets with positive reach include the important subclass of convex bodies, i.e. compact convex subsets in
Rd. Steiner formulas and curvature measures for these sets are studied in [17]. In particular, if C is a
convex body with non-empty interior then Φd−1(C) = 1

2H
d−1(∂C) so that

SM(C) = Hd−1(∂C).
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Note also that Hd−1(∂C) = P (C) for any d-dimensional (i.e. with non-empty interior) convex body
C ⊂ Rd.

Turning back to the general case of sets with positive reach, a natural problem is to compare the
measurements of the boundary given by the (d− 1)-Hausdorff measure, the perimeter and the one-sided
Minkowski content. In the remaining part of this section we provide some results in this direction. We
start with the following proposition.

Proposition 25 If A is a compact subset of Rd with reach(A) = r > 0, then ∂A is (d− 1)-rectifiable.

Proof. Let s ∈ (0, r) be fixed. Consider the sets

As := {x |dist(x,A) ≤ s}, A′s := {x |dist(x,A) ≥ s}, Σs := {x |dist(x,A) = s}.

We first show that Σs is a (d− 1)-rectifiable set. It is clear that Σs is closed, and it is compact since A is
bounded. By Theorem 4.8 (5) in [9], dist( · , A) is continuously differentiable in int(Unp(A) \ A), which
is an open set containing Σs; by (3) of the same theorem, we have that ‖∇δ‖ ≡ 1 on Σs. By the implicit
function theorem, Σs is locally the graph of a C1 function of (d− 1)-variables. Since Σs is compact, this
local regularity property easily gives that Σs is (d− 1)-rectifiable: indeed, we can write

Σs = Σ1
s ∪ · · · ∪ ΣN

s ,

where Σi
s = fi(Bi) with Bi bounded subset of Rd−1, and fi Lipschitz function. Without loss of generality,

we may suppose that the Bi’s are disjoint balls. Let B =
⋃N

i=1Bi; by Kirszbraun extension theorem
there exists a Lipschitz map f extending fi on Bi, so that Σs = f(B) and Σs is (d− 1)-rectifiable.

By Theorem 4.8 (8) in [9], ξA is a Lipschitz function on As, with Lipschitz constant less than r
r−s . It

is easy to see that if x 6∈ A, then ξA(x) ∈ ∂A. We show that the Lipschitz map

ξA : Σs −→ ∂A

is surjective. By Corollary 4.9 in [9], reach(A′s) ≥ s; in particular the projection map ξA′
s

: As → A′s is
defined in As \ A. Let a ∈ ∂A, and {ai}i∈N be a sequence of points ai 6∈ A, such that lim

i→∞
ai = a, with

‖ai − a‖ < s/2 for all i ∈ N. Then, by Corollary 4.9 in [9],

ξA[ξA′
s
(ai)] = ξA(ai). (28)

Observe that ξA′
s
(ai) ∈ ∂A′s and ∂A′s ⊆ Σs. Since Σs is compact, there exists y ∈ Σs such that

ξA′
s
(ai) → y. By the continuity of ξA on As, we have

ξA(y) = ξA[ lim
i→∞

ξA′
s
(ai)] = lim

i→∞
ξA[ξA′

s
(ai)]

(28)
= lim

i→∞
ξA(ai) = ξA(a) = a,

i.e. ξA is surjective. Summarizing, we have that the map ξA ◦ f : B −→ ∂A is Lipschitz and surjective so
that ∂A is (d− 1)-rectifiable. �

As a consequence of the above proposition and Theorem 2 we have that

Corollary 26 If A is a compact subset of Rd with positive reach, then Md−1(∂A) = Hd−1(∂A).

The next result is a special case of Theorem 5.5 in [8]. We denote by Sd−1 the unit sphere in Rd.

Theorem 27 If A is a set of positive reach in Rd then

2Φd−1(A) =
∫

∂A

H0(Nor(A, x) ∩ Sd−1)dHd−1(x). (29)
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In view of (27) and taking into account that H0(Nor(A, x) ∩ Sd−1) ∈ {1, 2} for Hd−1-a.e. x ∈ ∂A

(see for instance the proof of Theorem 28 below), the previous result provides immediately the following
inequalities

Hd−1(∂A) ≤ SM(A) ≤ 2Hd−1(∂A)

for every set A with positive reach. Condition (30) in the next theorem is necessary and sufficient for
having equality in the first inequality; moreover, the next theorem shows that, in the case of equality,
both quantities coincide with the perimeter, and therefore the set belongs to S.

Theorem 28 Let A ⊂ Rd be a compact set with positive reach such that

H0(Nor(A, x) ∩ Sd−1) = 1 for Hd−1-a.e. x ∈ ∂A. (30)

Then A belongs to the class S in Definition 16 and, in particular,

P (A) = Hd−1(∂A) = SM(A). (31)

Proof. Condition (i) in Definition 16 is fulfilled thanks to Remark 3 because we know, by Proposition 25,
that ∂A is (d − 1)-rectifiable. Let us establish the first equality in (31). By the proof of Proposition 25
we know that ξ(x) ∈ ∂A for any x ∈ Ar \ A, and in particular the map ξA : Ar \ A→ ∂A is surjective.
This, with Theorem 4.8(12) in [9], implies that dim(Nor(A, x)) ≥ 1 for all x ∈ ∂A. By Remark 4.15(3)
in [9] it follows that Hd−1({x ∈ ∂A : dim(Nor(A, x)) ≥ 2}) = 0. Hence we may claim that

dim(Nor(A, x)) = 1 for Hd−1-a.e. x ∈ ∂A. (32)

Note that Nor(A, x)) is a convex cone; thus by (30) and (32) we may claim that for Hd−1 a.e. x ∈ ∂A

∃v ∈ Rd , |v| = 1 : Nor(A, x) = {λv : λ ≥ 0}. (33)

We denote by B the set of points of ∂A where (33) holds. We have

Hn−1(∂A \ B) = 0.

Let x ∈ B; as reach(A) > 0, by Theorem 4.8(12) in [9], Tan(A, x) is a half-space. Again by a result
proved in [9], namely Remark 4.15(2), we easily deduce that the density of A at x is greater than or equal
to 1/2. On the other hand, by the definition of sets of positive reach (and the surjectivity of ξA onto
∂A) A admits an outer sphere at each point of its boundary. Hence the density of A at x is not greater
than 1/2. Thus we have that Hd−1(∂A \ ∂∗A) ≤ Hd−1(∂A \ A1/2) = 0, and so P (A) = Hd−1(∂A) by
Theorem 9.

By Remark 17 and Corollary 26 we have that A has finite perimeter and P (A) = Md−1(∂A), so the
second equality in (31) directly follows by Theorem 14. �

As a consequence, we have the following result on the one-sided Minkowski content for unions of sets
with positive reach (which need not be sets of positive reach).

Theorem 29 the equality SM(A) = P (A) holds for any union A of finitely many compact sets Ai of
positive reach satisfying SM(Ai) = P (Ai).

Remark 30 A local result for possibly non compact locally finite unions can be easily obtained by
Proposition 20 and Corollary 22. If the union is not locally finite, the property is in general not true (see
Example 1 in Section 5).
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5 Examples

In this section we collect some “critical” examples of sets related to the definitions and the results that
we have presented so far.

Example 1 We construct a compact set A ⊂ R2 with positive reach, such that cl(∂∗A) = ∂A, for which

P (A) < H1(A) < SM(A)

(in particular A does not satisfy condition (30)). Let Q = Q ∩ [0, 1]; then Q is a countable set Q =
{q1, q2, . . . }. Let ε ∈ (0, 1/2); we define

Bi :=
(
qi −

ε

2i
, qi +

ε

2i

)
i ∈ N, B :=

∞⋃
i=1

Bi, C := [0, 1] \B.

B is an open set with clB = [0, 1], while C is a closed subset in [0, 1] with H1(C) > 0. Let φ ∈ C2(R) be
such that φ(x) > 0 in (−1, 1) and φ ≡ 0 in (−∞,−1] ∪ [1,∞). Let us define

φi(x) := φ

(
2i

ε
(x− qi)

)
, x ∈ R, i ∈ N.

Note that for all i, φi > 0 in Bi and φi ≡ 0 in R \ Bi; in particular φi ≡ 0 in C. Let α = inf(B),
β = sup(B), I = [α, β], and let f : I → R be the function defined in the following way:

f :=
∞∑

i=1

( ε
2i

)3

φi.

It follows that f ∈ C2(I) and f(x) > 0 for all x ∈ B, f(x) = 0 for all x ∈ C. By the properties of f ,
graf(f) = {(x, y) ∈ R2 : x ∈ I, y = f(x)} is a set with positive reach (see [9]). Let

A := {(x, y) : x ∈ I, 0 ≤ y ≤ f(x)}.

A is a compact set and A = cl(intA), since B is dense in I and f(x) > 0 for any x ∈ B. Moreover
reachA > 0 and

• H0(Nor(B, x) ∩ Sd−1) = 1 for all x ∈ ∂A \ C,

• H0(Nor(B, x) ∩ Sd−1) = 2 for all x ∈ C,

since f ∈ C2(I) and f(x) = 0 for all x ∈ C. In particular condition (30) is not satisfied. By (27) and
(29)

SM(A) = H1(∂A) +H1(C).

Moreover, it is easy to see that ∂∗A = ∂A\C, so that SM(A) = P (A)+2H1(C). In particular, cl(∂∗A) =
∂A; thus A provides also an example of compact set in R2 with cl(∂∗A) = ∂A, but H1(∂A \ ∂∗A) > 0.

Example 2 We define two sets with positive reach and with Lipschitz boundary such that their union
has not positive reach (but belongs, as we know, to S). In particular we will see that even if the perimeter
of both sets equals the (d− 1)-dimensional Hausdorff measure of the topological boundary, the perimeter
of the union set, equal to the one-sided Minkowski content, is different from the (d − 1)-dimensional
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measure of the topological boundary. Consider the set C and the function f in Example 1. Let E1 and
E2 be the compact sets defined by

E1 := {(x, y) : x ∈ I, f(x) ≤ y ≤M}, E2 := {(x, y) : x ∈ I, −M ≤ y ≤ −f(x)},

with M > maxx f(x). It is clear that Ei has Lipschitz boundary and Ei ∈ S with SM(Ei) = P (Ei) =
Hd−1(∂Ei), for i = 1, 2. Notice that the set E1 ∪ E2 has density 1 at each point of C; it follows that
SM(E1 ∪ E2) = P (E1 ∪ E2) < Hd−1(∂(E1 ∪ E2)).

Example 3 Theorem 4 provides a sufficient condition for the existence of the n-dimensional Minkowski
content of a countably Hn-rectifiable compact set. In this example we present a compact set S which
is the countable union of sets each admitting one-sided Minkowski content, such that SM(S) does not
exist. In a similar way as in Example 2.103 in [3], consider the set S :=

⋃
n S

(n) ∪ {0}, where for any
n ≥ 1 the set S(n) is a finite union of (sufficiently many and sufficiently small) balls in Rd satisfying:

(a) S(n) ⊂ B1/n(0) \B1/(n+1)(0);

(b) (S(n))2−n−1 ⊃ B1/n(0) \B1/(n+1)(0);

(c) Hd(S(n)) ≤ 2−1bd(n−d − (n+ 1)−d).

For ρ > 0 let n be such that 2−n−1 ≤ ρ < 2−n, and so

Hd(Sρ \ S) ≥ Hd(S(n)
2−n−1 \ S)

(b)

≥ Hd(B1/n(0) \ (B1/(n+1)(0) ∪ S))

(a)
= Hd(B1/n(0) \ (B1/(n+1)(0) ∪ S(n)))

(c)

≥ bd
2
(
n−d − (n+ 1)−d

)
.

As n−d − (n+ 1)−d ∼ n−d−1 ∼ [ln2(1/ρ)]−d−1 � ρ, we obtain that SM∗(S) = +∞. Since Hd(Sρ \ S) ≤
Hd((∂S)ρ), ∂S does not admit (d− 1)-dimensional Minkowski content as well. Clearly ∂S is a countably
Hd−1-rectifiable compact set; this example shows the necessity, in Theorem 4, of additional conditions
like (2), besides rectifiability.

6 Mean one-sided Minkowski content for random closed sets

As we mentioned in the introduction, the existence of the one-sided Minkowski content is closely related
to several problems in real applications, many of them modelled in a stochastic setting. Then, considering
the expected values, the problem becomes the existence of a mean one-sided Minkowski content.

Let Θ be a random closed set in Rd, i.e. a measurable map

Θ : (Ω,F,P) −→ (F, σF),

where (Ω,F,P) is a probability space, while F and σF denote, respectively, the class of the closed subsets
in Rd and the σ-algebra generated by the so called hit-or-miss topology (see, e.g., [15]). Then it is clear
that Hd(Θr \Θ)/r is a random quantity.

Definition 31 We say that Θ admits mean one-sided Minkowski content if

lim
r↓0

E[Hd(Θr \Θ)]
r

(34)

exists and is finite.
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To treat directly mean one-sided Minkowski contents seems to be a quite delicate problem. We assume
that SM(Θ) exists almost surely and we obtain the mean one-sided Minkowski content by a uniform
integrability condition, which can be considered as the stochastic analogous of condition (12). In this
way we may exchange the limit and the expectation in (34) and, in particular, we have that the above
limit exists and coincides with E[SM(Θ)].

We give here a local version of the existence of the mean one-sided Minkowski content for a random
closed set, so that a global version for random compact sets follows as a particular case. Note that in
many stochastic processes (e.g. random lines, Boolean models, see [15]) the involved random closed set
Θ is not compact, and in many real applications it is customary to look at Θ through a compact window
W ; thus it is clear that a local version of the mean one-sided Minkowski content is of particular interest
in these cases.

Let Sloc be defined in Definition 21, let W ⊂ Rd be a compact set and set, for Θ ∈ Sloc,

ΓW (Θ) := max
{
γ ≥ 0 : ∃ a probability measure η such that

η(Br(x)) ≥ γrd−1 ∀x ∈ ∂Θ ∩W1, ∀r ∈ (0, 1)
}
.

ΓW is strictly positive by condition (i) in Definition 16. The next theorem invokes an integrability
assumption on 1/ΓW (Θ) and the assumption that the process is Sloc-valued; as in [1], to avoid the
delicate problem of the measurability of ΓW (Θ), we just assume the existence of an integrable random
variable Y bounding 1/ΓW (Θ) from above (this suffices for most applications).

Theorem 32 Let W ⊂ Rd be a compact set, assume that Θ ∈ Sloc almost surely, and that there exists
a random variable Y with E[Y ] < ∞, such that 1/ΓW (Θ) ≤ Y almost surely. Then, for any open set
B ⊂ intW1 with E[P (Θ, ∂B)] = 0 we have

lim
r↓0

E[Hd((Θr \Θ) ∩B)]
r

= E[P (Θ, B)]. (35)

Proof. We proceed along the line of the proof of Theorem 17 in [1]. It is sufficient to observe that for all
r < 2

Hd((Θ(ω)r \Θ(ω)) ∩B)
r

≤ Hd((∂Θ(ω))r ∩B)
r

=
Hd((∂Θ(ω) ∩W1)r ∩B)

r

≤ Hd((∂Θ(ω) ∩W1)r)
r

≤ Y (ω)2d−14dbd,

where the last inequality follows by Proposition 5. As E[Y ] <∞, (35) holds by applying the dominated
convergence theorem and Corollary 22. �

Remark 33 If Θ(1) and Θ(2) are two random closed sets in Rd satisfying the assumptions of Theorem 32
in a window W with Y (1) and Y (2), respectively, then their union Θ = Θ(1) ∪ Θ(2) satisfies the same
assumption (in the same window) with Y = 2max{Y (1), Y (2)}: it suffices to apply the stability of S (and
therefore of Sloc) under finite unions, and the same argument (providing a pair (η, γ) for the union of
two sets in S) mentioned at the very beginning of Theorem 19.

6.1 An application to a class of birth-and-growth stochastic processes

Let us consider a random closed set in Rd depending upon time, which can be taken as model for the
evolution of a growth process. A wide class of growth processes is given by the so called birth-and-growth
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stochastic processes. A birth-and-growth stochastic process is a dynamic germ-grain model (see [19, 11])
whose birth process is modelled as a marked point process (see e.g. [6] and reference therein). We remind
that a marked point process N on R+ with marks in Rd is a point process on R+×Rd with the property
that the marginal process {N(B ×Rd) : B ∈ BR+} is itself a point process. Consequently it is defined as
a random measure given by

N =
∞∑

n=1

δTn,Xn ,

where:

• Tn is an R+-valued random variable representing the time of birth of the n-th nucleus;

• Xn is an Rd-valued random variable representing the spatial location of the nucleus born at time
Tn;

• δt,x is the Dirac measure on R+ × Rd concentrated at (t, x).

Hence, in particular, for any B ∈ BR+ and A ∈ BRd bounded, we have

N(B ×A) = #{Tn ∈ B, Xn ∈ A},

i.e. N(B × A) is the random number of germs (nuclei) born in the region A during time B, and it is
finite with probability 1. Let d ≥ 2; once born each germ generates a grain subject to surface growth
with a speed G(t, x) > 0 which should, in general, be assumed space-time dependent. Denoted by Θt

s(y)
the grain born at time s at point y and grown up to time t, then, for any fixed t ∈ R+, Θt is the random
closed set given by

Θt =
⋃

Tj≤t

Θt
Tj

(Xj).

We assume here the normal growth model (see, e.g., [5]), according to which at Hd−1-almost every
x ∈ ∂Θt

Tn
(Xn)), growth occurs with a given strictly positive normal velocity

υ(t, x) = G(t, x)n(t, x), (36)

where G(t, x) is a given deterministic growth field and n(t, x) is the unit outer normal at point x ∈
∂Θt

T0
(X0). We assume that 0 < g0 ≤ G(t, x) ≤ G0 <∞ for all (t, x) ∈ R+×Rd, for some g0, G0 ∈ R and

G(t, x) is sufficient regular such that the evolution problem given by (36) is well posed. It follows that Θt

is P-a.s a compact random set for any fixed t ∈ R+. Further, for any x ∈ Rd, we may introduce a time of
capture of point x as the random variable T (x) such that x ∈ ∂ΘT (x), being x ∈ intΘt if t > T (x), and
x /∈ Θt if t < T (x).

The Radon-Nikodym derivatives of the expected measures E[Hd(Θt∩· )] and E[Hd−1(∂Θt∩· )], known
also as mean densities and denoted by λΘt(x) and by λ∂Θt(x), respectively, are relevant quantities
describing the geometric process {Θt, t ∈ R+}, associated to the growth process. The existence of a local
mean one-sided Minkowski content for Θt plays a fundamental role in proving an evolution equation for
these mean densities. Indeed, as stated in Proposition 19 in [7], if the above birth-and-growth model is
such that T (x) is a continuous random variable with density and Θt satisfies (35) with P (Θt) = Hd−1(∂Θt)
for any t ∈ R+, then the following evolution equation holds

∂

∂t
λΘt(x) = G(t, x)λ∂Θt(x), (37)
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in a weak form.
As simple example let us consider the particular case in which each grain grows with constant rate

G for any fixed t ∈ R+ and assume that the random spatial location of the nuclei is diffuse in Rd. It is
clear that Θt is P-a.s. a finite union of random balls in Rd

Θt =
⋃

i:Ti≤t

BG(t−Ti)(Xi),

T (x) is a continuous random variable with density for any x ∈ Rd and Theorem 32 applies to Θt for any
t ∈ R+ (see also [1]). Then we obtain that (37) holds with G(t, x) = G. Such result may be intuitively
shown observing that, by the assumption d ≥ 2, for P-a.e. ω ∈ Ω,

lim
∆t↓0

Hd(Θt+∆t(ω) \Θt(ω) ∩B)
∆t

= lim
∆t↓0

Hd(Θt
G∆t(ω) \Θt(ω) ∩B)

∆t

= G lim
r↓0

Hd(Θt
r(ω) \Θt(ω) ∩B)

r
= GHd−1(∂Θt(ω) ∩B)

for any Borel set B ⊂ Rd with E[Hd−1(∂Θ ∩ ∂B)] = 0, and then passing to the expected values.
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