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1. Introduction

In this paper we present new lower semicontinuity results for free discontinuity energies with
a polyconvex volume term and a jump term depending on a possibly discontinuous integrand.
Energies of this type occur in fracture mechanics when one considers quasistatic evolution of
stratified, heterogeneous materials. Moreover, scalar energies to which our results apply include
generalized Mumford–Shah type functionals.
In the last years, many mathematicians considered variational models for the evolution of the
fracture process. In [21] Francfort and Marigo presented a model for the quasistatic growth
of brittle cracks in elastic materials which is described by an integral functional including very
general bulk and crack energies. The crack growth admits a quasistatic evolution, i.e., at each
time the equilibrium is obtained by the competition between the elastic energy of the body and
the dissipation energy of the fracture process.
In other more recent papers ([13],[14],[15] and [16]) this quasistatic evolution is studied in the
framework of nonlinear elasticity. In these papers a precise mathematical formulation of the
problem is given in the SBV setting of special functions of bounded variation. The bulk energy
of the uncracked part of the body is given by

W(u) :=
∫

Ω\Γ

W (x,∇u(x)) dx,

where Γ is the crack, the function u : Ω \Γ → IRm is the unknown deformation of the body and
W (x, ξ) is a quasiconvex function with respect to ξ which describes the material. The energy
needed to produce the crack Γ admits the form

(1.1) K(Γ) :=
∫

Γ

k(x, ν(x)) dHN−1,

where HN−1 denotes the (N −1)-dimensional Hausdorff measure and the function k depends on
the position x and on the orientation ν. This function describes the “toughness” of the material
in different locations and directions, thus including the case of heterogeneous and anisotropic
materials. The existence of the quasistatic evolution is obtained by a time discretization and by
minimizing the total energy

F(u,Γ) := W(u) +K(Γ) ,
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at each discretization step.
In all papers quoted above the existence of minimizers is assured by a compactness theorem due
to Ambrosio (see [5] and [8]) and by standard hypotheses which guarantee the lower semiconti-
nuity of W and K (see [6] and [7]).
In this paper we prove that this lower semicontinuity still holds for a general integrand W of
polyconvex type and under weaker assumptions on the integrand k.
More precisely, we consider a volum term of the type

W(u) :=
∫

Ω\Γ

W (x, u(x),∇u(x)) dx,

where the integrand W : Ω× IRm ×MIm×N → [0, +∞] is a Carathéodory function, polyconvex
in the last variable, satisfying

W (x, u, ξ) ≥ C|ξ|m∧N (x, s, ξ) ∈ Ω× IRm ×MIm×N .

A result of the same type in SBV framework for a polyconvex energy is obtained in [24] under
different growth conditions involving all the adjoints.
Moreover we consider a surface term of the type (1.1) and we allow jumps of the function k(·, ν)
by requiring only a BV dependence on x. More generally, we assume a lower semicontinuity of
k(·, ν) with respect to the C1 capacity, which is satisfied in particular by the lower approximate
limit k−(·, ν) of the BV function k(·, ν).
This setting seems to apply to the case of composite or stratified media, where the energy needed
to create the crack may change from point to point in a discontinuous way. More precisely, we
consider a fracture energy of the type

K(u) :=
∫

Ju

k(x, νu(x))γ(|u+(x)− u−(x)|) dHN−1 ,

where |u+ − u−| is the difference of the trace of u on both sides of Ju, νu is the normal to
the jump set Ju and the function γ depends on the material. For k(x, ν) = 1 the energy was
proposed by Barenblatt in [10] (see also [25]), while in [13] and [14] the authors consider the
case where γ(s) = 1.
Our lower semicontinuity theorem applies also to the model functional

(1.2)
∫

Ω

|∇u|p dx + α

∫

Ω

|u− g|q dx +
∫

Ju

a−(x) dHN−1(x) ,

where m = 1 and a ∈ BV(Ω) is a bounded function such that a(x) > 0 for HN−1-a.e. x.
Functional (1.2) may be viewed as a generalized Mumford–Shah functional where in the image
reconstruction one emphasizes the contours contained in a given region of Ω by giving appropriate
values to the weight a.
In order to prove the lower semicontinuity of the volume term we follow the proof of the analogous
theorem in [24] which is based on a preliminary compactness result for the adjoints of SBV
functions. More precisely, we prove that by assuming, for sake of simplicity, m = N and by
considering a sequence uh, u ∈ SBV(Ω, IRN ) such that uh → u in L1(Ω, IRN ) and

sup
h∈IN

{
‖uh‖L∞(Ω,IRN ) +

∫

Ω

|∇uh|N dx +HN−1(Juh
)
}

< ∞ ,
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then there exists a subsequence {uhj
} such that det∇uhj

converges in the biting sense to det∇u.
This extends to the SBV framework a well-known result due to Zhang (see [28]) on weak con-
vergence of determinants.
In order to prove the lower semicontinuity of the surface term we use some methods introduced
previously in [4] (see also [2], [3], [17] and [18]) for general integral functionals defined in BV.
More precisely, using an explicit construction given in [23], we get a suitable sequence of smooth
functions approximating from below the discontinuous integrand k(x, ν) in (Ω\A)× IRN , where
A is an open set with arbitrarily small 1-capacity. The lower semicontinuity of the approximating
functionals is easily obtained via the chain rule formula for BV functions, while the general case
is recovered by using the capacitary quasi-potentials of the sets A.

2. Notation and preliminaries

2.1. Notation. Throughout the paper N > 1, m ≥ 1 are fixed integers and the letter c denotes
a strictly positive constant, whose value may change from line to line.
Given x0 ∈ IRN and ρ > 0, Bρ(x0) denotes the ball in IRN centered at x0 with radius ρ. For the
sake of simplicity, we set Bρ = Bρ(0).
Let Ω be a bounded open subset of IRN with Lipschitz boundary. We denote by A(Ω) the family
of all open subsets A of Ω and by B(Ω) the σ-algebra of all Borel subsets B of Ω.
Let LN denote the Lebesgue measure on IRN and HN−1 the Hausdorff measure of dimension
(N − 1) on IRN .

2.2. Approximate limits and BV functions. If u ∈ L1
loc(Ω; IRm) and x ∈ Ω, the precise

representative of u at x is defined as the unique value ũ(x) ∈ IRm such that

lim
ρ→0+

1
ρN

∫

Bρ(x)

|u(y)− ũ(x)| dx = 0 .

The set of points in Ω where the precise representative of x is not defined is called the approximate
singular set of u and denoted by Su.

Let u ∈ L1
loc(Ω; IRm) and x ∈ Ω. We say that x is an approximate jump point of u if there exist

a, b ∈ IRm and ν ∈ SN−1, such that a 6= b and

lim
ρ→0+

−
∫

B+
ρ (x,ν)

|u(y)− a| dy = 0 and lim
ρ→0+

−
∫

B−ρ (x,ν)

|u(y)− b| dy = 0

where B±
ρ (x, ν) := {y ∈ Bρ(x) : 〈y− x, ν〉 ≷ 0}. The triplet (a, b, ν) is uniquely determined by

the previous formulas, up to a permutation of a, b and a change of sign of ν, and it is denoted by
(u+(x), u−(x), νu(x)). The Borel functions u+ and u− are called the upper and lower approximate
limit of u at the point x ∈ Ω. The set of approximate jump points of u is denoted by Ju.
We recall that the space BV(Ω; IRm) of functions of bounded variation is defined as the set of
all u ∈ L1(Ω; IRm) whose distributional gradient Du is a bounded Radon measure on Ω with
values in the space MIm×N of m×N matrices.
We recall the usual decomposition

Du = ∇uLN + Dcu + (u+ − u−)⊗ νuHN−1bJu ,
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where ∇u is the Radon-Nikodým derivative of Du with respect to the Lebesgue measure and
Dcu is the Cantor part of Du. For the sake of simplicity, we denote by Dsu = Dcu + (u+ −
u−)⊗ νuHN−1bJu.

We recall that the space SBV(Ω; IRm) of special functions of bounded variation is defined as the
set of all u ∈ BV(Ω; IRm) such that Dsu is concentrated on Su; i.e., |Dsu|(Ω \ Su) = 0.
Let p > 1. The space SBVp(Ω; IRm) is defined as the set of functions u ∈ SBV(Ω; IRm) with
∇u ∈ Lp(Ω; MIm×N ) and HN−1(Su) < ∞. We will say that a sequence {un} converges to u

weakly in SBVp(Ω; IRm) ∩ L∞(Ω; IRm) if un(x) → u(x) almost everywhere in Ω, ∇un ⇀ ∇u

weakly in Lp(Ω;MIm×N ), and ‖un‖∞ and HN−1(Sun) are bounded uniformly with respect to n.
We define GSBV(Ω; IRm) the space of generalized special functions of bounded variation as the
set of all functions u : Ω → IRm such that φ(u) ∈ SBVloc(Ω; IRm) for every φ ∈ C1(IRm; IRm)
with supp(∇φ) ⊂⊂ IRm.
We define GSBVp(Ω; IRm) as the set of functions u ∈ GSBV(Ω; IRm) such that ∇u ∈
Lp(Ω;MIm×N ) and HN−1(Su) < ∞. We will say that a sequence {un} converges to u weakly in
GSBVp(Ω; IRm) if un, u ∈ GSBVp(Ω; IRm), un(x) → u(x) almost everywhere in Ω, ∇un ⇀ ∇u

weakly in Lp(Ω; MIm×N ) and HN−1(Sun) is bounded uniformly with respect to n.

Finally, we recall a classical compactness result due to Ambrosio (see [5], [8] and [9, Theo-
rem 4.8]).

Theorem 2.1. Let {un} be a sequence in GSBVp(Ω; IRm) satisfying

sup
n∈IN


‖un‖1 +

∫

Ω

|∇un|p dx +HN−1(Jun)


 < +∞ .

Then there exists a subsequence {unk
} ⊂ GSBVp(Ω; IRm) weakly converging in GSBVp(Ω; IRm)

to u ∈ GSBVp(Ω; IRm), i.e., unk
(x) → u(x) for almost every x ∈ Ω, ∇unk

⇀ ∇u weakly in
LP (Ω; IRm×N ) and HN−1(Junk

) is equibounded.

For a general survey on the spaces of BV, SBV, SBVp, GSBV and GSBVp functions we refer
for instance to [9].

2.3. Capacity. Given an open set A ⊂ IRN , the 1-capacity of A is defined by setting

C1(A) := inf





∫

IRN

|Dϕ| dx : ϕ ∈ W 1,1(IRN ), ϕ ≥ 1 LN−a.e. on A





.

Then, the 1-capacity of an arbitrary set B ⊂ IRN is given by

C1(B) := inf{C1(A) : A ⊇ B, A open} .

It is well known that capacities and Hausdorff measure are closely related. In particular, we
have that for every Borel set B ⊂ IRN

C1(B) = 0 ⇐⇒ HN−1(B) = 0 .

Definition 2.2. Let B ⊂ IRN be a Borel set with C1(B) < +∞. Given ε > 0, we call capacitary
ε-quasi-potential (or simply capacitary quasi-potential) of B a function ϕε ∈ W 1,1(IRN ), such
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that 0 ≤ ϕ̃ε ≤ 1 HN−1-a.e. in IRN , ϕ̃ε = 1 HN−1-a.e. in B and∫

IRN

|Dϕε| dx ≤ C1(B) + ε .

We recall that a function g : IRN → IR is said C1-quasi continuous if for every ε > 0 there
exists an open set A, with C1(A) < ε, such that g|Ac is continuous on Ac; C1-quasi lower
semicontinuous and C1-quasi upper semicontinuous functions are defined similarly.
It is well known that if g is a W 1,1 function, then its precise representative g̃ is C1-quasi contin-
uous (see [19, Sections 9 and 10]). Moreover, to every BV function g, it is possible to associate
a C1-quasi lower semicontinuous and a C1-quasi upper semicontinuous representative, as stated
by the following theorem (see [11], Theorem 2.5).

Theorem 2.3. For every function g ∈ BV(Ω), the approximate upper limit g+ and the approx-
imate lower limit g− are C1-quasi upper semicontinuous and C1-quasi lower semicontinuous,
respectively.

In particular, if B is a Borel subset of IRN with finite perimeter, then χ−B is C1-quasi lower
semicontinuous and χ+

B is C1-quasi upper semicontinuous.

2.4. Jointly convex functions.

Definition 2.4. Let K ⊂ IRm be a compact set and φ : K ×K × IRN → [0, +∞). We say that
φ is jointly convex if there exists a sequence of functions gj ∈ C(K; IRN ) such that

φ(r, t, ξ) = sup
j∈IN

〈gj(r)− gj(t), ξ〉 for all (r, t, ξ) ∈ K ×K × IRN .

Remark 2.5. We recall that a class of jointly convex functions φ can be obtained in the following
way:

φ(r, t, ξ) = γ(|r − t|)ϕ(ξ)

where γ is a lower semicontinuous, increasing and subadditive function with γ(0) = 0 and ϕ is
convex, positively 1-homogeneous and even (see Example 5.23 in [9]).

2.5. Approximation results. We recall here a few approximation results that will be used in
the sequel.
Let u ∈ L1(B1) be a nonnegative function. The local maximal function M(u) is defined by

M(u)(x) = sup
{

−
∫

Bρ(x)

u(y) dy : 0 < ρ < 1− |x|
}

for all x ∈ B1 .

If u belongs to Lp(B1) for some p > 1, then (see [27, Chapter 1])

(2.1)
∫

B1

Mp(u) dx ≤ c

∫

B1

up dx ,

for a suitable constant c depending only on n and p.
Using maximal functions, one can get a Lusin-type approximation of SBV functions by means
of Lipschitz functions as in the next theorem due to Ambrosio (see [7, Theorem 2.3]).
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Theorem 2.6. Let u be a function from SBV(B1; IRm) ∩ L∞(B1; IRm) and λ > 0. Set

E := {x ∈ B1 : M(|Du|)(x) ≤ λ} .

Then, for any ρ ∈ (0, 1), there exists a Lipschitz function v : Bρ → IRm such that u(x) = v(x)
for LN -a.e. x ∈ E ∩Bρ and

Lip(v,Bρ) ≤ c(n)mλ +
2m‖u‖∞

1− ρ
,

for some constant c(n), depending only on n. Moreover, if |∇u| ∈ Lp(B1) for some p > 1, then,
for any C ∈ B(B1),

LN ({x ∈ C : M(|Du|)(x) > 2λ}) ≤ λ−p

∫

C∩{M(|∇u|)>λ}

Mp(|∇u|) dx+
2c(n)‖u‖L∞(B1)

λ
HN−1(Ju) .

Next result, also known as Chacon’s biting lemma, allows to recover some equi-integrability from
a sequence which is only bounded in L1 (see e.g. [1, Lemma I.7] or [9, Lemma 5.32]).

Lemma 2.7. Let {uh} be a bounded sequence in L1(Ω; IRm). Then, there exists a subsequence
{uhj} and a decreasing sequence En ⊂ B(Ω), such that LN (En) → 0 as n →∞ and the sequence
{uhj

} is equi-integrable in Ω \ En for any n ∈ IN .

In view of this lemma it is then natural to set the following definition.

Definition 2.8. Let {uh} be a bounded sequence in L1(Ω; IRm). We say that {uh} converges
in the biting sense to u ∈ L1(Ω; IRm) if there exists a decreasing sequence En ⊂ B(Ω), such that
LN (En) → 0 as n →∞ and uh ⇀ u weakly in L1(Ω \En; IRm) for any n ∈ IN .

Thus, Lemma 2.7 above simply states that given any bounded sequence in L1, there exists always
a subsequence converging to some L1 function in the biting sense.
Let us state also the following simple lemma (see Theorem 1.2 of [5]).

Lemma 2.9. Let {uh} ⊂ L1(Ω, IRm) be an equi-integrable sequence, u ∈ L1(Ω, IRm), and let us
assume that

lim inf
h→+∞

∫

Ω

|uh − w| dx ≥
∫

Ω

|u− w| dx,

for every w ∈ L1(Ω, IRm). Then uh weakly converges to u in L1(Ω, IRm).

We recall that a function W : MIm×N → (−∞, +∞] is polyconvex if there exists a convex
function G : IRτ → (−∞, +∞] such that

W (ξ) = G(M(ξ)) for all ξ ∈ MIm×N ,

whereM(ξ) is the vector whose components are all the minors of the matrix ξ and τ = τ(N,m) is
the dimension of M(ξ). For k = 1, . . . , N ∧m, we denote by adjkξ the vector whose components
are the minors of the matrix ξ of order k. We denote the dimension of adjkξ by τk. Notice that
τk =

(
N
k

)(
m
k

)
.

In the next lemma, using the same argument as in the proof of Theorem 1.1 in [22], we obtain
the lower semicontinuity for a functional whose integrand is the supremum of convex functions.
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Lemma 2.10. Let h, hj : Ω× IRm × IRm × IRN → [0, +∞), j ∈ IN , be Borel functions, convex
and positively 1-homogeneous in the last variable and such that

h(x, r, t, ξ) = sup
j∈IN

hj(x, r, t, ξ) for all (x, r, t, ξ) ∈ (Ω \N0)× IRm × IRm × IRN ,

where N0 ⊂ Ω is a Borel set with HN−1(N0) = 0. If the functionals Fhj (·, Ω) defined by

Fhj (u) :=
∫

Ω∩Ju

hj(x, u−, u+, νu) dHN−1

are weakly lower semicontinuous in SBVp(Ω; IRm), then Fh, defined similarly, is weakly lower
semicontinuous in SBVp(Ω; IRm) too.

3. Semicontinuity results

For every A ∈ A(Ω) and every u ∈ GSBVp(Ω; IRm), p > 1, we set

(3.1)

G(u,A) =
∫

A

W (x, u,∇u) dx +
∫

A∩Ju

h(x, u−, u+, νu) dHN−1 ,

F (u,A) = G(u,A) +
∫

Ω

|u− U0|q dx ,

where q ≥ 1, W : Ω× IRm×MIm×N → [0,+∞] is a Carathéodory function, h : Ω× IRm× IRm×
IRN → [0, +∞) is a Borel function and U0 : Ω → IRm belongs to L∞(Ω; IRm).
Our aim is to prove a lower semicontinuity theorem for this functional, along sequences {un} in
GSBVp(Ω; IRm) such that un(x) → u(x) for almost every x ∈ Ω and ‖∇un‖p, HN−1(Jun) are
uniformly bounded with respect to n ∈ IN .
As the lower semicontinuity of the last term in F is trivial, the result can be obtained proving,
for every A ∈ A(Ω), the lower semicontinuity of the two functionals

(3.2) (u,A) 7→
∫

A

W (x, u,∇u) dx and (u,A) 7→
∫

A∩Ju

h(x, u−, u+, νu) dHN−1

separately.
We shall first discuss the lower semicontinuity of the surface term. As we said in the introduction
the new feature of the results presented here is that the function h may possibly be discontinuous
with respect to x and in the first part of this section we shall consider different structure
assumptions on h. Concerning the volume term, a result due to Ambrosio [9, Theorem 5.29]
settles the quasi-convex case (see also [7] and [26]) under suitable growth conditions. However,
for possible applications to fracture mechanics it is more natural to specialize to polyconvex
integrands, where more general growth assumptions are allowed. This case will be discussed in
the second part of this section.

3.1. Lower semicontinuity of the surface term. Next result is an almost straightforward
generalization of Theorem 5.22 in [9]. However, since it is going to be a key ingredient for
proving the more general Theorem 3.3, we present it here in details.
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Proposition 3.1. Let a : Ω → [0, +∞) be a locally bounded function belonging to W 1,1(Ω) and
coinciding with its precise representative and φ : IRm× IRm× IRN → [0, +∞) be a jointly convex
function. Then, for every {un} ⊂ SBVp(Ω; IRm) and u ∈ SBVp(Ω; IRm) such that un(x) → u(x)
for almost every x ∈ Ω and

sup
n∈IN


‖un‖∞ +

∫

Ω

|∇un|p dx +HN−1(Jun)


 < +∞ ,

we have

(3.3)
∫

Ω∩Ju

a(x)φ(u−, u+, νu) dHN−1 ≤ lim inf
n→+∞

∫

Ω∩Jun

a(x)φ(u−n , u+
n , νun) dHN−1 .

Proof. We argue as in the proof of Theorem 5.22 in [9] with the obvious modifications due to
the explicit dependence on the spatial variable x.
Let

C := sup
n∈IN


‖un‖∞ +

∫

Ω

|∇un|p dx +HN−1(Jun)




and B(0, C) ⊂ IRm be the closed ball of radius C, centered at the origin. By the definition of
jointly convex function and taking into account that φ is nonnegative, there exists a sequence
of functions gj ∈ C(B(0, C); IRN ) such that

φ(r, t, ξ) = sup
j∈IN

[〈gj(r)− gj(t), ξ〉 ∨ 0] .

By Lemma 2.10, it is enough to prove the lower semicontinuity for functionals of the type

(3.4) u →
∫

Ω∩Ju

[〈a(x)
(
g(u+)− g(u−)

)
, νu〉 ∨ 0

]
dHN−1 .

It is not restrictive to assume that g ∈ C∞0 (IRm; IRN ), since the general case can be obtained by a
standard approximation as in [9, proof of Theorem 5.22]. Let us now fix ψ ∈ C1

0 (Ω), 0 ≤ ψ ≤ 1.
The lower semicontinuity of the functional in (3.4) will follow if we prove the continuity of

u →
∫

Ω∩Ju

[〈a(x)
(
g(u+)− g(u−)

)
, νu〉

]
ψ(x) dHN−1 .

Using the chain rule formula for BV functions (see [9, Theorem 3.9, Example 3.97]), we have
∫

Ω∩Ju

a(x)〈g(u+)− g(u−), νu〉ψ dHN−1 = −
∫

Ω

a(x)〈∇ψ(x), g(u(x))〉 dx

−
∫

Ω

ψ(x) 〈∇a(x), g(u(x))〉 dx−
∫

Ω

ψ(x) a(x) tr [∇g(u(x)) · ∇u(x)] dx .

Notice that∫

Ω

a(x)〈∇ψ(x), g(u(x))〉 dx = lim
n→+∞

∫

Ω

a(x)〈∇ψ(x), g(un(x))〉 dx ;(3.5)

∫

Ω

ψ(x) 〈∇a(x), g(u(x))〉 dx = lim
n→+∞

∫

Ω

ψ(x) 〈∇a(x), g(un(x))〉 dx ;(3.6)
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∫

Ω

ψ(x) a(x) tr [∇g(u(x)) · ∇u(x)] dx = lim
n→+∞

∫

Ω

ψ(x) a(x) tr [∇g(un(x)) · ∇un(x)] dx .(3.7)

In fact, since g is continuous, {g(un)} converges almost everywhere to g(u) and is equibounded
in L∞(Ω). Thus, taking into account that a∇ψ and ψ∇a belong to L1(Ω; IRN ), (3.5) and (3.6)
hold. In order to prove equality (3.7), we observe that aψ ∈ L∞(Ω), ∇g(un) → ∇g(u) strongly
in Lp′(Ω;MIN×M ) and ∇un ⇀ ∇u weakly in Lp(Ω;MIm×N ). This concludes the proof.

Proposition 3.2. Let a : Ω → [0,+∞) be a locally bounded function from W 1,1(Ω), coinciding
with its precise representative, γ : [0,+∞) → [0, +∞) be a lower semicontinuous, increasing and
subadditive function such that γ(0) = 0, and ϕ : IRN → [0, +∞) be a convex, even and positively
1-homogeneous function. Then, for every {un} ⊂ GSBVp(Ω; IRm) and u ∈ GSBVp(Ω; IRm) such
that un(x) → u(x) for almost every x ∈ Ω and

(3.8) sup
n∈IN




∫

Ω

|∇un|p dx +HN−1(Jun)


 < +∞ ,

we have

(3.9)
∫

Ω∩Ju

a(x)γ(|u+ − u−|)ϕ(νu) dHN−1 ≤ lim inf
n→+∞

∫

Ω∩Jun

a(x)γ(|u+
n − u−n |)ϕ(νun) dHN−1 .

Proof. Firstly we assume that

sup
n∈IN


‖un‖∞ +

∫

Ω

|∇un|p dx +HN−1(Jun)


 < +∞ .

By Remark 2.5, the function φ(r, t, ν) = γ(|r − t|)ϕ(ν) is jointly convex; moreover, un, u ∈
GSBVp(Ω; IRm) ∩ L∞(Ω; IRm) ⊂ SBVp(Ω; IRm). Hence, by Proposition 3.1 the thesis follows.
The general case un, u ∈ GSBVp(Ω; IRm) satisfying (3.8) can be obtained as in the proof of
Theorem 3.7 in [6].

We extend now the last result to a more general case, pointing out that this is the most signi-
ficative case in the framework of quasi-static models in mechanics of fractures (see [14]).

Theorem 3.3. Let k : Ω× IRN → [0, +∞) be a locally bounded Borel function satisfying

k(·, ξ) is C1-quasi lower semicontinuous for every ξ ∈ IRN ;(3.10)

k(x, ·) is convex and positively 1-homogeneous in IRN for every x ∈ Ω ;(3.11)

k(x, ξ) = k(x,−ξ) for every (x, ξ) ∈ Ω× IRN ;(3.12)

k(x, ξ) > 0 for every (x, ξ) ∈ (Ω \N0)× (IRN \ {0}), where HN−1(N0) = 0.(3.13)

Let γ : [0,+∞) → [0, +∞) be a locally bounded, lower semicontinuous, increasing and subadditive
function such that γ(0) = 0. Then, for every un ⊂ GSBVp(Ω; IRm) and u ∈ GSBVp(Ω; IRm)
such that un(x) → u(x) for almost every x ∈ Ω and

sup
n∈IN




∫

Ω

|∇un|p dx +HN−1(Jun)


 < +∞ ,
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we have

(3.14)
∫

Ω∩Ju

γ(|u+ − u−|)k(x, νu) dHN−1 ≤ lim inf
n→+∞

∫

Ω∩Jun

γ(|u+
n − u−n |)k(x, νun) dHN−1 .

Proof. Step 1. We follow some ideas contained in the proof of Theorem 3.6 in [4]. Notice that
since k is locally bounded in Ω× IRN and positively 1-homogeneous with respect to ξ, for any
open set Ω′ ⊂⊂ Ω, there exists a constant Λ′ = Λ′(Ω′) such that

(3.15) 0 ≤ k(x, ξ) ≤ Λ′|ξ| for all (x, ξ) ∈ Ω′ × IRN .

Condition (3.15), together with the convexity of k with respect to ξ immediately yields that

(3.16) |k(x, ξ1)− k(x, ξ2)| ≤ c0Λ′|ξ1 − ξ2| for all (x, ξ1), (x, ξ2) ∈ Ω′ × IRN ,

for some constant c0 > 0. Let us now fix h ∈ IN and a dense sequence {ξi} ⊂ IRN . Thanks
to (3.10) for all i there exists an open set Ai,h ⊂ Ω′, Ai,h ⊃ N0, with C1(Ai,h) < 1/(h2i), such
that k(·, ξi) is lower semicontinuous in Ω \Ai,h. Setting Ah = ∪iAi,h we obtain that Ah is open,
C1(Ah) ≤ 1/h and we may assume that {Ah} is a decreasing sequence. Making use of (3.16),
one easily gets that k is lower semicontinuous in (Ω′ \Ah)× IRN .
We claim that, given h and x0 ∈ Ω′ \Ah, for all ε > 0 there exists δ > 0 such that

(3.17) k(x0, ξ) ≤ (1 + ε)k(x, ξ)

for all (x, ξ) ∈ (Ω′ \Ah)× IRN such that |x− x0| < δ.
To prove this, we argue by contradiction, assuming that for some x0 ∈ (Ω′ \ Ah) and ε0 > 0
there exist two sequences {xi} ⊂ Ω′ \Ah, with |xi − x0| < 1/i, and {ξi} ⊂ IRN such that

(3.18) k(x0, ξi) > (1 + ε0)k(xi, ξi) .

Clearly, by the positive 1-homogeneity of k(xi, ·), we may assume that |ξi| = 1, for every i ∈ IN ;
hence, up to a subsequence, there exists ξ0 ∈ SN−1 such that ξi → ξ0. Then, letting i → +∞ in
(3.18) and using the lower semicontinuity of k and the continuity of k(x0, ·), we get

k(x0, ξ0) = lim
i→+∞

k(x0, ξi) ≥ (1 + ε0) lim inf
i→+∞

k(xi, ξi) ≥ (1 + ε0)k(x0, ξ0) .

Hence, k(x0, ξ0) = 0, which is a contradiction since x0 ∈ Ω \ N0. This proves the claim; i.e.,
(3.17) holds.

Step 2. We use now a construction similar to the one in the proof of Lemma 8(c) in [23], to show
that for any h there exist {ah

j } ⊂ C∞
0 (IRN ) and ψh

j : IRN → [0,∞) such that, for all j ∈ IN ,
0 ≤ ah

j ≤ 1, ψh
j is a convex, positively 1-homogeneous and even function satisfying

k(x, ξ) = sup
j∈IN

ah
j (x)ψh

j (ξ) for all (x, ξ) ∈ (Ω′ \Ah)× IRN ,(3.19)

0 ≤ ψh
j (ξ) ≤ Λ′|ξ| for all ξ ∈ IRN .(3.20)

To this aim, fix ε > 0 and x0 ∈ Ω′ \ Ah and choose δ > 0 such that (3.17) holds. Let αε,x0 ∈
C∞

0 (Bδ), with 0 ≤ αε,x0 ≤ 1 and αε,x0(x0) = 1, and % ∈ C∞
0 (B1) such that % ≥ 0, %(ξ) = %(−ξ)

and
∫

% dξ = 1. Define %ε(ξ) = ε−n%(ξ/ε) and for all x, ξ ∈ IRN

kε,x0(ξ) =
1

1 + ε

∫

IRN

%ε(η)k(x0, ξ + η) dη − εc0Λ′, kn,ε,x0(x, ξ) = αε,x0(x)σn(kε,x0(ξ)) ,
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where for all n ∈ IN , σn ∈ C∞(IR) is a nonnegative increasing convex function such that

(3.21) σn(t) ↑ t ∨ 0 for all t ∈ IR .

By construction, each kn,ε,x0(x, ξ) is a smooth nonnegative function, convex and even in ξ. In
fact, since %ε(ξ) = %ε(−ξ) and k is even in ξ we have immediately that kε,x0(ξ) = kε,x0(−ξ).
Notice also that for all (x, ξ) ∈ (Ω′ \Ah)× IR

(3.22) kn,ε,x0(x, ξ) ≤ k(x, ξ) .

Indeed, this inequality is trivial if |x − x0| ≥ δ, since αε,x0(x) = 0. On the other hand, if
x ∈ Bδ(x0) ∩ Ω′ \Ah, from (3.17) and (3.16) we get

kε,x0(ξ) ≤
∫

IRN

%ε(η)k(x, ξ + η) dη − εc0Λ′ ≤
∫

IRN

%ε(η)
[
k(x, ξ) + c0Λ′|η|

]
dη − εc0Λ′ ≤ k(x, ξ) .

Hence, inequality (3.22) follows from (3.21), taking into account that k(x, ξ) ≥ 0 and 0 ≤
αε,x0(x) ≤ 1 . Finally, observe that from these inequalities, (3.21) and (3.15) we have also

(3.23) σn(kε,x0(ξ)) ≤ k(x0, ξ) ≤ Λ′|ξ| .
Thus, using (3.22) and the fact that αε,x0(x0) = 1 for all x0 ∈ Ω′ \Ah, we get that

k(x, ξ) = sup
ε>0

sup
x0∈Ω′\Ah

sup
n∈IN

kn,ε,x0(x, ξ) for all (x, ξ) ∈ (Ω′ \Ah)× IR .

From this equality, it easily follows (see for instance [20, Lemma 9.2]) that there exists a sequence
(nj , εj , xj) ∈ IN × (0,∞)× (Ω′ \Ah) such that

k(x, ξ) = sup
j∈IN

αεj ,xj (x)σnj (kεj ,xj (ξ))

for all (x, ξ) ∈ (Ω′ \Ah)× IR. Finally, we set, for x ∈ Ω′ \Ah, ξ ∈ IR,

ah
j (x) = αεj ,xj (x), ψh

j (ξ) = sup
t>0

σnj (kεj ,xj (tξ))
t

Notice that by construction the functions ψh
j are convex, 1-homogeneous, even and from (3.23)

it is clear that they satisfy (3.20). Moreover, since k is 1-homogeneous we have also that

k(x, ξ) = sup
t>0

k(x, tξ)
t

= sup
t>0

sup
j∈IN

αεj ,xj (x)
σnj (kεj ,xj (tξ))

t

= sup
j∈N

sup
t>0

ah
j (x)

σnj (kεj ,xj (tξ))
t

= sup
j∈N

ah
j (x)ψh

j (ξ) ,

thus proving (3.19).

Step 3. Now we argue as in the proof of Theorem 3.4 in [4]. Let ϕh ∈ W 1,1(IRN ) be a capacitary
quasi-potential of Ah. More precisely, let us assume that there exists a Borel set Nh ⊂ IRN ,
with C1(Nh) = HN−1(Nh) = 0, such that 0 ≤ ϕ̃h(x) ≤ 1 for every x ∈ IRN \ Nh, ϕ̃h = 1 on
Ah \Nh and ∫

IRN

|∇ϕ̃h| dx ≤ C1(Ah) +
1
h

<
2
h

.

Set, for all j ∈ IN , α̃h
j (x) = max{ah

j (x) − ϕ̃h(x), 0} for all x ∈ IRN . We have that, since
ϕ̃h(x) ≥ 0,

(3.24) 0 ≤ α̃h
j (x) ≤ 1, ah

j (x) ≥ α̃h
j (x) ≥ ah

j (x)− ϕ̃h(x) for all x ∈ IRN .
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Moreover, setting Ñ = ∪hNh, C1(Ñ) = HN−1(Ñ) = 0, for every h, j ∈ IN we have that

(3.25) k(x, ξ) ≥ α̃h
j (x)ψh

j (ξ) for all (x, ξ) ∈ (Ω′ \ Ñ)× IRN .

Finally, we set for all h, j ∈ IN

gh
j (x, ξ) = α̃h

j (x)ψh
j (ξ), gh(x, ξ) = sup

j∈IN
gh
j (x, ξ),

for all (x, ξ) ∈ Ω′ × IRN. Notice that the functions α̃h
j , γ, ψh

j satisfy the assumptions of a, γ, ϕ in
Proposition 3.2. Therefore, the functionals Fh

j defined by

Fh
j (u,Ω′) :=

∫

Ω′∩Ju

γ(|u+ − u−|) gh
j (x, νu) dHN−1

satisfy the inequality (3.9), with Ω replaced by Ω′. Hence by Lemma 2.10 the same is true for
the functionals Fh, defined by

Fh(u,Ω′) :=
∫

Ω′∩Ju

γ(|u+ − u−|) gh(x, νu) dHN−1 ,

for any h ∈ IN .
To prove (3.14), we fix h ∈ IN and set

ψh(ξ) = sup
j∈IN

ψh
j (ξ) for all ξ ∈ IRN .

From (3.25), (3.24), (3.19) and (3.20), we get that

(3.26)

lim inf
n→+∞

∫

Ω′∩Jun

γ(|u+
n −u−n |)k(x, νun) dHN−1 ≥ lim inf

n→+∞

∫

Ω′∩Jun

γ(|u+
n −u−n |)gh(x, νun) dHN−1

≥
∫

Ω′∩Ju

γ(|u+ − u−|)gh(x, νu) dHN−1 ≥
∫

Ω′∩Ju\Ah

γ(|u+ − u−|)gh(x, νu) dHN−1

≥
∫

Ω′∩Ju\Ah

γ(|u+ − u−|)k(x, νu) dHN−1 −
∫

Ω′∩Ju

γ(|u+ − u−|)ϕ̃h(x)ψh(νu) dHN−1

≥
∫

Ω′∩Ju\Ah

γ(|u+ − u−|)k(x, νu) dHN−1 − Λ
∫

Ω′∩Ju

γ(|u+ − u−|)ϕ̃h(x) dHN−1 .

Since ϕ̃h → 0 strongly in W 1,1(IRN ) as h →∞, we have that, up to a subsequence, ϕ̃h(x) → 0
for HN−1-almost every x ∈ IRN (see Proposition 1.2 in [12]). Therefore, letting h → +∞ in
(3.26), recalling that Ah+1 ⊂ Ah for all h and that HN−1(∩hAh) = 0 and taking into account
that γ is locally bounded, from the Dominated Convergence Theorem we get the thesis in Ω′

for u ∈ GSBVp(Ω; IRm) ∩ L∞(Ω; IRm) ⊂ SBVp(Ω; IRm). Finally, inequality (3.14) holds, letting
Ω′ ↗ Ω. The general case u ∈ GSBVp(Ω; IRm) can be obtained as in the proof of Theorem 3.7
in [6].
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As a consequence of previous proposition, we obtain the following result.

Corollary 3.4. Let k : Ω × IRN → [0, +∞) be a locally bounded function satisfying all the
assumptions of Theorem 3.3. Then, for every {un} ⊂ GSBVp(Ω; IRm) and u ∈ GSBVp(Ω; IRm)
such that such that un(x) → u(x) for almost every x ∈ Ω and

sup
n∈IN




∫

Ω

|∇un|p dx +HN−1(Jun)


 < +∞ ,

we have

(3.27)
∫

Ω∩Ju

k(x, νu) dHN−1 ≤ lim inf
n→+∞

∫

Ω∩Jun

k(x, νun) dHN−1 .

Proof. It is enough to consider the function φ(x, r, t, ν) = γ(|t− r|)k(x, ν), where γ(0) = 0 and
γ(s) = 1 for s > 0. Hence the conclusion follows from Theorem 3.3.

Corollary 3.5. Let k : Ω × IRN → [0, +∞) be a locally bounded Borel function such that
k(·, ξ) ∈ BV (Ω) and coincides with its approximate lower limit for every ξ ∈ IRN . Assume also
that k satisfies (3.11)–(3.13). Then the same conclusion of Corollary 3.4 holds.

Proof. It is a direct consequence of Theorem 2.3 and Corollary 3.4.

3.2. Lower semicontinuity of the volume term. As we said before, though the result due
to Ambrosio deals with a general quasi-convex integrand W , the growth assumptions one has
to make on W are often too strong for possible applications. The idea is then to replace quasi-
convexity with the (less general) polyconvexity, with the advantage of allowing a more general
growth. A first result in this spirit is contained in the next theorem, proved in [24].

Theorem 3.6. Let W : Ω× IRm× IRm×N → [0, +∞] be a Carathéodory function, polyconvex in
the last variable, satisfying

W (x, u, ξ) ≥
m∧N∑

k=1

βk|adjkξ|pk for all (x, s, ξ) ∈ Ω× IRm ×MIm×N ,

where βk > 0 for every k = 1, . . . ,m∧N , and the exponents pk satisfy the following inequalities

(3.28) p1 ≥ 2 , pk ≥ p1

p1 − 1
if k = 2, . . . , m ∧N − 1, pm∧N > 1 .

Then, if {un} ⊂ GSBV(Ω; IRm) is a sequence such that un → u strongly in L1(Ω; IRm), with
u ∈ GSBV(Ω; IRm) and supnHN−1(Juh

) < ∞, we have
∫

Ω

W (x, u,∇u) dx ≤ lim inf
n→+∞

∫

Ω

W (x, un,∇un) dx .

The proof of Theorem 3.6 is an immediate consequence of the following compactness result (see
[24]) for the adjoints of a SBV function.

Theorem 3.7. Let un, u ∈ SBV(Ω, IRm) such that un → u strongly in L1(Ω, IRm). Assume that

sup
n∈IN

{
‖un‖L∞(Ω,IRm) +

N∧m∑

k=1

∫

Ω

|adjk∇un|pk dx +HN−1(Jun)
}

< ∞ ,
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where the exponents pk satisfy (3.28). Then, for all k = 1, . . . , N ∧ m, adjk∇un ⇀ adjk∇u

weakly in Lpk(Ω, IRτk).

Our next task is to extend this result in order to get a compactness result in a somewhat limit
situation and then to deduce a new semicontinuity theorem for the polyconvex case.

Theorem 3.8. Let un, u ∈ SBV(Ω, IRm) such that un → u strongly in L1(Ω, IRm), where
N,m ≥ 2. Assume that

(3.29) sup
n∈IN

{
‖un‖L∞(Ω,IRm) +

∫

Ω

|∇un|N∧m dx +HN−1(Jun)
}

< ∞ .

Then, for all k = 1, . . . , N ∧ m − 1, adjk∇un ⇀ adjk∇u weakly in L(N∧m)/k(Ω, IRτk). More-
over, there exists a subsequence {unj} such that adjN∧m∇unj converges in the biting sense to
adjN∧m∇u.

Proof. Notice that, if k = 1, . . . , N∧m−1, from assumption (3.29) it follows that {adjk∇un} is a
sequence bounded in L(N∧m)/k(Ω, IRτk), hence the assertion follows from Theorem 3.7, choosing
p1 = N ∧m and pk = (N ∧m)/k. Therefore, we have only to prove the assertion in the limit
case k = N ∧m, which is also the most difficult since now the sequence {adjN∧m∇un} is only
bounded in L1. To this aim we follow the argument introduced in [24] to prove Theorem 3.7.
However, instead of referring the reader to the proof contained in that paper and listing the
changes needed in our case we give all the details. Also, to simplify the notation and make our
argument clearer we shall assume m = N . The general case is treated in the same way.

Step1. As in [24], we start by assuming that un → u = ξx + b strongly in L1(B1), where
ξ ∈ IRN×N and b ∈ IRN are given and that HN−1(Jun) → 0 as n → ∞. Then, given any
nonnegative function a ∈ L∞(B1) and any function w ∈ L1(B1) we claim that

(3.30)
∫

B1

a(x)|detξ − w(x)| dx ≤ lim inf
n→∞

∫

B1

a(x)|det∇un − w(x)| dx .

To prove this inequality we use an induction argument on the number of components of un

belonging to W 1,N (B1). In fact, if all components of each function un belong to W 1,N (B1),
(3.30) follows from a well known semicontinuity property of quasi-convex integrals (see e.g. [1,
Theorem II.4]).
Assume now that (3.30) holds true whenever the last N − j components of each un belong
to W 1,N (B1), for some j = 0, . . . , N − 1. We are now going to prove that (3.30) still holds
if only the last N − j − 1 components are in W 1,N (B1), i.e. u1

n, . . . , uj+1
n ∈ SBV(B1), while

uj+2
n , . . . , uN

n ∈ W 1,N (B1). To this aim, let us fix w and let us assume, without loss of generality,
that the lim inf on the right-hand side of (3.30) is indeed a limit and that un(x) → u(x) for
LN -a.e. x ∈ B1.
From the assumption (3.29) and from the estimate (2.1) it follows that {MN (|∇uj+1

n |)} is
bounded in L1(B1), hence Lemma 2.7 applies. Therefore, passing possibly to a subsequence,
we may assume that for any ε > 0 there exist a Borel set Cε ⊂ B1 and a positive number
δ < LN (B1) such that for any Borel set C ⊂ B1 \ Cε, with LN (C) < δ, we have for all n

(3.31)
∫

C

MN (|∇uj+1
n |) dx < ε .



LOWER SEMICONTINUITY RESULTS 15

Let us fix ε > 0 and ρ ∈ (0, 1) such that LN (Bρ) > δ. For any n and any λ > 0, let us
denote by uj+1

n,λ the Lipschitz approximation of uj+1
n in Bρ provided by Theorem 2.6. Hence

uj+1
n,λ (x) = uj+1

n (x) LN -a.e in Bρ \ En,λ, where

En,λ = {x ∈ B1 : M(|Duj+1
n |) > λ} .

Moreover,

(3.32) Lip(uj+1
n,λ , Bρ) ≤ c

(
λ +

1
1− ρ

)

and, for every C ∈ B(B1),

(3.33) LN (En,λ ∩ C) ≤
(

2
λ

)N ∫

C∩{M(|∇uj+1
n |)>λ/2}

MN (|∇uj+1
n |) dx +

c

λ
HN−1(J

uj+1
n

) ,

where c is a constant depending only on N and supn ‖un‖L∞(B1,IRm). Notice that from (3.33)
and (2.1) it follows that there exists λε such that LN (En,λ) < δ, for all λ > λε and every n.
Therefore, from (3.31) we get in particular that

(3.34)
∫

En,λ\Cε

MN (|∇uj+1
n |) dx < ε for all λ > λε and every n ∈ IN .

Let us fix also λ > max{λε, 1}. From (3.32) and from the fact that |uj+1
n,λ (x)| ≤ C in Bρ \ En,λ

(which is not empty, since LN (Bρ) > δ > LN (En,λ)), it follows that {uj+1
n,λ } is bounded in

L∞(Bρ). Therefore, passing possibly to another (and again not relabelled) subsequence, we may
assume that {uj+1

n,λ } converges weakly* in W 1,∞(Bρ) to a Lipschitz function uj+1
λ . Moreover,

since for any n ∈ IN

LN ({x ∈ Bρ : uj+1
n,λ 6= uj+1

n }) ≤ LN (En,λ) ,

by the lower semicontinuity of the functional v → LN ({x ∈ Bρ : v(x) 6= 0}) with respect to the
LN -a.e. convergence, the a.e. convergence of un to u and (3.33), we get that

(3.35) LN ({x ∈ Bρ : uj+1
λ 6= uj+1}) ≤ c

λ
,

where c is a positive constant independent of n, λ and ε. We can now estimate, for any n ∈ IN ,∫

B1

a(x)|detk∇un − w(x)|dx ≥
∫

(Bρ\En,λ)\Cε

a(x)|det(∇u1
n, . . . ,∇uj

n,∇uj+1
n,λ , . . . ,∇uN

n )− w(x)|dx

=
∫

Bρ

a(x)χBρ\Cε
(x)|det(∇u1

n, . . . ,∇uj
n,∇uj+1

n,λ , . . . ,∇uN
n )− w(x)| dx

−
∫

En,λ\Cε

a(x)|det(∇u1
n, . . . ,∇uj

n,∇uj+1
n,λ , . . . ,∇uN

n )− w(x)| dx .

Letting n →∞ on both sides of this inequality and using the fact that (3.30) (with a(x) replaced
by a(x)χBρ\Cε

(x)) holds true if the last N − j components of each un are in W 1,N (Bρ), we get
that

lim inf
n→+∞

∫

B1

a(x)|det∇un − w(x)| dx(3.36)
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≥
∫

Bρ\Cε

a(x)|det(∇u1, . . . ,∇uj ,∇uj+1
λ , . . . ,∇uN )− w(x)| dx− lim sup

n→+∞
Iε
n,λ ,

where

Iε
n,λ =

∫

En,λ\Cε

a(x)|det(∇u1
n, . . . ,∇uj

n,∇uj+1
n,λ , . . . ,∇uN

n )− w(x)| dx .

In order to estimate Iε
n,λ, we recall (3.32), (3.33), and (3.34), thus getting

Iε
n,λ ≤ c

(
λ +

1
1− ρ

) ∫

En,λ\Cε

|adjN−1(∇u1
n, . . . ,∇uj

n,∇uj+2
n , . . .∇uN

n )| dx + c

∫

En,λ

|w| dx

≤ c
(
λ+

1
1− ρ

)(∫

B1

|∇un|Ndx

)N−1
N (

LN (En,λ\Cε)
) 1

N + ω(λ)

≤ c
(
λ+

1
1− ρ

)(
1

λN

∫

(En,λ\Cε)∩{MN (|∇uj+1
n |)>λ/2}

Mp1(|∇uj+1
n |)dx +

1
λ
HN−1(J

uj+1
n

)
) 1

N

+ ω(λ)

≤ c
(
λ+

1
1− ρ

)( ε

λN
+

1
λ
HN−1(J

uj+1
n

)
) 1

N + ω(λ) ,

where ω(λ) is a quantity, independent of ε and h, converging to 0 as λ goes to infinity, and c is a
constant depending only on N and supn ‖un‖L∞(B1,IRm). Letting n go to infinity in the previous
estimate and recalling that HN−1(Jun) → 0 as n →∞, we get

lim sup
n→∞

Iε
n,λ ≤ c

1
λ

(
λ+

1
1− ρ

)
ε

1
N .

In conclusion, recalling (3.36), we have that if λ > max{λε, 1}, then

lim inf
n→∞

∫

B1

a(x)|det∇un − w(x)|dx ≥
∫

Bρ\Cε

a(x)|det(∇u1, . . . ,∇uj ,∇uj+1
λ , . . . ,∇uN )− w(x)|dx

− cε
1
N

1− ρ
− ω(λ) .

Therefore, we have in particular that

lim inf
n→∞

∫

B1

a(x)|det∇un−w(x)|dx ≥
∫

(Bρ\Cε)∩{uj+1
λ =uj+1}

a(x)|detξ−w(x)|dx− cε
1
N

1− ρ
− ω(λ) .

Recalling (3.35), we let first λ go to ∞, then ε to zero, and ρ → 1, thus obtaining (3.30) when
the last N − j − 1 components of un belong to W 1,N (B1).

Step 2. We now turn to a general sequence satisfying the assumption (3.29) for m = N . Fix
a ∈ L∞(Ω) nonnegative and w ∈ L1(Ω). We want to show that

(3.37)
∫

Ω

a(x)|det∇u− w(x)| dx ≤ lim inf
n→∞

∫

Ω

a(x)|det∇un − w(x)| dx .

To this aim we may assume, without loss of generality, that the lim inf on the right-hand side
of (3.37) is a limit. Passing possibly to a (not relabelled) subsequence and observing that the
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sequence |det∇un − w| is bounded in L1(Ω), we may assume that there exist two nonnegative
Radon measure in Ω, say µ and λ, such that

(3.38) HN−1bJun ⇀ µ, |det∇un − w| ⇀ λ weakly* in Ω .

Moreover, from the assumption (3.29) we may also assume that there exists a nonnegative Radon
measure ν such that

(3.39) |∇un|NbLN ⇀ ν weakly* in Ω .

Clearly, (3.37) is proved if we show that

(3.40)
dλ

dLN
(x) ≥ a(x)|det∇u(x)− w(x)| for LN -a.e. x ∈ Ω .

To this aim, let us consider the points x ∈ Ω such that

(3.41) lim
ρ→0

µ(Bρ(x))
ρN−1

= 0 ,

(3.42)
dλ

dLN
(x) < ∞, lim

ρ→0

ν(Bρ(x))
ρN

< ∞ ,

and set

G = {x ∈ Ω : x is a Lebesgue point for u, a and w, ∇u(x) exists and (3.41), (3.42) hold} .

Notice that since the set of points in Ω where (3.41) does not hold is a Borel set of σ-finite
HN−1-measure (see e.g. [9, Theorem 2.56]) and the set where (3.42) does not hold has LN

measure zero, we have that LN (Ω \G) = 0.
Let us fix x0 ∈ G and choose an infinitesimal sequence ρj such that µ(∂Bρj (x0)) = λ(∂Bρj (x0)) =
0 for all j. From the strong convergence of un to u and from (3.38), (3.39), it follows that there
exists a strictly increasing sequence of integers nj , such that

(3.43)





1
ρN+1

j

∫

Bρj (x0)

|unj (x)− u(x)| dx <
1
j

,

∣∣∣∣ −
∫

Bρj (x0)

a(x)|det∇unj − w(x)| dx− dλ

dLN
(x0)

∣∣∣∣ <
1
j

,

sup
j∈IN

1
ρN

j

∫

Bρj (x0)

|∇unj |Ndx < ∞ ,

1
ρN−1

j

∣∣∣HN−1(Junj
∩Bρj (x0))− µ(Bρj (x0))

∣∣∣ <
1
j

,

where the last inequality follows from the fact that since µ(∂Bρj (x0)) = 0 for all j, then we have
that HN−1(Jun ∩ Bρj (x0)) → µ(Bρj (x0) as n → ∞ and the second inequality follows similarly
from the fact that λ(∂Bρj (x0)) = 0. Let us set

vj(y) =
unj (x0 + ρjy)− u(x0)

ρj
for all j ∈ IN and y ∈ B1 .

Notice that from (3.43)1 we have
∫

B1

|vj(y)−∇u(x0)y|dy ≤
∫

B1

|uhj (x0+ρjy)−u(x0+ρjy)|
ρj

dy +
∫

B1

∣∣∣u(x0+ρjy)−u(x0)
ρj

−∇u(x0)y
∣∣∣dy
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≤ 1
ρN+1

j

∫

Bρj (x0)

|unj (x)− u(x)| dx +
1

ρN+1
j

∫

Bρj (x0)

|u(x)− u(x0)−∇u(x0)(x− x0)| dx

≤ 1
j

+
1

ρN+1
j

∫

Bρj (x0)

|u(x)− u(x0)−∇u(x0)(x− x0)| dx ,

hence vj(y) → ∇u(x0)y in L1(B1, IR
m). Moreover, (3.43)4 yields that

HN−1(Jvj ∩B1) =
1

ρN−1
j

[
HN−1(Junj

∩Bρj (x0))− µ(Bρj (x0))
]

+
µ(Bρj (x0))

ρN−1
j

<
1
j

+
µ(Bρj (x0))

ρN−1
j

and thus we have also that HN−1(Jvj ∩ B1) → 0 as j → ∞. Therefore, since from (3.43)3 we
have in particular

sup
j∈IN

∫

B1

|∇vj |Ndy < ∞ ,

we may apply what we have proved in Step 1 to the sequence {vj}. To this aim, notice that
since x0 is a Lebesgue point for a, the functions a(x0 + ρjy) converge in L1(B1) and, up to a
subsequence, also a.e. to a(x0). Therefore, if ε > 0 there exists Cε ⊂ B1, LN (Cε) < ε, such that
a(x0 + ρjy) → a(x0) uniformly to a(x0) in B1 \ Cε. Thus, recalling (3.43)2, we have

LN (B1\Cε)a(x0)|det∇u(x0)− w(x0)| ≤ lim inf
j→∞

∫

B1

χB1\Cε
(y)a(x0)|det∇vj − w(x0)| dy

= lim inf
j→∞

∫

B1

χB1\Cε
(y)a(x0 + ρjy)|det∇vj − w(x0)| dy

≤ lim inf
j→∞

∫

B1

a(x0 + ρjy)|det∇vj − w(x0)| dy = lim inf
j→∞

1
ρN

j

∫

Bρj (x0)

a(x)|det∇unj − w(x0)|dx

≤ lim
j→∞

1
ρN

j

∫

Bρj (x0)

a(x)|det∇unj−w(x)|dx + lim
j→∞

1
ρN

j

∫

Bρj (x0)

|w(x)−w(x0)|dx = LN (B1)
dλ

dLN
(x0).

Letting ε → 0+, (3.40) follows, thus completing the proof of (3.37).

Step 3. To conclude the proof, we use Lemma 2.7 thus getting a subsequence {det∇unj} con-
verging in the biting sense to some function d ∈ L1(Ω). We claim that d = det∇u. To show this,
let us consider a decreasing sequence of sets Ei such that LN (Ei) → 0 as i → ∞ det∇unj ⇀ d

weakly in L1(Ω \Ei) for all i. Fix i and apply (3.37) with a = χΩ\Ei
. We then get that for any

w ∈ L1(Ω) ∫

Ω\Ei

|det∇u− w(x)| dx ≤ lim inf
j→∞

∫

Ω\Ei

|det∇unj − w(x)| dx

and from this inequality we have also that for any w ∈ L1(Ω)
∫

Ω

|χΩ\Ei
(x)det∇u− w(x)| dx ≤ lim inf

j→∞

∫

Ω

|χΩ\Ei
(x)det∇unj − w(x)| dx .

Since the sequence {det∇unj} is equi-integrable in Ω \Ei, clearly the sequence {χΩ\Ei
det∇unj}

is equi-integrable in Ω. Therefore, from Lemma 2.9 we may conclude that χΩ\Ei
det∇unj ⇀
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χΩ\Ei
det∇u weakly in L1(Ω), hence det∇unj ⇀ det∇u weakly in L1(Ω \ Ei) for all i, thus

proving the assertion.

From the result just proved we obtain immediately the following lower semicontinuity result for
polyconvex functionals.

Theorem 3.9. Let W : Ω× IRm× IRm×N → [0, +∞] be a Carathéodory function, polyconvex in
the last variable. Then, if un, u ∈ GSBV(Ω; IRm) are such that un → u strongly in L1(Ω; IRm)
and

sup
n∈IN

{∫

Ω

|∇un|N∧m dx +HN−1(Jun)
}

< ∞ ,

then we have

(3.44)
∫

Ω

W (x, u,∇u) dx ≤ lim inf
n→+∞

∫

Ω

W (x, un,∇un) dx .

Proof. Let us first assume that un, u ∈ SBV(Ω; IRm) satisfy the assumption (3.29). Since W is a
convex function of the minors, (3.44) follows immediately from the strong convergence of un to
u and the weak convergence of adjk∇un to adjk∇u, for k < N ∧m and the biting convergence
of adjN∧m∇un to adjN∧m∇u. The general case u ∈ GSBV(Ω; IRm) can be obtained as in the
proof of Theorem 3.7 in [6].
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