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Abstract. We consider the quasiminima of the energy functionalZ
Ω

A(x,∇u) + F (x, u) dx ,

where A(x,∇u) ∼ |∇u|p and F is a double-well potential. We show that the Lipschitz
quasiminima, which satisfy an equipartition of energy condition, possess density estimates
of Caffarelli-Cordoba-type, that is, roughly speaking, the complement of their interfaces
occupies a positive density portion of balls of large radii.

From this, it follows that the level sets of the rescaled quasiminima approach locally
uniformly hypersurfaces of quasiminimal perimeter.

If the quasiminimum is also a solution of the associated PDE, the limit hypersurface is
shown to have zero mean curvature and a quantitative viscosity bound on the mean curvature
of the level sets is given. In such a case, some Harnack-type inequalities for level sets are
obtained and then, if the limit surface if flat, so are the level sets of the solution.
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the Università di Roma La Sapienza and Roma Tor Vergata and it has been completed while the authors were
visiting the Wolfgang Pauli Institute in Vienna on the occasion of the Summer School on Gross-Pitaevskii
equations for superfluids and Bose-Einstein condensates. EV has been partially supported by MIUR Metodi
variazionali ed equazioni differenziali nonlineari and GNAMPA Principio del massimo e disuguaglianze di
Harnack per equazioni ellittiche e sub-ellittiche.

1



2 ALBERTO FARINA AND ENRICO VALDINOCI

References 33

Keywords: Ginzburg-Landau-Allen-Cahn functionals, quasiminima, geometric and measure
theoretic properties.
MS Classification: 35J20, 35J60, 35J70, 49K20.

1. Introduction

In [CC95], some fine measure estimates on the area of the sublevels of the minimizers of a
non-convex variational problem were given. Such estimates played a crucial role in proving
the uniform convergence of the level sets and they have been applied, for instance, in the
construction of suitable solutions with “almost planar” level sets (see [Val04]) and, very
remarkably, in the proof of a delicate rigidity result connected with a famous conjecture
of De Giorgi (see [Sav03]). Recently, these estimates have been extended to minimizers of
problems driven by the p-Laplacian operator (see [PV05a, PV05b]), by the Kohn Laplacian
(see [BV07]), and in functionals penalized by a volume term (see [NV07]).
The main purpose of this paper is to extend these estimates to the quasiminima of a quite gen-
eral class of functionals (including, for instance, the case of singular and degenerate ellipticity
of p-Laplacian-type), thus providing a generalization from the minimal to the quasiminimal
setting.
From the measure estimates developed here, we will derive some geometric consequences
related to quasiminimal perimeter and zero mean curvature hypersurfaces, which will, in
turn, lead us to some Harnack-type inequality and rigidity results for level sets. These results
are extensions to the quasiminimal setting of analogous ones proven in [Sav03, SV05, VSS06]
for the minimizers.

Let us now give further details and motivations on the functional we deal with. This functional
is related to the Ginzburg-Landau-Allen-Cahn equation and it is the sum of two terms: a
double-well potential and a kinetic part. The kinetic part will lead to a (possibly degenerate
or singular) elliptic equation, while the effect of the potential is to drive the system towards
the two minimal states.
We will prove that all the Lipschitz quasiminima (in the terminology of [GG84]) of our
functional, which satisfy a suitable equipartition of energy condition (namely, condition (15)
below), enjoy suitable density estimates, which, grosso modo, say that the interfaces behave
“like codimension 1 sets in a measure theoretic fashion”. This result will be stated in full
detail in Theorem 1 below. This result may be seen as the extension to the quasiminimal
framework of analogous estimates proved in [CC95, Val04, PV05a, PV05b].
From such density estimates, we will derive several connections between the level sets of
quasiminima and surfaces of quasiminimal perimeter, or of zero mean curvature. Flatness
and symmetry results will also be obtained. These results, extending the work of [Sav03,
SV05, VSS06] from the minimal to to the quasiminimal setting, will be stated in detail in
Corollaries 2–7. Glossing over some details, we may say here that these results are geometric
in nature and they have the following interpretation. First of all (see Corollary 2), level sets
of rescaled quasiminima approach locally uniformly hypersurfaces of quasiminimal perimeter.
Furthermore, if the functional is homogeneous and if the quasiminimum solves the associated
Euler equation, then the above hypersurface has also zero mean curvature (see Corollary 3),
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and, in fact, the rescaled level sets of the quasiminimum enjoy a suitable weak zero mean
curvature equation even before attaining the limit (see Corollary 4). In this case, if the level
sets are trapped inside a suitably flat rectangle, then they are trapped in an even flatter
rectangle in the inside: these estimates, which may be seen as Harnack inequalities for level
sets, are stated in details in Corollaries 5 and 6.
Finally, if the limit hypersurface is a hyperplane, then the quasiminimal solution depends
only on one variable (see Corollary 7 below).
A precise description of the system will be given in § 2 and our result will be described in
detail in § 3.
We would like to recall that functionals as the one we consider here have also some physical rel-
evance, since they arise in the theory of superconductor and superfluids (see [GP58, Lan67]),
in the study of interfaces in both gasses and solids (see [Row79, AC79]), in questions of fluid
dynamics (possibly, with non-Newtonian phenomena, see [Lad67, AC81]) and in cosmology
(see [Car95]).
In the purely mathematical setting, functionals as the ones we study here have been the
paradigmatic examples for several celebrated Γ-convergence results (see, e.g., [DGF75, Mod87,
Ste88, Owe88, Bou90, OS91]) and they are related to a famous conjecture of De Giorgi
(see [DG79]).

2. Set-up

Given a domain Ω ⊂ Rn, we consider the energy functional

FΩ(u) :=
∫

Ω
A(x,∇u) + F (x, u) dx .

Here above, A(x, η) is supposed to be of the order of |η|p, with p ∈ (1,+∞), and F is a
double-well potential.
Concrete examples are provided by

(1) FΩ(u) =
∫

Ω
|∇u|p + K(x) χ(−1,1)(u) dx

and

(2) FΩ(u) =
∫

Ω
|∇u|p + K(x) (1− u2)p dx ,

with K positive and bounded from 0 and +∞, and p ∈ (1,+∞), but more general cases will
also be considered here.
More precisely, we make the following assumptions. We assume that A ∈ C1(Ω × Rn) and
that

a(x, η) := DηA(x, η)
is in C(Ω× Rn) ∩ C1(Ω× Rn − {0}). We require that

(3) A(x, 0) = 0, a(x, 0) = 0 ,

for every x ∈ Ω and that there exists Λ > 0 and p ∈ (1,+∞) in such a way that

ζ ·Dηa(x, η) ζ > Λ−1|ζ|2 |η|p−2 ,(4)

|Dηa(x, η)| 6 Λ |η|p−2 ,(5)

|Dxa(x, η)| 6 Λ |η|p−1 ,(6)
and η · a(x, η) > Λ−1 |η|p ,(7)
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for every x ∈ Ω, η ∈ Rn and ζ ∈ Rn.
Note, in particular, that A(x, η) is bounded from above and below by |η|p, due to (3), (4)
and (5).
We assume that F : Ω × R 3 (x, u) −→ R is a Carathéodory function, i.e., continuous in u
for a.e. x ∈ Ω and measurable in x for every u ∈ R. We require that

(8) 0 6 F 6 M, F (x,±1) = 0, inf
|u|6θ

F (x, u) > γ(θ)

for every 0 6 θ < 1, where γ(θ) and M are positive constants. Here and below, all the
structural inequalities on F are assumed to be uniform for a.e. x ∈ Ω. Further, we assume
that the partial derivative Fu(x, u) exists for every u ∈ (−1, 1) and for a.e. x ∈ Ω, and that F
is uniformly Lipschitz in u ∈ (−1, 1), that is

(9) sup
|u|<1

|Fu(x, u)| 6 Λ .

The techniques exploited here would also allow to deal with less regular potentials F , but we
will not push ahead with such generality.
We assume the following growth condition near u = ±1: we suppose that either condition (10)
holds or that conditions (11), (12) and (13) hold (see here below). That is, we consider two
cases. The first case (which will be dubbed case χ, since it contains the case in which the
potential is just a characteristic function) is the one in which we assume that

(10) F (x, τ) >
1
Λ

,

for any τ ∈ (−1, 1) and a.e. x ∈ Ω.
In the second case (which will be called case W , since it is the case in which the potential is a
W-shaped function), we take the following assumptions. We suppose that there exists s0 > 0
and 0 < d 6 p such that

(11) Fu(x,−1 + s) >
sd−1

Λ
, Fu(x, 1− s) 6 −sd−1

Λ
,

for every s ∈ (0, s0), that

(12) F (x,−1 + s) + F (x, 1− s) 6 Λsd′

for any s ∈ [0, s0), for a suitable d′ > 0, and that

(13) Fu is monotone increasing in u for u ∈ (−1,−1 + s0) and u ∈ (1− s0, 1).

The functionals in (1) and (2) are paradigmatic examples for the cases χ and W , respectively.
We will consider here the quasiminima of F . For this, we recall the following definition (see,
e.g., [GG84]). Given Q > 1, we say that a function u ∈ W 1,p(Ω) is a quasiminimum with
constant Q (for short: a Q-minimum) of F in Ω if FΩ(u) < +∞ and

FΩ(u) 6 QFΩ(u + ϕ) ,

for any ϕ ∈ C∞
0 (Ω).

The n-dimensional Lebesgue measure will be denoted by Ln.
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3. The main result and some consequences

The main result we prove is the following:

Theorem 1. Fix θ ∈ (0, 1). Let |u| 6 1 be a Q-minimum for F in any subdomain of a
domain Ω. Assume that

(14) |∇u(x)| 6 M0 ,

for a.e. x ∈ Ω, and that

(15) A(x,∇u(x)) 6 M0 F (x, u(x)) ,

for a.e. x ∈ Ω ∩ {|u| < 1}, for a suitable M0 > 0.
Suppose that there exist two positive real numbers µ1 and µ2 in such a way that Bµ1(x) ⊂ Ω
and

(16) Ln
(
Bµ1(x) ∩ {u > θ}

)
> µ2 .

Then, there exist positive r0 and c, which depend only on n, Q, θ, µ1, µ2, M0 and on the
structural constants of the functional F , in such a way that

Ln
(
Br(x) ∩ {u > θ}

)
> c rn ,

for any r > r0, provided that Br(x) ⊂ Ω.

We remark that an analogous result holds with the signs changed, that is: if

Ln
(
Bµ1(x) ∩ {u < θ}

)
> µ2 ,

then
Ln
(
Br(x) ∩ {u < θ}

)
> c rn ,

for any r > r0 provided that Br(x) ⊂ Ω.

We also point out that conditions (14) and (15) are quite natural, since they correspond, re-
spectively, to a Lipschitz condition and to a phenomenon known in the literature as “equipar-
tition of energy”. In particular, conditions (14) and (15) are satisfied if u is an entire solution
of the associated PDE (see, e.g., Theorem 1 of [Tol84] and page 1459 of [CGS94]). Also, (14)
obviously implies (15) if (10) holds (i.e., if we are in case χ).

Note that the domain Ω in Theorem 1 needs not be compact, nor with smooth boundary.
As a consequence of Theorem 1, we will show that the (sub)level sets of rescaled Q-minima
approach locally uniformly hypersurfaces of Q-minimal weighted perimeter. To this extent,
we define the appropriate concept of perimeter by following § 3 of [Bou90], that is, we set

h(x, η) :=
∫ 1

−1

[
inf
t>0

(
A(x, tη) + F (x, τ)

t

)]
dτ

and
Per (E,Ω;F) :=

∫
∂?E∩Ω

h(x, νE(x)) dHn−1(x) .

Here above, E ⊆ Rn is supposed to be a Caccioppoli set with exterior normal νE and re-
duced boundary ∂?E, and Hk is the k-dimensional Hausdorff measure (see, e.g., [Giu84] for
definitions and basic properties). Note that the above definition of Per (E,Ω;F) generalizes
the standard notion of perimeter of the set E in Ω, which will be denoted by Per (E,Ω).
With this notation, we derive the following result from Theorem 1:
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Corollary 2. Assume that

(17) sup
x∈Ω, |ξ|<1

|Fx(x, ξ)|
(F (x, ξ))1/p

< +∞ .

Consider an infinitesimal sequence of ε’s. Let uε be a sequence of Q-minima in any subdomain
of Ω for the functional

Fε
Ω(u) :=

1
ε

∫
Ω

A(x, ε∇u) + F (x, u) dx .

Suppose that

(18) |uε| 6 1 ,

that

(19) |∇uε(x)| 6 M0/ε ,

for a.e. x ∈ Ω, that

(20) A(x, ε∇uε(x)) 6 M0 F (x, uε(x)) ,

for a.e. x ∈ Ω ∩ {|uε| < 1}, for some M0 > 0, and that

(21) sup
ε
Fε

Ω(uε) < +∞ .

Then, there exists E ⊆ Ω in such a way that, up to subsequences, uε converges in L1
loc to a

step function u0 = χE − χΩ−E.
Also, given any θ ∈ (0, 1) the set {|uε| < θ} approaches ∂E locally uniformly.

In case of the spatially homogeneous scaling uε(x) := u(x/ε), we remark that assumption (21)
holds true thanks to Lemma 10 below.
If u is also a solution of the associated PDE, the result of Corollary 2 may be sharpened, by
obtaining that the limit interface ∂E has zero mean curvature in the viscosity sense. This
fact is indeed a consequence of the density estimates performed here and of the fine viscosity
methods invented in [Sav03], as developed in [SV05]. As an example, we provide the following
result:

Corollary 3. Let A(x, η) := |η|p/p, F (x, τ) := (1− τ2)p. Let

(22) u ∈ W 1,p
loc (Rn) be a Q-minimum for F in any domain of Rn.

Suppose that |u| 6 1 and

(23) ∆pu := div (|∇u|p−2∇u) = −2p u(1− u2)p−1

in Rn.
Let uε(x) := u(x/ε), for an infinitesimal sequence of ε’s.
Then, the claims of Corollary 2 hold true and, if E is as in Corollary 2, we have that ∂E
satisfies the zero mean curvature equation in the viscosity sense.
More precisely, let x? ∈ ∂E be so that, for any r > 0

Ln
(
Br(x?) ∩ (Rn − E)

)
> 0 and Ln

(
Br(x?) ∩ E

)
> 0 ,

and assume that ∂E admits a tangent hyperplane at x?. Then, if a paraboloid with vertex in x?

touches ∂E by below (resp., above) at x?, then its mean curvature at x? must be non-positive
(resp., non-negative).
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In particular, ∂E satisfies the zero mean curvature equation in the classical sense at any point
where it is a C2 hypersurface.

The connection between Q-minima and solutions of PDEs is a classical topic in the calculus of
variations. For instance, solutions of quite general PDEs are known to be Q-minima of suitable
functionals (see, e.g., § 6.2 of [Giu94]). On the other hand, the meaning of conditions (22)
and (23) is that the PDE solved by u turns out to be the Euler-Lagrange equation of a
functional of the type “kinetic part plus double-well potential”, for which u is a Q-minimum.
In particular, the lack of convexity of the potential makes the technique of § 6.2 of [Giu94]
not applicable to our case.

In Corollary 3 here above, a quantitative estimate on the mean curvature of the level sets of
the solution may also be obtained, as given by the following result, which is related to similar
ones in [Sav03, SV05]:

Corollary 4. Let the assumptions of Corollary 3 hold. Let `, θ, δ > 0, ξ ∈ Rn−1 and M ∈
Mat((n− 1)× (n− 1)).
Suppose that u(0) = 0 and u(x) < 0 for any x = (x′, xn) ∈ [−`, `]N so that

xn <
θ

2`2
x′ ·Mx′ +

θ

`
ξ · x′ .

Then, there exist a universal constant δ0 > 0 and a function σ : (0, 1) −→ (0, 1), so that, if

δ ∈ (0, δ0] , δ 6 θ ,
θ

`
∈
(
0, σ(δ)

]
, ‖M‖ 6

1
δ

and |ξ| 6 1
δ

,

then trM 6 δ.

Roughly speaking, Corollary 4 here above states that if the zero level set of u is touched by
below by a paraboloid, then the mean curvature (or, equivalently, the trace of the Hessian)
of such a paraboloid cannot be too large (and so, the level sets are close to have zero mean
curvature, in a weak, quantitative, viscosity sense).

From the results above, some Harnack-type inequalities for level sets of quasiminima follow.
Roughly speaking, such results say that, once the zero level set of u is trapped in a rectangle
whose height is small enough, then, in a smaller neighborhood, it can be trapped in a rectangle
with even smaller height. Accordingly, once such a level set is trapped inside a suitably flat
cylinder, then, possibly changing coordinates, it is trapped in an even flatter cylinder in the
interior (pictures of these facts are given on pages 3–4 of [VSS06]).
To this extent, we will assume the Q-minimal property for Q close to one, say Q := 1 + κ
and κ > 0 small.

Corollary 5. Let `, θ > 0. Let u, A and F be as in Corollary 3, with Q := 1 + κ. Assume
that u(0) = 0 and that

{u = 0} ∩ {(x′, xn) ∈ Rn−1 × R : |x′| < ` , |xn| < `} ⊆ {(x′, xn) ∈ Rn−1 × R : |xn| < θ} .

Then, there exist universal constants c, κ0 ∈ (0, 1) so that, for any θ0 > 0, there ex-
ists ε0(θ0) > 0 such that, if

κ ∈ [0, κ0) ,
θ

`
6 ε0(θ0) and θ > θ0 ,

then
{u = 0} ∩ {|x′| < c`} ⊆ {|xn| < (1− c) θ} .
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Corollary 6. Let `, θ > 0. Let u, A and F be as in Corollary 3, with Q := 1 + κ.
Assume that u(0) = 0 and that

{u = 0} ∩ {(x′, xn) ∈ Rn−1 × R : |x′| < ` , |xn| < `} ⊆ {(x′, xn) ∈ Rn−1 × R : |xn| < θ} .

Then, there exist universal constants κ0, η1, η2 > 0, with 0 < η1 < η2 < 1, such that, for
any θ0 > 0, there exists ε1(θ0) > 0 such that, if

κ ∈ [0, κ0) ,
θ

`
6 ε1(θ0) and θ > θ0 ,

then

{u = 0} ∩
(
{|πξ x| < η2`} × {|(x · ξ)| < η2`}

)
⊆

⊆
(
{|πξx| < η2`} × {|(x · ξ)| < η1θ}

)
for some unit vector ξ.

Corollaries 5 and 6 are extensions of analogous Harnack-type inequalities for level sets of
minimizers, which have been obtained in [Sav03, VSS06].

In the spirit of a famous conjecture by De Giorgi (see [DG79]), we now point out a symmetry
feature which extends some results by [BCN97, GG98, Far99, AC00, Sav03, VSS06] to the
quasiminima:

Corollary 7. Let the assumptions and the notations of Corollary 3 hold, with Q := 1 + κ.
Assume that ∂E is a flat hyperplane, with unit normal vector ξ.
Then, there exists a suitable constant κ0 > 0 such that if κ ∈ [0, κ0) then the level sets of u
are flat hyperplanes too.

The proof of Theorem 1 is the core of the rest of the paper. It is performed in § 5 and it uses
some auxiliary results proven in § 4. The proof of Corollaries 2, 3 and 4 will then be dealt
with in § 6 and 7. We then devote § 8 and 9 to the proofs of Corollaries 5 and 6. Finally,
Corollary 7 will be proven in § 10.
An appendix will also discuss some Γ-convergence-type results for quasiminima.
Some results of [GG84, Tol84, Bou90, CGS94, Val04, PV05a, PV05b, SV05, VSS06] will be
used in the course of the proofs and some ideas from [Mod87, CC95, Sav03] will also be
borrowed.

4. Toolbox

We perform here some technical computations, which will turn out to be useful in the proof
of the main result.

Lemma 8. Let

(24) i := inf
x>1

xn−1

(x + 1)n − xn
.

Then, i ∈ (0,+∞).

Proof. Let

f(x) :=
xn−1

(x + 1)n − xn
.
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Then,

lim
x→+∞

f(x) = lim
y→0+

y

(1 + y)n − 1
= lim

y→0+

1
n(1 + y)n−1

=
1
n

.

This and the fact that f is continuous and positive in [1,+∞) imply the desired result. �

The result to come is a complicated version of an iterative scheme given on page 10 of [CC95]
(in our case, the complication will arise from the fact that we deal with quasiminima, instead
of minima as in [CC95], thus obtaining additional terms in the computations).

Lemma 9. Let i be as in (24). Fix C > 0 and let α ∈ (0, 1) in such a way that

(25)
α(n−1)/n

1− α
=

1
2C1/n

.

Let L and T be positive real numbers and define

(26) γ :=
1
α

(
4C2Te−L

1− e−L

)n/(n−1)

.

Suppose that

(27) ε 6
(αγ)(n−1)/nTn−1

4
and that

(28) γ 6 min
{

1
CTn

, αn−1

(
i

2CT

)n}
.

Let ak and Ak be two sequences of non-negative real numbers, for k = 1, 2, . . . , and suppose
that

(29) a1 > 1/C

and that

(30) ak 6 CTnkn−1 for any k > 1.

Assume also that the following recursion holds:

(31) Ak +

 k∑
j=1

aj

(n−1)/n

6 εkn−1 + C

Ak+1 −Ak +
k+1∑
j=1

e−L(k+1−j)aj

 .

Then,

(32) Ak +
k∑

j=1

aj > γTnkn for any k > 1.

Proof. The proof is by induction. If k = 1, then (32) holds, thanks to (28), (29) and the fact
that Ak is non-negative.
We now suppose that (32) holds for k and we prove it for k + 1. In this argument, we may
also suppose that

(33) CγTn(k + 1)n > 1 ,

otherwise (32) holds for k+1, due to (29) and the fact that both Ak and ak are non-negative.
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Note that (25) and (33) yield that

γ1/nTk >
γ1/nT (k + 1)

2
>

1
2C1/n

=
α(n−1)/n

1− α
,

and so

(34) (1− α) γTnkn > (αγ)(n−1)/nTn−1kn−1 .

We now prove that

(35) Ak +

 k∑
j=1

aj

(n−1)/n

> (αγ)(n−1)/n Tn−1kn−1 .

Indeed, if
k∑

j=1

aj > αγTnkn ,

then (35) follows since Ak is non-negative. Therefore, we may suppose that

k∑
j=1

aj 6 αγTnkn .

Then, since (32) is assumed to hold for k, we have that

Ak > γTnkn −
k∑

j=1

aj

> (1− α) γTnkn

> (αγ)(n−1)/nTn−1kn−1 ,

thanks to (34), thus proving (35).
Moreover, by using (30) and (26), one obtains that

k+1∑
j=1

e−L(k+1−j)aj 6 ak+1 + CTnkn−1
k∑

j=1

e−L(k+1−j)

6 ak+1 + CTnkn−1 e−L

1− e−L

= ak+1 +
(αγ)(n−1)/n

4C
Tn−1 kn−1 .

The latter estimate, (27), (31) and (35) imply that

Ak+1 −Ak + ak+1 >
(αγ)(n−1)/n

2C
Tn−1kn−1 .
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Since (32) holds for k, we thus deduce that

Ak+1 +
k+1∑
j=1

aj

= Ak+1 −Ak + ak+1 +Ak +
k∑

j=1

aj

>
(αγ)(n−1)/n

2C
Tn−1kn−1 + γTnkn .

The latter term is bounded from below by γTn(k + 1)n, thanks to (28) and (24), and this
gives (32) for k + 1, as desired. �

The result to come is a preliminary energy estimate, which says that the energy in balls of
radius r is controlled by rn−1, as it may be easily heuristically guessed by looking at the
energy of “codimension 1 interfaces”.

Lemma 10. Let r > 1. Let u be as in the statement of Theorem 1. Then,

FBr(u) 6 Ĉ rn−1 ,

for a suitable Ĉ > 0, which only depends on n, Q, M0 and on the structural constants of F ,
as long as Br ⊂ Ω.

Proof. The proof is a variation of analogous estimates performed in [CC95, AAC01, BL03,
PV05a, PV05b]. We provide full details for the facility of the reader. Let h be a smooth
function so that h = −1 in Br−1 and h = 1 outside Br, with |h| 6 1 and |∇h| 6 2.
Let u∗ := min{u, h} Then, since u is Q-minimal,

FBr(u) 6 QFBr(u
∗)

6 C0Q

∫
Br−Br−1

|∇u|p + |∇h|p + F (x, u) + F (x, h) dx

6 C1Qrn−1 ,

for suitable structural constants C0, C1 > 0, due to (14). �

5. Proof of Theorem 1

The proof of Theorem 1 will use the technique invented in [CC95], as developed in [Val04,
PV05a, PV05b]. The arguments performed in the proof will be very technical, and several
precise computations will be needed to investigate the compensation of the different quantities
involved.
In what follows, we will consider θ and u as in the statement of Theorem 1. With no loss of
generality, the point x in the statement of Theorem 1 will be taken to be the origin.
First of all, we point out that it is enough to prove Theorem 1 for θ close to −1:

Lemma 11. Let us suppose that Theorem 1 holds true for some θ? ∈ (−1, 1). Then, it holds
true for any θ ∈ (θ?, 1).

Proof. If Ln (Bµ1 ∩ {u > θ}) > µ2, then, obviously, Ln (Bµ1 ∩ {u > θ?}) > µ2, and so, since
the claim of Theorem 1 holds for θ?, we have that Ln (Br ∩ {u > θ?}) > c rn, as long as r is
large enough.
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Accordingly, making use of (8) and Lemma 10, we conclude that

Ln (Br ∩ {u > θ})
> Ln (Br ∩ {u > θ?}) − Ln (Br ∩ {θ? < u 6 θ})

> c rn − C rn−1 >
c rn

2

if r is sufficiently big. �

In the light of Lemma 11, we will suppose in what follows that θ is close to −1: in particular,
we will suppose that 1+θ ∈ (0, s0), where s0 is the structural constant introduced before (11).
For the proof of Theorem 1, it is convenient to introduce the following quantities:

(36) Vr := Ln
(
{u > θ} ∩Br

)
and Ar =

∫
Br

F (x, u) dx .

As remarked in [CC95], the above quantities play the role of volume and area terms, respec-
tively, in the minimal surface analogous.
The idea of the proof will then be to obtain iterative relations of some quantities that are
somewhat reminiscent of similar differential inequalities holding in the minimal surface theory
(see again [CC95] for very interesting heuristics on this).
We will take R > r and use a barrier function h ∈ C2(BR − {0}) ∩C1,1(BR) such that |h| 6
1, h = 1 outside BR and

(37) |∇h| 6 C ,

where C > 1 denotes (here, and in what follows) a suitable constant (which may depend
on n, Q, θ, µ1, µ2, M0 and on the structural constants of the functional F and which may
be different at different steps of the computation).
We will set q := max{p, 2} and, as customary, the conjugated exponent of q will be denoted
by q′ := q/(q − 1).
We also set ε := (1 + θ)/2 and we define u∗ = min{u, h} and β = min{u− u∗, ε}.
The barrier h will be constructed in such a way that

(38) h(x) 6 −1 + ε for any x ∈ Br.

As a consequence,

(39) (u− u∗)(x) > ε for any x ∈ Br ∩ {u > θ},

and therefore

(40)
∫

BR

|β|qn/(n−1) >
∫

Br∩{u>θ}

|β|qn/(n−1) >
1
C

Vr .

We will also make use of a free parameter K that will be chosen conveniently in the sequel
(the choice of K will be performed after (47)).
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We use (40), the Sobolev inequality applied to βq and then the Young inequality, to conclude
that

V (n−1)/n
r 6 C

( ∫
BR

|β|qn/(n−1)
)(n−1)/n

6 C

∫
BR

|β|q−1|∇β|

= C

∫
BR∩{u−u∗<ε}

|β|q−1|∇β|(41)

6 C Kq

∫
BR

|∇(u− u∗)|q

+
C

Kq′

∫
BR∩{u−u∗<ε}

(u− u∗)q .

If p > 2, we use the following formula (which is proven on page 1062 of [PV05a]):

1
C
|ξ′ − ξ|p 6 A(x, ξ′)−A(x, ξ)− a(x, ξ) · (ξ′ − ξ) ,

for every ξ, ξ′ ∈ Rn and x ∈ Ω. In particular, taking ξ := ∇u∗ and ξ′ := ∇u, since q = p
if p > 2, we obtain that

(42)
1
C
|∇(u− u∗)|q 6 A(x,∇u)−A(x,∇u∗)− a(x,∇u∗) · ∇(u− u∗)

if p > 2.
On the other hand, if p ∈ (1, 2), we use the following formula (for the proof of which, see
again page 1062 of [PV05a]): given M > 0, there exist CM > 1 such that

Mp−2

CM
|ξ′ − ξ|2 6 A(x, ξ′)−A(x, ξ)− a(x, ξ) · (ξ′ − ξ) ,

for every ξ, ξ′ ∈ Rn with |ξ|+ |ξ′| 6 M and x ∈ Ω. Since ∇u and ∇u∗ are uniformly bounded
(because of (14) and (37)), we use the above formula with ξ := ∇u∗ and ξ′ := ∇u to deduce
that (42) holds when p ∈ (1, 2) too.
Then, by (41) and (42),

V (n−1)/n
r 6 C Kq

∫
BR

A(x,∇u)−A(x,∇u∗) dx

− C Kq

∫
BR

a(x,∇u∗) · ∇(u− u∗) dx

+
C

Kq′

∫
BR∩{u−u∗<ε}

(u− u∗)q dx .

(43)
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We integrate by parts in (43), to get that

V (n−1)/n
r 6 C Kq

∫
BR

A(x,∇u)−A(x,∇u∗) dx

+ C Kq

∫
BR

div a(x,∇h) (u− u∗) dx

+
C

Kq′

∫
BR∩{u−u∗<ε}

(u− u∗)q dx .

Thus, we use the Q-minimality of u to obtain that

V (n−1)/n
r 6 CQKq

∫
BR

A(x,∇u∗) + F (x, u∗) dx

− C Kq

∫
BR

F (x, u) dx

+ C Kq

∫
BR

div a(x,∇h) (u− u∗) dx

+
C

Kq′

∫
BR∩{u−u∗<ε}

(u− u∗)q dx .

(44)

We now notice that

div a(x,∇h) 6 C |∇h|p−2(|∇h|+ |D2h|) ,

thanks to (5) and (6).
Such an estimate, (44) and (15) give that

V (n−1)/n
r 6 CQKq

∫
BR∩{h6u}

|∇h|p + F (x, h) dx

+ CQKq

∫
BR∩{u<h}

F (x, u) dx

− C Kq

∫
BR

F (x, u) dx

+ C Kq

∫
BR

|∇h|p−2(|∇h|+ |D2h|) (u− u∗) dx

+
C

Kq′

∫
BR∩{u−u∗<ε}

(u− u∗)q dx .
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This and (39) imply that

V (n−1)/n
r 6 CQKq

∫
BR∩{h6u}

|∇h|p + F (x, h) dx

+ CQKq

∫
BR∩{u<h}

F (x, u) dx

− C Kq

∫
BR

F (x, u) dx

+ C Kq

∫
BR

|∇h|p−2(|∇h|+ |D2h|) (u− u∗) dx

+
C

Kq′

∫
(BR−Br)∩{u−u∗<ε}∩{u>θ}

(u− u∗)q dx

+
C

Kq′

∫
BR∩{u−u∗<ε}∩{u6θ}

(u− u∗)q dx .

(45)

We now observe that

(46) CF (x, u) > (u− u∗)q

if u 6 θ. Indeed, if (10) holds (that is, if we are in case χ), then (46) is obvious; when, on
the other hand, we are in case W (i.e., if conditions (11), (12) and (13) hold), we note that,
if u 6 θ,

F (x, u) =
∫ u+1

0
Fu(x,−1 + s) ds >

1
C

(u + 1)d ,

thanks to (11), and so (46) follows from the fact that d 6 p 6 q.
Therefore, we gather from (45) and (46) that

Ar + V (n−1)/n
r 6 CQKq

∫
BR∩{h6u}

|∇h|p + F (x, h) dx

+ CQKq

∫
BR∩{u<h}

F (x, u) dx

+ C Kq

∫
BR

|∇h|p−2(|∇h|+ |D2h|) (u− u∗) dx

+ C

∫
(BR−Br)∩{u−u∗<ε}∩{u>θ}

(u− u∗)q dx ,

(47)

as long as K is chosen to be suitably large with respect to the structural constants. Such
a K will then be fixed once and for all, and it will be absorbed into the constants C from
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now on. The same will be done for the constant Q. Therefore, we obtain

Ar + V (n−1)/n
r 6 C (VR − Vr)

+ C

∫
BR∩{h6u}

|∇h|p + F (x, h) dx

+ C

∫
BR∩{u<h}

F (x, u) dx

+ C

∫
BR

|∇h|p−2(|∇h|+ |D2h|) (u− u∗) dx .

(48)

We now need to distinguish the cases χ and W in order to properly choose the barrier h.
That is, we need to distinguish the case in which condition (10) holds from the case in which
conditions (11), (12) and (13) hold.

5.1. The case χ. In this case, we are assuming condition (10), which implies that

Ar+1 −Ar =
∫

Br+1−Br

F (x, u) dx >
1
C
Ln
(
(Br+1 −Br) ∩ {|u| < 1}

)
and therefore

Ln
(
(Br+1 −Br) ∩ {u > −1}

)
6 C (Ar+1 −Ar) + Ln

(
(Br+1 −Br) ∩ {u = 1}

)
6 C (Ar+1 −Ar) + (Vr+1 − Vr) .

(49)

We now choose r := k ∈ N, R := r + 1 and h to be smooth and so that h(x) = −1 for
any x ∈ Br. In particular, h fulfills (37) and (38).
Then, we gather from (48) and (49) that

(50) Ak + V
(n−1)/n
k 6 C (Vk+1 + Ak+1 − Vk −Ak) .

Also, if k0 is the smallest integer greater than µ1, it follows from (16) that

(51) Ak0 + Vk0 > µ2 .

We now exploit Lemma 2.1 of [PV05a] (used here with α := 0, vk := Vk+k0−1 and ak :=
ak+k0−1), to deduce from (50) and (51) that Vk+k0−1 + Ak+k0−1 > γkn for any k ∈ N, for a
suitable γ > 0. Thence, by Lemma 10,

Vk+k0−1 > γkn − Ĉkn−1 >
γ

2
kn ,

as long as k > 2Ĉ/γ. Consequently,

Ln
(
{u > θ} ∩Br

)
>

γ

2n+1
rn ,

for any r > r0 := 2k0 + 2Ĉ/γ, which ends the proof of Theorem 1 in case χ. ♦
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5.2. The case W . This case is the one in which we assume conditions (11), (12) and (13).
By possibly replacing d with max{d, p} in (11), we may suppose that d = p. Then, from (11),

(52) C F (x, τ) > (τ + 1)p

if τ ∈ [−1, θ).
We let Θ > 0 be suitably small (with respect to the structural constants) and T (and, in
fact, ΘT ) suitably large (possibly in dependence of θ and Θ). Given k ∈ N, we take R :=
(k + 1)T , r := kT and then we choose h as done before (13.33) on page 183 of [Val04]. Such
a barrier satisfies

(53) (h + 1) + |∇h|+ |D2h| 6 C(h + 1) 6 Ce−ΘT (k+1−j)

in BjT −B(j−1)T , and

(54) |∇h|+ |D2h| 6 CΘ(h + 1)

in B(k+1)T . Then, the assumptions on h taken here on page 12 and, in particular (38), are
satisfied provided that ΘT is conveniently large.
Notice also that, since h > −1,

(55) u− h 6 (u− h) + (h + 1) = u + 1 .

We now estimate the contribution of the terms in (48) when u 6 θ. That is, we use (54),
(52), (13), (38), (12) and (55) to gather∫

B(k+1)T∩{h6u}∩{u6θ}

(
|∇h|p + F (x, h)

)
+

∫
B(k+1)T∩{u<h}∩{u6θ}

F (x, u)

+
∫

B(k+1)T∩{u6θ}

|∇h|p−2
(
|∇h|+ |D2h|

)
(u− u∗)

6 C
[ ∫
(B(k+1)T−BkT )∩{u6θ}

F (x, u)

+
∫

BkT∩{u6θ}

F (x, h) +
∫

B(k+1)T∩{h<u6θ}

(h + 1)p−1(u− h)
]

6 C
[
A(k+1)T −AkT + kn−1Tn

k∑
j=1

e−cΘT (k+1−j)

+
∫

(B(k+1)T−BkT )∩{h<u6θ}

(u + 1)p
]

6 C
[
A(k+1)T −AkT + kn−1Tne−cΘT

]
,

(56)

where c := min{d′, p− 1} > 0 and d′ is the quantity introduced in (12).
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We now estimate the contribution of the terms in (48) when u > θ. More precisely, we
use (54), (52), (13) and (12) to obtain that∫

B(k+1)T∩{h6u}∩{u>θ}

(
|∇h|p + F (x, h)

)
+

∫
B(k+1)T∩{u<h}∩{u>θ}

F (x, u)

+
∫

B(k+1)T∩{u>θ}

|∇h|p−2
(
|∇h|+ |D2h|

)
(u− u∗)

6 C
k+1∑
j=1

e−cΘT (k+1−j)(VjT − V(j−1)T ) .

(57)

By collecting the results in (48), (56) and (57), we see that

AkT + V
(n−1)/n
kT

6 C

A(k+1)T −AkT + kn−1Tne−cΘT +
k+1∑
j=1

e−cΘT (k+1−j)(VjT − V(j−1)T )

 ,
(58)

that is, (31) holds, by choosing Ak := AkT , ak := VkT − V(k−1)T , ε := CTne−cΘT and L :=
cΘT . The constant C in (58) is now fixed once and for all (and the quantity C in the
statement of Lemma 9 is assumed to agree with it). Of course, without loss of generality we
may suppose that

(59) C > max
{

1
µ2

, 2nn3
(
Ln(B1) + 1

)}
,

where µ2 is the quantity introduced in (16).
Note that (28) is satisfied, thanks to (26) and to the assumption that T is suitably large.
The facts that e−L > 0, C > 1 and (26) yield (27). Also,

ak = Ln
(
{u > θ} ∩ (BkT −B(k−1)T )

)
6 Ln

(
BkT −B(k−1)T

)
6 CTnkn−1 ,

due to (59), thus yielding (30). Also, (29) is a consequence of (16) and (59), by taking T > µ1.
Consequently, by Lemmata 9 and 10,

γTnkn 6
∫

BkT

F (x, u) dx + Ln
(
{u > θ} ∩BkT

)
6 ĈTn−1kn−1 + Ln

(
{u > θ} ∩BkT

)
,

for a suitable γ > 0. Thus, if kT > 2Ĉ/γ,

Ln
(
{u > θ} ∩BkT

)
>

γTn

2
kn .

Consequently, if r > r0 := T + 2Ĉ/γ,

Ln
(
{u > θ} ∩Br

)
>

γ

2n+1
rn ,

thus completing the proof of Theorem 1 in case W . ♦
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5.3. An alternative proof of Theorem 1. Following [Sav07], we would like to outline here
a different proof of Theorem 1.
Such proof uses the isoperimetric instead of the Sobolev inequality and does not use in-
tegration by parts (the latter fact makes it possible to weaken the regularity assumptions
on A).
To this end, we point out the following modification of Lemma 9:

Lemma 12. Let Ak and Vk be two sequences of non-negative real numbers, for k = 1, 2, . . . ,
and suppose that there exist positive quantities C and ε in such a way that

(60) Vk > 1/C

and

(61) V(n−1)/n
k+1 +Ak+1 6 C

(
(Vk+1 − Vk) + (Ak+1 −Ak) + εkn−1

)
for any k = 1, 2, . . . . Let

(62) c := min

 1
C

,
1(

2C(n + 1)!
)n

 .

Suppose that

ε 6 min

{
c

4C
,

c(n−1)/n( n
√

2− 1)
2C

}
.

Then,

(63) Ak + Vk > ckn

for any k > 4C(n + 1)!.

Proof. We adapt the argument on page 8 of [CC95]. The proof is by induction. First, we
set k0 := 4C(n + 1)! and we note that

Ak0 + Vk0 > Vk0 >
1
C

> c ,

due to (60) and (62).
Then, we assume (63) to hold for some k > k0 and we prove it for k + 1.
For this scope, we set

λ := min
{

k0

4C
,

1
2Cc1/n

}
and we observe that λ > (n + 1)! by construction, thus

(k + 1)n 6 kn +
n−1∑
j=0

n! kj

6 kn + (n + 1)! kn−1

6 kn + λkn−1 .

(64)

In order to prove (63) for k + 1, we observe that the inductive hypothesis implies that
either Ak > (c/2)kn or Vk > (c/2)kn.
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In the first case, (61) gives that

Ak+1 + Vk+1 > ckn +
c

2C
kn − εkn−1

>

(
c +

c

2
− ε

k0

)
kn

>
(
c +

c

4C

)
kn

> c(kn + λkn−1) .

Then, (63) for k + 1 follows in this case from (64).
We now deal with the case in which Vk > (c/2)kn. We use (61) to obtain that

Ak+1 + Vk+1 > ckn +
1
C

( c

2

)(n−1)/n
kn−1 − εkn−1

> ckn +
c(n−1)/n

2C
kn−1

> c(kn + λkn−1) .

Thence, the use of (64) gives (63) for k + 1 in this case too. �

We are now ready for the alternative proof of Theorem 1. For this proof, we will make the
further assumption that

(65) Λ−1(τ + 1)p 6 F (x, τ) 6 Λ(τ + 1)p

when τ ∈ [−1, θ], provided that θ is sufficiently close to −1.
Note that such assumption is compatible, but slightly stronger1 than (10) or (11).
We also denote

F (τ) := inf
x∈Ω

F (x, τ) and F (τ) := sup
x∈Ω

F (x, τ) .

We set

S(τ) := min {(τ + 1)p, 1} , for any τ ∈ R and

vk(x) := 2e|x|−(k+1)T − 1 , for any x ∈ B(k+1)T ⊂ Ω, k ∈ N
and we deduce from (65) that

|∇vk(x)|p =(2e|x|−(k+1)T )p

=(vk(x) + 1)p

6 const S(vk(x)) ,

(66)

that

(67) F (τ) 6 const S(τ)

for any τ ∈ R, and that

(68) F (τ) > const (τ + 1)p = constS(τ)

1 For instance,
F (x, τ) := cos2 x(1− τ2)2 + (1− cos2 x)(1− |τ |)χ(−1,1)(τ)

fulfills the assumptions of case W with p := d := 2 and d′ := 1 but it does not satisfy (65).
It is also worth to point out that our first proof of Theorem 1 only uses the Q-minimality on balls (namely,

a spherical Q-minimality: see Lemma 10 and (44)), while this alternative proof exploits the Q-minimality on
a larger family of sets, which includes balls and the level sets of u (see (69)).



GEOMETRY OF QUASIMINIMAL PHASE TRANSITIONS 21

when τ ∈ [−1, θ].
By (5), (66) and (67), since u is Q-minimal in {u > vk}, we have

∫
{u>vk}

A(x,∇u) + F (u) dx

6
∫
{u>vk}

A(x,∇u) + F (x, u) dx

6 Q

∫
{u>vk}

A(x,∇vk) + F (x, vk) dx

6 const
∫
{u>vk}

|∇vk|p + F (vk) dx

6 const
∫
{u>vk}

S(vk) dx .

(69)

Moreover, given any Lipschitz function w on a measurable set U ⊆ Rn with image in [−1, 1],
we have

∫
U

A(x,∇w) + F (w) dx > const
∫

U
|∇w|p + F (w) dx

> const
∫

U
|∇w|

(
F (w)

)(p−1)/p
dx

=const
∫ 1

−1

(
F (τ)

)(p−1)/p
Hn−1

(
U ∩ {w = τ}

)
dτ ,

(70)

due to (7), Young inequality and coarea formula.
Also,

BkT ∩ {u > θ} ⊆ {x ∈ BkT s.t. u(x) > τ > vk(x)}

for any τ ∈ [(θ − 1)/2, θ] as long as the free parameter T is chosen large enough.
We now employ the latter formula and the isoperimetric inequality to obtain

(
Ln(BkT ∩ {u > θ})

)(n−1)/n
6
(
Ln({u > τ > vk})

)(n−1)/n

6 const
(
Hn−1({u > vk} ∩ {u = τ}) +Hn−1({u > vk} ∩ {vk = τ})

)
,

for any τ ∈ [(θ − 1)/2, θ].
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Accordingly, making use of (70), (66), (67) and (69),(
Ln(BkT ∩ {u > θ})

)(n−1)/n

6 const
∫ θ

(θ−1)/2

(
F (τ)

)(p−1)/p
dτ
(
Ln(BkT ∩ {u > θ})

)(n−1)/n

6 const
∫ 1

−1

(
F (τ)

)(p−1)/p(
Hn−1({u > vk} ∩ {u = τ})

+Hn−1({u > vk} ∩ {vk = τ})
)

dτ

6 const

(∫
{u>vk}

A(x,∇u) + F (u) dx +
∫
{u>vk}

A(x,∇vk) + F (vk) dx

)

6 const
∫
{u>vk}

S(vk) dx

(71)

We now set

`1 = `1(k) :=
∫

BkT

S(vk) dx

and `2 = `2(k) :=
∫
{u>vk}∩(B(k+1)T−BkT )

S(vk) dx .

Then, (71) becomes

(72)
(
Ln(BkT ∩ {u > θ})

)(n−1)/n
6 const (`1 + `2) .

Moreover, fixed a small ε > 0, we have

`1 =
∫

BkT

(vk + 1)p dx

6 const
∫ kT

0
rn−1ep(r−(k+1)T ) dr

6 const (kT )n−1e−p(k+1)T

∫ kT

0
epr dr

= const (kT )n−1e−pT

6 εkn−1 ,

(73)

provided that T is sufficiently large, possibly in dependence of ε.
Furthermore, since S is increasing near −1 and bounded,

`2 =
∫
{θ>u>vk}∩(B(k+1)T−BkT )

S(vk) dx +
∫
{u>θ}∩{u>vk}∩(B(k+1)T−BkT )

S(vk) dx

6
∫
{θ>u>vk}∩(B(k+1)T−BkT )

S(u) dx + Ln
(
{u > θ} ∩ (B(k+1)T −BkT )

)
.

(74)
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Analogously, using also (68) and (69), we get∫
BkT∩{u6θ}

S(u) dx 6
∫

BkT∩{θ>u>vk}
S(u) dx +

∫
BkT∩{u6vk}

S(vk) dx

6 const
∫
{u>vk}

F (u) dx +
∫

BkT

S(vk) dx

6 const
∫
{u>vk}

S(vk) dx +
∫

BkT

S(vk) dx

6 const (`1 + `2) .

(75)

We now take Vr as in (36) and we define

Ãr :=
∫

Br∩{u6θ}
S(u) dx .

By collecting the estimates in (72), (75), (73) and (74), we conclude that

ÃkT + V
(n−1)/n
kT 6 const (`1 + `2)

6 const
[ ∫

{θ>u>vk}∩(B(k+1)T−BkT )
S(u) dx

+Ln
(
{u > θ} ∩ (B(k+1)T −BkT )

)
+ εkn−1

]
6 const

(
(V(k+1)T − VkT ) + (Ã(k+1)T − ÃkT ) + εkn−1

)
.

Therefore, by Lemma 12,
ÃkT + VkT > const Tnkn

as long as k is large enough.
Since, by (68) and Lemma 10,

Ãr 6 const
∫

Br∩{u6θ}
F (x, u) dx 6 const rn−1

for any r > 1, we conclude that Vr > const rn for any r suitably large, as desired. ♦

6. Proof of Corollary 2

We will need the following auxiliary result, the proof of which follows from Theorem 1,
Lemma 10, and the argument on pages 1066–1067 of [PV05a]:

Corollary 13. Fix θ ∈ (0, 1). Let u be a Q-minimum for F in Ω. Suppose that |u| 6 1 and

(76) |∇u(x)| 6 M0 ,

for a.e. x ∈ Ω, that

(77) A(x,∇u(x)) 6 M0 F (x, u(x)) ,

for a.e. x ∈ Ω ∩ {|u| < 1}, for some M0 > 0. Let x ∈ {−θ < u < θ} and y ∈ Ω. Then, there
exist positive r0, c and C, depending only on n, Q, θ, M0 and the structural constants, such
that:

Ln
(
Br(x) ∩ {u > θ}

)
> c rn , Ln

(
Br(x) ∩ {u < −θ}

)
> c rn

Ln
(
Br(x) ∩ {|u| < θ}

)
> c rn−1 and Ln

(
Br(y) ∩ {|u| < θ}

)
6 C rn−1,
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for any r > r0, provided that Br(x), Br(y) ⊂ Ω.

We now focus on the proof of Corollary 2. First of all, we deal with the L1
loc-convergence

of uε. The argument we perform for this is, up to now, quite standard (see, e.g., [Mod87]).
For τ ∈ [−1, 1], we define

Φ(τ, x) :=
∫ τ

0

(
F (x, ξ)

)1/p′

dξ ,

where p′ := p/(p − 1) is the conjugated exponent of p. Then, for any fixed x ∈ Ω, the
map [−1, 1] 3 τ 7→ Φ(τ, x) is strictly increasing, because of (8), and so we denote by Ψ(·, x)
its inverse function.
We define vε(x) := Φ(uε(x), x). Then,

(78) |vε| 6 2

(
sup

x∈Ω, |ξ|61
F (x, ξ)

)1/p′

< +∞ ,

thanks to (18) and (8). Moreover, by the Young inequality, (17) and (21), given a ball B ⊂ Ω,
we have that

(79)
∫

B
|∇vε| dx 6

∫
B

(F (x, uε))1/p′ |∇uε| dx + CLn(B) 6 Fε
Ω(u) + CLn(B) < +∞ ,

for a suitable C > 0.
The estimates in (78) and (79), together with the Rellich-Kondrashov Theorem, imply that vε

converges, up to subsequences, in L1
loc and so a.e., to a suitable v0.

We let u0(x) := Ψ(v0(x), x) and we consider a ball B ⊂ Ω. Note that uε(x) := Ψ(vε(x), x)
converges a.e. to v0. Thus, we use (18) and the Dominated Convergence Theorem to deduce
that

lim
ε→0

∫
B
|uε − u0| dx = 0 ,

which gives the L1
loc-convergence of uε.

We now show that the limit function u0 is a step function, i.e., that it takes only the values 1
and −1. Indeed, by the Fatou’s Lemma and (21),∫

Ω
F (x, u0) dx 6 lim inf

ε→0

∫
Ω

F (x, uε) dx 6 lim inf
ε→0

εFε
Ω(uε) = 0 .

Accordingly, F (x, u0) = 0 and so |u0| = 1, as desired.
The locally uniform convergence of the (sub)level sets of uε follows now by a standard ar-
gument (see, e.g., page 69 of [PV05b]), which we repeat here for the reader’s convenience.
If the locally uniform convergence of the (sub)level sets of uε were false, there would exist
some d > 0, an infinitesimal sequence εk, and a sequence of points xk contained in a compact
subset of Ω such that |uεk

(xk)| < θ and in such a way that Bd(xk) is always contained either
in E on in Ω− E. Say, for definiteness, that Bd(xk) ⊆ E. Then,

(80) u0(x) = 1 for any x ∈ Bd(xk).

We set wε(x) := uε(εx). Note that (76) and (77) for wε hold because of (19) and (20), and
that |wεk

(xk/εk)| < θ. Also, by a direct computation, one sees that wε is a Q-minimum of
the functional

Gε
Ω/ε(w) :=

∫
Ω/ε

A(εx,∇w) + F (εx,w) dx ,
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where Ω/ε := {x/ε, x ∈ Ω}. We remark that the structural constants of Gε agree with the
ones of F , since conditions (3)–(13) are uniform in x.
Accordingly, by Corollary 13,

cρn 6 Ln
(
Bρ(xk/εk) ∩ {wεk

< −θ}
)

=
1
εn
k

Ln
(
Bεkρ(xk) ∩ {uεk

< −θ}
)

,

for some c > 0, as long as ρ > r0, and therefore

Ln
(
Bd(xk) ∩ {uεk

< −θ}
)

> cdn ,

if εk is small enough.
Consequently, using also (80),∫

Bd(xk)

|u0 − uεk
| >

∫
Bd(xk)∩{uεk

<−θ}

|u0 − uεk
| > cdn (1 + θ)

in contradiction with the L1
loc-convergence of uε.

This ends the proof of Corollary 2. ♦

7. Proof of Corollaries 3 and 4

Conditions (17) and (18) in2 Corollary 2 hold true under the hypotheses of Corollaries 3
and 4. Conditions (19) and (20) are assured by (23) and the results in [Tol84] and [CGS94],
respectively. A scaling argument and Lemma 10 imply (21). Therefore, we are able to apply
Corollary 2.
Moreover, one easily sees that condition (2.1) in [SV05] is satisfied by u, thanks to Corollary 13
(full details on how to check such a condition are also given in the proof of Corollary 9.2
of [SV05]). Then, the claim of Corollary 3 (resp., Corollary 4) follows from Corollary 2 here
and from Theorem 2.1 in [SV05] (resp., Lemma 6.6 in [SV05]). ♦

2Self-contained proofs of Corollaries 3–7 would be extremely lengthy, since they rely on results and tech-
niques of [Sav03, SV05, VSS06]. Therefore, we will prove Corollaries 2–7 by referring to the existing literature
when possible, and by giving explicit reference on where and how the proofs already available need to be
modified.

Flushing out many details, we may say that Corollaries 3 and 4 follow by contradiction, assuming that a
level set of a solution is touched, say, from below by a “too convex” paraboloid and then constructing suitable
supersolutions which end up touching the solution from above (indeed, a “rotational” supersolution takes
care of the “sides” of the solution, while a “one-dimensional” supersolution controls the “main body” of the
solutions: we refer to [Sav03, SV05] for full details).

Roughly speaking, Corollary 5 is a consequence of the following heuristics. If we touch our solution with
a “suitably flat” barrier at “many” points (some delicate measure estimates on the contact points would be
needed to make the argument work!), then, by elliptic estimates, we see that our solution and the barrier
are “quite often” close to each other. Therefore if, arguing by contradiction, a level set oscillated too much,
say, in the “vertical” direction, such a level set would overlap a lot also in its “horizontal” direction. These
overlapping would give a “too large” contribution to the area of the limiting surface (see [Sav03, VSS06] for
full details).

Then, Corollary 6 follows by compactness from Corollaries 3 and 5. Finally, Corollary 7 follows by a
blow-up argument based on Corollary 6.
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8. Proof of Corollary 5

The proof is a modification of the one of Theorem 1.1 in [VSS06], according to the following
observations. First of all, Lemma 2.23 of [VSS06], which is stated there for minimizers, does
hold for quasiminima (indeed, one just uses Corollary 13 of the present paper instead of
Theorem 1.1 of [PV05a] to go through the proof of Lemma 2.23 of [VSS06]).
Consequently, Corollary 2.24 of [VSS06] also holds for quasiminima.
Moreover, Lemma 5.1 of [VSS06] holds for quasiminima too (indeed, its proof uses Lemma 2.23
of [VSS06], which we have just shown to hold for quasiminima).
As a consequence, Proposition 5.2 of [VSS06] holds for quasiminima.
The proof of Corollary 5 here is now the same as the one of Theorem 1.1 of [VSS06] (as given
on pages 61–67 there). Indeed, the proof of Theorem 1.1 of [VSS06] uses Lemma 5.1, Propo-
sition 5.2 and Corollary 2.24 there (which have just been shown to hold for quasiminima) and
the results of [Bou90, PV05a] (which are combined with Corollary 13 here: see Remark 14
below for further details).
We recall indeed that the convergence of uε is warranted here by Corollary 2. The constant κ0

here is then proportional to the constant c3 in [VSS06]. ♦

Remark 14. In the proof of Corollary 5 that we have outlined a somewhat delicate point is
to check an upper bound3 on the energy analogous to (6.16) of [VSS06].
Though the arguments involved are basically the same as in [Sav03, VSS06], we provide here
further details for the reader’s facility.
If the thesis of Corollary 5 is satisfied, we are done. If not, there must esist θ0 > 0 and
sequences u(k), `(k) and θ(k) fulfilling the assumptions of Corollary 5 but not its thesis.
Note that the assumptions of Corollary 5 say that `(k) −→ +∞, θ(k)/`(k) −→ 0, θ(k) > θ0

and that

(81) {u(k) = 0} ∩ {|x′| < `(k) , |xn| < `(k)} ⊆ {|xn| < θ(k)} .

Also, from Corollary 13, there exists a universal r0 in such a way that, if u(k)(x̄) ∈ (−1/2, 1/2)
then both Br0(x̄) ∩ {u > 1/2} and Br0(x̄) ∩ {u 6 −1/2} have positive measure.
We let ε(k) := 2/`(k) and uk(x) := u(k)(x/ε(k)). Then, uk is (1 + κ)-minimal for Fε(k)

Ω in any
domain Ω ⊂ Rn.
Thus, we denote by E the set obtained, up to subsequences, from uk via Corollary 2.
Hence, we can suppose that

(82) lim
k−→+∞

uk(x) = χE(x)− χC2−E(x)

in L1(C2) and for a.e. x ∈ C2, where we denote

Cr := {|x′| < r, |xn| < r} .

We now show that, for any fixed k,

(83) if (x′, xn) ∈ C1, |xn| > 0 and ε(k) < min
{

1
r0

,
|xn|

θ(k) + r0

}
, then |uk(x′, xn)| > 1/2.

3 As mentioned above, the energy lower bound, corresponding to (6.15) in [VSS06], is obtained here from
the density estimate of Corollary 13.

The bounds obtained in this way are uniform in Q, once we fix, say, Q 6 100. In particular, the constant c3

of [VSS06] does not depend on κ in our context.
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Indeed, take a point x̄ ∈ C1 such that |x̄n| > 0 and |uk(x̄)| < 1/2, and suppose ε(k) < 1/r0.
Then, |u(k)(ȳ)| < 1/2, where ȳ := x̄/ε(k) and so, by our assumption on r0, there must be a
point ξ ∈ Br0(ȳ) such that u(k)(ξ) = 0.
But then

|ξ′| 6 |ȳ′|+ r0 =
∣∣∣∣ x̄′

ε(k)

∣∣∣∣+ r0 <
1

ε(k)
+ r0 <

2
ε(k)

= `(k)

and analogously |ξn| < `(k).
So, by (81),

θ(k) > |ξn| > |ȳn| − r0 =
∣∣∣ x̄n

ε(k)

∣∣∣− r0 .

As a consequence, ε(k) > |x̄n|/(r0 + θ(k)), proving (83).
Observe that, fixed any |xn| > 0, we have that εk < |xn|/(θ(k) + r0) as soon as k is large
enough, possibly in dependence of |xn|, because of our assumptions on `(k) and θ(k).
Thus, from (82) and (83), if x ∈ C1 and |xn| > 0, we have that

|χE(x)− χC1−E(x)| > 1/2 ,

that is
|χE(x)− χC1−E(x)| = 1 .

Consequently,

(84) ∂E ∩ {|x′| < 1, |xn| < 1} ⊆ {xn = 0} .

Moreover, by Proposition 17, possibly taking subsequences, we have that

lim
k−→+∞

Fε(k)

C1
(uk) 6 (1 + κ) Per (E,C1)

∫ 1

−1

( p

p− 1
(1− τ2)p

)(p−1)/p
dτ + C]κ ,

for a suitable universal C] > 0.
Then, (84) yields

lim
k−→+∞

Fε(k)

C1
(uk) 6 Ln−1(B1)

∫ 1

−1

( p

p− 1
(1− τ2)p

)(p−1)/p
dτ + C\κ ,

for an appropriate universal constant C\ > 0.
This is the estimate needed here in the proof of Corollary 5 in lieu of (6.16) of [VSS06].
Indeed, when κ is small, the constant c3 in [VSS06] dominates the term C\κ, leading to the
desired contradiction.

9. Proof of Corollary 6

The proof is the same as the one of Theorem 1.2 of [VSS06], as given on pages 69–73 there.
The only difference is that the use of Theorem 1.1 of [VSS06] (resp., Lemma 9.3 of [SV05])
is replaced by the use of Corollary 5 (resp., Corollary 3) here. ♦

10. Proof of Corollary 7

We note that Lemma 8.1 of [VSS06] holds for quasiminima, since its proof uses Theorem 1.2
of [VSS06] which may be replaced by Corollary 6 here. Then, the desired result follows by
repeating verbatim the argument on page 77 of [VSS06]. ♦
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Appendix A. A bit of Γ-convergence for quasiminima

The scope of this appendix is to highlight some features of the quasiminima that are employed
in Remark 14. The observations presented here are modifications of standard Γ-convergence
techniques.
In this appendix, we set F (τ) := (1 − τ2)p (more general double-well potential could be
treated analogously).
Here, εk will always be an infinitesimal sequence and uk a Q-minimum (with Q > 1) for the
functional4

Fεk
Ω (u) =

∫
Ω

εp−1
k

p
|∇u|p +

1
εk

F (u) dx

in any subdomain of the bounded domain Ω, with

sup
k

sup
Ω
|uk| 6 1 and sup

k
sup
Ω

(εk|∇uk|) < +∞ .

In the light of Corollary 2, possibly replacing Ω with a slightly smaller domain, we will
suppose here that uk converges in L1(Ω) and a.e. in Ω to the step function χE − χΩ−E .
The main scope of this appendix will be to relate the limiting functional with the perimeter
of E (see Proposition 17 below).
We denote

(85) c? :=
∫ 1

−1

(
p

p− 1
F (τ)

)(p−1)/p

dτ

and, given a set S ⊆ Rn and ρ > 0,

=ρ(S) := {x ∈ Rn s.t. ∃σ ∈ S s.t. |x− σ| < ρ} .

In the course of the proofs, we will make use of the signed distance function d∂S from ∂S,
for the regularity property of which we refer to Appendix B in [Giu84]. Our sign convention
will be that d∂S < 0 in S.
First, we point out an extension result:

Lemma 15. Let B bC bA be bounded open subsets of Rn, αk ∈ L1(A, [−1, 1]), βk ∈
L1(C, [−1, 1]) such that

(86) αk − βk −→ 0 in L1(C −B).

Suppose that

(87) sup
k

(
Fεk

C−B(αk) + Fεk
C−B(βk)

)
< +∞ .

Then, fixed any δ > 0, there exists a sequence γk ∈ L1(A) such that γk(x) = αk(x) for
any x ∈ A− C, γk(x) = βk(x) for any x ∈ B and

(88) Fεk
A (γk) 6 Fεk

A−B(αk) + Fεk
C (βk) + δ ,

as long as k is large enough.

Proof. By (87), there exists C̃ > 0 such that

Fεk
C−B(αk) + Fεk

C−B(βk) 6 C̃ .

4The case Q = 1 is known, but may be also recovered by a limit argument from the results we present.
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In view of (86), we also consider the infinitesimal sequence

ε̃k :=
∫

C−B
|αk − βk| dx .

By our assumption, there exists ρ > 0 in such a way that

=ρ(B) ⊂ C .

We take c ∈ (0, ρ) and we take k so large that εk 6 c/2.
We now fix k and for any integer i ∈ [0, c/(2εk)] we set

Bi,k :=
{

x ∈ A s.t. d∂B(x) ∈ (iεk, (i + 1)εk]
}

.

By construction,
Bi,k ⊆ =ρ(B) ⊂ C

so
Bi,k ⊆ {d∂B > 0} ∩ C ⊆ C −B .

Therefore, ∑
06i6c/(2εk)

(
εk

(
Fεk

Bi,k
(αk) + Fεk

Bi,k
(βk)

)
+
∫

Bi,k

|αk − βk| dx

)

6 εk

(
Fεk

C−B(αk) + Fεk
C−B(βk)

)
+
∫

C−B
|αk − βk| dx

6 C̃εk + ε̃k .

Consequently, there must exist an integer i0 ∈ [0, c/(2εk)] such that

(89) εk

(
Fεk

Bi0,k
(αk) + Fεk

Bi0,k
(βk)

)
+
∫

Bi0,k

|αk − βk| dx 6
4εk(C̃εk + ε̃k)

c
.

We now take ηk ∈ C∞
0 (A), with 0 6 ηk 6 1, ηk(x) = 1 for any x ∈ D̃1 := {d∂B 6 i0εk},

ηk(x) = 0 for any x ∈ D̃2 := {d∂B > (i0 + 1)εk}, and |∇ηk| 6 2/εk.
We observe that

(90) B ⊆ {d∂B 6 0} ⊆ D̃1 ⊆ =ρ(B) ⊆ C

and

(91) A− C ⊆ A−=ρ(B) ⊆ D̃2 ⊆ {d∂B > 0} ⊆ A−B .

We define
γk := (1− ηk)αk + ηkβk .

By construction, γk(x) = βk(x) for any x ∈ D̃1, thus, a fortiori, recalling (90), for any x ∈ B.
Analogously, γk(x) = αk(x) for any x ∈ D̃2 and so, a fortiori, recalling (91), for any x ∈ A−C.
Thus, in order to prove Lemma 15, it only remains to check (88).
To this end, we observe that, since F is Lipschitz,

F (γk) 6 F (αk) + C |αk − βk|
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for a suitable universal C > 0. Also,

|∇γk|p 6

(
|∇αk|+ |∇βk|+

2
εk
|αk − βk|

)p

6 8p

(
|∇αk|p + |∇βk|p +

1
εp
k

|αk − βk|p
)

6 16p

(
|∇αk|p + |∇βk|p +

1
εp
k

|αk − βk|
)

.

Therefore, if C ′ := (C + 16p)p,

Fεk
Bi0,k

(γk) 6 C ′

(
Fεk

Bi0,k
(αk) + Fεk

Bi0,k
(βk) +

1
εk

∫
Bi0,k

|αk − βk| dx

)
.

As a consequence, recalling (90) and (91),

Fεk
A (γk) = Fεk

D̃1
(γk) + Fεk

D̃2
(γk) + Fεk

Bi0,k
(γk)

= Fεk

D̃1
(βk) + Fεk

D̃2
(αk) + Fεk

Bi0,k
(γk)

6 Fεk
C (βk) + Fεk

A−B(αk) +

+C ′

(
Fεk

Bi0,k
(αk) + Fεk

Bi0,k
(βk) +

1
εk

∫
Bi0,k

|αk − βk| dx

)
.

The latter estimate and (89) imply (88). �

Lemma 16. Let U be open, U bΩ. Then, there exists C(U,Ω) such that

lim sup
k−→+∞

Fεk
U (uk) 6 QC(U,Ω) .

Proof. By construction, there exists an open domain D with smooth boundary such that

U bD bΩ .

We define
F̃ (τ) := max{F (τ), F (±1/2)}χ(−1,1)(τ)

and, for any s ∈ [−1, 1],

H̃(s) :=
∫ s

0

1(
pF̃ (τ)

)1/p
dτ .

Since H̃ is invertible, we may invert it and extend its inverse function, according to the
following definition:

g̃(t) :=


1 if t > H̃(1),

H̃−1(t) if H̃(−1) < t < H̃(1),
−1 if t 6 H̃(−1).

Note that

(92)
1
p

(
g̃′(t)

)p
= F̃ (g̃(t))

for any t 6∈ {H̃(−1), H̃(1)}.
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We now define vk(x) := g̃(d∂D(x)/εk). Then, (92) implies that

εp−1
k

p
|∇vk|p =

1
εk

F̃ (vk) ,

that is

(93)
εp−1
k

p
|∇vk|p +

1
εk

F̃ (vk) =
2

p1/p

(
F̃ (vk)

)(p−1)/p
|∇vk| .

Moreover, for any s ∈ (−1, 1),

{vk > s} = {d∂D > εkH̃(s)} .

Therefore, since D has a smooth boundary,

(94) Per ({vk > s},Ω) 6 Per (D,Ω) + ε̃k

with ε̃k infinitesimal.
We now use (93), the coarea formula and (94) to conclude that

Fεk
Ω (vk) 6

∫
Ω

εp−1
k

p
|∇vk(x)|p +

1
εk

F̃ (vk(x)) dx

=
∫

Ω

2
p1/p

(
F̃ (vk(x))

)(p−1)/p
|∇vk(x)| dx

=
∫ 1

−1

2
p1/p

(
F̃ (s)

)(p−1)/p
Per ({vk > s},Ω) ds

6
(
Per (D,Ω) + ε̃k

) ∫ 1

−1

2
p1/p

(
F̃ (s)

)(p−1)/p
ds .

Therefore, the claim of Lemma 16 is proved if we show that

(95) Fεk
U (uk) 6 QFεk

Ω (vk) .

For this, we observe that vk = −1 in U and vk = 1 near ∂Ω, if k is large, thence the Q-
minimality of uk yields that

Fεk
U (uk) 6 Fεk

{uk>vk}(uk) 6 QFεk

{uk>vk}(vk) 6 QFεk
Ω (vk) .

This proves (95) and thus Lemma 16. �

Next result extends to the Q-minimal setting a well known feature of the case Q = 1.

Proposition 17. Suppose that E has smooth boundary. Let Ω′ be an open set with Lipschitz
boundary, with Ω′ bΩ. Then, there exists C(Ω′,Ω) such that

(96) lim sup
k−→+∞

Fεk
Ω′ (uk) 6 Qc? Per (E,Ω′) + (Q− 1) QC(Ω′,Ω) ,

where c? is as defined in (85).

Proof. We take a subsequence, still denoted by uk for simplicity, such that

(97) Fεk
Ω′ (uk) converges to the lim sup in (96) as k −→ +∞.

Let Ω′′′ be an open set with smooth boundary such that

Ω′ bΩ′′′ bΩ .
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In the course of this proof, Ω′′′ is fixed now, independently on k, therefore

constants depending on Ω′′′ may be seen as

depending only on Ω′ and Ω.
(98)

We now make the following observation: if Ω′
k is a sequence of open sets with smooth boundary

decreasing towards Ω′, using that ∂E is smooth and standard limit properties of the measures
(see, e.g., Theorem (3.26.ii) in [WZ77]), we have that

lim
k→+∞

Per (E,Ω′
k) = lim

k→+∞
Hn−1(∂E ∩ Ω′

k)

= Hn−1(∂E ∩ Ω′)
= Per (E,Ω′) .

Whereupon, we may fix an open set Ω′′ with smooth boundary such that

Ω′ bΩ′′ bΩ′′′

and take Ω′′ so close to Ω′ that

(99) Per (E,Ω′′) 6 Per (E,Ω′) +
Q− 1

c?
.

Notice that
Ω′ bΩ′′ bΩ′′′ bΩ .

From the Γ-convergence of Fεk (see [Bou90]), we know that there exists a sequence vk ∈
L1(Ω′′) such that

(100) vkj
converges to χE − χΩ′′−E in L1(Ω′′),

and

(101) lim
j−→+∞

F
εkj

Ω′′ (vkj
) = c? Per (E,Ω′′) .

Observe that (99) and (101) yield

(102) lim
j−→+∞

F
εkj

Ω′′ (vkj
) 6 c? Per (E,Ω′) + (Q− 1) .

We now take A := Ω′′′, B := Ω′ and C := Ω′′. Then, by (100), ukj
− vkj

is infinitesimal
in L1(C −B).
Also,

sup
j

(
F

εkj

Ω′′ (ukj
) + F

εkj

Ω′′ (vkj
)
)

< +∞ ,

due to Lemma 16 and (101).
Then, fixed

(103) δ := Q− 1 > 0 ,

we can apply Lemma 15 and obtain a sequence γkj
that agrees with ukj

in Ω′′′ − Ω′′ and
with vkj

in Ω′, and satisfying, for large j, that

(104) F
εkj

Ω′′′(γkj
) 6 F

εkj

Ω′′′−Ω′(ukj
) + F

εkj

Ω′′ (vkj
) + δ .

Since γkj
and ukj

agree on ∂Ω′′′, we also have that

F
εkj

Ω′′′−Ω′(ukj
) + F

εkj

Ω′ (ukj
) = F

εkj

Ω′′′(ukj
) 6 QF

εkj

Ω′′′(γkj
) ,
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and so

(105) F
εkj

Ω′ (ukj
) 6 QF

εkj

Ω′′′(γkj
)−F

εkj

Ω′′′−Ω′(ukj
) .

By collecting the estimates in (104) and (105), we get that

F
εkj

Ω′ (ukj
) 6 Q

(
F

εkj

Ω′′′−Ω′(ukj
) + F

εkj

Ω′′ (vkj
) + δ

)
−F

εkj

Ω′′′−Ω′(ukj
)

= QF
εkj

Ω′′ (vkj
) + (Q− 1)F

εkj

Ω′′′−Ω′(ukj
) + Qδ .

Therefore, from Lemma 16,

F
εkj

Ω′ (ukj
) 6 QF

εkj

Ω′′ (vkj
) + (Q− 1) QC(Ω′′′,Ω) + Qδ .

By sending j −→ +∞ and recalling (102) and (103), we thus conclude that

lim
j−→+∞

F
εkj

Ω′ (ukj
) 6 Qc? Per (E,Ω′) + (Q− 1) Q

(
C(Ω′′′,Ω) + 1

)
.

The desired claim then follows from (97) and (98). �
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[CC95] Luis A. Caffarelli and Antonio Córdoba. Uniform convergence of a singular perturbation problem.
Comm. Pure Appl. Math., 48(1):1–12, 1995.

[CGS94] Luis Caffarelli, Nicola Garofalo, and Fausto Segàla. A gradient bound for entire solutions of quasi-
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