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Abstract

Given a double-well potential F , a Z
n-periodic function H, small and with zero average,

and ε > 0, we find a large R, a small δ and a function Hε which is ε-close to H for which the
following two problems have solutions:

1. Find a set Eε,R whose boundary is uniformly close to ∂BR and has mean curvature equal
to −Hε at any point,

2. Find u = uε,R,δ solving

−δ∆u+
F ′(u)

δ
+
c0
2
Hε = 0,

such that uε,R,δ goes from a δ-neighborhood of +1 in BR to a δ-neighborhood of −1
outside BR.
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1 Introduction and main result

In this paper we deal with entire solutions of the elliptic equation

−∆u+ F ′(u) +H(x) = 0, x ∈ R
n, (1.1)

where the smooth function F is a double-well potential.
More precisely, we shall assume that

• F (t) ≥ 0 for any t ∈ R,

• F (t) = 0 if and only if t = ±1,

• there exist positive constants s0 and c such that F ′(−1 − s) ≤ −c and F ′(1 + s) ≥ c for
any s ≥ s0,

• F (−1 + s) = F (1 + s) and F ′′(1 + s) > 0 for any s ∈ [−s0, s0].

The function H ∈ C2(Rn) in (1.1) will be a small periodic perturbation of the operator. To this
extent, we suppose that

• ‖H‖L∞(Rn) is suitably small,
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• H is Z
n-periodic, with zero average on [0, 1]n, that is

H(x+ k) = H(x) ∀x ∈ R
n and k ∈ Z

n

and

∫

[0,1]n
H(x) dx = 0 .

(1.2)

Notice that (1.1) is the Euler-Lagrange equation of the functional

∫

Rn

|∇u|2
2

+ F (u) +H(x)u dx. (1.3)

The functional in (1.3) has been considered in [DLN06, NV07, NV09a] as a mesoscopic model for
phase transitions (see also [DY06, DYC08] for the analysis of the gradient flow of (1.3)).
When H = 0, (1.1) is called the Ginzburg-Landau or Allen-Cahn equation, which is a popular
model for superconductors and superfluids. The term H may be seen as a small defect which
favors locally one of the phases: condition (1.2) then says that such defect is “neutral” on large
scales, in the sense that both the phases are equally treated.
In [NV07], minimizers of (1.3) have been dealt with. We say that u ∈W 1,2

loc (Rn) is a minimizer if

∫

U

|∇u|2
2

+ F (u) +H(x)u dx

≤
∫

U

|∇(u+ ψ)|2
2

+ F (u+ ψ) +H(x)(u+ ψ) dx

(1.4)

for any ψ ∈ C∞
0 (U) and any bounded domain U (minimizers of this type are often called “local”,

or “class A”, minimizers). As usual in the calculus of variation framework, the word minimizer
for (1.4) refers to the fact that the energy is increased by compact perturbations, even if the
energy (1.3) in the whole of R

n may well be infinite.
In particular, the following result has been proved in [NV07].

Theorem 1.1. Let F and H be as above. Then, there exist two Z
n-periodic minimizers U±

of (1.3), with U+ = U− + 2. The uniform distance of the minimizers U± from ±1, respectively,
can be estimated in terms of the norm ‖H‖L∞(Tn).
Moreover, given ω ∈ Sn−1, there exists a minimizer uω of (1.3) which connects U+ and U− far
from ω⊥, and such that

{x ∈ R
n : 〈ω, x〉 ≤ 0} ⊆ {x ∈ R

n : uω(x) > 0} ⊆ {x ∈ R
n : 〈ω, x〉 ≤ C} . (1.5)

for a constant C > 0 independent of ω.

We also recall the following result on minimal surfaces in periodic media, which has been proved
in [CdlL01] (see, in particular, Section 11.1 there).

Theorem 1.2. Let H as above. Then, one can find a uniform constant C > 0 such that for
all ω ∈ Sn−1 there exists a local minimizer (i.e. a minimizer up to compact perturbations) Eω of
the functional

P (E) +

∫

E

H(x) dx , (1.6)

such that
{x ∈ R

n : 〈ω, x〉 ≤ 0} ⊆ Eω ⊆ {x ∈ R
n : 〈ω, x〉 ≤ C} . (1.7)
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The analogy between (1.5) and (1.7) is evident. We refer to [SZ97, NV09b] for further related
results.
Given a function F as above, we let γ : R → R be the unique solution of

−γ′′ + F ′(γ) = 0, (1.8)

connecting ±1 at ±∞, respectively, and such that γ(0) = 0.
We also let

c0 :=

∫

R

(
γ′(x)

)2
dx . (1.9)

The main result of this paper is the following:

Theorem 1.3. Let F and H be as above, and assume that H 6≡ 0. Then, for any ε > 0 there
exist constants R0, δ0, C > 0 and a function Hε ∈ C∞(Tn), with

‖Hε‖L∞(Tn) ≤ ‖H‖L∞(Tn) (1.10)

‖Hε −H‖L1(Tn) ≤ 4 ε ‖H‖L∞(Tn), (1.11)
∫

Tn

Hε(x) dx = 0, (1.12)

such that the following holds:

1. for any R > R0 there exists a set Eε,R with smooth compact boundary such that

BR ⊂ Eε,R ⊂ BR+C , (1.13)

and the mean curvature of ∂Eε,R agrees with −Hε at any point;

2. for any R > R0 and δ ∈ (0, δ0] there exists a function uε,R,δ of

−δ∆u+
F ′(u)

δ
+
c0
2
Hε = 0, x ∈ R

n, (1.14)

such that

|uε,R,δ(x) − 1| ≤ Cδ on BR,

and |uε,R,δ(x) + 1| ≤ Cδ on R
n \BR+C .

(1.15)

The factor c0/2 in (1.14) is, of course, just a normalization constant: roughly speaking, it is
needed to make (1.14) approach the prescribed mean curvature problem equal to −Hε, and not a
constant multiple of it.
We observe that Theorem 1.3 does not hold, in general, if we choose Hε := H. However, it would
be interesting to know:

• whether an analogous result holds if we replace the L1 norm in (1.11) with a stronger one
(e.g., the L∞ norm),

• under which conditions on H it would be possible to choose Hε := H in Theorem 1.3,

• whether or not the results in Theorem 1.3 hold for δ = 1.

Remark 1.1. The geometry of the solution uε,R,δ found in Theorem 1.3 is very different from
the bump solutions usually obtained in the literature (see [RS01, RS04, RS08] for the Allen-Cahn
case and [NV09a] for the mesoscopic case). Indeed the bump constructed in the previous literature
was a somewhat “planar” oscillation from almost −1 to almost +1 and return. In Theorem 1.3 such
an oscillation is not somewhat “planar”, but somewhat “spherical”. That is, the set {uε,R,δ = 0}
is somewhat close to a sphere (compare (1.13) and (1.15)).
We refer to [AJM02, B05, dlLlV07] for other related results.
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The “spherical” bump of Theorem 1.3...

...versus the “planar” bump of the literature.
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With essentially the same proof one can get the following extension of Theorem 1.3, showing the
existence of “multibump” solutions of (2.12) and (1.14). For this, it is enough to modify the
barriers by appropriately repeating their bumps (notice that v±R are constants outside a ball).
To more precisely state the result analogous to Theorem 1.3 for multibump solutions, we introduce
some notation. Given R, C > 0, we let FR,C be the family of subsets of R

n defined as follows:
E ∈ FR,C if and only if there exist a sequence of points xi ∈ R

n and a sequence of numbers Ri ≥ R,

with i ∈ I ⊆ N, such that |xj
i − xj

k| ≥ Ri +Rk + C for all i, k ∈ I and for all j ∈ {1, . . . , n}, and

E =
⋃

i∈I

BRi
(xi).

We also define
E ⊕BC :=

⋃

x∈E

BC(x).

Then, in analogy with Theorem 1.3, we have the following result of multibump type:

Theorem 1.4. Let F and H be as above.
Then, for any ε > 0 there exist constants R0, δ0, C > 0 and a function Hε ∈ C∞(Tn) satisfying
(1.10)–(1.12) such that for any E ∈ FR0,C :

1. there exists a smooth set Eε such that

E ⊂ Eε ⊂ E ⊕BC ,

and the mean curvature of ∂Eε agrees with −Hε at any point;

2. for any δ < δ0 there exists a solution uε,δ of (1.14) such that

|uε,δ(x) − 1| ≤ Cδ on E,

and |uε,δ(x) + 1| ≤ Cδ on R
n \ (E ⊕BC).

Once more, the geometry of the multibump obtained here is quite different from the multibumps
of the previous literature, since the excursions obtained in Theorem 1.4 are somewhat “spherical”
instead of somewhat “planar” (recall Remark 1.1).

2 Proof of Theorem 1.3

Step 1. We prove the first statement of Theorem 1.3. Since H does not vanish identically and it
has zero average,

− inf
Tn
H > 0.

Thus, we may fix R̂ > 0 large enough such that

n

R̂
≤ −1

2
inf
Tn
H. (2.1)

Let
U := B

R̂+cε
\B

R̂−cε
. (2.2)

We denote by π : R
n → T

n the natural projection, we let U
(1)
ε := π(U), and we choose the

constant c in such a way that |U (1)
ε | = ε/4. Of course, “| · |” is here the Lebesgue measure on T

n.
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We let U
(2)
ε ⊂ T

n be an open set such that U
(1)
ε ⊂ U

(2)
ε and |U (2)

ε | = ε/2, and we take a partition

of unity ψε ∈ C∞(Tn, [0, 1]), with ψε ≡ 1 on U
(1)
ε and ψε ≡ 0 outside U

(2)
ε .

Let also ρε be a convolution kernel such that ‖H −H ∗ ρε‖L1(Tn) ≤ ε ‖H‖L∞(Tn).
Finally, we let

K⋆
ε (x) :=





− n

R̂
if x ∈ U

(1)
ε

−ψε(x)
n

R̂
+
(
1 − ψε(x)

)
(1 − ε)(H ∗ ρε)(x) if x ∈ U

(2)
ε \ U (1)

ε

(1 − ε)(H ∗ ρε)(x) if x ∈ T
n \ U (2)

ε

αε :=

∫

Tn

K⋆
ε (y) dy

Hε(x) := K⋆
ε (x) − αε, (2.3)

and we extend Hε by periodicity to the whole of R
n. We claim that

|αε| ≤ ε ‖H‖L∞(Tn). (2.4)

In order to prove (2.4), we first observe that

‖H ∗ ρε‖L∞(Tn) ≤ ‖H‖L∞(Tn). (2.5)

Also, in U
(1)
ε ,

|K⋆
ε | =

n

R̂
≤

‖H‖L∞(Tn)

2
, (2.6)

due to (2.1).
Thus, we deduce from (2.5) and (2.6) that

∣∣∣
∫

U
(1)
ε

K⋆
ε −H ∗ ρε

∣∣∣ ≤
3 ‖H‖L∞(Tn)

2
|U (1)

ε | =
3ε ‖H‖L∞(Tn)

8
. (2.7)

Moreover, in U
(2)
ε \ U (1)

ε , we have that

K⋆
ε −H ∗ ρε = −ψε

( n
R̂

− (H ∗ ρε)
)
− ε
(
1 − ψε

)
(H ∗ ρε).

Therefore, making use of (2.1) and (2.5) once more, we see that, in U
(2)
ε \ U (1)

ε ,

|K⋆
ε −H ∗ ρε| ≤ ψε

( n
R̂

+ |H ∗ ρε|
)

+ ε
(
1 − ψε

)
|H ∗ ρε|

≤ ψε

(‖H‖L∞(Tn)

2
+ ‖H‖L∞(Tn)

)
+ ε
(
1 − ψε

)
‖H‖L∞(Tn)

≤
(‖H‖L∞(Tn)

2
+ ‖H‖L∞(Tn)

)
+ ε‖H‖L∞(Tn)

=

(
3

2
+ ε

)
‖H‖L∞(Tn).

Consequently,

∣∣∣
∫

U
(2)
ε \U

(1)
ε

K⋆
ε −H ∗ ρε

∣∣∣ ≤
3 ‖H‖L∞(Tn)

2

∣∣U (2)
ε \ U (1)

ε

∣∣ =
(

3

8
+ ε

)
ε ‖H‖L∞(Tn). (2.8)
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Also, from (1.2), we have that ∫

Tn

H ∗ ρε dx = 0. (2.9)

Thus, since

K⋆
ε −H ∗ ρε = −εH ∗ ρε in T

n \ U (2)
ε ,

we obtain from (2.9) and (2.5) that

∣∣∣
∫

Tn\U
(2)
ε

K⋆
ε −H ∗ ρε

∣∣∣ = ε
∣∣∣
∫

Tn\U
(2)
ε

H ∗ ρε

∣∣∣ = ε
∣∣∣
∫

U
(2)
ε

H ∗ ρε

∣∣∣

≤ ε ‖H ∗ ρε‖L∞(Tn) |U (2)
ε | ≤

ε2 ‖H‖L∞(Tn)

2
.

(2.10)

By collecting the results of (2.7), (2.8) and (2.10), we obtain that

∣∣∣
∫

Tn

K⋆
ε −H ∗ ρε

∣∣∣ ≤ ε‖H‖L∞(Tn),

and so, using (2.9) once more, ∣∣∣
∫

Tn

K⋆
ε

∣∣∣ ≤ ε‖H‖L∞(Tn).

This proves (2.4).
As a consequence, we see that condition (1.10) follows immediately from (2.1) and (2.4), condition
(1.12) is automatically satisfied, and condition (1.11) comes from (2.3) and (2.4).
Notice that, since

Hε ≡ −n/R̂− αε on U (2.11)

from (2.4) we get that the mean curvature of ∂BR, that is (n − 1)/R, is strictly less than −Hε,
for all R ∈ (R̂− cε, R̂+ cε), so that ∂BR is a strict subsolution of the geometric equation

κ+Hε = 0, (2.12)

where κ denotes the mean curvature of ∂BR. We recall that (2.12) is the Euler-Lagrange equation
of the functional

P (E) +

∫

E

Hε(x) dx . (2.13)

Fix now R ≥ R̂ and let

ER :=
⋃

z∈Zn: z+B
R̂
⊂BR+1

(
z +B

R̂

)

FR :=
⋂

ω∈Sn−1∩Zn

[R+ 2]ω + Eω ,

where [x] denotes the integer part of x, and the set Eω is as in Theorem 1.2 (applied here
with H := Hε).
Notice also that

Sn−1 ∩ Z
n =

{
(±1, 0, 0, . . . , 0), (0,±1, 0, . . . , 0), (0, 0,±1, . . . , 0), (0, 0, 0, . . . ,±1)

}
.

7



R+2

RF

C

The set FR.

By construction,

ER is a subsolution and FR is a supersolution of (2.12). (2.14)

Also,
BR ⊂ ER ⊂ BR+1 ⊂ FR ⊂ BR+C+2 .

where C is as in Theorem 1.2.
Then, the set Eε,R claimed in the statement of Theorem 1.3 can be obtained by minimizing the
functional (2.13), with the additional constraint ER ⊆ E ⊆ FR. Notice that by (2.14) and the
strong maximum principle (see, e.g., [CdlL01]) we have

∂Eε,R ∩ (∂ER ∪ ∂FR) = ∅ ,

so that the mean curvature of ∂Eε,R agrees with −Hε, as required.
Step 2. We now prove the second statement of Theorem 1.3. Let η : R → R be the solution of

−η′′ + F ′′(γ)η = −γ′ + c0
2
, (2.15)

such that η(0) = 0.
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Note that, since the right-hand side of (2.15) is orthogonal to γ′, the function η is uniquely defined
under mild growth conditions at infinity and

lim
x→±∞

η(x) = η∞ :=
c0

2F ′′(1)
.

We refer to Section 6.1 of [Pa97] for further details on the construction of η.
We now fix δ ∈ (0, 1), to be taken suitably small in the sequel (possibly in dependence of ε too).
Since γ and η approach their limit values exponentially fast, together with their derivatives, we
have that

2∑

j=0

∣∣Dj(|γ(x)| − 1)
∣∣+
∣∣Dj(η(x) − η∞)

∣∣ ≤ δ4 if |x| ≥ K| log δ|. (2.16)

Here above, K > 0 is a suitably large structural constant, depending only on the potential F .
We now follow some ideas of [Pa97] in order to construct useful barriers by means of γ and η.
We let γδ, ηδ ∈ C1(R) be such that

γδ(x) = γ(x) for x ∈ (−K| log δ|,K| log δ|)
ηδ(x) = η(x) for x ∈ (−K| log δ|,K| log δ|), (2.17)

γδ(x) =

{
1 for x ≥ 2K| log δ|
−1 for x ≤ −2K| log δ|.

and
ηδ(x) = η∞ for x ≥ 2K| log δ|.

Due to (2.16), we may construct γδ and ηδ in such a way that

2∑

j=0

∣∣Dj(|γδ(x)| − 1)
∣∣+
∣∣Dj(ηδ(x) − η∞)

∣∣ ≤ δ3 if |x| ≥ K| log δ|. (2.18)

We set

vε,δ(x) := γδ

(
R̂− |x|

δ

)
− δ ηδ

(
R̂− |x|

δ

)
Hε(x) − c1δ

2 ,

Here above, c1 > 0 is a constant, to be taken suitably large with respect to other structural
constants.
Notice that

vε,δ(x) = 1 − δη∞Hε(x) − c1δ
2 when |x| ≤ R̂− 2Kδ| log δ|, and

vε,δ(x) = −1 − δη∞Hε(x) − c1δ
2 when |x| ≥ R̂− 2Kδ| log δ|.

(2.19)

We claim that
vε,δ is a strict subsolution of (1.14) (2.20)

provided c1 is sufficiently large and δ ∈ (0, δ0], with δ0 sufficiently small with respect to ε and to
the other structural constants.
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To prove (2.20), we use polar coordinates to compute the Laplacian and we obtain

− δ∆vε,δ +
F ′(vε,δ)

δ
+
c0
2
Hε

≤ −γδ
′′

δ
(⋆) +

n− 1

|x| γδ
′(⋆) +

(
ηδ

′′(⋆) − δ(n− 1)

|x| ηδ
′(⋆)
)
Hε + δ|ηδ

′(⋆)||∇Hε|

+ δ2ηδ(⋆)|∆Hε| +
F ′(γδ(⋆) − δηδ(⋆)Hε − c1δ

2)

δ
+ F ′′(1)η∞Hε

≤ −γδ
′′

δ
(⋆) +

n− 1

|x| γδ
′(⋆) +

(
ηδ

′′(⋆) − δ(n− 1)

|x| ηδ
′(⋆)
)
Hε

+
F ′(γδ(⋆) − δηδ(⋆)Hε − c1δ

2)

δ
+ F ′′(1)η∞Hε + constδ.

(2.21)

Here and in the sequel, we use “⋆” as a short hand notation for “(R̂ − |x|)/δ” and “const” to
denote suitable quantities, possibly depending on ε, F and H, but independent of δ.
Thus, we distinguish now the case in which |R̂ − |x||/δ ≥ K| log δ| from the one in which |R̂ −
|x||/δ ≤ K| log δ|.
When |R̂− |x||/δ ≥ K| log δ|, we use that

|F ′(±1 + s) − F ′′(1)s| ≤ consts2

for small s and so, recalling (2.18),

F ′(γδ(⋆) − δηδ(⋆)Hε − c1δ
2) ≤ F ′′(1)

(
γδ(⋆) ± 1 − δηδ(⋆)Hε − c1δ

2
)

+ constδ2

for |R̂− |x||/δ ≥ K| log δ|.
Consequently, when |R̂− |x||/δ ≥ K| log δ|, (2.21) gives that

−δ∆vε,δ +
F ′(vε,δ)

δ
+
c0
2
Hε

≤ −γδ
′′

δ
(⋆) +

n− 1

|x| γδ
′(⋆) +

(
ηδ

′′(⋆) − δ(n− 1)

|x| ηδ
′(⋆)
)
Hε

+
F ′′(1)

(
γδ(⋆) ± 1 − δηδ(⋆)Hε − c1δ

2
)

δ
+ F ′′(1)η∞Hε + constδ

≤ −c1F ′′(1)δ + constδ < 0,

where (2.18) was used once more.
This proves (2.20) when |R̂− |x||/δ ≥ K| log δ|.
On the other hand, when |R̂ − |x||/δ ≤ K| log δ|, we make use of (1.8), (2.15), (2.17) and (2.21)
to deduce that

−δ∆vε,δ +
F ′(vε,δ)

δ
+
c0
2
Hε

≤ −γ
′′

δ
(⋆) +

n− 1

|x| γ′(⋆) +
(
η′′(⋆) − δ(n− 1)

|x| η′(⋆)
)
Hε

+
F ′(γ(⋆) − δη(⋆)Hε − c1δ

2)

δ
+ F ′′(1)η∞Hε

= −F
′(γ(⋆))

δ
+
n− 1

|x| γ′(⋆) +
(
F ′′(γ(⋆))η(⋆) + γ′(⋆) − F ′′(1)η∞

)
Hε

−δ(n− 1)

|x| η′(⋆)Hε +
F ′(γ(⋆) − δη(⋆)Hε − c1δ

2)

δ
+ F ′′(1)η∞Hε

≤ γ′(⋆)

[
n− 1

|x| +Hε

]
− c1F

′′(γ)δ + constδ.
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Also, if δ is small enough with respect to ε we have that
{
|R̂− |x||/δ ≤ K| log δ|

}
⊂
{
|x| ∈ (R̂− cε, R̂+ cε)

}

and so, from (2.4), (2.2) and (2.11), we conclude that

n− 1

|x| +Hε ≤ − 1

8R̂

for ε small enough; we recall that R̂ is a structural constant, given by (2.1).
Therefore,

−δ∆vε,δ +
F ′(vε,δ)

δ
+
c0
2
Hε ≤ −γ

′(⋆)

8R̂
− c1F

′′(γ(⋆))δ + const δ. (2.22)

Now, if γ′(⋆) ≥
√
δ, we have

−γ
′(⋆)

8R̂
− c1F

′′(γ(⋆))δ + const δ ≤ −
√
δ

8R̂
+ const(c1 + 1) δ < 0 (2.23)

for small δ.
On the other hand, if γ′(⋆) ≤

√
δ, that is |γ′(⋆)| ≤

√
δ, we have that F ′′(γ(⋆)) ≥ F ′′(1)/2, and so

−γ
′(⋆)

8R̂
− c1F

′′(γ(⋆))δ + const δ ≤ −c1F
′′(1)δ

2
+ const δ < 0 (2.24)

as long as c1 is suitably large.
From (2.22), (2.23) and (2.24), we conclude that

−δ∆vε,δ +
F ′(vε,δ)

δ
+
c0
2
Hε < 0

when |R̂− |x||/δ ≤ K| log δ|.
This proves (2.20) also when |R̂− |x||/δ ≤ K| log δ|.
Step 3. Let ω ∈ Sn−1 be a rational direction such that the set Eω given by Theorem 1.2 is a
nondegenerate minimizer (see [Pa97, Definition 4.1]). Then, by [Pa97, Theorem 8.1] there exists
a supersolution u+

ω,δ of (1.14) such that

– the Hausdorff distance between {uω,δ > 0} and the set Eω is of order δ2| log δ|2;

– there exists absolute constants ξ∞, c2, N > 0 (independent of ω and δ) such that

u+
ω,δ(x) = 1 − δη∞Hε(x) + δ2ξ∞ (Hε(x))

2 + c2δ
3| log δ|2 if 〈ω, x〉 ≥ N

u+
ω,δ(x) = −1 − δη∞Hε(x) − δ2ξ∞ (Hε(x))

2 + c2δ
3| log δ|2 if 〈ω, x〉 ≤ −N.

(2.25)

Notice that from (2.25) it follows that there exists Ñ ∈ N such that

u+
ω,δ (x−N 〈ω, x〉) > vε,δ(x) (2.26)

for all N ≥ Ñ and any x ∈ R
n.

Let
Σ :=

⋃

ω∈Sn−1∩Zn

π (∂Eω) .

We can slightly perturb Hε in a neighborhood of Σ, without changing its value on Σ itself, in such
a way that
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– conditions (1.10)–(1.12) still hold;

– the sphere ∂BR is a strict subsolution of (2.12) for all R ∈ (R̂− cε, R̂+ cε);

– Eω is a nondegenerate minimizer of (1.6) for all ω ∈ Sn−1 ∩ Z
n.

In particular, we can use [Pa97, Theorem 8.1] and obtain (2.25), and so (2.26), for any ω ∈
Sn−1 ∩ Z

n.
Fix now R ≥ R̂ and let

v−R(x) := max
z∈Zn: z+B

R̂
⊂BR+1

vε,δ(x− z)

v+
R(x) := min

ω∈Sn−1∩Zn

u+
ω,δ

(
x− [R+ 2 + Ñ ] 〈ω, x〉

)
.

We observe that v−R(x) < v+
R(x) for all x ∈ R

n, thanks to (2.26).
The function uε,R,δ solving (1.14) and satisfying (1.15) that was claimed in Theorem 1.3 can now be
obtained by choosing uε,R,δ as a minimizer of (1.3), under the additional constraint v−R ≤ u ≤ v+

R .
As above, by strong maximum principle we have

v−R(x) < uε,R,δ(x) < v+
R(x)

for all x ∈ R
n, so that uε,R,δ is a solution of (1.14).

This completes the proof of Theorem 1.3.
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