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Introduction

This thesis is devoted to the study of a generalized notion of quasistatic evolution for a

problem in non-associative plasticity, namely the Cam-Clay model. By the term quasistatic

we mean that the evolution we are interested in has a so slow time scale that the system

is assumed to be in equilibrium at each instant. Our notion is based on a viscoplastic

approximation and a time rescaling. For reasons that will be made clearer later in this

introduction, it will be introduced for this specific problem, but we think that the underlying

ideas can be adapted to more general contexts.

The choice of the model we study is motivated by its considerable interest for the en-

gineering community. It gives the conceptual framework to analyse the inelastic behavior

of fine grained soils. Its framework is small strain elasto-plasticity. The linear strain Eu is

defined as the symmetric part of the gradient of the displacement u with respect to a refer-

ence configuration Ω. Moreover, the strain is additively decomposed into elastic and plastic

part, namely Eu = e + p , where the elastic part e determines the stress σ through the

linear constitutive relation σ = Ce . The stress satisfies the standard equilibrium condition

−div σ = f in Ω, where f denotes a time dependent body force.

As it is typical in plasticity, the stress is constrained to lie in a compact convex set K(ζ) of

the space MN×N
sym of symmetric n×n matrices, whose size is controlled by a scalar parameter

ζ and whose boundary represents the yield surface, i.e., the plastic flow is produced only

when the stress meets ∂K(ζ). The other two main ingredients are the evolution laws for

the plastic strain p and for the internal variable ζ . To write them explicitly, we introduce a

new internal variable z , related to ζ by the equality ζ = V (z). The function V is assumed

to be strictly monotone and to satisfy the condition

V (z) ≥ ζmin > 0 for every z ∈ R ,

which implies that ζ ≥ ζmin > 0 and prevents the set K(ζ) from shrinking to the origin.

The evolution equations are

ṗ ∈ NK(ζ)(σ) , (0.0.1)

ż = ρ1 ? [(ρ2 ? trσ) tr ṗ ] , (0.0.2)

where NK(ζ)(σ) is the normal cone to K(ζ) at σ , the symbol ? denotes the convolution

with respect to the space variable x ∈ Ω, ρ1 and rho2 are convolution kernels with compact

support, and tr denotes the trace of a matrix. A remarkable fact is that the evolution law

(0.0.2) does not depend on K , that is to say that the scalar parameter ζ controlling the

III



CONTENTS CONTENTS

shape of the yield surface, and thus the plastic properties of the material, is not determined

by simple energetic principles but evolves according to a different equation. For this reason

we speak of a nonassociative nature of the problem. Moreover, equation (0.0.2) has a

nonvariational structure, unlike the other equations of the model.

In the engineering literature one assumes that z is positive and bounded away from 0,

so that one can take V (z) = z , and identify z with ζ . Moreover, the convolution products

are not present in (0.0.2). We introduce them for technical reasons, namely to recover strong

compactness of z from weak compactness of p . However, it is not physically unreasonable to

assume that the evolution of the internal variable at a point is affected by stresses and strains

in a small neighborhood: the convolution product introduces two characteristic length-scales

for this interaction through the size of the support of ρ1 and ρ2 .

An interesting feature of this model is that, under the usual assumptions on K(ζ) (see

(1.3.2)-(1.3.5)), it exhibits both hardening and softening behavior, i.e., expansion and con-

traction of K(ζ), depending on the loading conditions. This gives rise to one of the main

technical difficulties, since allowing for a softening regime results in the lack of convexity of

the problem, which is the origin of some instabilities of the system and causes discontinuity

of the evolution with respect to time (see for instance [8] and [9], where another model of

plasticity with softening is analysed). Actually we will show in Chapter 3 that discontinuous

solutions can appear also in our case, in the softening regime (see Remark 3.4).

A general mathematical framework for the study of evolutionary problems of this kind

is the energetic approach to rate-independent problems developed by Mielke (see [31]). By

the term rate-independent we mean a system with no intrinsic time scale, which reacts

to a strictly monotone time reparametrisation of the data by reparametrising its solutions

exactly in the same way. Rate-independent systems occur as limit problems in the study

of many physical and mechanical systems where the time scales we are interested in are

much longer than the intrinsic ones in the system. This approach has been widely used in

the analysis of many phenomena others than elasto-plasticity, like dry friction, fracture, or

shape-memory alloys. In our setting, it would result in defining a quasistatic evolution as

a map (u(t, ·), e(t, ·), p(t, ·), z(t, ·)) satisfying at any time t a suitable stability condition, a

balance between the stored and the dissipated energy (which are the “variational part” of

our model), as well as the evolution equation (0.0.2).

To be definite, in our setting the stability condition is given by the stress constraint

σ(t, x) ∈ K(ζ(t, x)) for every t ∈ [0,+∞) (0.0.3)

and the equilibrium equation

−div σ(t, x) = f(t, x) . (0.0.4)

We emphasize that this is a local stability condition, not a global one (see [33] for a general

discussion), since it can be regarded as the Euler conditions for a suitable minimum problem

involving the plastic dissipation (as in the perfectly plastic case, see [13, Theorem 3.6]) but

equivalence with global minimality has not to be expected. Indeed it has already been

shown for other models of plasticity with softening (see again [8] and [9]) that a quasistatic

evolution where (0.0.3)-(0.0.4) are replaced by the global minimality of the corrsponding
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energy-dissipation functional may laed to a physically implausible description of the behavior

of the system in the softening regime.

Following these previous examples, as well as general considerations about nonsmooth

rate-independent evolutionary problems (see [32] and [33]), we introduce a viscoplastic ap-

proximation of Perzyna-type (see [37, 17, 25, 36]) of the problem. Given a viscosity param-

eter ε > 0, the stress constraint (0.0.3) is dropped, and we consider a Yosida regularization

of the evolution law (0.0.1), namely

ṗε(t, x) = Nε
K(ζε(t,x))(σε(t, x)) ,

where Nε
K(σ, ζ) := 1

ε

(
σ−πK(ζ)(σ)

)
and πK(ζ) is the projection onto K(ζ). The parameter

1
ε has clearly the role of penalising stresses going too far away from the elastic domain, so

that we can expect to recover (0.0.3) in the limit as ε → 0. This regularization has the

advantage of making the right-hand side Lipschitz continuous, thus existence of solutions

uε(t, x), eε(t, x), pε(t, x), zε(t, x) for the viscoplastic problem can be obtained more easily

(still, the proof remains nontrivial, see Chapter 5, Section 5.2).

The study of the limit as ε→ 0 of these viscoplastic approximations leads to a suitable

notion of generalized solution for our problem, giving a meaning to the evolution also after

the first discontinuity time. We then introduce the notion of rescaled viscosity evolution,

expressed in terms of a rescaled time s , related to the original time by the equality t = t◦(s),

where t◦ is a suitable nondecreasing locally Lipschitz function, depending on the problem.

The intervals where t◦ is constant correspond to time discontinuities in the original variable

t . We will see in Chapter 5 that such an evolution may be obtained passing in the limit as

ε→ 0 a suitable time-rescaled version of the viscoplastic approximations. Indeed, an energy

estimate (Theorem 5.4) allows us to prove the existence of changes of variables t = t◦ε(s),

uniformly Lipschitz with respect to s , such that the rescaled functions p◦ε(s, x) := pε(tε(s), x)

are uniformly Lipschitz with respect to s , in a suitable function space. The same idea has

also been used in [18, 32, 33] for rate independent dissipative problems in finite dimension.

The Ascoli-Arzelà Theorem provides the existence of a subsequence (not relabelled), such

that

t◦ε(s)→ t◦(s) and p◦ε(s, ·) ⇀ p◦(s, ·) ,

the latter in a weak topology. A further argument, based on the uniqueness of the solution

to an auxiliary variational problem, shows that

e◦ε(s, ·) ⇀ e◦(s, ·) , u◦ε(s, ·) ⇀ u◦(s, ·) , σ◦ε(s, ·) ⇀ σ◦(s, ·) .

The compactness ensured by the presence of the convolutions in the evolution law for the

internal variable allows us to prove that

z◦ε(s, x)→ z◦(s, x) and ζ◦ε(s, x)→ ζ◦(s, x) ,

uniformly with respect to x . It is then easy to see that the limit functions satisfy the

consitutive relations, the equilibrium condition and the additive decomposition Eu◦(s, x) =

e◦(s, x)+p◦(s, x) (see (4.2.11)). As for (0.0.2), it holds only in a weak form since, in general,

the limit p◦(s, ·) is just a measure and this requires an ad-hoc definition for the derivative

(see Chapter 1, Section 1.4 and Chapter 5, Section 5.5).
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Condition (0.0.2) is satisfied in the limit for those values of s for which t◦(s) is not

locally constant. The flow rule (0.0.1) holds in a suitable measure-theoretical sense, since

now for a.e. s , ṗ◦(s, ·) can only be interpreted as a Radon measure on Ω with values in

the space of symmetric n × n matrices. The behavior of ṗ for an arbitrary value of s is

described by the equation

ṗ ∈ Next
K(ζ)(σ) , (0.0.5)

interpreted in a measure-theoretical sense. Here the extended normal cone Next
K(ζ) is defined

by

Next
K(ζ)(σ) :=

NK(ζ)(σ) if σ ∈ K(ζ),

{λ(σ − πK(ζ)(σ)) : λ ≥ 0} if σ /∈ K(ζ) .

It has to be remarked that (0.0.5) is actually formulated in terms of a suitable representative

σ̂ of the stress σ (see Definition 4.1) whose existence itself has to be proved. Therefore,

although (0.0.5) has the advantage of being the rigorous counterpart of (0.0.1) in our for-

mulation, in the proof of the existence Theorem 5.6 an energetic approach is preferable.

Indeed we first show (Chapter 4) that (0.0.5) can be equivalently replaced by an energy-

dissipation balance (see (4.3.1)) and a partial flow rule on the intervals where t◦ is constant

(see (4.3.2)), so that in the proof of Theorem 5.6 we tackle these two equalities instead of

(0.0.5). Equality (4.3.1) is similar to the energy-dissipation balance of perfect plasticity [13]

with two main differences: first, the set K , and hence the plastic dissipation, depend now

on ζ◦(s, x); second, there is an additional dissipative term,∫ S

0

∫
Ω

(
σ◦(s, x)− πK(ζ◦(s,x))(σ

◦(s, x))
)

: ṗ◦(s, x) dx ds , (0.0.6)

which accounts for viscous dissipation in those intervals where t◦(s) is locally constant (the

colon denotes the scalar product between matrices). A similar term appears in [32], where

an evolution problem with nonconvex energy is studied through a viscosity approximation

and time rescaling.

The possibility of computing the amount of viscous dissipation occurring at jump times

is the main advantage of using a rescaled time s instead of the original time t . To consider

the behavior of the evolution in terms of the original time variable, one can indeed compose

the rescaled viscosity evolution with the left-continuous function

s◦−(t) := sup{s ∈ [0,+∞) : t◦(s) < t} ,

which has the property that t◦(s◦−(t)) = t for every t ≥ 0. The composite function obtained

in this way is called a viscosity evolution: we show in Lemma 5.9 that the (unrescaled)

viscosity approximations converge to this viscosity evolution for every t , except for the

countable set of the discontinuity times. In Chapter 6 we prove that every viscosity evolution

satisfies an energy-dissipation balance and an evolution law for the internal variable, that

can be expressed in terms of integrals depending only on the original time t (see Theorems

6.7 and 6.14). However, both these integral identities contain terms concentrated on the

jump times, whose value can only be determined by looking at the rescaled formulation (see

Remarks 6.8 and 6.15). Theorem 6.7 shows in addition that, in the vanishing viscosity limit,

the viscous dissipation is concentrated at the discontinuity times.
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Compared with other rate-independent evolution problems, the main theoretical diffi-

culty we have to confront here is that the total variation of the plastic strain with respect

to time can be controlled only in a nonreflexive Banach space, while no such a control is

available for the elastic part. Rather than developing an abstract setting including our prob-

lem, we preferred to do a complete case study for a model of considerable interest for the

engineering community. Nevertheless, although the technical obstacles we encountered have

been solved by problem-specific techniques, we think that the main ideas can be adapted to

more general rate-independent evolution problems with nonconvex energy-dissipation terms.

In particular, the use of a vanishing viscosity approximation to understand the behavior of

the system at jump times seems to be a tool of wide applicability.

We conclude this introduction by giving a brief overview of the content of each chapter.

Chapter 1 is devoted to the basic notation and to the presentation of some abstract

mathematical tools that will be employed in our proofs. In particular, Section 1.4 introduces

a notion of “weak∗ -derivative” for functions of bounded variation with values in the dual of a

separable Banach space, that allows us to reconstruct the “primitive” function by a suitable

integration process. These results, which are taken from [11], will be useful in Chapter 6

to write the precise form of the energy-dissipation balance satisfied by a viscosity evolution

(see (6.2.10)). The main difficulty in the proofs is that, in the present context, we can

neither assume that the space is reflexive, nor that it satisfies the Radon-Nikodym property.

From the general Theorems 1.3 and 1.5 we also deduce the analogous result for absolutely

continuous functions Theorem 1.8, originally proved in [13, Theorem 7.1] (actually, the part

concerning the existence of a weak∗ -derivative in the case of Lipschitz functions had already

been established in [1, Theorem 3.5]), which is useful in the rescaled formulation, since the

rescaled plastic strain p(s, ·) is 1-Lipschitz continuous.

In Section 1.5 we adapt to our setting some results of approximation of Bochner integrals

with Riemann sums. This is the strategy that we will follow in the proof of (4.3.1), in

Chapter 5.

Chapter 2 presents the Cam-Clay model in its classical formulation (Section 2.2) as

well as the main mechanical assumptions we will make in order to prove well-posedness for

our notion of weak solution. In particular, following [7], Section 2.3 introduces a notion of

generalized stress-strain duality which adapts to our context the generalized duality pro-

posed by Temam (see [52] and [53]). The new proofs that were only outlined in [7] are

here developed in detail. In Section 2.4 we write down the ε -regularized equations. This

chapter does not contain original results. The simple inequality (2.5) between the plastic

dissipation functional H(p, ζ) and the generalized duality 〈σ, p〉 taken from [48] is only a

slight modification of the analogous result [13, Proposition 2.4] for an elastic domain K

independent of ζ .

In Chapter 3 we start our investigation of the Cam-Clay model by the study of the

spatially homogeneous case. Indeed, for a Dirichlet problem with no volume forces, if the

system is driven by a time-dependent affine boundary condition w(t, x), with the introduc-

tion of a viscous approximation the problem reduces to determine the limit behavior of the

solutions of a singularly perturbed system of ODE’s in a finite dimensional Banach space.

This Chapter, which presents the results of [14], shows that we cannot expect a con-
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tinuous evolution and highlights the usefulness of introducing a viscous approximation and

rescaling time to understand the behavior of the system at discontinuity times. In this sim-

plified setting we do not investigate the well-posedness of the problem, which is the object

of Chapter 5, but we carry out a qualitative study of the limit behavior of the solutions

as the viscosity parameter ε goes to 0 only using differential equations techniques and

disregarding the variational structure of (part of) the problem. Depending on the sign of

two explicit scalar indicators Φ and Ψ (see (3.1.3)-(3.1.4)), we see that the limit dynamics

presents, under quite generic assumptions, the alternation of three possible regimes: the

elastic regime, when the limit equation is just the equation of linearized elasticity; the slow

dynamics, when the stress evolves smoothly on the yield surface and plastic flow is produced;

the fast dynamics, which may happen only in the softening regime, when viscous solutions

exhibit a jump determined by a heteroclinic orbit of the auxiliary systemσ̇(s) = −C(σ(s)− πK(z(s))(σ(s))),

ż(s) = tr(σ(s)) tr(σ(s)− πK(z(s))(σ(s))),

which is formally obtained by a time rescaling of the system of ODE’s given by the vis-

coplastic approximation. It can be easily shown that, in the spatially homogeneous case,

this system is equivalent to (0.0.2) and (0.0.5) with the multiplier λ appearing in the defi-

nition of extended normal cone identically equal to 1.

The main result Theorem 3.31 gives also an iterative procedure to construct a viscous

solution. Its proof is based on the methods developed in [47] for another model of plasticity

with softening with an associative evolution law for the plastic strain and the internal vari-

able. We chose not to present in this thesis the results of [47], since the model it studies (see

also [8]) has not the same interest from the point of view of the applications, and only allows

for softening. We only underline that, from a technical point of view, the limit equations

(3.3.1) and (3.4.1) are rather different from those studied in [47]. In particular, showing the

existence of the heteroclinic orbit governing the jump of the system is a harder task and

needs further hypotheses on the yield surface. Nevertheless, to show the convergence of the

viscoplastic solutions to a limit satisfying either (3.3.1) or (3.4.1) we can use some methods

developed in [47] and, actually, some technical lemmas are only suitable adaptations of the

corresponding results in [47].

Chapter 4 introduces the definition of rescaled viscosity evolution (see Definition 4.5).

The rate-independence properties of this formulation are described in Remark 4.6. As

we said above, it involves a suitable representative σ̂ of the stress which has to satisfy a

delicate integration-by-parts formula (see (4.2.3)) and is very difficult to handle when proving

existence for such an evolution. Therefore, as a preliminary step towards the existence

proof, the chapter is devoted to showing the equivalence between this formulation and an

“energetic” one, where the measure-theoretic version of the flow rule (0.0.1) is replaced by

the energy-dissipation balance (4.3.1) and the partial flow rule on the intervals where t◦ is

constant (4.3.2). This latter formulation is the one originally proposed in [10] and does not

require a precise representative of σ . As we said, it proves to be more manageable for the

proof of the existence Theorem 5.6. After proving the equivalence Theorem 4.7, in Section

4.4 we see that, at least under a strict convexity assumption on K , the precise representative
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σ̂ has an intrinsic character and can be obtained in the interior of Ω as limit of spherical

averages of σ . The results of this chapter are taken from [11].

Chapter 5 tackles the proof of the existence of a rescaled viscosity evolution according

to Definition (4.5), or better to the equivalent formulation given by Theorem 4.7. The main

difficulty is to establish the energy-dissipation balance (4.3.1), which is the major part of

the proof. Comparing to earlier attempts at modeling vanishing viscosity limits, the energy

balance is a key fact, as it guarantees that all quantities remain under control in the limit.

The proof is based on a delicate approximation of the integrals that appear in this equality,

developed in Chapter 1, Section 1.5. The main difficulty is due to the fact that we need two

different approximations on the set where the stress constraint (0.0.3) is satisifed and on its

complement.

Finally, in Chapter 6 we study the behavior of the evolution in terms of the original time

t , introducing the notion of viscosity evolution. Relying on the technical results of Chapter

1, Section 1.4, we are able to write an energy balance (Theorem 6.7) and an evolution law

for the internal variable (Theorem 6.14) for a viscosity evolution. As we have already said,

both these identities describe well the behavior of a viscosity evolution at its continuity

points, while a careful description of the behavior at jumps requires the use of the rescaled

formulation. The energy-dissipation balance (6.2.19) shows in particular that the viscous

dissipation is concentrated at the jump times.



Chapter 1

Preliminaries

1.1 Overview of the chapter

In this chapter we fix some notation and we collect some abstract results which will be

useful in the sequel. The plan of the chapter is the following: after introducing some basic

facts about functions and measures, we turn our attention to some properties of the integral

functional which describes the plastic dissipation in our model.

Eventually we introduce some tools about functions of bounded variation with values in

the dual of a separable Banach space; we will neither assume that the space is reflexive, nor

that it has the Radon-Nikodym properties. From these results, as a particular case, we will

also deduce the results about absolutely continuous functions contained in [13, Appendix].

They also allow us to deduce a result of discrete approximation of the total plastic dissipation

on a time interval that will be useful in Chapter 5.

The rest of the chapter contains some results on the approximation of Lebesgue integrals

with Riemann sums which adapt to our context the well-known result of Hahn (see [22]),

and a result on continuous dependence on the data for differential equations that will be

useful in the study of the finite dimensional case, in Chapter 3.

1.2 Functions and measures

The Lebesgue measure on RN is denoted by Ln , and the (n−1)-dimensional Hausdorff

measure by Hn−1 . If X ⊂ RN is locally compact and Ξ is a finite dimensional Hilbert

space, the space of bounded Ξ-valued Radon measures on X is denoted by Mb(X; Ξ).

When Ξ = R , it is omitted from the notation. The space Mb(X; Ξ) is endowed with the

norm ‖µ‖1 := |µ|(X), where |µ| ∈ Mb(X) is the variation of the measure µ . By the Riesz

Representation Theorem (see, e.g., [44, Theorem 6.19]) Mb(X; Ξ) is identified with the dual

of C0
0 (X; Ξ), the space of continuous functions ϕ : X → Ξ such that {|ϕ| ≥ ε} is compact

for every ε > 0. This defines the weak∗ topology in Mb(X; Ξ).

The space L1(X; Ξ) of Ξ-valued Ln -integrable functions is regarded as a subspace of

Mb(X; Ξ), with the induced norm. The Lp norm, 1 ≤ p ≤ ∞ is denoted by ‖ · ‖p . We

1
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adopt the convention

‖v‖p = +∞ whenever v /∈ Lp . (1.2.1)

The brackets 〈· , ·〉 denote the duality product between conjugate Lp spaces, as well as

between other pairs of spaces, according to the context.

The space of symmetric n×n matrices is denoted by MN×N
sym ; it is endowed with the

euclidean scalar product ξ : η :=
∑
ij ξijηij and with the corresponding euclidean norm

|ξ| := (ξ : ξ)1/2 . The symmetrized tensor product a� b of two vectors a , b ∈ RN is the

symmetric matrix with entries (aibj + ajbi)/2.

For every u ∈ L1(U ;RN ), with U open in RN , let Eu be the MN×N
sym -valued distribution

on U whose components are defined by Eiju = 1
2 (Djui + Diuj). The space BD(U) of

functions with bounded deformation is the space of all u ∈ L1(U ;RN ) such that Eu ∈
Mb(U ;MN×N

sym ). It is easy to see that BD(U) is a Banach space with the norm ‖u‖1+‖Eu‖1 .

It is possible to prove that BD(U) is the dual of a normed space (see [29] and [53]), and this

defines the weak∗ topology of BD(U). A sequence uk converges to u weakly∗ in BD(U) if

and only if uk → u strongly in L1(U ;RN ) and Euk
∗
⇀ Eu weakly∗ in Mb(U ;MN×N

sym ). For

the general properties of BD(U) we refer to [52]. If U is a bounded open set with Lipschitz

boundary, for every function u ∈ BD(U) the trace of u on ∂U belongs to L1(∂U ;RN ). It

will always be denoted by the same symbol u . Moreover, the following result holds:

u ∈ D′(U ;RN ) and Eu ∈ L2(U ;MN×N
sym ) =⇒ u ∈ H1(U ;RN ) , (1.2.2)

where D′(U ;RN ) is the space of RN -valued distributions on U . This can be obtained

arguing as in the proof of [52, Chapter I, Proposition 1.1].

We will use boldface letters to denote functions defined in an interval [a, b] ⊂ R and with

values in a possibly infinite dimensional Banach space Y .

Throughout the paper the reference configuration Ω is a bounded connected open set in

RN , n ≥ 2, with Lipschitz boundary ∂Ω = Γ0 ∪ Γ1 ∪ N . We assume that Γ0 and Γ1 are

relatively open, Γ0 ∩ Γ1 = Ø, Γ0 6= Ø, and Hn−1(N) = 0.

We shall frequently use the following closed linear subspace of H1(Ω;RN ):

H1
Γ0

(Ω;RN ) := {u ∈ H1(Ω;RN ) : u = 0 Hn−1-a.e. on Γ0} . (1.2.3)

1.3 The constraint set and its support function.

Let K be a closed convex cone in MN×N
sym ×[0,+∞) with nonempty interior. For every

ζ ∈ [0,+∞) we define the closed convex set K(ζ) by

K(ζ) := {σ ∈MN×N
sym : (σ, ζ) ∈ K} . (1.3.1)

When ζ > 0 the set K(ζ) has nonempty interior and

K(ζ) = ζ K(1) . (1.3.2)

We assume that 0 ∈ K(1) and K(1) is bounded, hence

0 ∈ K(ζ) for every ζ ∈ [0,+∞) , (1.3.3)
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and

|σ| ≤MKζ for every (σ, ζ) ∈ K (1.3.4)

for a suitable constant MK < +∞ . Since K is a convex cone, (1.3.3) implies that

0 ≤ ζ1 ≤ ζ2 =⇒ K(ζ1) ⊂ K(ζ2) . (1.3.5)

For every closed convex set C ⊂ MN×N
sym let πC : MN×N

sym → C be the minimal distance

projection onto C . It follows from (1.3.2) that

πK(ζ)(σ) = ζπK(1)

(σ
ζ

)
(1.3.6)

for every ζ > 0 and every σ ∈MN×N
sym .

Lemma 1.1. The map (σ, ζ) 7→ πK(ζ)(σ) from MN×N
sym ×[0,+∞) into MN×N

sym satisfies the

Lipschitz estimate

|πK(ζ2)(σ2)− πK(ζ1)(σ1)| ≤ |σ2 − σ1|+ 2MK |ζ2 − ζ1| (1.3.7)

for every (σ1, ζ1), (σ2, ζ2) ∈MN×N
sym ×[0,+∞) .

Proof. It is enough to prove the estimate for (σ1, ζ1), (σ2, ζ2) ∈ MN×N
sym ×[0,+∞) with 0 <

ζ1 ≤ ζ2 . Since πK(ζ2) has Lipschitz constant 1 on MN×N
sym , from (1.3.4) and (1.3.6) we

obtain

|πK(ζ2)(σ2)− πK(ζ1)(σ1)| ≤ |πK(ζ2)(σ2)− πK(ζ2)(σ1)|+ |πK(ζ2)(σ1)− πK(ζ1)(σ1)| ≤

≤ |σ2 − σ1|+
∣∣ζ2πK(1)(

1
ζ2
σ1)− ζ1πK(1)(

1
ζ1
σ1)
∣∣ ≤

≤ |σ2 − σ1|+MK |ζ2 − ζ1|+ ζ1
∣∣πK(1)(

1
ζ2
σ1)− πK(1)

(
1
ζ1
σ1)
∣∣ .

To prove (1.3.7) it is enough to show that

ζ1
∣∣πK(1)(

1
ζ2
σ1)− πK(1)(

1
ζ1
σ1)
∣∣ ≤MK |ζ2 − ζ1| . (1.3.8)

As 0 < ζ1 ≤ ζ2 , we have

πK(1)

(
1
ζ1
σ1− ζ2−ζ1

ζ1
πK(1)(

1
ζ2
σ1)
)

= πK(1)

(
1
ζ2
σ1+ ζ2−ζ1

ζ1

( 1

ζ2
σ1−πK(1)(

1
ζ2
σ1)
))

=πK(1)(
1
ζ2
σ1) .

Since πK(1) has Lipschitz constant 1 on MN×N
sym , we obtain∣∣πK(1)(

1
ζ2
σ1)− πK(1)(

1

ζ1
σ1)
∣∣ ≤ ζ2−ζ1

ζ1

∣∣πK(1)(
1
ζ2
σ1)
∣∣ ≤MK

ζ2−ζ1
ζ1

,

which gives (1.3.8).

Let H : MN×N
sym ×[0,+∞) be defined by

H(ξ, ζ) = sup
σ∈K(ζ)

σ : ξ , (1.3.9)

so that H(·, ζ) is the support function of K(ζ). By (1.3.2) for every (ξ, ζ) ∈MN×N
sym ×[0,+∞)

we have

H(ξ, ζ) = ζH(ξ, 1) . (1.3.10)
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For every ζ ∈ [0,+∞) the function ξ 7→ H(ξ, ζ) is convex and positively one-homogeneous

on MN×N
sym . In particular, it satisfies the triangle inequality

H(ξ1 + ξ2, ζ) ≤ H(ξ1, ζ) +H(ξ2, ζ) (1.3.11)

for every ξ1, ξ2 ∈ MN×N
sym and every ζ ∈ [0,+∞). From (1.3.3), (1.3.4), and (1.3.10) it

follows that

0 ≤ H(ξ, ζ) ≤MKζ|ξ| , (1.3.12)

|H(ξ2, ζ)−H(ξ1, ζ)| ≤MKζ|ξ2 − ξ1| , (1.3.13)

|H(ξ, ζ2)−H(ξ, ζ1)| ≤MK |ξ||ζ2 − ζ1| , (1.3.14)

for every ξ, ξ1, ξ2 ∈MN×N
sym and every ζ, ζ1, ζ2 ∈ [0,+∞).

Given ζ ∈ C0(Ω)+ , we define

K(ζ) := {σ ∈ L∞(Ω;MN×N
sym ) : σ(x) ∈ K(ζ(x)) for Ln-a.e. x ∈ Ω} . (1.3.15)

It is obvious that when σ ∈ C(Ω) ∩ K(ζ), then σ(x) ∈ K(ζ(x) for every x ∈ Ω. Given

µ ∈M+
b (Ω ∪ Γ0;MN×N

sym ) it will be sometimes useful to consider also the space

Kµ(ζ) := {σ ∈ L2
µ(Ω ∪ Γ0;MN×N

sym ) : σ(x) ∈ K(ζ(x)) for µ-a.e. x ∈ Ω ∪ Γ0} . (1.3.16)

For every closed convex set C ⊂ L2(Ω;MN×N
sym ), let πC : L2(Ω;MN×N

sym ) → C be the

minimal distance projection onto C . For every σ ∈ L2(Ω;MN×N
sym ) we define

d2(σ, C) := ‖σ − πC(σ)‖2 , (1.3.17)

the L2 -distance from σ to C . It is easy to see that, if σ ∈ L2(Ω;MN×N
sym ), then

σ̂ = πK(ζ)(σ) ⇐⇒ σ̂(x) = πK(ζ(x))(σ(x)) for Ln-a.e. x ∈ Ω . (1.3.18)

Using the theory of convex functions of measures developed in [21], we introduce the

nonnegative Radon measure H(p, ζ) defined by

H(p, ζ)(B) :=

∫
B

H( dpdλ (x), ζ(x)) dλ(x) , (1.3.19)

for any Borel set B ⊂ Ω ∪ Γ0 . Here λ ∈ Mb(Ω ∪ Γ0)+ is any measure such that p � λ ;

note that the homogeneity of H with respect to ξ implies that the integral does not depend

on λ . Similarly, we introduce the functional functional H : Mb(Ω∪Γ0;MN×N
sym )×C0(Ω)+ → R

defined by

H(p, ζ) :=

∫
Ω∪Γ0

H( dpdλ (x), ζ(x)) dλ(x) . (1.3.20)

In particular, if p ∈ L2(Ω;MN×N
sym ), we have

H(p, ζ) =

∫
Ω

H(p(x), ζ(x)) dx .

When ṗ is the rate of plastic strain and ζ is the internal variable, H(ṗ, ζ) represents the

rate of plastic dissipation.
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For every p ∈ L2(Ω;MN×N
sym ) and ζ ∈ C0(Ω)+ the symbol ∂pH(p, ζ) denotes the subdif-

ferential in L2(Ω;MN×N
sym ) of H(·, ζ) at p . Using [40, Corollary 23.5.3] and [19, Proposition

IX.2.1] it is easy to show that

∂pH(0, ζ) = K(ζ) . (1.3.21)

As H(p, ζ) is positively homogeneous with respect to p we have

∂pH(p, ζ) ⊂ ∂pH(0, ζ) = K(ζ) (1.3.22)

for every p ∈ L2(Ω;MN×N
sym ) and every ζ ∈ C0(Ω)+ .

The following theorem shows that H can be also regarded as the support function of

the closed convex set K(ζ) ∩ C0
0 (Ω ∪ Γ0;MN×N

sym ); this will be the point of view of the next

section.

Theorem 1.2. Let p ∈Mb(Ω ∪ Γ0;MN×N
sym ) , ζ ∈ C0(Ω)+ , let K(ζ) satisfy (1.3.1)-(1.3.4),

and define H(p, ζ) as in (1.3.20). Then

H(p, ζ) = sup{
∫

Ω∪Γ0

τ(x) dp(x) : τ ∈ C0
0 (Ω ∪ Γ0;MN×N

sym ) ∩ K(ζ)}. (1.3.23)

Proof. The ”≥” inequality is trivial. To prove the converse inequality, we assume that

Γ0 = ∂Ω: this is not restrictive, because otherwise we can proceed by inner approximation

with smooth sets Ωk whose boundary is contained in Ω ∪ Γ0 . Observe also that, by the

1-Lipschitz continuity of the projection, the supremum in (1.3.23) remains unchanged if we

replace C0
0 (Ω ∪ Γ0;MN×N

sym ) ∩ K(ζ) with K|p|(ζ), where K|p|(ζ) is defined in (1.3.16).

First, we suppose that ζ(x) is constant on Ω and we denote its unique value by ζ̃ . In

this case, the result could be deduced in an abstract framework using [21, Theorem 4] and

[52, Chapter II, Lemma 5.2], but we give a direct proof for the reader’s convenience. We fix

ε > 0 and we find a continuous function q(x) such that∫
Ω

|q(x)− p
|p| (x)| d|p|(x) ≤ ε (1.3.24)

and consequently

H(p, ζ̃) ≤
∫

Ω

H(q(x), ζ̃) d|p|(x) +MK ζ̃ε . (1.3.25)

By the compactness of Ω̄ and standard properties of bounded Radon measures we can find

a finite family of pairwise disjoint open sets (Qi)
j(ε)
i=1 such that:

Ω̄ ⊆
j(ε)⋃
i=1

Q̄i (1.3.26)

|q(x)− q(y)| ≤ ε for every x, y ∈ Qi ∩ Ω̄ and every 1 ≤ i ≤ j(ε); (1.3.27)

|p|(∂Qi ∩ Ω̄) = 0 . (1.3.28)

In particular, (1.3.27) and (1.3.13) easily yield:

|H(q(x), ζ̃)−H(q(y), ζ̃)| < MK ζ̃ε (1.3.29)

for every x, y ∈ Qi ∩ Ω̄ and every 1 ≤ i ≤ j(ε).
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We choose xi ∈ Qi ∩ Ω̄ and we find ξi ∈ K(ζ̃) such that ξi : q(xi) = H(q(xi), ζ̃). Then,

we define

ξ(x) :=

ξi if x ∈ Qi ∩ Ω̄

0 if x ∈ Ω̄ \
⋃j(ε)
i=1 Qi

,

which is a step function satisfying ξ ∈ K|p|(ζ). We then get, using the definition of ξ(x),

(1.3.24), (1.3.25), and (1.3.27)-(1.3.29), that

H(p, ζ̃)−MK ζ̃ε ≤
∫

Ω

H(q(x), ζ̃) d|p|(x) =

=

j(ε)∑
i=1

∫
Qi∩Ω̄

H(q(x), ζ̃) d|p|(x) ≤
j(ε)∑
i=1

∫
Qi∩Ω̄

ξi : q(xi) d|p|(x) +MK ζ̃ε ≤

≤
∫

Ω

ξ(x) : ξ(x) d|p|(x) + 2MK ζ̃ε ≤
∫

Ω

q(x) dp(x) + 3MK ζ̃ε

and (1.3.23) follows immediately.

To prove the general case, we use a similar argument, taking pairwise disjoint open sets

(Qi)
j(ε)
i=1 satisfying (1.3.26), (1.3.29) and

|ζ(x)− ζ(y)| ≤ ε for every x, y ∈ Qi ∩ Ω̄ and every 1 ≤ i ≤ j(ε) , (1.3.30)

which, together with (1.3.14), gives

|H(ξ, ζ(x))−H(ξ, ζ(x))| < MKε|ξ| (1.3.31)

for every x, y ∈ Qi ∩ Ω̄ and every 1 ≤ i ≤ j(ε). We choose xi ∈ Qi ∩ Ω̄ . By the previous

step and (1.3.28) we can find functions τi ∈ C0
0 (Qi ∩ Ω̄;MN×N

D ) such that:∫
Qi∩Ω̄

τi(x) dp(x) ≥
∫
Qi∩Ω̄

H( p
|p| (x), ζ(xi)) d|p|(x)− ε

j(ε)

and such that τi(x) ∈ K(ζ(xi)) for every x in Qi ∩ Ω̄ . Putting ϕi(x) := πK(ζ(x))(τi(x)),

where πK(ζ(x)) is the canonical projection on the closed convex set K(ζ(x)), we easily get∫
Qi∩Ω̄

ϕi(x) dp(x) ≥
∫
Qi∩Ω

H( p
|p| (x), ζ(xi)) d|p|(x)− ε

j(ε)
− ε|µ|(Qi ∩ Ω̄), . (1.3.32)

We then define

ϕ(x) :=

ϕi if x ∈ Qi ∩ Ω̄

0 if x ∈ Ω̄ \
⋃j(ε)
i=1 Qi

,

which is still continuous since the Qi ’s are a finite collection and the functions ϕi vanish

on the interfaces, and clearly belongs to K(ζ). Moreover, by (1.3.32)∫
Ω

ϕ(x) dp(x) ≥ (

j(ε)∑
i=1

∫
Qi∩Ω

H( p
|p| (x), ζ(xi)) d|p|(x))− ε− ε|µ|(Ω̄) ,

and (1.3.31), since p
|p| (x) = 1 for |p| -a.e. x ∈ Ω, finally yields∫

Ω

ϕ(x) dp(x) ≥
∫

Ω

H( p
|p| (x), ζ(xi)) d|p|(x)− ε− 2ε|µ|(Ω̄) ,

as required.
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1.4 Some tools about functions of bounded variation in

time

It is a well-known fact for problems in elastoplasticity like the one we are going to study

in the next chapters that, since the functional H has linear growth, they have, in general,

no solution in Sobolev spaces. This is very natural from the point of view of mechanics,

due to the phenomenon of strain localization. Solutions can develop shear bands, where

shear deformation concentrates. Seen from a macroscopic perspective, shear bands can

be thought of as sharp discontinuities of the displacement (slip surfaces). They cannot be

resolved by Sobolev functions, but they find a natural mathematical representation if plastic

deformations are allowed to take values in spaces of measures (see [50]).

Therefore, in our formulation, the plastic strain p will be regarded as a function from

a time interval, say [0, T ] , to the space Mb(Ω ∪ Γ0;MN×N
sym ) which is neither reflexive nor

enjoys the Radon-Nikodym property (for this latter notion we refer to [6, Chapter 3]). A

suitable weak notion of time derivative will be then needed to understand the evolution

of the system. The goal of this section is to introduce such a notion for a function f of

bounded variation from a time interval to the dual of a separable Banach space and to prove

the representation formula (1.4.9) for the H -variation V of f defined in (1.5.1), which turns

out to be closely related to the total amount of plastic dissipation on a time interval, as

we will see in the following. As a particular case, we will recover the analogous results for

absolutely continuous functions proved in [13, Appendix].

Throughout this section X is the dual of a separable Banach space Y , and K is a

bounded closed convex subset of Y containing the origin. Let H : X → R be its support

function, defined by

H(x) := sup
y∈K
〈x, y〉.

Since K is bounded and contains the origin, there exist a positive constant βH such that

0 ≤ H(x) ≤ βH‖x‖X for every x ∈ X . (1.4.1)

Thanks to (1.3.1)-(1.3.4) and Theorem 1.2, it is clear that for every fixed ζ ∈ C0(Ω)+

the functional H(·, ζ) introduced in (1.3.20) fulfills this description with X := Mb(Ω ∪
Γ0;MN×N

sym ), Y := C0
0 (Ω∪Γ0;MN×N

sym ) and K := K(ζ), where this one is defined in (1.3.15).

Given f : [0, T ] → X and a, b ∈ [0, T ] , with a ≤ b , the total variation of f on [a, b] is

defined by

Var(f ; a, b) := sup
{ N∑
i=1

‖f(ti)− f(ti−1)‖X : a = t0 ≤ t1 ≤ · · · ≤ tN = b, N ∈ N
}
, (1.4.2)

while the H -variation of f on [a, b] is defined by

V(f ; a, b) := sup
{ N∑
i=1

H(f(ti)− f(ti−1)) : a = t0 ≤ t1 ≤ · · · ≤ tN = b, N ∈ N
}
. (1.4.3)

For every t ∈ [0, T ] , f(t+) and f(t−) denote the left and right limits of f at t . It

is easily seen that the map t 7→ f(t+) is right-continuous, as well as t 7→ f(t−) is left-

continuous. The function f is extended outside [0, T ] by putting f(t) = f(0) whenever



1.4 Some tools about functions of bounded variation in time 1. Preliminaries

t ≤ 0 and f(t) = f(T ) whenever t ≥ T , so that in particular f(0−) = f(0) and f(T+) =

f(T ).

We now prove a theorem about a notion of weak∗ Radon-Nikodym derivative for an

X -valued function of bounded variation with respect to the Stieltjes measure associated to

its variation.

Theorem 1.3. Let f : [0, T ] → X be a function with bounded variation, and let µ be the

unique Radon measure on [0, T ] such that µ([0, t]) = Var(f ; 0, t) for every t ∈ [0, T ] where

t 7→ Var(f ; 0, t) is continuous. Then there exists a unique (up to µ-equivalence) function

νf : [0, T ]→ X such that for every y ∈ Y the function t 7→ 〈y,νf (t)〉 is µ-integrable and

〈y,f(b)− f(a)〉 =

∫ b

a

〈y,νf (t)〉 dµ(t) (1.4.4)

for every a, b ∈ [0, T ] with a ≤ b , such that µ({a}) = µ({b}) = 0 . Moreover

‖νf (t)‖X ≤ 1 (1.4.5)

for µ-a.e. t ∈ [0, T ] .

Proof. Uniqueness is trivial, so we only prove the existence of such a function. Let F be the

linear span over Q of a countable dense set in Y . For every y ∈ F the function t 7→ 〈y,f(t)〉
has bounded variation on [0, T ] . Let ν be the unique Radon measure on [0, T ] such that

ν([0, t]) = 〈y,f(t)−f(0) for every t where f is continuous. Since ν is absolutely continuous

with respect to µ , by the Besicovitch Differentiation Theorem there exists a µ-negligible

set Ny such that the limit

Dµ
y (t) := lim

h→0+

〈y,f(t+ h+)− f(t− h−)〉
µ([t− h, t+ h])

exists for every t ∈ [0, T ] \Ny , the function t 7→ Dµ
y (t) is µ-integrableand

〈y,f(b)− f(a)〉 =

∫ b

a

Dµ
y (t) dµ(t)

for every a, b ∈ [0, T ] with a ≤ b , such that µ({a}) = µ({b}) = 0. We also notice that by

definition µ([t − h, t + h]) ≥ ‖f(t + h+) − f(t − h−)‖X . Let N be the union of the sets

Ny for y ∈ F . Then, µ(N) = 0, the derivative Dµ
y (t) exists for every y ∈ F and every

t ∈ [0, T ]\N , and

|Dµ
y (t)| ≤ ‖y‖Y . (1.4.6)

Now, for t ∈ [0, T ]\N consider the Q-linear map y ∈ F 7→ Dµ
y (t). This map is continuous

by (1.4.6); therefore, there exists a vector in X , which we call νf (t), such that

Dµ
y (t) = 〈y,νf (t)〉

for every y ∈ F . Using the density of F and (1.4.6) it is easy to show that the vector νf (t)

satisfies

〈y,νf (t)〉 = lim
h→0+

〈y,f(t+ h+)− f(t− h−)〉
µ([t− h, t+ h])

(1.4.7)

for every y ∈ Y and every t ∈ [0, T ]\N , so that (1.4.4) follows again by the Besicovitch

Differentiation Theorem. Inequality (1.4.5) is an obvious consequence of (1.4.6).
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Remark 1.4. Let t be an atom of µ , that is a jump point of f . It then easily follows from

(1.4.7) that

νf (t) =
f(t+)− f(t−)

‖f(t+)− f(t)‖X + ‖f(t)− f(t−)‖X
(1.4.8)

for every t such that µ({t}) > 0.

Theorem 1.5. Let f : [0, T ]→ X be a left-continuous function with bounded variation, and

let µ , and νf (t) be as in Theorem 1.3. Then, the function t 7→ H(νf (t)) is µ-integrable

and

V(f ; a, b) =

∫ b

a

H(νf (t)) dµ(t) (1.4.9)

for every a, b ∈ [0, T ] with a ≤ b , such that µ({a}) = µ({b}) = 0 .

Proof. We note that the function t 7→ H(νf (t)) is µ-measurable, since the map t →
〈y,νf (t)〉 is µ-measurable for every y ∈ Y and H(νf (t)) = supy∈K0

〈y,νf (t)〉 , where

K0 is a countable dense subset of K .

Let us fix a and b as in the statement of the theorem. If a = t0 ≤ t1 ≤ · · · ≤ tN−1 ≤
tN = b is a subdivision of [a, b] such that µ({ti}) = 0 for every i , then

〈y,f(ti)− f(ti−1)〉 =

∫ ti

ti−1

〈y,νf (t)〉 dµ(t) ≤
∫ ti

ti−1

H(νf (t)) dµ(t)

for every 1 ≤ i ≤ N and every y ∈ K , hence

H(f(ti)− f(ti−1)) ≤
∫ ti

ti−1

H(νf (t)) dµ(t)

for every 1 ≤ i ≤ N . Summing over i and taking the supremum over all such subdivisions,

which equals to V(f ; a, b) thanks to the assumption µ({a}) = µ({b}) = 0 and the left-

continuity of f , we obtain

V(f ; a, b) ≤
∫ b

a

H(νf (t)) dµ(t) . (1.4.10)

To show the converse inequality, we first observe that the function V (t) := V(f ; 0, t)

is left-continuous and non-decreasing. Let µH be the unique Radon measure on [0, T ]

such that µH([0, t)) = V (t) for every t ∈ (0, T ] . This measure is absolutely continuous

with respect to µ , as a consequence of (1.4.1); therefore, by the Besicovitch Differentiation

Theorem there exists a µ -negligible set M such that the limit

dµH
dµ

(t) := lim
h→0+

V (t+ h+)− V (t− h)

µ([t− h, t+ h])

exists for every t ∈ [0, T ] \M , and∫ b

a

dµH
dµ

(t) dµ(t) = V(f ; a, b) . (1.4.11)

Let t ∈ [0, T ] \ (N ∪M), where N is the set defined in the previous theorem. Since H is

positively homogeneous of degree 1, we have

H
(f(t0 + h+)− f(t0 − h)

µ([t0 − h, t0 + h])

)
≤ V (t0 + h+)− V (t0 − h)

µ([t0 − h, t0 + h])
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for every h > 0. Using the weak∗ -lower semicontinuity of H , by (1.4.7) and by the previous

inequality we get

H(νf (t)) ≤ lim inf
h→0+

H
(f(t+ h+)− f(t0 − h)

µ([t− h, t0 + h])

)
≤

≤ lim sup
h→0+

H
(f(t+ h+)− f(t− h)

µ([t− h, t+ h])

)
≤ dµH

dµ
(t)

for µ-a.e. t ∈ [0, T ] . We now integrate with respect to µ and we obtain (1.4.9) from (1.4.10)

and (1.4.11).

Remark 1.6. When K is the unit ball of Y , then V = Var and H(νf (t)) = ‖νf (t)‖X . It

follows from (1.4.5) and (1.4.9) that

‖νf (t)‖X = 1 (1.4.12)

for µ-a.e. t ∈ [0, T ] .

Remark 1.7. Let µd the diffuse part of µ , that is to say

µd = µ−
∑
τ∈J

µ({τ})δτ ,

where J := {τ ∈ [0, T ] : µ({τ}) > 0} , which is at most countable. From Theorem 1.3,

Theorem 1.5, and (1.4.8) we can deduce that, if f is left-continuous and has bounded

variation∫ b

a

〈y,νf (t)〉 dµd(t) = 〈y,f(b)− f(a)〉 −
∑

τ∈J∩[a,b)

〈y,f(τ+)− f(τ)〉 (1.4.13)

for every y ∈ Y and every 0 ≤ a < b ≤ T , and∫ b

a

H(νf (t)) dµd(t) = V(f ; a, b)−
∑

τ∈J∩[a,b)

H(f(τ+)− f(τ)) (1.4.14)

for every 0 ≤ a < b ≤ T . The proof is indeed obvious when µ({a}) = µ({b}) = 0,

otherwise it can be obtained by approximation with subintervals [an, bn] of [a, b] such that

µ({an}) = µ({bn}) = 0 for every n .

We now turn to the case of absolutely continuous functions. We recall that a function

f : [a, b]→ X is said to be absolutely continuous if for every ε > 0 there exists δ > 0 such

that
∑
i ‖f(ti) − f(si)‖X < ε, whenever a ≤ s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sk < tk ≤ b and∑

i(ti − si) < δ . The space of these functions is denoted by AC([0, T ];X). For the general

properties of absolutely continuous functions with values in reflexive Banach spaces we refer

to [4, Appendix]. Here instead, in our more general setting, we can deduce from Theorems

1.3 and 1.5 the following one, whose original proof can be found in [13, Theorem 7.1].

Theorem 1.8. Let f : [0, T ] → X be an absolutely continuous function. Then the weak∗ -

limit

ḟ(t) := w∗- lim
s→t

f(s)− f(t)

s− t
(1.4.15)
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exists for a.e. t ∈ [0, T ] . Moreover, the function t 7→ H(ḟ(t)) is measurable and

V(f ; a, b) =

∫ b

a

H(ḟ(t)) dt (1.4.16)

for every a, b ∈ [0, T ] with a ≤ b .

Proof. Let µ and νf as in Theorem 1.3. By the absolute continuity of f , µ is absolutely

continuous with respect to the Lebesgue measure L1 on [0, T ] , therefore µ = gL1 with

g ∈ L1([0, T ])+ . By the Lebesgue Differentiation Theorem, for L1 -a.e. t ∈ [0, T ] we have

lim
h→0+

µ([t− h, t+ h])

2h
= g(t) ,

therefore (1.4.7) gives

〈y,νf (t)g(t)〉 = lim
h→0+

〈y,f(t+ h)− f(t− h)〉
2h

for every y ∈ Y and L1 -a.e. t ∈ [0, T ] , and (1.4.15) follows with ḟ(t) = νf (t)g(t). With

this, (1.4.9) and the positive 1-homogeneity of H , the proof of (1.4.16) is trivial.

Note that in this general situation ḟ is only weakly∗ measurable, therefore it may

happen that ḟ is not Bochner integrable. If ϕ : [c, d]→ [a, b] is nondecreasing and absolutely

continuous, then the function g(s) := f(ϕ(s)) is absolutely continuous and

ġ(s) = f̂(ϕ(s))ϕ̇(s) for L1-a.e. s ∈ [c, d], (1.4.17)

where f̂(t) = ḟ(t) if the derivative (1.4.15) exists, while f̂(t) = 0 otherwise (this result can

be obtained for instance by adapting [3, Theorem 4.2]). It follows that∫ d

c

h(ϕ(s))ϕ̇(s) ds =

∫ ϕ(d)

ϕ(c)

h(t) dt (1.4.18)

for every h ∈ L1([a, b];X). Indeed, the derivatives with respect to d of both sides in (1.4.18)

coincide L1 -a.e. by (1.4.17).

1.5 Discrete approximation of some integrals

In this section we establish some measure theoretic results concerning a discrete approx-

imation of some integrals that will prove useful in Chapter 5 to get the energy-dissipation

balance.

Given p : [0, T ] → Mb(Ω ∪ Γ0,MN×N
sym ) and ζ ∈ C0(Ω)+ , according to (1.4.3) for every

0 ≤ a ≤ b ≤ T we define

V(p, ζ; a, b) := sup

k∑
i=1

H(p(ti)− p(ti−1), ζ) , (1.5.1)

where the supremum is taken over all finite families t0, t1, . . . , tk such that a = t0 ≤ t1 ≤
· · · ≤ tk = b . If p is absolutely continuous, the weak∗ -derivative ṗ is defined by (1.4.15).
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In the following Lemma we combine some elementary properties of V(p, ζ; 0, T ) with the

representation formula (1.4.9) to get a discrete approximation of the integral∫ T

0

H(ṗ(t), ζ) dt .

Lemma 1.9. Let T > 0 , let p ∈ AC([0, T ],Mb(Ω ∪ Γ0;MN×N
sym )) , let ζ ∈ C0(Ω)+ , and let

{tik}0≤i≤ik be a sequence of subdivisions of [0, T ] satisfying

0 = t0k ≤ t1k ≤ · · · ≤ t
ik
k = T and ηk := max

1≤i≤k
(tik − ti−1

k )→ 0 . (1.5.2)

Then

lim
k→∞

ik∑
i=1

∣∣∣H(p(tik)− p(ti−1
k ), ζ)−

∫ tik

ti−1
k

H(ṗ(t), ζ) dt
∣∣∣ = 0 . (1.5.3)

Proof. We first show that, if p is only assumed to be left continuous in [0, T ] with respect

to the norm topology in Mb(Ω ∪ Γ0,MN×N
sym ), then

V(p, ζ; 0, T ) = lim
k→∞

ik∑
i=1

H(p(tik)− p(ti−1
k ), ζ) . (1.5.4)

To get this, by (1.5.1) it is enough to prove the inequality

V(p, ζ; 0, T ) ≤ lim inf
k→∞

ik∑
i=1

H(p(tik)− p(ti−1
k ), ζ) . (1.5.5)

Let us fix λ < V(p, ζ; 0, T ). By (1.5.1) there exist an integer h and a subdivision 0 = t0 ≤
t1 ≤ · · · ≤ th = T such that

λ <

h∑
j=1

H(p(tj)− p(tj−1), ζ) . (1.5.6)

For every j and k , let ι(j, k) be the greatest integer i such that tik ≤ tj . Since tj − ηk <
t
ι(j,k)
k ≤ tj and ηk → 0, inequality (1.5.6), together with the left continuity of p and the

continuity of H , gives

λ <

h∑
j=1

H(p(t
ι(j,k)
k )− p(t

ι(j−1,k)
k ), ζ)

for k large enough. By the triangle inequality (1.3.11), this implies

λ <

ik∑
i=1

H(p(tik)− p(ti−1
k ), ζ)

for k large enough. Inequality (1.5.5), and thus (1.5.4), follow from the arbitrariness of

λ < V(p, ζ; 0, t).

Now, if p is absolutely continuous, by Theorem 1.8 we have

V(p, ζ; a, b) =

∫ b

a

H(ṗ(t), ζ) dt (1.5.7)
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for every 0 ≤ a ≤ b ≤ T . Therefore (1.5.4) gives∫ T

0

H(ṗ(t), ζ) dt = lim
k→∞

ik∑
i=1

H(p(tik)− p(ti−1
k ), ζ) . (1.5.8)

Since

H(p(tik)− p(ti−1
k ), ζ) ≤

∫ tik

ti−1
k

H(ṗ(t), ζ) dt

by (1.5.7), equality (1.5.3) is equivalent to (1.5.8).

We now turn to the case of a time-dependent function ζ : [0, T ]→ C0(Ω)+ , and we get

an analogous result for the integral∫ T

0

H(ṗ(t), ζ(t)) dt .

Lemma 1.10. Let T > 0 , let {tik}0≤i≤ik be a sequence of subdivisions of [0, T ] satisfying

(1.5.2), and consider p ∈ AC([0, T ],Mb(Ω∪Γ0;MN×N
sym )) and ζ ∈ C0([0, T ];C0(Ω)+) . Then

lim
k→∞

ik∑
i=1

∣∣∣H(p(tik)− p(ti−1
k ), ζ(ti−1

k ))−
∫ tik

ti−1
k

H(ṗ(t), ζ(t)) dt
∣∣∣ = 0 , (1.5.9)

lim
k→∞

ik∑
i=1

∣∣∣H(p(tik)− p(ti−1
k ), ζ(tik))−

∫ tik

ti−1
k

H(ṗ(t), ζ(t)) dt
∣∣∣ = 0 . (1.5.10)

Proof. Since t 7→ ζ(t) is continuous, for every ε > 0 there exists δ(ε) > 0 such that

‖ζ(t′)− ζ(t)‖∞ < ε for every t′, t ∈ [0, T ] with |t′ − t| < δ(ε) . (1.5.11)

Let us fix ε > 0 and a subdivision 0 = t0 < t1 < · · · < th = T such that tj − tj−1 < δ(ε)

for every j = 1, . . . , h . By Lemma 1.9 we have

lim
k→∞

ik∑
i=1

∣∣∣H(p(tik)− p(ti−1
k ), ζ(tj))−

∫ tik

ti−1
k

H(ṗ(t), ζ(tj)) dt
∣∣∣ = 0 (1.5.12)

for every j = 1, . . . , h .

If tj−1 < tik ≤ tj , by (1.5.2) for every ti−1
k ≤ t ≤ tik we have |t − tj−1| < δ(ε) and

|t− tj | < δ(ε) for k sufficiently large. Therefore (1.3.14), (1.3.20), and (1.5.11) give

|H(p, ζ(t))−H(p, ζ(tj−1))| ≤MKε‖p‖1 and |H(p, ζ(t))−H(p, ζ(tj))| ≤MKε‖p‖1

for every p ∈Mb(Ω∪Γ0,MN×N
sym ) and every ti−1

k ≤ t ≤ tik . Since p is absolutely continuous,

this implies, thanks to Theorem 1.8, that

|H(p(tik)− p(ti−1
k ), ζ(ti−1

k ))−H(p(tik)− p(ti−1
k ), ζ(tj))| ≤

≤MKε‖p(tik)− p(ti−1
k )‖1 ≤MKε

∫ tik

ti−1
k

‖ṗ(t)‖1dt ,

∣∣∣ ∫ tik

ti−1
k

H(ṗ(t), ζ(t)) dt−
∫ tik

ti−1
k

H(ṗ(t), ζ(tj)) dt
∣∣∣ ≤MKε

∫ tik

ti−1
k

‖ṗ(t)‖1dt ,
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Therefore

ik∑
i=1

∣∣∣H(p(tik)− p(ti−1
k ), ζ(ti−1

k ))−
∫ tik

ti−1
k

H(ṗ(t), ζ(t)) dt
∣∣∣ ≤

≤
h∑
j=1

ik∑
i=1

∣∣∣H(p(tik)− p(ti−1
k ), ζ(tj))−

∫ tik

ti−1
k

H(ṗ(t), ζ(tj)) dt
∣∣∣+ 2MKε

∫ T

0

‖ṗ(t)‖1dt ,

so (1.5.12) gives

lim sup
k→∞

ik∑
i=1

∣∣∣H(p(tik)− p(ti−1
k ), ζ(ti−1

k ))−
∫ tik

ti−1
k

H(ṗ(t), ζ(t)) dt
∣∣∣ ≤ 2MKε

∫ T

0

‖ṗ(t)‖1dt .

Equality (1.5.9) follows now from the arbitrariness of ε > 0. The proof of (1.5.10) is

similar.

We now prove two lemmas concerning the approximation of Lebesgue integrals by Rie-

mann sums. The first one, in the weaker form (1.5.14) is well-known (see [22]). For the

application we have in mind we need the stronger result (1.5.13), which is related to the

Saks-Henstock lemma (see [45] and [24]) used in the theory of Henstock-Kurzweil integral

(see, e.g., [30]). We present here an elementary proof in the framework of Lebesgue integra-

tion, based on Fubini’s theorem, taken from [16, page 63].

Lemma 1.11. Let T > 0 , let X be a Banach space, and let ψ : [0, T ] → X be a Bochner

integrable function. Then there exists a sequence (tik)0≤i≤ik of subdivisions of the interval

[0, T ] satisfying (1.5.2) such that

lim
k→∞

ik∑
i=1

∫ tik

ti−1
k

‖ψ(t)−ψ(ti−1
k )‖ dt = 0 = lim

k→∞

ik∑
i=1

∫ tik

ti−1
k

‖ψ(t)−ψ(tik)‖ dt . (1.5.13)

In particular we have

lim
k→∞

ik∑
i=1

ψ(ti−1
k )(tik − ti−1

k ) =

∫ T

0

ψ(t) dt = lim
k→∞

ik∑
i=1

ψ(tik)(tik − ti−1
k ) , (1.5.14)

lim
k→∞

ik∑
i=1

‖ψ(tik)−ψ(ti−1
k )‖(tik − ti−1

k ) = 0 , (1.5.15)

where the limits in (1.5.14) are in the strong topology of X .

Proof. We extend ψ to 0 outside [0, T ] . Set, for every m ≥ 1 and every i ∈ Z , τ im := i
m .

For every s ∈ [0, 1] we have

∑
i∈Z

∫ s+τ im

s+τ i−1
m

‖ψ(s+ τ im)−ψ(t)‖ dt =

=
∑
i∈Z

∫ 1
m

0

‖ψ(s+ τ im)−ψ(s+ τ im − τ)‖ dτ .
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Observe that there are at most m(T + 1) + 2 non-zero elements in the above sums, namely

those satisfying i ∈ Im := {i ∈ Z : −m ≤ i ≤ mT + 1} . Integrating in the variable s we

then get ∫ 1

0

[∑
i∈Z

∫ s+τ im

s+τ i−1
m

‖ψ(s+ τ im)−ψ(t)‖ dt
]
ds ≤

∑
i∈Im

∫ 1
m

0

[ ∫ +∞

−∞
|ψ(s+ τ im)−ψ(s+ τ im − τ)‖ ds

]
dτ = (1.5.16)

=
∑
i∈Im

∫ 1
m

0

[ ∫ +∞

−∞
|ψ(s)−ψ(s− τ)‖ ds

]
dτ .

Since the translations are continuous, for every ε > 0 we can find δ > 0 such that∫ +∞

−∞
|ψ(s)−ψ(s− τ)‖ ds < ε (1.5.17)

for 0 < τ < δ . Thus, (1.5.17) and (1.5.16) imply that

lim
m→+∞

∫ 1

0

[∑
i∈Z

∫ s+τ im

s+τ i−1
m

‖ψ(s+ τ im)−ψ(t)‖ dt
]
ds = 0 .

It follows that, along a suitable subsequence mk → +∞ , we have

lim
k→+∞

[∑
i∈Z

∫ s+τ imk

s+τ i−1
m

‖ψ(s+ τ imk)−ψ(t)‖ dt
]
ds = 0 (1.5.18)

for L1 -a.e. s ∈ [0, 1]. Let us fix s ∈ [0, 1] such that (1.5.18) holds. Let %k be the largest

integer i such that s+τ imk ≤ 0, and let σk be the smallest integer i such that s+τ imk ≥ T ,

and let ik := σk − %k . For i = 1, . . . , ik − 1 we define tik := s + τ%k+i
mk

, and we set t0k := 0

and tikk := T . It is clear that (1.5.2) is satisfied. moreover

ik∑
i=1

∫ tik

ti−1
k

‖ψ(tik)−ψ(t)‖ dt =

=

i=σk−1∑
i=%k+2

∫ s+τ imk

s+τ i−1
m

‖ψ(s+ τ imk)−ψ(t)‖ dt = (1.5.19)

=

∫ ak

0

|ψ(ak)−ψ(t)‖ dt+

∫ T

bk

|ψ(T )−ψ(t)‖ dt ,

where ak := s+ τ%k+1
mk

and bk := s+ τσk−1
mk

. Since all integers between %k + 2 and σk − 1

belong to Imk , the first term in the right-hand side of (1.5.19) tends to 0 by (1.5.18). The

second term is estimated by∫ ak

0

|ψ(ak)−ψ(t)‖ dt ≤
∫ s+τ

%k+1
mk

s+τ
%k
m

‖ψ(s+ τ%k+1
mk

)−ψ(t)‖ dt ,

which also tends to 0 by (1.5.18). As T−bk is infinitesimal by the choice of σk , the absolute

continuity of the integral yields that also the third term goes to 0. This proves (1.5.13).

Equality (1.5.15) follows from (1.5.13) by the triangle inequality.
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For our purposes, we will need an ad-hoc refinement of the previous lemma. To be

definite, we consider a measurable subset B of [0, T ] . In a simplified situation, say if B is

a subinterval or a finite union of subintervals, it is not difficult to prove that, in order to

approximate the Bochner integral of ψ over B , we can take the sequence of Riemann sums

satisfying (1.5.13) and consider only the contributions of the indexes i such that ti−1
k ∈ B

and tik ∈ B . The next lemma shows that is is true for an arbitrary measurable set B . The

reason for this technical point will be clear in Chapter 5, Section 5.6. Roughly speaking this

lemma is tailored to a situation where, when proving an inequality involving integral terms

for a system whose solutions can show different types of dynamics, one may need different

types of approximations on the set of times where a certain regime is followed and on its

complementary set.

Lemma 1.12. Let T > 0 , let X be a Banach space, let ψ : [0, T ] → X be a Bochner

integrable function, let A be a measurable set in [0, T ] such that ψ = 0 on A , let B :=

[0, T ] \ A , and let (tik)0≤i≤ik be a sequence of subdivisions of [0, T ] satisfying (1.5.2) and

(1.5.13), and hence (1.5.14). Let us define

IAk := {i : 1 ≤ i ≤ ik, ti−1
k ∈ A, tik ∈ A} , (1.5.20)

IBk := {i : 1 ≤ i ≤ ik, ti−1
k ∈ B, tik ∈ B} , (1.5.21)

JA−k := {i : 1 ≤ i ≤ ik, ti−1
k ∈ A, tik ∈ B} , (1.5.22)

JA+
k := {i : 1 ≤ i ≤ ik, ti−1

k ∈ B, tik ∈ A} , (1.5.23)

JAk := JA−k ∪ JA+
k . (1.5.24)

Then

lim
k→∞

∑
i∈IBk

ψ(ti−1
k )(tik − ti−1

k ) =

∫ T

0

ψ(t) dt = lim
k→∞

∑
i∈IBk

ψ(tik)(tik − ti−1
k ) , (1.5.25)

lim
k→∞

∑
i∈JAk

(‖ψ(ti−1
k )‖+ ‖ψ(tik)‖)(tik − ti−1

k ) = 0 , (1.5.26)

lim
k→∞

∑
i∈IAk ∪J

A
k

∫ tik

ti−1
k

‖ψ(t)‖ dt = 0 , (1.5.27)

where the limits in (1.5.25) are in the strong topology of X .

Proof. By (1.5.13) we have

lim
k→∞

∑
i∈IBk

∫ tik

ti−1
k

‖ψ(t)−ψ(ti−1
k )‖ dt = 0 = lim

k→∞

∑
i∈IBk

∫ tik

ti−1
k

‖ψ(t)−ψ(tik)‖ dt , (1.5.28)

lim
k→∞

∑
i∈JA+

k

∫ tik

ti−1
k

‖ψ(t)−ψ(ti−1
k )‖ dt = 0 = lim

k→∞

∑
i∈JA−k

∫ tik

ti−1
k

‖ψ(t)−ψ(tik)‖ dt , (1.5.29)

lim
k→∞

∑
i∈IAk ∪J

A−
k

∫ tik

ti−1
k

‖ψ(t)‖ dt = 0 = lim
k→∞

∑
i∈IAk ∪J

A+
k

∫ tik

ti−1
k

‖ψ(t)‖ dt . (1.5.30)

Equality (1.5.27) follows from (1.5.30). Applying the triangle inequality we obtain (1.5.26)

from (1.5.27) and (1.5.29). On the other hand, taking into account (1.5.20)-(1.5.23), we
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have

ik∑
i=1

ψ(ti−1
k )(tik − ti−1

k ) =
∑
i∈IBk

ψ(ti−1
k )(tik − ti−1

k ) +
∑
i∈JA+

k

ψ(ti−1
k )(tik − ti−1

k ) , (1.5.31)

and the last sum tends to 0 by (1.5.26). Therefore, the first equality in (1.5.25) follows from

(1.5.14) and (1.5.31). The proof of the other equality is similar.

Remark 1.13. Let T , A , and B be as in Lemma 1.12, and let (tik)0≤i≤ik be a sequence

of subdivisions of [0, T ] satisfying (1.5.2) and

lim
k→∞

ik∑
i=1

∫ tik

ti−1
k

|1B(t)− 1B(ti−1
k )| dt = 0 = lim

k→∞

ik∑
i=1

∫ tik

ti−1
k

|1B(t)− 1B(tik)| dt , (1.5.32)

where 1B denotes the characteristic function of B , defined by 1B(t) = 1 for t ∈ B and

1B(t) = 0 for t /∈ B . It follows from Lemma 1.12, applied to X = R and ψ(t) = 1B(t),

that

lim
k→∞

∑
i∈JAk

(tik − ti−1
k ) = 0 = lim

k→∞

∑
i∈IAk ∪J

A
k

L1(B ∩ [ti−1
k , tik]) . (1.5.33)

Remark 1.14. Let T , A , and B be as in Lemma 1.12. If in addition ψ : [0, T ] → X

is bounded and A is a relatively open set in [0, T ] , then, given (tik)0≤i≤ik a sequence of

subdivisions of [0, T ] satisfying (1.5.2), (1.5.13), and (1.5.32), it is not restrictive to assume

that (ti−1
k , tik) ⊂ A for every i ∈ JAk .

Indeed, if not, we can construct another subdivision satisying (1.5.2), (1.5.13), (1.5.32),

and our additional request, proceeding as follows. For every i ∈ JA−k let ti−
1
2

k be the

supremum of the connected component of A containing ti−1
k , and for every i ∈ JA+

k let

ti−
1
2

k be the infimum of the connected component of A containing tik . If 1 ≤ i ≤ ik

and i /∈ JAk , we set ti−
1
2

k := tik . Then we consider the subdivision (t̂ik)0≤i≤2ik defined by

t̂ik := t
i/2
k , which clearly satisfies (1.5.2). Defining ĴAk by (1.5.24), with t̂ik instead of tik , by

construction (t̂i−1
k , t̂ik) ⊂ A for every i ∈ ĴAk .

To see that (1.5.13), and (1.5.32) are satisfied, let M be an upper bound of ‖ψ(t)‖ on

[0, T ] . Since ti−
1
2

k = tik for i /∈ JAk and ‖ψ(t)−ψ(ti−
1
2

k )‖ ≤ ‖ψ(t)−ψ(ti−1
k )‖+2M for every

i ∈ JAk and every s ∈ [0, T ] , we have

ik∑
i=1

(∫ ti−
1
2k

ti−1
k

‖ψ(t)−ψ(ti−1
k )‖ dt+

∫ tik

ti−
1
2k

‖ψ(t)−ψ(ti−
1
2

k )‖ dt
)
≤

≤
ik∑
i=1

∫ tik

ti−1
k

‖ψ(t)−ψ(ti−1
k )‖ dt+ 2M

∑
i∈JAk

(tik − ti−1
k ) .

Since the right-hand side tends to 0 by (1.5.13) and (1.5.33), we obtain the first equality in

(1.5.13) for t̂ik . A similar argument proves the other equality, as well as (1.5.32).

1.6 Continuous dependence on a parameter

A particular situation will occur in Chapter 3, where, due to a suitable choice of the

data, our problem will reduce to determine the limit behavior of the solutions of a singularly



1.6 Continuous dependence on a parameter 1. Preliminaries

perturbed system of ODE’s in a finite dimensional Banach space. In this perspective, the

following result about continuous dependence on a parameter, whose original proof can be

found in [27] (see also [26]), will be useful .

Theorem 1.15. Let fε and f0 be Carathéodory functions defined on [a, b]×Rm with values

in Rm , let tε , t0 ∈ [a, b] , and let xε , x0 ∈ Rm . Assume that there exist two constants

L > 0 and M > 0 such that

|fε(t, x2)− fε(t, x1)| ≤ L |x2 − x1| , (1.6.1)

|fε(t, x)| ≤M , (1.6.2)

for every ε > 0 , every t ∈ [a, b] , and every x , x1 , x2 ∈ Rm . Let yε(t) and y0(t) be the

solutions of the Cauchy problemsẏε(t) = fε(t, y(t)) ,

yε(tε) = xε ,

ẏ0(t) = f0(t, y(t)) ,

yε(t0) = x0 .
(1.6.3)

If tε → t0 , xε → x0 , and for every x ∈ Rm∫ t

a

fε(s, x) ds→
∫ t

a

f0(s, x) ds uniformly for t ∈ [a, b] , (1.6.4)

then yε(t)→ y0(t) uniformly for t ∈ [a, b] .

Proof. It is easy to deduce from (1.6.4) that (1.6.1) and (1.6.2) hold also for ε = 0, therefore

y0(t) is well defined on the whole [a, b] . Moreover it is not restrictive to take t0 = a . Let

x(s) be a finite linear combination of characteristic functions of subintervals of [a, b] . Then

(1.6.4) implies that∫ t

a

fε(s, x(s)) ds→
∫ t

a

f0(s, x(s)) ds uniformly for t ∈ [a, b] ,

By uniform approximation, using (1.6.1) it is not difficult to prove that∫ t

a

fε(s, y0(s)) ds→
∫ t

a

f0(s, y0(s)) ds uniformly for t ∈ [a, b] . (1.6.5)

So, let Rε := supt∈[a,b] |
∫ t
a
fε(s, y0(s)) ds−

∫ t
a
f0(s, y0(s)) ds| . For every t ∈ [a, b] , by (1.6.1)

and (1.6.3) we have

|yε(t)− y0(t)| = |xε − x0 +

∫ t

a

fε(s, yε(s)) ds−
∫ t

a

f0(s, y0(s)) ds| ≤

≤ |xε − x0|+ L

∫ t

a

|yε(s)− y0(s)| ds+Rε ,

therefore the Gronwall inequality gives

|yε(t)− y0(t)| ≤ eL(b−a)(|xε − x0|+Rε)

for every t ∈ [a, b] , and the conclusion easily follows.
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In the following corollary inequalities (1.6.1) and (1.6.2) are satisfied only in the intervals

[tε, b] , and the conclusion is slightly weaker.

Corollary 1.16. Let fε and f0 be Carathéodory functions defined on [a, b]×Rm with values

in Rm , let tε → a , and let xε , x0 ∈ Rm . Assume that there exist two constants L > 0

and M > 0 such that (1.6.1) and (1.6.2) hold for every ε > 0 , every t ∈ [tε, b] , and every

x , x1 , x2 ∈ Rm . Let yε(t) and y0(t) be the solutions of the Cauchy problems (1.6.3). If

xε → x0 , and for every x ∈ Rm and every η > 0∫ t

a+η

fε(s, x) ds→
∫ t

a+η

f(s, x) ds uniformly for t ∈ [a+ η, b] ,

then

sup
tε≤t≤b

|yε(t)− y0(t)| → 0

Proof. Define

gε(t, x) =

fε(t, x) if t ≥ tε
fε(tε, x) otherwise

and let zε(t) the solutions of the Cauchy problemsżε(t) = gε(t, z(t)) ,

zε(tε) = xε .

It is not difficult to see that previous theorem may be applied with gε(t, x) in place of fε ;

then zε(t) → y0(t) uniformly for t ∈ [a, b] ; conclusion follows as, for every η > 0, when

ε sufficiently small, zε(t) = yε(t) in [a + η, b] by the uniqueness of solutions to Cauchy

problems.
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Chapter 2

The problem and the

mechanical assumptions

2.1 Overview of the chapter

The goal of this section is to introduce the Cam-Clay model in plasticy, to fix a convenient

notation for the development of the study we will carry out in the next chapters and to discuss

the main mechanical assumptions that we do in order to investigate the well-posedness of the

problem. In the final section, we introduce the vanishing viscosity approximation which is

the first tool we will use in order to give a suitable notion of generalized solution in Chapter

5, and we write down the ε -regularized equations.

2.2 The Cam-Clay model

Cam-Clay plasticity is a well established model for the description of the mechanics of

fine grained soils [41, 42, 43, 46]. The framework is small strain elasto-plasticity, where the

linear strain Eu is defined as the symmetric part of the gradient of the displacement u

with respect to a reference configuration Ω. Moreover, the strain is additively decomposed

into elastic and plastic part, namely Eu = e + p , where the elastic part e determines the

stress σ through the linear constitutive relation σ = Ce , where C is the isotropic elasticity

tensor (see (2.3.2)). The stress satisfies the standard equilibrium condition −div σ = f in

Ω, where div is the divergence operator with respect to the space variable x and f denotes

a time dependent body force.

In its classical formulation Cam-Clay plasticity rests on three main ingredients. The first

one is a set of admissible stresses K(ζ), a compact convex set in the space of symmetric

n×n matrices, whose size depends on a scalar internal variable ζ . The boundary ∂K(ζ)

identifies the yield surface, while stresses in the interior of K(ζ) cause no plastic flow. In

the typical applications, ∂K(ζ) are homothetic ellipsoids passing through the origin in the

space MN×N
sym . The technical assumptions on K(ζ) are those in the previous chapter, namely

(1.3.1)-(1.3.4). The other two main ingredients are the evolution laws for the plastic strain p

21
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and for the internal variable ζ . To write them explicitly, we introduce a new internal variable

z , related to ζ by the equality ζ = V (z), where V : R → (0,+∞) is a globally Lipschitz

nondecreasing function such that V (z) ≥ ζm for every z ∈ R and a suitable constant ζm > 0

(see (2.3.37)-(2.3.38)). Denoting the normal cone to K(ζ) at σ by NK(ζ)(σ), the equations

summarising the model are

(a) constitutive equations: σ(t, x) = Ce(t, x) and ζ(t, x) = V (z(t, x)),

(b) additive decomposition: Eu(t, x) = e(t, x) + p(t, x),

(c) equilibrium condition : −div σ(t, x) = f(t, x),

(d) stress constraint: σ(t, x) ∈ K(ζ(t, x)),

(e) flow rule: ṗ(t, x) ∈ NK(ζ(t,x))(σ(t, x)),

(f) evolution law for the internal variable: ż(t, x) = ρ1 ? [(ρ2 ? trσ(t, ·)) tr ṗ(t, ·)](x),

accompanied by suitable boundary conditions. Here ρ1 and ρ2 are smooth convolution

kernel with unitary mass (see (2.3.39)). The nonassociative nature of the problem is due to

the fact that the evolution law (f) does not depend on K . Due to (1.3.5), if ż(t, x) > 0 the

set K(ζ(t, x)) expands leading to a hardening response. On the contrary, if ż(t, x) < 0 the

set K(ζ(t, x)) shrinks leading to a softening response.

The above formulation contains two differences with respect to the classical one, where

V (z) = z and the convolution kernel is not present in the evolution law for the internal

variable. The main reason for introducing the convolution is technical: it ensures that a

very weak convergence of σ and ṗ implies strong convergence of the corresponding z . From

the point of view of mechanics, the convolution gives a nonlocal character to the evolution

law for the internal variable: it implies that the size of the yield surface at a point x is

affected by pressure and volumetric plastic strain rate in a small neighborhood of x , which

is not physically implausible. However, we anticipate that in the analysis of the spatially

homogeneous case (Chapter 3) one can prove that z is positive and bounded away from 0,

so that one can take V (z) = z , and identify z with ζ , as it is typical in the engineering

literature. Therefore, since the convolution kernels have unitary mass, in the case where z

is indepedendent of x (Chapter 3) we recover the classical formulation.

2.3 Mechanical preliminaries

The reference configuration. Throughout the paper the reference configuration Ω is a

bounded connected open set in RN , n ≥ 2, with Lipschitz boundary ∂Ω = Γ0 ∪ Γ1 ∪N . We

assume that Γ0 and Γ1 are relatively open, Γ0 ∩ Γ1 = Ø, Γ0 6= Ø, and Hn−1(N) = 0.

On Γ0 we will prescribe a Dirichlet boundary condition. This will be done by assigning

a function w ∈ H1/2(∂Ω;RN ), or, equivalently, a function w ∈ H1(Ω;RN ), whose trace on

Γ0 (also denoted by w ) is the prescribed boundary value. The set Γ1 will be the part of

the boundary on which the traction is prescribed.
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Stress and strain. For a given displacement u ∈ BD(Ω) and a boundary datum w ∈
H1(Ω;RN ), the elastic and plastic strains e ∈ L2(Ω;MN×N

sym ) and p ∈ Mb(Ω ∪ Γ0;MN×N
sym )

satisfy the weak kinematic admissibility condition

Eu = e+ p in Ω ,

p = (w − u)� νHn−1 on Γ0 ,
(2.3.1)

where ν is the outer unit normal to ∂Ω, and the right-hand side of the second formula in

(2.3.1) denotes the measure in Mb(Γ0;MN×N
sym ) with density (w − u)� ν ∈ L1(Γ0;MN×N

sym )

with respect to Hn−1 . As usual equality between measures on a set means that they agree

on every Borel subset. The stress σ ∈ L2(Ω;MN×N
sym ) is defined by

σ := Ce , (2.3.2)

where C is the elasticity tensor , considered as a symmetric positive definite linear operator

C : MN×N
sym →MN×N

sym . We assume that C is isotropic, so that we have Cξ = 2µξ + λ(trξ)I ,

where λ and µ are the Lamé constants. In terms of the canonical decomposition of a

symmetric matrix in its spherical and deviatoric part we can write

Cξ = 2µξD + κ(trξ)I , (2.3.3)

where the constant µ > 0 is the shear modulus, the constant κ > 0 is called modulus of

compression, and ξD denotes the projection of ξ onto the space of trace-free symmetric

matrices. Let Q : MN×N
sym → [0,+∞) be the quadratic form associated with C , defined by

Q(ξ) := 1
2Cξ : ξ

It turns out that there exist two constants αQ and βQ , with 0 < αQ ≤ βQ < +∞ , such

that

αQ|ξ|2 ≤ Q(ξ) ≤ βQ|ξ|2 (2.3.4)

for every ξ ∈MN×N
sym . These inequalities imply

|Cξ| ≤ 2βQ|ξ| . (2.3.5)

The stored elastic energy Q : L2(Ω;MN×N
sym )→ R is given by

Q(e) =

∫
Ω

Q(e(x)) dx = 1
2 〈σ, e〉 .

It is well known that Q is lower semicontinuous on L2(Ω;MN×N
sym ) with respect to weak

convergence.

Stress-strain duality and plastic dissipation. If σ ∈ L2(Ω;MN×N
sym ) and div σ ∈

L2(Ω;RN ), then we can define a distribution [σν] on ∂Ω by

〈[σν], ψ〉∂Ω := 〈div σ, ψ〉Ω + 〈σ,Eψ〉Ω (2.3.6)

for every ψ ∈ H1(Ω;RN ). It turns out that [σν] ∈ H−1/2(∂Ω;RN ) (see, e.g., [52, Chapter I,

Theorem 1.2]). If, in addition, σ ∈ L∞(Ω;MN×N
sym ) and div σ ∈ Ln(Ω;RN ), then (2.3.6)
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holds for ψ ∈ W 1,1(Ω;RN ). By Gagliardo’s extension result [20, Theorem 1.II], it is easy

to see that in this case [σν] ∈ L∞(∂Ω;RN ) and that

[σkν] ⇀ [σν] weakly∗ in L∞(∂Ω;RN ), (2.3.7)

whenever σk ⇀ σ weakly∗ in L∞(Ω;MN×N
sym ) and div σk ⇀ div σ weakly in Ln(Ω;RN ).

We shall denote with Σ(Ω) the space

Σ(Ω) := {σ ∈ L∞(Ω;MN×N
sym ) : div σ ∈ Ln(Ω;RN )} . (2.3.8)

Obviously, when σ ∈ C0(Ω;MN×N
sym ) ∩ Σ(Ω) we have

[σν] = σν on Γ0 , (2.3.9)

where the right-hand side is the pointwise product between the matrix σ(x) and the normal

vector ν(x) at each x ∈ Γ0 .

The space ΠΓ0(Ω) of admissible plastic strains is defined as the set of all p ∈ Mb(Ω ∪
Γ0;MN×N

sym ) for which there exist u ∈ BD(Ω), w ∈ H1(Ω;RN ), and e ∈ L2(Ω;MN×N
sym )

satisfying (2.3.1).

According to [7, Section 3], given p ∈ ΠΓ0
(Ω) and σ ∈ Σ(Ω), we can define the distri-

bution [σ : p] on Ω by setting, for every ϕ ∈ C∞c (Ω),

〈[σ : p], ϕ〉 := −〈ϕu,div σ〉 − 〈σ, u�∇ϕ〉 − 〈σ, ϕe〉 (2.3.10)

where u ∈ BD(Ω), w ∈ H1(Ω;RN ), e ∈ L2(Ω;MN×N
sym ) are as in (2.3.1). We extend the

definition of [σ : p] by setting

[σ : p] := [σν] · (w − u)Hn−1 on Γ0 , (2.3.11)

so that [σ : p] Γ0 ∈ Mb(Γ0). Actually, we have [σ : p] ∈ Mb(Ω ∪ Γ0) as we discuss in the

next proposition, among the other properties of the distribution [σ : p] .

Proposition 2.1. The definition of [σ : p] does not depend on the functions u , w , e satis-

fying (2.3.1). Moreover [σ : p] is a bounded Radon measure on Ω ∪ Γ0 and, if we define the

duality product

〈σ, p〉 := [σ : p](Ω ∪ Γ0) , (2.3.12)

we have that

|〈σ, p〉| ≤ ‖σ‖∞‖p‖1. (2.3.13)

Proof. By (2.3.11) it is easy to see that [σ : p] Γ0 is independent of u , w , e satisfying

(2.3.1), so that we have only to check that the right-hand side of (2.3.10) is independent of

the choice of u ∈ BD(Ω) and e ∈ L2(Ω;MN×N
sym ) such that Eu = e + p in Ω. To do that

we first observe that for every ϕ ∈ C1(Ω) and u ∈ BD(Ω) we obviously have ϕu ∈ BD(Ω)

and

E(ϕu) = ϕEu+ u�∇ϕ . (2.3.14)

Then we take u1 , u2 ∈ BD(Ω) and e1 , e2 ∈ L2(Ω;MN×N
sym ) such that Eu1 − e1 = Eu2 −

e2 = p in Ω. It follows that E(u1 − u2) ∈ L2(Ω;MN×N
sym ), so that by (1.2.2) we get
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u1 − u2 ∈ H1(Ω;RN ). Therefore, for every ϕ ∈ C∞c (Ω) we have ϕ(u1 − u2) ∈ H1
0 (Ω;RN ),

so that (2.3.6) and (2.3.14) give

〈ϕ(u1 − u2),div σ〉+ 〈σ, (u1 − u2)�∇ϕ〉+ 〈σ, ϕ(e1 − e2)〉 = 0

for every ϕ ∈ C∞c (Ω), as required.

We now show that [σ : p] is a bounded Radon measure on Ω. To do that, we observe that

by a standard approximation result (see, e.g., [52, Chapter II, Theorem 3.2]) there exists a

sequence vk ∈ C∞(Ω̄;RN ) such that

vk → u in L1(Ω;RN ),

Evk ⇀ (Eu) Ω weakly∗ in Mb(Ω̄;RN ), (2.3.15)

‖Evk‖1 → ‖Eu‖1,

and therefore, by the Sobolev embedding Theorem in BD ,

vk → u weakly in L
n
n−1 (Ω;RN ). (2.3.16)

We set pk = Evk − e , so that pk ∈ L2(Ω;MN×N
sym ). Moreover, by (2.3.10), (2.3.15) and

(2.3.16) we get

〈[σ : pk], ϕ〉 → 〈[σ : p], ϕ〉 , (2.3.17)

‖pk‖1 → ‖p‖1,Ω (2.3.18)

as k goes to +∞ , where ‖p‖1,Ω is the norm of the measure p Ω. Now (2.3.6) gives

〈σ,E(ϕvk)〉 = −〈ϕvk,div σ〉

so that by (2.3.10) and the chain rule we have that

〈[σ : pk], ϕ〉 = 〈ϕσ, pk〉

in the usual sense of the L2 duality and we get the estimate

|〈[σ : pk], ϕ〉| ≤ ‖σ‖∞‖pk‖1‖ϕ‖∞ .

From this, (2.3.17), and (2.3.18) the claim follows as well as the estimate

|〈[σ : p], ϕ〉| ≤ ‖σ‖∞‖p‖1,Ω‖ϕ‖∞ . (2.3.19)

By (2.3.11) we then deduce that [σ : p] ∈Mb(Ω ∪ Γ0).

By (2.3.1), the restriction of p to Γ0 can be identified with an element of the space

L1(Γ0;RN ). If we assume that σ ∈ C(Ω) ∩ Σ(Ω), from (2.3.1), (2.3.9), and (2.3.11) we

easily deduce

‖[σ : p]‖1,Γ0
≤ ‖σ‖∞‖p‖1,Γ0

(2.3.20)

where ‖ · ‖1,Γ0 denotes the norm of L1(Γ0;RN ). We claim that (2.3.20) holds for every

σ ∈ Σ(Ω). Indeed, we can always find σk ∈ C∞(Ω) with ‖σk‖∞ ≤ ‖σ‖∞ such that σk ⇀ σ

weakly∗ in L∞(Ω;MN×N
sym ) and div σk ⇀ div σ weakly in Ln(Ω;RN ). This follows from

[13, Lemma 2.3], which is a particular case of Lemma 2.4 that we will prove later. With this

fact, the claim follows from (2.3.7) and (2.3.11). Then, (2.3.13) follows from (2.3.19) and

(2.3.20).
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Other properties of the measure [σ : p] are collected in the next remark.

Remark 2.2. We claim that

〈[σ : p], ϕ〉 = 〈ϕσ, p〉 (2.3.21)

for every σ ∈ C0(Ω;MN×N
sym ) ∩ Σ(Ω) and every ϕ ∈ C0(Ω), where the duality used in

the right-hand side is the standard duality between continuous functions and measures.

Equivalently, for every σ ∈ C0(Ω;MN×N
sym ) ∩ Σ(Ω) and every p ∈ ΠΓ0

(Ω) we have

[σ : p] = σ : p on Ω ∪ Γ0 , (2.3.22)

where the right-hand side denotes the measure defined by

(σ : p)(B) :=

∫
B

σ : dp :=
∑
ij

∫
B

σij dpij (2.3.23)

for every Borel set B ⊂ Ω ∪ Γ0 . Indeed, using (2.3.13) and an approximation argument,

it suffices to prove the claim for σ ∈ C1(Ω;MN×N
sym ). Take u , e , and w as in (2.3.1). By

(2.3.9) and (2.3.11), equality (2.3.22) is trivial on any Borel subset of Γ0 , so that it only

remains to check that (2.3.21) holds for every ϕ ∈ C∞c (Ω). Using (2.3.1) and (2.3.14) we

get

〈ϕσ, p〉 = 〈σ,E(ϕu)〉 − 〈σ, u�∇ϕ〉 − 〈σ, ϕe〉 .

Since ϕu = 0 on ∂Ω the Green’s formula in BD(Ω) gives 〈σ,E(ϕu)〉 = 〈−div σ, ϕu〉 so

that (2.3.21) follows from (2.3.10).

If σk ⇀ σ weakly∗ in L∞(Ω;MN×N
sym ), div σk ⇀ div σ weakly in Ln(Ω;RN ), from

(2.3.7), (2.3.10), (2.3.11) and (2.3.13) we immediately deduce that

〈[σk : p], ϕ〉 → 〈[σ : p], ϕ〉 (2.3.24)

for every ϕ ∈ C0(Ω).

Fix σ ∈ Σ(Ω) and consider a sequence σk ∈ C∞(Ω) with ‖σk‖∞ ≤ ‖σ‖∞ such that σk ⇀

σ weakly∗ in L∞(Ω;MN×N
sym ) and div σk ⇀ div σ weakly in Ln(Ω;RN ), whose existence

is guaranteed by [13, Lemma 2.3]. Denoting with pa and ps , respectively, the absolutely

continuous and the singular part of p with respect to Ln we get from (2.3.22) that the

Lebesgue decomposition of [σk : p] on Ω ∪ Γ0 is

[σk : p] = σk : pa + σk : ps . (2.3.25)

Now it is easily seen, as the functions σk are equibounded in C0(Ω;MN×N
sym ) that, when k

goes to ∞ , the sequence σk : ps weakly∗ converge (up to a subsequence) to a measure µ

which is still singular with respect to Ln . Using (2.3.24) and taking the limit in (2.3.25),

we then obtain

[σ : p] = σ : pa + µ

on Ω∪Γ0 . By the uniqueness of the Lebesgue decomposition, this entails that the absolutely

continuous part [σ : p]a of [σ : p] with respect to Ln satisfies

[σ : p]a = σ : pa on Ω . (2.3.26)
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We also get that µ coincides exactly with the singular part [σ : p]s of [σ : p] with respect to

Ln , and we have the estimate

|[σ : p]s| ≤ ‖σ‖∞|ps| on Ω ∪ Γ0 . (2.3.27)

The following proposition provides a useful integration-by-parts formula.

Proposition 2.3. Let u ∈ BD(Ω) , w ∈ H1(Ω;RN ) , e ∈ L2(Ω;MN×N
sym ) , p ∈ Mb(Ω ∪

Γ0;MN×N
sym ) satisfy (2.3.1). Let σ ∈ L∞(Ω;MN×N

sym ) , f ∈ Ln(Ω;RN ) , and g ∈ L∞(Γ1;RN ) .

Assume that −div σ = f in Ω , and that [σν] = g on Γ1 . Then

〈[σ : p], ϕ〉+ 〈ϕσ, e− Ew〉+ 〈σ, (u− w)�∇ϕ〉 = 〈f, ϕ(u− w)〉Ω + 〈g, ϕ(u− w)〉Γ1
(2.3.28)

for every ϕ ∈ C1(Ω) . Moreover

〈σ, p〉+ 〈σ, e− Ew〉 = 〈f, u− w〉Ω + 〈g, u− w〉Γ1 . (2.3.29)

Proof. We can assume that σ ∈ C∞(Ω), otherwise we can proceed by approximation ex-

ploiting [13, Lemma 2.3], (2.3.24), and (2.3.7). Let v := u− w ∈ BD(Ω) and ẽ = e− Ew .

By (2.3.22) we have

〈[σ : p], ϕ〉 = 〈ϕσ, p〉Ω + 〈ϕσ, p〉Γ0

where the dualities in the right-hand side are the standard dualities between a continuous

function and a measure. Now, using (2.3.1), (2.3.9). (2.3.14), and the Green’s formula in

BD(Ω) we get

〈ϕσ, p〉Ω = 〈ϕσ,Ev − ẽ〉Ω = 〈σ,E(ϕv)〉Ω − 〈σ, v�∇ϕ〉 − 〈σ, ϕẽ〉 =

= 〈[σν], ϕv〉∂Ω + 〈f, ϕv〉 − 〈σ, v�∇ϕ〉 − 〈σ, ϕẽ〉 .
(2.3.30)

On the other hand, by (2.3.1) we have

〈ϕσ, p〉Γ0 = −〈[σν], ϕv〉Γ0 . (2.3.31)

Since [σν] = g on Γ1 , summing (2.3.30) and (2.3.31) we obtain (2.3.28). Taking ϕ = 1 in

Ω, we get (2.3.29).

The following closed linear subspace of L2(Ω;MN×N
sym ) will be used in our proofs:

Σ0(Ω) := {σ ∈ L2(Ω;MN×N
sym ) : div σ = 0 in Ω, [σν] = 0 on Γ1}. (2.3.32)

By the weak definition of the divergence and by the symmetry of σ , it is easy to see that

Σ0(Ω) = {Eϕ : ϕ ∈ H1
Γ0

(Ω;RN )}⊥ . By taking the orthogonal complements, this implies

that

Σ0(Ω)⊥ = {Eϕ : ϕ ∈ H1
Γ0

(Ω;RN )} , (2.3.33)

since the latter space is closed in L2(Ω;MN×N
sym ) as a consequence of Poincaré’s and Korn’s

inequalities. A different proof can be obtained by using the version of De Rham’s theorem

proved in [35] (see also [52, Chapter 2, Proposition 1.1]) and (1.2.2).

Here and henceforth the closed convex cone K ⊂MN×N
sym ×[0,+∞) with nonempty inte-

rior and the closed convex set K(ζ) ⊂ MN×N
sym parametrised by ζ > 0 satify (1.3.1)-(1.3.4).
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For p ∈Mb(Ω∪Γ0;MN×N
sym ) and ζ ∈ C0(Ω)+ the measure H(p, ζ) and the functional H(p, ζ)

are those defined by (1.3.19), and (1.3.20), respectively.

Following the lines of [7, Proposition 3.3] and [48, Proposition 3.2] we want to investigate

the connections between the measure H(p, ζ) and the measure [σ : p] when σ ∈ Σ(Ω) sat-

isfies the stress constraint for Ln -a.e. x ∈ Ω. To do this, we need this preliminary lemma,

which is an ad-hoc refinement of [13, Lemma 2.3]. We shall denote with BMN×Nsym
the closed

unitary ball of the space MN×N
sym .

Lemma 2.4. Let U be a bounded open set in RN with the segment property, let ζ ∈ C(Ū) ,

and let K(ζ) be as in (1.3.2). Let σ ∈ Lr(U ;MN×N
sym ) , 1 ≤ r < +∞ , with div σ ∈ Lr(U ;RN )

and σ(x) ∈ K(ζ(x)) for Ln -a.e. x ∈ U . Then there exists a sequence σk ∈ C∞(U ;MN×N
sym )

such that σk → σ strongly in Lr(U ;MN×N
sym ) , div σk → div σ strongly in Lr(U ;RN ) , and

for every ε > 0 there exists k0 , only depending on ε , such that σk(x) ∈ K(ζ(x)) + εBMN×Nsym

for every x ∈ U .

Proof. Since U is bounded and has the segment property, there exists a finite open cover

(Ui), i = 1, . . . ,m , of ∂U and a corresponding sequence of nonzero vectors yi such that,

if x ∈ U ∩ Ui for some i , then x + tyi ∈ U for 0 < t < 1. We set U0 := U and y0 := 0.

For i = 0, . . . ,m and k = 1, 2, . . . the open set U ik := {x ∈ Ui : x + (1/k)yi ∈ U} contains

U ∩ Ui . We define σik(x) := σ(x+ (1/k)yi) for every x ∈ U ik . By the uniform continuity of

ζ , it is clear that for every ε > 0, when k is sufficiently large σik(x) ∈ K(ζ(x)) + ε
2BMN×Nsym

for every i = 0, . . . ,m and Ln -a.e. x ∈ U ik . Let (Vi), i = 0, . . . ,m , be an open cover of U

such that Vi ⊂⊂ Ui for every i . Since U∩V i ⊂ U ik , for every i and k we can find a mollifier

ψik of class C∞c (RN ) such that the convolution σik ? ψ
i
k is well defined in a neighbourhood

of U ∩ V i and

‖σik ? ψik − σik‖r,U∩Vi ≤
1

k
and ‖div σik ? ψ

i
k − div σik‖r,U∩Vi ≤

1

k
. (2.3.34)

We can clearly assume that the mollifiers ψik are supported in a ball of center 0 and

radius Rk with Rk → 0 when k → +∞ . By the uniform continuity of ζ , for every ε > 0

there exists k0(ε) independent of x such that

σik(y) ∈ K(ζ(x)) + εBMN×Nsym

for every x in the neighbourhood of U ∩ V i where the convolution σik ? ψ
i
k is well defined,

and every y ∈ B(x,Rk). As K(ζ(x)) + εBMN×Nsym
is closed and convex, for every k ≥ k0 we

have

σik ? ψ
i
k(x) ∈ K(ζ(x)) + εBMN×Nsym

(2.3.35)

for every x in a neighbourhood of U ∩ V i .
Let (ϕi), i = 0, . . . ,m , be a C∞ partition of unity for U subordinate to (Vi) and let

σk :=

m∑
i=0

ϕi(σ
i
k ? ψ

i
k) .

Then σk is of class C∞ in a neighbourhood of U . Moreover, by (2.3.35), for every ε > 0

and every k ≥ k0(ε) we get σk(x) ∈ K(ζ(x)) + εBMN×Nsym
for every x in a neighbourhood
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of U . Since σik → σ strongly in Lr(U ∩ Vi;MN×N
sym ) and div σik → div σ strongly in

Lq(U ∩ Vi;RN ), from (2.3.34) and from the identity

div σ :=

m∑
i=0

(ϕi div σ + σ∇ϕi)

we finally deduce that σk → σ strongly in Lr(U ;MN×N
sym ) and div σk → div σ strongly in

Lr(U ;RN ).

We are ready to prove the required inequality.

Proposition 2.5. Let ζ ∈ C0(Ω̄)+ and p ∈ ΠΓ0
(Ω) . Then

H(p, ζ) ≥ [σ : p] on Ω ∪ Γ0 (2.3.36)

for every σ ∈ Σ(Ω) ∩ K(ζ) .

Proof. We can assume that Γ0 = ∂Ω: this is not restrictive, because otherwise we can

proceed by inner approximation with smooth sets Ωk whose boundary is contained in Ω∪Γ0 .

Let ϕ ∈ C(Ω̄), ϕ ≥ 0. We fix ε > 0; considering the sequence σk defined as in the previous

lemma (we omit to relabel subsequences), for every k ∈ N , for every x ∈ Ω̄ , we get that

there exists ζk,x ∈ K(ζ(x)) such that |σk(x) − ζk,x| < ε , and so, by the Cauchy-Schwarz

inequality:

σk(x) : (p/|p|)(x) ≤ H(p/|p|(x), ζ(x)) + ε;

moreover, we can clearly assume that for every k ∈ N

‖σk‖∞ ≤ 2MK‖ζ‖∞ ,

where MK is given by (1.3.4). Then we get, by (2.3.23) and the previous inequalities:

〈[σk : p]|ϕ〉 =

∫
Ω̄

ϕ(x)σk(x) :
p

|p|
(x) d|p|(x) ≤

≤
∫

Ω̄

ϕ(x)H(
p

|p|
(x), ζ(x)) d|p|(x) + ε

∫
Ω̄

ϕ(x) d|p|(x) =

= 〈H(p, ζ), ϕ〉+ ε

∫
Ω̄

ϕ(x) d|p|(x) .

By (2.3.24),

[σk : p] ⇀ [σ : p] weakly∗ in Mb(Ω̄;MN×N
sym )

when k goes to +∞ , therefore we obtain

〈[σ : p], ϕ〉 ≤ 〈H(p, ζ), ϕ〉+ ε

∫
Ω̄

ϕ(x) d|p|(x)

and we get (2.3.36) in the limit when ε goes to 0.

The internal variables. In addition to the plastic variable p , there are two internal vari-

ables z ∈ C0(Ω) and ζ ∈ C0(Ω)+ . They are linked by the equality

ζ := V (z) , (2.3.37)
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where V : R → (0,+∞) is a globally Lipschitz nondecreasing function. We assume that

there exists a constant ζm > 0 such that

V (z) ≥ ζm for every z ∈ R . (2.3.38)

The evolution law for the internal variable is nonlocal and involves convolutions. We fix

two kernels ρ1 and ρ2 in C1
c (RN )+ with the property that∫

RN
ρi(x) dx = 1 (2.3.39)

for i = 1, 2. For µ ∈ Mb(Ω ∪ Γ0) and i = 1, 2, the convolution ρi ? µ is defined for every

x ∈ Ω by

(ρi ? µ)(x) :=

∫
Ω∪Γ0

ρi(x− y) dµ(y) . (2.3.40)

It is clear that ρi ? µ ∈ C1(Ω) and that

‖ρi ? µ‖∞ ≤ ‖ρi‖∞‖µ‖1 and ‖∇(ρi ? µ)‖∞ ≤ ‖∇ρi‖∞‖µ‖1 , (2.3.41)

hence the linear map µ 7→ ρi ? µ is continuous from Mb(Ω ∪ Γ0) to C1(Ω).

The data of the problem. We assume that the body force f(t), the surface force g(t),

and the prescribed boundary displacement w(t) satisfy the following assumptions:

f ∈ H1
loc([0,+∞);Ln(Ω;RN )) ,

g ∈ H1
loc([0,+∞);L∞(Γ1;RN )) ,

w ∈ H1
loc([0,+∞);H1(Ω;RN )) .

(2.3.42)

For every t ∈ [0,+∞) the total load L(t) ∈ BD(Ω)′ applied at time t is defined by

〈L(t), u〉 = 〈f(t), u〉Ω + 〈g(t), u〉Γ1 for every u ∈ BD(Ω) . (2.3.43)

Under our assumptions L belongs to H1
loc([0,+∞);BD(Ω)′) and its time derivative is given

by

〈L̇(t), u〉 = 〈ḟ(t), u〉Ω + 〈ġ(t), u〉Γ1
for every u ∈ BD(Ω) . (2.3.44)

Throughout the paper we will assume also the following uniform safe-load condition:

there exist a function χ ∈ H1
loc([0,+∞);L2(Ω;MN×N

sym )) and a constant r0 > 0 such that

−divχ(t) = f(t) in Ω and [χ(t)ν] = g(t) on Γ1 for every t ∈ [0,+∞) , (2.3.45)

B(χ(t, x), r0) ⊂ K(ζm) for every t ∈ [0,+∞) and Ln-a.e. x ∈ Ω , (2.3.46)

χ̇(t) ∈ L∞(Ω;MN×N
sym ) for L1-a.e. t ∈ [0,+∞) , (2.3.47)

t 7→ ‖χ̇(t)‖∞ belongs to L1
loc([0,+∞)) , (2.3.48)

where χ(t, x) denotes the value of χ(t) at x ∈ Ω, and B(σ, r) denotes the open ball in

MN×N
sym with centre σ and radius r . It is easy to see that the function t 7→ ‖χ̇(t)‖∞ is in

general lower semicontinuous, therefore assumption (2.3.48) only involves the finiteness of

the integral. By (1.3.5) inclusion (2.3.46) implies

H(ξ, ζ) ≥ χ(t, x) : ξ + r0|ξ| (2.3.49)
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for Ln -a.e. x ∈ Ω and every(ξ, ζ) ∈MN×N
sym ×[ζm,+∞).

We will make use of the following infinite-dimensional generalization of (2.3.49), which

improves (2.3.36) for a function χ ∈ L∞(Ω;MN×N
sym ) with divχ ∈ Ln(Ω;RN ) satisfying in

addition (2.3.46).

Proposition 2.6. Define Σ(Ω) as in (2.3.8). Let r0 > 0 , ζ ∈ C0(Ω̄)+ and p ∈ ΠΓ0(Ω) .

Let χ ∈ Σ(Ω) be a function such that

B(χ(x), r0) ⊂ K(ζ(x)) (2.3.50)

for Ln -a.e. x ∈ Ω . Then

H(p, ζ)− 〈χ, p〉 ≥ r0‖p‖1 , (2.3.51)

where the duality 〈χ, p〉 is defined by (2.3.12).

Proof. By standard arguments in measure theory, given ε > 0 we can find τ ∈ C0
0 (Ω ∪

Γ0;MN×N
sym ) ∩ C∞(Ω), with ‖τ‖∞ ≤ r0 , such that

r0‖p‖1 + ε ≤
∫

Ω∪Γ0

τ : dp . (2.3.52)

By (2.3.50), τ + χ ∈ K(ζ) ∩ Σ(Ω). Therefore, by (2.3.22), (2.3.36) and (2.3.52), we get

r0‖p‖1 + ε ≤
∫

Ω∪Γ0

τ : dp = 〈τ + χ, p〉 − 〈χ, p〉 ≤ H(p, ζ)− 〈χ, p〉 ,

which concludes the proof by the arbitrariness of ε .

About the initial data, we assume that

u0 ∈ BD(Ω), e0 ∈ L2(Ω;MN×N
sym ), p0 ∈Mb(Ω ∪ Γ0;MN×N

sym ) z0 ∈ C0(Ω) (2.3.53)

and we define

σ0 := Ce0 and ζ0 := V (z0). (2.3.54)

Moreover we suppose that the following compatibility conditions are satisfied:

Weak kinematic admissibility :

Eu0 = e0 + p0 in Ω ,

p0 = (w(0)− u0)� νHn−1 in Γ0 ;
(2.3.55)

Equilibrium condition:

−div σ0 = f(0) in Ω ; [σ0ν] = g(0) on Γ1. (2.3.56)

Stress constraint :

σ0 ∈ K(ζ0). (2.3.57)

.
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2.4 The vanishing viscosity approach

To deal with the instabilities of the softening regime, we introduce a viscoplastic approx-

imation of Perzyna-type (see [37, 17, 25, 36]) of our problem. Given a viscosity parameter

ε > 0, the corresponding viscoplastic evolution uε(t, x), eε(t, x), pε(t, x), zε(t, x), σε(t, x),

ζε(t, x) satisfies conditions (a), (b), (c), and (f) of Section 2.2; condition (d) is dropped,

while (e) is replaced by

(eε ) regularized flow rule: ṗε(t, x) = Nε
K(ζε(t,x))(σε(t, x)),

where Nε
K(σ, ζ) := 1

ε

(
σ − πK(ζ)(σ)

)
and πK(ζ) is the projection onto K(ζ). The well-

posedness of these equations is nontrivial and will be investigated in Chapter 5, Section 5.2.

The underlying idea is that, since the functional resulting from the variational formulation

of our problem can have multiple wells, a quasistatic evolution driven by global minimizers

could prescribe abrupt jumps from one well to another one, so that is preferable to follow

a path composed of local minimizers. Among them, a good selection criterion has proved

to be choosing the ones that are obtained as a limit of viscoplastic evolutions when the

regularizing parameter ε tends to 0(see [32] for a general discussion).

To prepare our treatment of the viscoplastic approximation, for every ε > 0 we introduce

the function Hε : MN×N
sym ×[0,+∞)→ R defined as

Hε(ξ, ζ) = H(ξ, ζ) + ε
2 |ξ|

2, (2.4.1)

and the corresponding integral functional Hε : L2(Ω;MN×N
sym )×C0(Ω)+ → R defined by

Hε(p, ζ) :=

∫
Ω

Hε(p(x), ζ(x)) dx .

Its subdifferential ∂pHε with respect to p satisfies the equality

∂pHε(p, ζ) = ∂pH(p, ζ) + εp (2.4.2)

for every (p, ζ) ∈ L2(Ω;MN×N
sym )×C0(Ω)+ .

The convex conjugate H∗ε : MN×N
sym ×[0,+∞)→ R of Hε with respect to ξ is defined by

H∗ε (σ, ζ) := sup
ξ∈MN×Nsym

{σ : ξ −Hε(ξ, ζ)} .

Since the convex conjugate H∗ of H with respect to ξ satisfies H∗(σ, ζ) = 0 for σ ∈ K(ζ)

and H∗(σ, ζ) = +∞ for σ 6∈ K (see [40, Theorem 13.2]), using [40, Theorem 16.4] one can

prove that

H∗ε (σ, ζ) = 1
2ε |σ − πK(ζ)(σ)|2 . (2.4.3)

This implies that H∗ε is differentiable with respect to σ , and that its gradient is given by

∂σH
∗
ε (σ, ζ) = Nε

K(σ, ζ) := 1
ε

(
σ − πK(ζ)(σ)

)
. (2.4.4)

Note that Nε
K(σ, ζ) is Lipschitz continuous on MN×N

sym ×[0,+∞) by Lemma 1.1

Let H∗ε : L2(Ω;MN×N
sym )×C0(Ω)+ → R be the convex conjugate of Hε with respect to p ,

and let N ε
K : L2(Ω;MN×N

sym )×C0(Ω)+ → L2(Ω;MN×N
sym ) be defined by

N ε
K(σ, ζ) := 1

ε

(
σ − πK(ζ)(σ)

)
. (2.4.5)
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It follows from (1.3.18) that

p = N ε
K(σ, ζ) ⇐⇒ p(x) = Nε

K(σ(x), ζ(x)) for Ln-a.e. x ∈ Ω , (2.4.6)

so that N ε
K : L2(Ω;MN×N

sym )×C0(Ω)+ → L2(Ω;MN×N
sym ) is Lipschitz continuous. By a general

property of integral functionals (see, e.g., [19, Proposition IX.2.1]) we have

H∗ε(σ, ζ) =

∫
Ω

H∗ε (σ(x), ζ(x)) dx ,

so that, by the Dominated Convergence Theorem and by (2.4.6), its gradient ∂σH∗ε(σ, ζ)

with respect to σ satisfies

∂σH∗ε(σ, ζ) = N ε
K(σ, ζ) . (2.4.7)
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Chapter 3

The spatially homogeneous case

3.1 Overview of the chapter

Our investigation of the Cam-Clay model starts by studying the spatially homogeneous

case in dimension N , with no volume forces. This simplified setting is the object of this

chapter, where we do not investigate the well-posedness of the problem, which is instead

carried out in Chapter 5. A similar study was done in [12] for a particular loading program

and for a very special yield surface. Here we extend the results of that paper to a very

general class of loading paths and yield surfaces, subject only to minor restrictions.

To be definite, we assume that the system is driven by a time-dependent affine boundary

condition w(t, x), whose symmetrized spatial gradient Ew(t, x) is independent of the space

variable x and is denoted by ξ(t). In this situation, one can look for spatially homogeneous

solutions, assuming that the displacement u(t, x) coincides with w(t, x) and the unknowns,

independent of x , are the elastic part e(t) and the plastic part p(t) appearing in the additive

decomposition of the strain Eu(t, x) = e(t) + p(t), as well as the scalar internal variable

z(t), which describes the time evolving yield surface.

In this particular case the evolution laws for p(t) and z(t) result in the system
e(t) + p(t) = ξ(t) , σ(t) = Ce(t) ∈ K(z(t)) ,

ṗ(t) ∈ NK(z(t))(σ(t)) ,

ż(t) = tr(σ(t)) tr(ṗ(t)) .

(3.1.1)

Notice that, differently from the formulation of the problem presented in Chapter 2, there

is no need of introducing a dual internal variable ζ , since we are able to prove that z(t) is

bounded away from zero at finite times (this follows from (3.3.4) and (3.4.9)). Throughout

this chapter, we shall assume that tr(σ) ≤ 0 for every σ ∈ K(z), which reflects the compres-

sive conditions typical of soil mechanics. Therefore, by the second equation in (3.1.1), the

hardening or softening behavour is determined only by the sign of tr(ṗ). We also premit,

that due to mathematical reasons, we shall impose some additional restrictions on K(z) (see

(3.2.10)-(3.2.11)). The main result of the chapter in its full generality needs these assump-

tions, but most partial results can be proved without them. This is why in the statements

35
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we will avoid these additional restrictions whenever it is possible.

With the notation of the previous chapter, the vanishing viscosity approximation reads

in this case as 
eε(t) + pε(t) = ξ(t) , σε(t) = Ceε(t) ,

ṗε(t) = Nε
K(zε(t))

(σε(t)) ,

żε(t) = tr(σε(t)) tr(ṗε(t)) .

(3.1.2)

A viscosity solution (e(t), p(t), σ(t), z(t)) to (3.1.1) is defined as a left continuous map which,

for almost every time t , is the pointwise limit of a sequence (eε(t), pε(t), σε(t), zε(t)) of

solutions of (3.1.2).

We want to study in detail the limit behavior as ε goes to 0 of the solutions of (3.1.2).

This is done using only differential equations techniques and disregarding the variational

structure of (part of) the problem. We will see that the limit dynamics presents, for a

generic choice of the initial data – some degenerate cases have indeed to be excluded – the

alternation of three possible regimes:

a) Elastic regime. This situation occurs in a time interval [t1, t2] when the plastic

part, and thus the internal variable, do not evolve, while the stress is completely

determined by the prescribed boundary displacement through the relation σ(t) =

C(ξ(t)− ξ(t1)), for every t ∈ [t1, t2] ; a necessary condition for this behavior to occur

is clearly (C(ξ(t)− ξ(t1)), z(t1)) ∈ K for every t ∈ [t1, t2] .

b) Slow dynamics. In this situation the stress evolves smoothly on the yield surface and

the limit equation (3.3.1), called the equation of the slow dynamics, takes into account

the production of plastic flow. The evolution can be studied using the standard time

t ; during this regime both hardening and softening behavior can occur.

c) Fast dynamics. In the softening regime, a singular behavior can occur, which requires

the use of a fast time s := 1
ε t . The corresponding limit equation (3.4.1) is called the

equation of the fast dynamics. We will see that, at a jump time t , the right limit

(σ(t+), z(t+)) of the solution is given by the asymptotic value for s → +∞ of the

heteroclinic solution of the equation of the fast dynamics (3.4.1) issuing from the point

(σ(t−), z(t−)) at s = −∞ .

As in the associative case, studied in [47] and in [8, Section 7], the alternation of these

three regimes is determined by the sign of two scalar indicators; the first one, depending

explicitly on time and on the state of the system, will be called the elastic-inelastic indicator.

It is given by

Φ(t, σ, z) := νK(z)(σ) · Cξ̇(t) (3.1.3)

for every (t, σ, z) ∈ [0,+∞]× ∂K . Here νK(z)(σ) denotes the outward unit normal to K(z)

at σ . The second one, only depending on the state of the system, will be called the slow-fast

indicator ; its explicit expression is given by

Ψ(σ, z) := −νK(z)(σ) · CνK(z)(σ)− tr(σ) tr(νK(z)(σ))

z [σ · νK(z)(σ)] (3.1.4)
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for every (σ, z) ∈ ∂K . Roughly speaking, at times where the stress meets the yield sur-

face, positiveness of the indicator Φ does not allow the system to evolve according to the

linearized elasticity equation without breaking the stress constraint, thus plastic flow has to

be produced. The choice between slow and fast dynamics depends on the sign of Ψ: if it

is negative, the evolution is smooth, while if it is positive, the solution has a jump. Since

the quadratic form associated to the tensor C is positive definite and taking into account

(3.2.8), comparing (3.1.4) with (3.1.1) one sees that a necessary condition for Ψ to be pos-

itive, hence to have a jump, is that the internal variable is decreasing in a neighborhood of

the jump time. From a mechanical point of view, this means that the instabilities leading

to a discontinuous evolution of the system are typical of the softening regime while the

hardening regime is more regular.

The main result of the chapter is Theorem 3.31. It gives an iterative procedure to con-

struct explicitly a viscous solution, upon the verification of some nondegeneracy hypotheses

at each step. If these hypotheses are satisfied, the viscous solution is also unique.

3.2 Preliminary results

We consider a closed convex cone K ⊂ MN×N
sym ×[0,+∞) with nonempty interior and a

family of closed convex set K(z) ⊂MN×N
sym , parametrised by z > 0 (throughout the chapter

the internal variables z and ζ are indeed identified), satifying (1.3.1)-(1.3.4). We observe

that, for every z > 0, we obviously have

σ ∈ ∂K(z)⇐⇒ (σ, z) ∈ ∂K. (3.2.1)

We will assume that K(1) is of class C2 . For every σ ∈ ∂K(z), we will denote the outward

unit normal to K(z) at σ by νK(z)(σ), while νK(σ, z) will denote the outward unit normal

to K at (σ, z). We shall also assume that

tr(σ) ≤ 0 for every σ ∈ K(1); (3.2.2)

this reflects the compressive conditions typical of soil mechanics. We define, for every (σ, z) ∈
MN×N
sym × (0,+∞), the function

%(σ, z) = |σ − πK(z)(σ)| ; (3.2.3)

it is a Lipschitz function, moreover it is C1 for every (σ, z) ∈ [MN×N
sym × (0,+∞)] \K . As

an elementary consequence of (1.3.6), we have the following relation:

%(σ, z) = z %(σz , 1) for every (σ, z) ∈MN×N
sym × (0,+∞). (3.2.4)

The next proposition collects some elementary properties which will be useful in what follows.

Proposition 3.1. Let K be a closed convex cone in MN×N
sym ×[0,+∞) , and let K(z) be as

in (1.3.1). Assume that K(1) is bounded and of class C2 and that 0 ∈ ∂K(1) . Then, for

every z > 0 and every σ ∈MN×N
sym \ intK(z) , we have

νK(z)(πK(z)(σ)) = νK(1)(πK(1)(
1
zσ)). (3.2.5)
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Moreover, for every (σ, z) ∈ ∂K

νK(σ, z) = 1√
z2+|σ·νK(z)(σ))|2

(z νK(z)(σ),−σ · νK(z)(σ)). (3.2.6)

For every (σ, z) ∈ [MN×N
sym × (0,+∞)] \K , we have

∇%(σ, z) = 1
z (z νK(z)(πK(z)(σ)), −πK(z)(σ) · νK(z)(πK(z)(σ))). (3.2.7)

Proof. To prove (3.2.5) it suffices to consider the case when σ /∈ K(z), which is equivalent

to say that σ
z /∈ K(1). We then have, applying (1.3.6) and (3.2.4), that

νK(z)(σ) =
σ − πK(z)(σ)

%(σ, z)

=
z(σz − πK(1)(

σ
z ))

z %(σz , 1)
= νK(1)(πK(1)(

1
zσ)),

which proves (3.2.5).

For what concerns (3.2.7), it is well known that, for every (σ, z) ∈ [MN×N
sym ×(0,+∞)]\K ,

∇σ %(σ, z) = νK(z)(πK(z)(σ)) so only the last component of the gradient has to be calculated.

Together with (3.2.4) this implies that

∂
∂z%(σ, z) = ∂

∂z [z %(σz , 1)] = 1
z (%(σ, z)− σ · νK(1)(πK(1)(

σ
z ))),

hence we get (3.2.7) by (3.2.5) and the equality

%(σ, z)− σ · νK(z)(πK(z)(σ)) = −πK(z)(σ) · νK(z)(πK(z)(σ)).

This also implies (3.2.6); indeed, by the C2 regularity of the boundary, for every fixed

(σ̄, z̄) ∈ ∂K we may locally define an oriented distance function r from ∂K , which is a C1 -

extension of % to the interior of K . Then, locally we have that K = {(σ, z)| r(σ, z) ≤ 0} .

It follows that the outward unit normal to K at (σ̄, z̄) must be parallel to ∇r(σ̄, z̄), which

by continuity is obtained by extending the right-hand side of (3.2.7) to ∂K , and this proves

(3.2.6).

Another useful property, which will be used in what follows, comes directly from the

characterization of the minimal distance projection and from the fact that 0 ∈ K(z) for

every z ; we have indeed that, for every (σ, z) ∈ [MN×N
sym × (0,+∞)] \K

πK(z)(σ) · νK(z)(πK(z)(σ))) ≥ 0. (3.2.8)

We shall often decompose σ ∈ MN×N
sym in its spherical and deviatoric part through the

relation

σ = x I√
N

+ y (3.2.9)

where x ∈ R and y ∈ MN×N
D are uniquely determined; here as usual MN×N

D denotes the

space of trace-free symmetric matrices of order N . Notice that
√
Nx = tr(σ); in particular,

for every σ ∈ K(1), we shall have x ≤ 0. Similarly, η(t) and γ(t) will denote the spherical

and the deviatoric part, respectively, of the function ξ(t) mentioned in the introduction.
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For mathematical reasons, we shall make some additional hypotheses on the set K(1),

even if most of the results we are going to prove do not need them. Precisely, we shall

suppose that there exist a constant a > 0 and two not identically zero functions g and

h , defined on a bounded convex domain D of class C2 , satifying g = h = 0 on ∂D and

g, h ∈ C2(D) ∩ C(D̄) such that, decomposing σ ∈MN×N
sym as in (3.2.9), we have

K(1) = {σ ∈MN×N
sym |g(y) ≤ x+ a ≤ h(y)} (3.2.10)

We shall also suppose that

g2, h2 are concave . (3.2.11)

In terms of g and h , we can reformulate our basic assumptions on K(1) as follows.

Convexity of the domain K(1) is easily equivalent to the fact that g is convex and h is

concave; as they do not identically vanish on D and they are zero on the boundary, this

implies that

g(y) < 0 and h(y) > 0 for every y ∈ D .

Regularity of ∂K(1) implies, that, for every ω ∈ ∂D

lim
y→ω, y∈D

|∇g(y)| = lim
y→ω, y∈D

|∇h(y)| = +∞. (3.2.12)

Moreover, both (1.3.3) and (3.2.2) are satisfied, provided we have

max
x∈D

h = h(0) = a. (3.2.13)

An example of set satisfying all these assumptions is, for instance, any ellipsoid of the form

(xa + 1)2 +

m∑
i=1

y2
i

b2i
= 1,

where m = N(N+1)
2 − 1 and yi are the components of y with respect to an orthonormal

basis of MN×N
D . We then have the following Proposition. We omit the simple proof, which

can be found in [14, Proposition 2.3 and Remark 2.4]

Proposition 3.2. Assume that (1.3.1)-(1.3.4), (3.2.2), and (3.2.10)-(3.2.11) are satisfied.

Then, there exists a constant F > 0 such that, for every σ ∈ ∂K(1)

|tr(νK(1)(σ))| ≤ F |x+ a|, (3.2.14)

where x is defined as in (3.2.9). Moreover

tr(νK(1)(σ)) = 0⇐⇒ x = −a , (3.2.15)

and

tr(νK(1)(σ)) > 0⇐⇒ x+ a > 0. (3.2.16)

Let us fix ξ ∈ C1([0,+∞);MN×N
sym ). For every ε > 0 system (3.1.2) is equivalent toεėε(t) = εξ̇(t)− Ceε(t) + πK(zε(t))(Ceε(t)) ,

εżε(t) = tr(Ceε(t)) tr(Ceε(t)− πK(zε(t))(Ceε(t))) .
(3.2.17)
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Lemma 3.3. For every ε > 0 and for every initial condition eε(0) = e0 and zε(0) = z0 > 0

system (3.2.17) has a unique solution defined for every t ∈ [0,+∞) . Moreover the solution

(eε, zε) of (3.2.17) with initial condition eε(0) = e0 and zε(0) = z0 > 0 satisfies zε(t) > 0

for every t ∈ [0,+∞) .

Proof. As the right-hand sides are locally Lipschitz with respect to e and z by Lemma 1.1,

to get global existence it is enough to prove that for every T > 0 there is a constant MT,ε > 0

such that |eε(t)| ≤ MT,ε and |zε(t)| ≤ MT,ε for every t ∈ [0, T ] . Since 0 ∈ K(ζ) for every

ζ ∈ R by (1.3.3), by (2.3.4) we have |Ceε(t)−πK(zε(t))(Ceε(t))| ≤ |Ceε(t)| ≤ 2βQ|eε(t)| and

|πK(zε(t))(Ceε(t))| ≤ |Ceε(t)| ≤ 2βQ|eε(t)| for every t ∈ [0,+∞). Therefore, given T > 0,

from the first equation in (3.2.17) we have

|eε(t)| ≤ AT +
2βQ
ε

∫ t

0

|eε(s)| ds for every t ∈ [0, T ] .

with AT := |e0|+
∫ T

0
|ξ̇(s)| ds . It follows from the Gronwall inequality that

|eε(t)| ≤ AT exp(T βQ/ε) for every t ∈ [0, T ] .

Then the second equation in (3.2.17) allows easily to obtain a constant MT,ε > 0 such that

|zε(t)| ≤MT,ε for every t ∈ [0, T ] .

To prove the second part of the statement, we argue by contradiction. Let T be the first

time such that zε(T ) = 0 and suppose by contradiction that T < +∞ . Fix t̂ < T such

that T − t̂ < ε
2MT,εMK

, where MK is given by (1.3.4) and let t0 < T be a maximum point

for zε(t) in [t̂, T ] . We shall have, by (3.2.17) and (1.3.4)

0 = εzε(t0) + ε

∫ T

t0

żε(s) ds =

= εzε(t0) +

∫ T

t0

[tr(Ceε(s))2 − tr(Ceε(s)) tr(πK(zε(s))(Ceε(s)))] ds ≥

≥ εzε(t0)−
∫ T

t0

|tr(Ceε(s))| |tr(πK(zε(s))(Ceε(s)))| ds ≥

≥ εzε(t0)−MT,εMK

∫ T

t0

zε(s) ds ≥

≥ zε(t0)[ε− (T − t0)MT,εMK ] ≥ ε
2zε(t0),

a contradiction.

Introducing the dual variable σ , the system becomesεσ̇ε(t) = εCξ̇(t) + C[πK(zε(t))(σε(t))− σε(t)] ,

εżε(t) = tr(σε(t)) tr(σε(t)− πK(zε(t))(σε(t))) .
(3.2.18)

Since we want to consider a system which is initially in the elastic regime, for every ε > 0

we will consider an initial condition satisfying (σ0, z0) ∈ intK; in particular, we shall have

z0 > 0. For every ε the solution of (3.2.18) is trivially given by

(σ(t), z(t)) = (σ0 + C(ξ(t)− ξ(0)), z0) (3.2.19)
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for t small; actually, this formula gives the solution in the time interval [0, t1] , where

t1 = inf{t > 0 : (σ0 + C(ξ(t)− ξ(0)), z0) ∈ ∂K}. (3.2.20)

In terms of the function % defined by (3.2.3), for every t such that %(σε(t), zε(t)) > 0,

equations (3.2.18) becomeCξ̇(t)− σ̇ε(t) = 1
ε%(σε(t), zε(t))C νK(zε(t))(σε(t), zε(t)),

żε(t) = 1
ε%(σε(t), zε(t)) tr(σε(t)) tr(νK(zε(t))(πK(zε(t))(σε(t))).

(3.2.21)

Given the solution of (3.2.18) with the prescribed initial data we define

%ε(t) := %(σε(t), zε(t)); (3.2.22)

notice that %ε(t) is Lipschitz continuous, thus differentiable, for almost every t ; in particular

it is differentiable for every t such that %ε(t) > 0, and we have, by a direct computation,

taking into account (3.2.21) and (3.2.7), that

d

dt
%ε(t) = Φ(t, σε(t), zε(t)) +

%ε(t)

ε
Ψ(σε(t), zε(t)) whenever %ε(t) > 0, (3.2.23)

where

Φ(t, σ, z) : = νK(z)(πK(z)(σ)) · Cξ̇(t), (3.2.24)

Ψ(σ, z) : = −νK(z)(πK(z)(σ)) · CνK(z)(πK(z)(σ))−

−
tr(σ) tr(νK(z)(πK(z)(σ)))

z
[πK(z)(σ) · νK(z)(πK(z)(σ))]. (3.2.25)

The function Φ is defined on [0,+∞)×{[MN×N
sym × (0,+∞)] \ intK} and is continuous,

while Ψ is defined on [MN×N
sym ×(0,+∞)] \ intK and is of class C1 . In what follows, it

is often convenient to consider extensions of Φ and Ψ to [0,+∞)×MN×N
sym × (0,+∞) and

MN×N
sym ×(0,+∞) of class C0 and C1, respectively. Notice that the partial derivatives of Ψ

at each point of ∂K do not depend on the extension.

We will sometimes refer to Φ as to the elastic-inelastic indicator, while Ψ will be called

slow-fast indicator, for reasons that will become clear in the following. Even if, for math-

ematical reasons, the two indicators are defined on the whole space, we will also see that

what only matters are the values they attain on the yield surface.

Remark 3.4. By positive definiteness of C and by (3.2.8) it is immediate to deduce that,

for every (σ, z) such that tr(σ) tr(νK(z)(πK(z)(σ))) ≥ 0, the indicator Ψ is strictly negative;

as we are going to see in what follows, this reflects the fact that, as long as we are in the

hardening regime, the evolution does not present discontinuities.

In general, it is easy to verify, taking into account (2.3.3) and (1.3.4), that the following

bounds on Ψ hold: from above, we have, for every (σ, z) ∈ [MN×N
sym ×(0,+∞)] \ intK ,

Ψ(σ, z) ≤ −min{κ, 2µ}+MK

√
N |tr(σ)|, (3.2.26)

while from below

Ψ(σ, z) ≥ −max{κ, 2µ} −MK

√
N |tr(σ)| (3.2.27)
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where k, 2µ are defined by (2.3.3) and MK is as in (1.3.4); clearly we may assume that any

extension of Ψ we will consider preserves these bounds in the whole space. Notice that, by

(3.2.26) and (1.3.4), if z is sufficiently close to 0, and (σ, z) ∈ K , then the indicator Ψ is

strictly negative uniformly in σ ; according to what we shall see in the following sections,

this means that when the internal variable is sufficiently small the evolution is continuous.

In what follows we shall define, for every σ ∈MN×N
sym ,

λ(σ) := max{κ, 2µ}+MK

√
N |tr(σ)|. (3.2.28)

3.3 Continuous evolution

3.3.1 The equation of the slow dynamics

In this section we study in detail the equationσ̇sl(t) = Φ(t,σsl(t),zsl(t))
Ψ(σsl(t),zsl(t))

C νK(zsl(t))(σsl(t)) + Cξ̇(t),

żsl(t) = −Φ(t,σsl(t),zsl(t))
Ψ(σsl(t),zsl(t))

tr(σsl(t)) tr(νK(zsl(t))(σsl(t))),
(3.3.1)

defined on the open submanifold ∂K ∩ {Ψ(σ, z) 6= 0} \ {(0, 0)} . This will be called the

equation of the slow dynamics: observe that this is a well-defined equation, since, for every

t ∈ [0,+∞), the vector field

χt(σ, z) = (Cξ̇(t) + Φ(t,σ,z)
Ψ(σ,z) C νK(z)(σ), −Φ(t,σ,z)

Ψ(σ,z) tr(σ) tr(νK(z)(σ)))

is a tangent vector field to ∂K ∩ {Ψ(σ, z) 6= 0} \ {(0, 0)} ; indeed, by (3.2.6), it suffices to

show that χt(σ, z) · (z νK(z)(σ),−σ · νK(z)(σ)) = 0, which follows by a direct computation,

recalling (3.2.24), and (3.2.25).

Remark 3.5. Let (σ(t), z(t)) be a solution of (3.3.1) and define e(t), p(t) through the

constitutive relations in (3.1.1); we have that ṗ(t) = −Φ(t,σ(t),z(t))
Ψ(σ(t),z(t)) νK(z(t))(σ(t)), thus the

flow rule in (3.1.1) is satisfied as long as −Φ(t,σ(t),z(t))
Ψ(σ(t),z(t)) ≥ 0; that is, in our case, as long as

Φ does not become negative along the trajectory. We will see indeed that equation (3.3.1)

appears in the limit of (3.2.18) when the slow-fast indicator Ψ is negative.

Viceversa, let (σ(t), z(t)) be a C1 function with values on ∂K satisfying (3.1.1) in a

certain interval of time; if we suppose Ψ(σ(t), z(t)) 6= 0, the flow rule and the condition

0 = νK((σ(t), z(t))) · (σ̇(t), ż(t)) ,

with the help of (3.2.6), easily imply that (σ(t), z(t)) satisfies (3.3.1) and that it must be

−Φ(t,σ(t),z(t))
Ψ(σ(t),z(t)) ≥ 0.

We endow equation (3.3.1) with initial data (σ1, z1) ∈ ∂K at a time t1 > 0, with

z1 > 0 and Ψ(σ1, z1) 6= 0. We may thus apply all standard results about local existence and

uniqueness and the existence of a maximal interval where solutions to (3.3.1) are defined.

So, let (t1, t2) be the maximal interval of existence for the Cauchy problem associated to

(3.3.1) with datum (σ1, z1). As said in (3.2.9), we denote the spherical and the deviatoric
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part of σsl(t) with xsl(t) and ysl(t), and the spherical and the deviatoric part of ξ(t) with

η(t) and γ(t). Using the identity tr(Cσ) = κNtr(σ), from (3.3.1) we obtain

κżsl(t) = xsl(t)(κNη̇(t)− ẋsl(t)). (3.3.2)

The next Proposition shows an useful consequence of this equation.

Proposition 3.6. Assume (1.3.1)-(1.3.4), (2.3.3), and (3.2.2). Let Φ , Ψ be as in (3.2.24),

and (3.2.25), respectively. Let (σsl(t), zsl(t)) be the unique solution to the Cauchy problem

associated to (3.3.1) with Cauchy data (σ1, z1) ∈ ∂K at a time t1 > 0 , with z1 > 0 and

Ψ(σ1, z1) 6= 0 , and let [t1, t2) be its maximal interval of existence. If t2 < +∞ , there exists

a positive constant M such that

|(σsl(t), zsl(t))| < M for every t ∈ [t1, t2) (3.3.3)

Proof. By (1.3.4), it suffices to show that zsl(t) is bounded. Let L > 0 such that |η̇(t)| < L

for every t ∈ [t1, t2] : by (3.3.2), and (1.3.4) we have, for every t ∈ [t1, t2)

κ(zsl(t)− zsl(t1)) = κ

∫ t

t1

żsl(s) ds =

= −
∫ t

t1

xsl(s)ẋsl(s) ds+ κN

∫ t

t1

η̇(s)xsl(s) ds ≤

≤ 1
2 [x2

sl(t1)− x2
sl(t)] + κN

∫ t

t1

|η̇(s)||xsl(s)| ds ≤

≤ 1
2x

2
sl(t1) + κLNMK

∫ t

t1

zsl(s) ds

and the conclusion follows by Gronwall’s inequality.

By the use of (3.3.2) we are also able to show that zsl(t) cannot vanish at t = t2 .

Proposition 3.7. Assume (1.3.1)-(1.3.4), (2.3.3), and (3.2.2). Let Φ , Ψ be as in (3.2.24),

and (3.2.25), respectively. Let (σsl(t), zsl(t)) be the unique solution to the Cauchy problem

associated to (3.3.1) with Cauchy data (σ1, z1) ∈ ∂K at a time t1 > 0 , with z1 > 0 and

Ψ(σ1, z1) 6= 0 , and let [t1, t2) be its maximal interval of existence. If t2 < +∞ , then

lim inf
t→t2

zsl(t) > 0. (3.3.4)

Proof. Suppose by contradiction that lim inf
t→t2

zsl(t) = 0; we first show that this liminf is a

limit. Let L > 0 such that |η̇(t)| < L for every t ∈ (t1, t2), and MK as in (1.3.4), and let

c := lim sup
t→t2

zsl(t); if we suppose c > 0, we may fix t̂ < t2 such that

1) LNMK(t2 − t̂) < 1
8 ;

2) zsl(t) < 2c for every t > t̂ ;

3) zsl(t̂) >
c
2 .
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We shall then have, by (3.3.2), (1.3.4), and the previous assumptions, that, for every t > t̂

κzsl(t) = κzsl(t̂) +

∫ t

t̂

żsl(s) ds =

= κzsl(t̂)−
∫ t

t̂

xsl(s)ẋsl(s) ds+ κN

∫ t

t̂

η̇(s)xsl(s) ds ≥

≥ κ c2 + 1
2 [x2

sl(t̂)− x2
sl(t)]− κN

∫ t

t̂

|η̇(s)||xsl(s)| ds ≥

≥ κ c2 −
1
2x

2
sl(t)− κNLMK

∫ t

t̂

zsl(s) ds ≥

≥ κ c2 −
1
2x

2
sl(t)− κ c4 .

So, let tn a sequence converging to t2 realizing the liminf; by (1.3.4) we shall get that

lim
n→+∞

xsl(tn) = 0. As tn > t̂ for n sufficiently large, we shall have

κzsl(tn) ≥ κ c4 −
1
2x

2
sl(tn),

which in the limit yields c
4 ≤ 0, a contradiction. We thus have that limt→t2 zsl(t) = 0,

which immediately implies, by (1.3.4), that lim
t→t2

xsl(t) = 0. We now fix t̄ < t2 such that

LNMK(t2 − t̄) < 1
2 ; as zsl(t) > 0 in (t1, t2) and lim

t→t2
zsl(t) = 0, there exists a maximum

point t3 for zsl(t) in [t̄, t2). Repeating the previous estimates, we shall have, for every

t > t3 , that

κzsl(t) ≥ κzsl(t3)− 1
2x

2
sl(t)− κNLMKzsl(t3)(t2 − t̄) ≥ κ zsl(t3)

2 − 1
2x

2
sl(t),

which in the limit as t→ t2 gives zsl(t3) ≤ 0, a contradiction.

By the previous results, we now may show that the solutions (3.3.1) are globally defined

unless the slow-fast indicator vanishes along the trajectory. In the proof we use the following

elementary Lemma about differential equations, which can be found in [23, Chapter 1,

Lemma 3.1]; we state it for the reader’s convenience.

Lemma 3.8. Let E be a subset of R× Rn , let f : E → Rn a continuous function, and let

u(t) a solution of the ODE v̇(t) = f(t, v(t)) on an interval [a, δ) or (δ, a] where |δ| < +∞ .

If there exists a sequence tk converging to δ such that u(tk) → ū ∈ Rn and f(t, v) is

bounded on the intersection of E with an open neighborhood of the point (δ, ū) , then

lim
t→δ

u(t) = ū.

Proposition 3.9. Assume (1.3.1)-(1.3.4), (2.3.3), and (3.2.2); let Φ , Ψ be as in (3.2.24),

and (3.2.25), respectively. Let (σsl(t), zsl(t)) be the unique solution to the Cauchy problem

associated to (3.3.1) with Cauchy data (σ1, z1) ∈ ∂K at a time t1 > 0 , with z1 > 0 and

such that Ψ(σ1, z1) 6= 0 , and let [t1, t2) be its maximal interval of existence. If t2 < +∞ ,

then

lim
t→t−2

Ψ(σsl(t), zsl(t)) = 0 (3.3.5)
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Proof. Suppose by contradiction that there exists a sequence tk → t2 such that

lim
k→+∞

Ψ(σsl(tk), zsl(tk)) 6= 0. (3.3.6)

By Proposition 3.6, we may assume that (σsl(tk), zsl(tk)) tends to a finite limit (σ2, z2) as

k → +∞ ; by Proposition 3.7 we have that z2 > 0. By continuity of Ψ, (3.3.6) implies that

Ψ(σ2, z2) 6= 0; it follows now from Lemma 3.8 that

lim
t→t2

(σsl(t), zsl(t)) = (σ2, z2);

we may then solve the Cauchy problem associated to (3.3.1) with data (σ2, z2) at time t2 ,

contradicting the maximality of [t1, t2).

In the next Proposition, we use Lemma 3.8 to prove that, if Ψ vanishes at time t2 < +∞ ,

then (σsl(t), zsl(t)) have a limit at t = t2 ; the proof is obtained by observing that in this case

zsl(t) must be monotone in a neighborhood of t2 . We also need the additional hypothesis

that the elastic-inelastic indicator is not vanishing at t2 , that is to say

lim inf
t→t−2

|Φ(t, σsl(t), zsl(t))| > 0. (3.3.7)

Proposition 3.10. Assume (1.3.1)-(1.3.4), (2.3.3), and (3.2.2); let Φ , Ψ be as in (3.2.24),

and (3.2.25), respectively. Let (σsl(t), zsl(t)) be the unique solution to the Cauchy problem

associated to (3.3.1) with Cauchy data (σ1, z1) at a time t1 > 0 , with z1 > 0 and such that

Ψ(σ1, z1) 6= 0 , and let [t1, t2) be its maximal interval of existence. If t2 < +∞ , and (3.3.7)

holds, then there exists

lim
t→t−2

(σsl(t), zsl(t)) := (σ2, z2) ∈ ∂K. (3.3.8)

Proof. By Proposition 3.9 we have limt→t−2
Ψ(σsl(t), zsl(t)) = 0; as seen in Remark 3.4, this

implies that

lim inf
t→t−2

xsl(t) < 0 and lim inf
s→t−2

tr(νK(zsl(t))(σsl(t))) > 0;

if not, in both cases we may find a sequence tn converging to t2 along which

lim sup
n→+∞

Ψ(σsl(tn), zsl(tn)) ≤ −min{κ, 2µ} < 0,

a contradiction. By (3.3.1), (3.3.5), and (3.3.7) we easily get that there exists a left neighbor-

hood of t2 , denoted with (t̂, t2), where żsl(t) 6= 0; thus zsl(t) is invertible in this interval,

with inverse t(z), and converges to a limit z2 , which is finite by Proposition 3.6. We now

suppose, for instance, that zsl(t) is strictly decreasing, the proof in the other case being

completely analogous. We put ẑ := zsl(t̂) and we express σ in function of z ; by (3.3.1), we

then get that

−σ′sl(z) = 1
tr(σsl(z)) tr(νK(z)(σsl(z)))

[C νK(z)(σsl(z))− Cχ(z) Ψ(σsl(z),z)
Φ(t(z),σsl(z),z)

] (3.3.9)

for every z ∈ (z2, ẑ); here we have put: χ(z) := ξ̇(t(z)). So, as

lim inf
z→z2

|tr(σsl(z)) tr(νK(z)(σsl(z)))| > 0

by the previous discussion, and taking into account (1.3.4) and (3.3.7), |σ′sl(z)| remains

uniformly bounded in this interval. The conclusion follows.
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Remark 3.11. If the inequalities Φ(t1, σ1, z1) > 0 and Ψ(σ1, z1) < 0 are satisfied, we will

see in the next subsection that the solutions of (3.2.18) uniformly converge to the solution

of (3.3.1) in a right neighborhood of t1 . In general, [t1, t2) may not be the maximal interval

of convergence, as positivity of Φ may fail before of t2 . We will show that this convergence

holds on [t1, t2) whenever

Φ(t, σsl(t), zsl(t)) > 0 for every t < t2. (3.3.10)

Assume this inequality, as well as (3.3.7), suppose that t2 < +∞ , and let (σ2, z2) be as

in (3.3.8); then

Ψ(σ2, z2) = 0. (3.3.11)

Let us prove that

∇Ψ(σ2, z2) · ( −C νK(z2)(σ2)

tr(σ2) tr(νK(z2)(σ2)) , 1) ≤ 0. (3.3.12)

Indeed, as seen in Proposition 3.10 zsl(t) is strictly decreasing in a left neighborhood of t2 ,

with inverse t(z). If we define σsl(z) := σsl(t(z)), we shall then have that Ψ(σsl(z), z) < 0

in a right neighborhood of z2 , which yields

lim
z→z2

d

dz
Ψ(σsl(z), z) ≤ 0;

a direct computation involving (3.3.9) and (3.3.11) gives us condition (3.3.12).

We claim that the vector (
−C νK(z2)(σ2)

tr(σ2) tr(νK(z2)(σ2)) , 1) is tangent to ∂K at (σ2, z2). To prove

that, by (3.2.6), it suffices to show that

(
−C νK(z2)(σ2)

tr(σ2) tr(νK(z2)(σ2)) , 1) · (z2 νK(z2)(σ2),−σ2 · νK(z2)(σ2)) = 0 .

Recalling (3.2.25), the left-hand side is equal to z2Ψ(σ2,z2)
tr(σ2) tr(νK(z2)(σ2)) , and the conclusion follows

by (3.3.11). Thus the left-hand side of (3.3.12) is a tangential derivative and depends only

on the values Ψ attains on ∂K .

Due to the presence of the forcing term Cξ̇(t), the sign of żsl(t) may change, causing

the alternance of hardening and softening regime; we end this subsection by presenting

a simple condition that prevents this phenomenon. To be definite, we consider the case

where the spherical part of ξ(t) is constant, as in [12]. Observe that here we are assuming

(3.2.10)-(3.2.11), in order to apply Proposition 3.2.

Proposition 3.12. Assume that (1.3.1)-(1.3.4), (3.2.2), (2.3.3), and (3.2.10)-(3.2.11) are

satisfied; let Φ , Ψ be as in (3.2.24), and (3.2.25), respectively. Let (σsl(t), zsl(t)) the

unique solution to (3.3.1) with Cauchy data (σ1, z1) at a time t1 > 0 , with z1 > 0 and

Ψ(σ1, z1) < 0 , and let [t1, t2) be its maximal interval of existence. Let t̂ ∈ [t1, t2) such that

Φ(t, σsl(t), zsl(t)) > 0 for every t ∈ [t1, t̂] (3.3.13)

and suppose that η̇(t) = 0 for every t ∈ [t1, t̂] . If there exists t̄ ∈ (t1, t̂) such that żsl(t̄) = 0 ,

then żsl(t) = 0 for every t ∈ [t1, t̂] .
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Proof. As t̂ < +∞ , by the same arguments as in Proposition 3.6 and Proposition 3.7, we

may assume that Z := inft∈[t1,t̂]
zsl(t) > 0 and that |xsl(t)| is bounded by a finite constant

M . By (3.3.1) we have that

ẋsl(t) =
√
N Φ(t,σsl(t),zsl(t))

Ψ(σsl(t),zsl(t))
κ tr(νK(zsl(t))(σsl(t))), (3.3.14)

while (3.3.2) reduces to

κżsl(t) = −xsl(t)ẋsl(t). (3.3.15)

By (3.3.14), (3.3.13), (3.2.5), and (3.2.15), we have that

ẋsl(t) = 0⇐⇒ xsl(t) + a zsl(t) = 0, (3.3.16)

where a > 0 is as in (3.2.10). Let us prove that xsl(t) 6= 0 for every t ∈ (t1, t̂] ; indeed, by

(3.2.2), which is equivalent to (3.2.13), if the value 0 is assumed, it is a maximum value for

xsl(t), thus, if for some t ∈ (t1, t̂] we have xsl(t) = 0, it must be also ẋsl(t) = 0, but this is

excluded by (3.3.16), as zsl(t) > 0.

Suppose that there exists t̄ ∈ (t1, t̂) such that żsl(t̄) = 0; as xsl(t̄) 6= 0, by (3.3.15) we

must have ẋsl(t̄) = 0, that is to say xsl(t̄) + a zsl(t̄) = 0. Let f(t) := xsl(t) + a zsl(t); under

our hypotheses, by (3.3.14) and (3.3.15) there exists a positive constant W such that

|ḟ(t)| ≤W |tr(νK(zsl(t))(σsl(t))| for every t ∈ [t1, t̂];

(3.2.5) and (3.2.15) imply that

|tr(νK(zsl(t))(σsl(t))| ≤ F
Z |xsl(t) + a zsl(t)|,

where F > 0 is as in (3.2.14). We conclude that

|ḟ(t)| ≤W F
Z |f(t)| for every t ∈ [t1, t̂];

as f(t̄) = 0, Gronwall’s inequality implies that f(t) = 0 for every t ∈ [t1, t̂] , which in its

turn entails that ẋsl(t) = 0 for every t ∈ [t1, t̂] , and conclusion follows by (3.3.15).

3.3.2 Convergence to the slow dynamics

In this subsection we examine how to recover equation (3.3.1) from (3.2.18) in the limit

as ε goes to 0, under suitable hypotheses on the sign of the indicators Φ and Ψ: the

arguments used here are reminiscent of [47, Section 3], where another model of plasticity

with softening in the spatially homogenoeus case was considered.

Throughout this part of the chapter, t̂ denotes a time such that there exist a left con-

tinuous function t 7→ (σ(t), z(t)) defined on [0, t̂) with values in MN×N
sym × [0,+∞) and an

element (σ̂, ẑ) of MN×N
sym × [0,+∞) satisfying the following properties:

(σε(t), zε(t))→ (σ(t), z(t)) for a.e. t ∈ [0, t̂) , (3.3.17)

there exists t̂ε → t̂ such that (σε(t̂ε), zε(t̂ε))→ (σ̂, ẑ) , (3.3.18)

(σ̂, ẑ) ∈ ∂K and ẑ > 0 , (3.3.19)

Φ(t̂, σ̂, ẑ) > 0 . (3.3.20)
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For instance, we can take t̂ = t1 defined by (3.2.20), if t1 < +∞ and, setting

(σ1, z1) := (σ0 + C(ξ(t1)− ξ(0)), z0). (3.3.21)

we have

Φ(t1, σ1, z1) > 0; (3.3.22)

notice that in general we have Φ(t1, σ1, z1) ≥ 0, as the solution was in K at all previ-

ous times, thus we are only excluding the degenerate case when equality holds. The case

Φ(t1, σ1, z1) = 0 will be discussed in the next subsection.

Lemma 3.13. Assume (1.3.1)-(1.3.4), (2.3.3), and (3.2.2). Let Φ be as in (3.2.24). Let

t̂ > 0 satisfy (3.3.17)-(3.3.20), and let t̂ε be as in (3.3.18); then, for every t∗ > t̂ , the set

{%ε(t) > 0} ∩ [t̂ε, t
∗] is nonempty, when ε is sufficiently small.

Proof. Assume on the contrary that along a suitable subsequence, that we shall not relabel,

one has %ε(t) = 0 for every t ∈ [t̂ε, t
∗] ; we then get

(σε(t), zε(t)) = (σε(t̂ε) + C(ξ(t)− ξ(t̂ε)), zε(tε)) ∈ K (3.3.23)

for every t ∈ [t̂ε, t
∗] . In the limit we obtain that (σ̂ + C(ξ(t)− ξ(t̂)), ẑ) ∈ K for every t ∈

[t̂, t∗] ; by (3.3.19) we easily deduce that it must be Φ(t̂, σ̂, ẑ) ≤ 0, contradicting (3.3.20).

Remark 3.14. Notice that if t̂ = t1 , the statement of the Lemma holds with t̂ε = t1 .

We fix an open neighborhood Uδ := (t̂− δ, t̂+ δ)×Bδ(σ̂, ẑ), where Bδ(σ̂, ẑ) denotes the

open ball of radius δ > 0 centered at (σ̂, ẑ), in a way that there exists a positive constant

γ2 > 0 such that

Φ(t, σ, z) ≥ γ2 > 0 for every (t, σ, z) ∈ Uδ. (3.3.24)

We may clearly assume that δ < max{κ,2µ}
2MK

√
N

, where k and µ are defined by (2.3.3) and

MK is as in (1.3.4), in a way that, for every (σ, z) ∈ Bδ(σ̂, ẑ), the following holds:

λ(σ)
λ(σ̂) <

3
2 , (3.3.25)

where λ(σ) is defined as in (3.2.28). We define

aε := inf{t ∈ (t̂ε, t̂ε + δ) : (σε(t), zε(t)) ∈ ∂Bδ(σ̂, ẑ)}, (3.3.26)

where t̂ε is given by (3.3.18). The following lemma shows that, thanks to (3.3.24), the

function 1
ε%ε(t) becomes greater than a fixed positive constant after a time tε converging to

t̂ as ε → 0, while the motion is still in Bδ(σ̂, ẑ); we shall see that this implies a transition

to the inelastic regime.

Lemma 3.15. Assume (1.3.1)-(1.3.4), (2.3.3), and (3.2.2). Let Φ be as in (3.2.24). Let

t̂ > 0 satisfy (3.3.17)-(3.3.20), let t̂ε be as in (3.3.18), and let δ , aε , and γ2 , be as in

(3.3.24) and (3.3.26). Let ε > 0 and %ε(t) be as in (3.2.22). Define

tε := inf{t ∈ (t̂ε, t̂ε + δ) : 1
ε%ε(t) ≥

γ2

3λ(σ̂)}. (3.3.27)

Then:
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a) tε − t̂→ 0 as ε→ 0+ ;

b) tε < aε for ε sufficiently small;

c) 1
ε%ε(t) ≥

γ2

3λ(σ̂) for every t ∈ [tε, aε].

Proof. Concerning part a) and part b) of the statement, we may clearly suppose that tε > t̂ε .

Let sε := tε ∧ aε. We first claim that, for small ε , in (t̂ε, sε) one has %ε(t) > 0.

Indeed, we first observe that if the set {%ε(t) > 0} ∩ [t̂ε, sε] is empty along a suitable

subsequence (unrelabelled), then clearly sε = aε , and (3.3.23) holds for every t ∈ [t̂ε, t
∗] ; we

then easily get that lim inf aε > t̂ , and this contradicts Lemma 3.13. Then, for ε sufficiently

small, the set {%ε(t) > 0} ∩ [t̂ε, sε] has positive measure. Now, observe that %̇ε(t) = 0 a.e.

in {%ε(t) = 0} ∩ [t̂ε, sε] , while in the set {%ε(t) > 0} ∩ [t̂ε, sε] one has

%̇ε(t) ≥ γ2

2 (3.3.28)

by (3.2.23), (3.3.24), (3.2.27), and (3.3.25). Then, by the fundamental theorem of calculus

and by Lemma 3.13, we get

%ε(τ) =

∫
{%ε(t)>0}∩[t̂ε,τ ]

%̇ε(t) dt ≥ γ2

2 L
1({%ε(t) > 0} ∩ [t̂ε, τ ]) > 0

for every τ ∈ [t̂ε, sε] , which proves our claim. Therefore {%ε(t) > 0} ∩ (t̂ε, sε] = (t̂ε, sε] so

that the previous estimate and the definition of sε yield

ε γ2

3λ(σ̂) ≥ %ε(sε) ≥
γ2

2 (sε − t̂ε),

which implies, by (3.3.18), that

sε − t̂→ 0 as ε→ 0+. (3.3.29)

Now suppose, by contradiction, that sε = aε as ε→ 0 along a suitable sequence. Then

aε − t̂ε → 0 as ε→ 0+ and

sup
t∈[t̂ε,aε]

1
ε%ε(t) ≤

γ2

3λ(σ̂) ;

by the definition of aε , (3.2.21), and (3.3.18), this implies

δ + o(1) = |(σε(aε), zε(aε))− (σε(t̂ε), zε(t̂ε))|

≤ |(σε(aε)− σε(t̂ε), 0)|+ |(0, zε(aε)− zε(t̂ε))|

≤
∫ aε

t̂ε

|σ̇ε(t)|+ |żε(t)| dt

≤ (|C|+ |tr(σ̂)|+ δ + o(1))

∫ aε

t̂ε

%ε(t)
ε dt+ |C|

∫ aε

t̂ε

|ξ̇(t)| dt

≤ [(|C|+ |tr(σ̂)|+ δ + o(1)) γ2

3λ(σ̂) ](aε − t1) + |C|
∫ aε

t̂ε

|ξ̇(t)| dt,

(3.3.30)

a contradiction, since the right-hand side tends to 0 as ε→ 0. This proves part a) and part

b) of the statement.

Observe now that (3.3.28) yields %̇ε(tε) ≥ γ2

2 . Thus, if c) is false, let t1ε be the first time

in (tε, aε) such that %ε(t
1
ε) = γ2

3λ(σ1) ; then %̇ε(t
1
ε) ≤ 0. Repeating the proof of (3.3.28) we

find %̇ε(t
1
ε) ≥

γ2

2 > 0, a contradiction.
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Remark 3.16. Notice that if t̂ = t1 , the statement of the Lemma holds with t̂ε = t1 .

We now focus on the case where the slow-fast indicator is negative at (σ̂, ẑ). As in [47],

this allows us to show that, in a neighborhood of t̂ , the function 1
ε%ε(t) remains uniformly

bounded. This is the key ingredient to prove that the limit evolution is continuous.

For a suitable choice of δ in the definition of the neighborhood Uδ satisfying (3.3.24),

we may assume that there exists a positive constant γ1 such that

Ψ(σ, z) ≤ −γ1 for every (σ, z) ∈ Bδ(σ̂, ẑ). (3.3.31)

We now state an auxiliary lemma, analogous to [47, Lemma 3.6], which will be used also in

Section 3.4. Notice that in the statement of the lemma we make no assumption on the sign

of the indicator Φ.

Lemma 3.17. Assume (1.3.1)-(1.3.4), (2.3.3), and (3.2.2); let Ψ be as in (3.2.25). Let

t̃ > 0 , (σ̃, z̃) ∈ ∂K , and let t̃ε be a sequence such that

t̃ε → t̃ as ε→ 0+ ,

(σε(t̃ε), zε(t̃ε))→ (σ̃, z̃) as ε→ 0+ .

Suppose that there exist two constants η > 0 , γ > 0 such that, for every (σ, z) satisfying

|(σ, z)− (σ̃, z̃)| < η , one has

Ψ(σ, z) < −γ.

Let

bηε := inf{t ∈ (t̃ε, t̃+ η) : (σε(t), zε(t)) ∈ ∂Bη(σ̃, z̃)}.

Then there exist L > 0 and a sequence s̃ε , which may be taken equal to t̃ε whenever

lim sup
ε→0

%ε(t̃ε)
ε < +∞ , such that

a) s̃ε → t̃ as ε→ 0+ ,

b) (σε(s̃ε), zε(s̃ε))→ (σ̃, z̃) as ε→ 0+ ,

c) %ε(t)
ε ≤ L

γ for every t ∈ [s̃ε, b
η
ε ] ,

d) lim inf
ε→0

bηε ≥ t̃+ C(σ̃, η, γ) ,

where C(σ, η, γ) := min{η, ηγ
L[(1+γ)|C|+|tr(σ)|+η]} .

Proof. Choose L such that |Cξ̇(t)| < L for every t ∈ [t̃ − η, t̃ + η] . Observe that, from

(3.2.23) and the hypotheses, we get

%̇ε(t) < −γ %ε(t)ε + L for a.e. t ∈ [t̃ε, b
η
ε ]; (3.3.32)

indeed the inequality holds true also in the set {%ε(t) = 0} , as %̇ε(t) = 0 almost everywhere

in this set. Notice also that it is everywhere satisfied when %ε(t) > 0.

Let M = lim sup
ε→0

%ε(t̃ε)
ε ; we may assume, up to a subsequence, that this limsup is actually

a limit. If M < +∞ , we may always assume, suitably enlarging the constant L , that
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M < L
γ . If M = +∞ , fix ϑ > 0 and define sηε := inf{t ∈ [t̃ε, b

η
ε ]|%ε(t)ε ≤ L+ϑ

γ } ; then (3.3.32)

yields

%̇ε(t) < −ϑ for every t ∈ [t̃ε, s
η
ε ] ; (3.3.33)

integrating, we get

(sηε − t̂ε)ϑ < %ε(t̃ε)− %ε(sηε) . (3.3.34)

As %ε(t̃ε) → 0, we conclude that sηε → t̂ as ε → 0+ . From this fact and (3.3.34), we also

get that limε→0 %ε(s
η
ε) = 0, hence, integrating (3.3.32), we obtain

lim
ε→0

∫ sηε

t̃ε

%ε(s)

ε
ds = 0 . (3.3.35)

We can then argue as in (3.3.30), and for every t ∈ [t̃ε, s
η
ε ] we have

|σε(t)− σε(t̃ε)|+ |ζε(t)− ζε(t̃ε)| ≤

≤ (|C|+ |tr(σ̃)|+ η + o(1))

∫ sηε

t̃ε

%ε
ε

(s) ds+ |C|
∫ sηε

t̃ε

|ξ̇(s)| ds .

From this and (3.3.35) we get

lim
ε→0

sup
t̃ε≤t≤sηε

|σε(t)− σε(t̃ε)|+ |ζε(t)− ζε(t̃ε)| = 0 .

In particular we have sηε < bηε , when ε is sufficiently small.

So we put s̃ε := sηε when M = +∞ , while we put s̃ε := t̃ε otherwise; up to suitably

enlarging the constant L , we have, for every ε , %ε(s̃ε)
ε ≤ L

γ and %̇ε(s̃ε) < 0. Now, if c) is

false, let s1
ε be the first time in (s̃ε, b

η
ε) such that %ε(s

1
ε) = L

γ ; then %̇ε(t
1
ε) ≥ 0. On the

other hand (3.3.32) yields %̇ε(t
1
ε) < −L+ L = 0, a contradiction.

It remains to prove only part d) of the statement. We can suppose bηε < t̃+ η , otherwise

the result is trivial. Again we can argue as in (3.3.30), and we have the estimate

η = |(σε(bηε)− σε(s̃ε), ζε(t)− ζε(s̃ε)| ≤

≤ (|C|+ |tr(σ̃)|+ η)

∫ bηε

s̃ε

%ε
ε

(s) ds+ |C|
∫ bηε

s̃ε

|ξ̇(s)| ds ,

which implies, by part c) of the statement,

η < [(1 + γ)|C|+ |tr(σ̃)|+ η]Lγ (bηε − s̃ε) ;

since ŝε → t̂ as ε→ 0+ , this concludes the proof.

We are now ready to prove the main result of this section.

Theorem 3.18. Assume (1.3.1)-(1.3.4), (2.3.3), and (3.2.2), and define Φ , and Ψ as in

(3.2.24), and (3.2.25), respectively. Let t̂ > 0 satisfy (3.3.17)-(3.3.20), let t̂ε be as in

(3.3.18), and suppose that (3.3.31) holds. Let (σsl(s), zsl(s)) be the unique solution to the

equation of the slow dynamics (3.3.1) with Cauchy datum (σ̂, ẑ) at t̂ , and let t2 > t̂ be as

in (3.3.5). Let t̄ < t2 and suppose that there exists a constant γ3 > 0 such that

Φ(s, σsl(s), zsl(s)) ≥ γ3 for every s ∈ [t̂, t̄]. (3.3.36)

Then (σε, zε) converges uniformly to (σsl, zsl) as ε→ 0+ on compact subsets of (t̂, t̄] .
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Proof. Let δ , γ2 , γ1 , t̂ε , and aε be given by (3.3.24), (3.3.31), (3.3.18), and (3.3.26),

respectively. We put t∗ = lim inf
ε→0+

aε , and we apply Lemma 3.17 with t̃ = t̂ , t̃ε = t̂ε , and

bηε = aε ; we have that t∗ > t̂ , and, by part c) of the Lemma, we may assume that there exists

a nonnegative function ω(t) such that, for every η > 0, %ε(t)
ε w∗ -converges in L∞((t̂+η, t∗))

to ω(t).

We write equation (3.2.18) in the formCξ̇(t)− σ̇(t) = ωε1(t, σ(t), z(t))

ż(t) = ωε2(t, σ(t), z(t)),

where

ωε1(t, σ(t), z(t)) := %ε(t)
ε h1(σ(t), z(t)) (3.3.37)

ωε2(t, σ(t), z(t)) := %ε(t)
ε h2(σ(t), z(t)) ; (3.3.38)

here h1(σ, z) and h2(σ, z) denote two C1
c functions coinciding with CνK(z)(πK(z)(σ)), and

tr(σ)tr(νK(z)(πK(z)(σ))), respectively, in Bδ(σ̂, ẑ) \ intK . Corollary 1.16 now provides the

uniform convergence of the solutions of (3.2.18) to the solution of the problemCξ̇(t)− σ̇(t) = ω(t)h1(σ(t), z(t))

ż(t) = ω(t)h2(σ(t), z(t)),
(3.3.39)

with the required Cauchy data, on the compact subintervals of (t̂, t∗] .

Now, Lemma 3.17, part c), implies that (σ(t), z(t)) ∈ K for every t ∈ (t̂, t∗] , while

Lemma 3.15 entails that, for every t ∈ (t̂, t∗] , the points (σε(t), zε(t)) do not belong to K

when ε is sufficiently small; this proves that (σ(t), z(t)) ∈ ∂K for every t ∈ (t̂, t∗] . Thus, for

every t ∈ (t̂, t∗] , the functions h1(σ(t), z(t)) and h2(σ(t), z(t)) coincide with CνK(z)(σ) and

tr(σ)tr(νK(z)(σ)), respectively. Since (σ(t), z(t)) ∈ ∂K , we must have, for every t ∈ (t̂, t∗]

0 = νK((σ(t), z(t))) · (σ̇(t), ż(t));

this in turn, recalling (3.2.6), is equivalent to

0 = (z νK(z)(σ),−σ · νK(z)(σ)) · (σ̇(t), ż(t)).

Then (3.3.39), (3.2.24), and (3.2.25) imply that

0 = ω(t)Ψ(σ(t), z(t)) + Φ(t, σ(t), z(t)). (3.3.40)

Therefore (3.3.39) coincides with (3.3.1). We conclude that the solutions of (3.2.18) converge

uniformly on compact subintervals of (t̂, t∗] to the solution of the equation (3.3.1) with

Cauchy data (σ̂, ẑ) at t̂ , and by uniqueness, the limit is exactly (σsl(t), zsl(t)).

Now, let t† the maximal time such that (σε, zε) converges uniformly to (σsl, zsl) as

ε → 0+ on compact subintervals of (t̂, t†); to conclude the proof, we have to show that

t† > t̄ . Let us argue by contradiction, supposing t† ≤ t̄ . Define(σ†, z†) := (σsl(t
†), zsl(t

†))

and observe that, by the hypotheses, there exist two constants η > 0 and γ > 0 such that,
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for every (t, σ, z) ∈ [t†−η, t†+η] ×Bη(σ†, z†), one has Ψ(σ, z) < −γ and Φ(t, σ, z) > γ . We

define c(η2 , γ) as the infimum in Bη
2

(σ†, z†) of C(σ, η2 , γ), where the latter is the constant

defined in Lemma 3.17. Now we may fix t† − η
2 < t†1 < t†2 < t† < t†3 < t†1 + c(η2 , γ)

in a way that (σsl(t
†
1), zsl(t

†
1)) ∈ B η

2
(σ†, z†) and we shall have that for every (t, σ, z) ∈

[t†1 −
η
2 , t
†
1 + η

2 ] ×B η
2
(σsl(t

†
1), zsl(t

†
1)),

Ψ(σ, z) < −γ and Φ(t, σ, z) > γ . (3.3.41)

By Lemma 3.17, applied with t̃ = t̃ε = t†1 , we have that there exists L > 0 such that for ε

sufficiently small %ε(t)
ε ≤ L

γ for every t ∈ [t†2, t
†
3] . By Lemma 3.15, applied with t̂ = t̂ε = t†1 ,

and aε = b
η
2
ε we get that

%ε(t)
ε ≥ γ

3λ(σsl(t
†
1))

for every t ∈ [t†2, t
†
3], (3.3.42)

when ε is sufficiently small; here λ(σ) is defined by (3.2.28). We repeat the arguments

of the previous step of the proof, and we also notice that we are in position to apply

Theorem 1.15 in place of Corollary 1.16, to get that the solutions of (3.2.18) converges

uniformly in the interval [t†2, t
†
3] to the solution of the problem (3.3.1) with Cauchy data

(σ(t†2), z(t†2)) = (σsl(t
†
2), zsl(t

†
2)), that is, by uniqueness, to (σsl(t), zsl(t)). This contradicts

the maximality of t† .

Remark 3.19. A slight adaptation of the proof, taking into account Remark 3.16, easily

shows that in the particular case t̂ = t1 the conclusion of the Theorem holds on the whole

closed interval [t1, t̄] .

The previous theorem shows that, if one has

Φ(t, σsl(t), zsl(t)) > 0 for every t̂ ≤ t < t2, (3.3.43)

then (σε, zε) converges uniformly to (σsl, zsl) as ε→ 0+ on compact subintervals of (t̂, t2).

On the contrary, if

Φ(t̄, σsl(t̄), zsl(t̄)) = 0 (3.3.44)

for some t̂ < t̄ < t2 , then the elastic behavior may re-appear starting from the point

(σ̄, z̄) := (σsl(t̄), zsl(t̄)) ∈ ∂K , as we are going to discuss in the next subsection.

In the last section of the chapter we will consider the case when (3.3.43) holds, and

t2 < +∞ ; we will show that a transition from the slow to the fast dynamics occurs at time

t2 when (3.3.7) and (3.3.12) hold with strict inequality.

3.3.3 Elastic regime

Another possibility for a continuous evolution is having an elastic regime, where the

internal variable is constant and the stress evolves trivially following the linearized elasticity

equation, without production of plastic flow. It is obvious that this situation occurs if we a

priori know that at a certain time the stress is in the interior of the elastic domain. Here

instead we focus on the case where the stress is on the yield surface, after a previous branch

of elastic regime, or after following the slow dynamics equations, or after a jump along
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the fast dynamics trajectory (this situation will be discussed in the next section). As the

discussion of the previous subsection has clarified, negativeness of the indicator Ψ leads to a

continuous evolution, while positiveness of the indicator Φ is responsible for the production

of plastic flow. Throughout this subsection, while keeping the hypothesis on Ψ we will deal

with the case Φ ≤ 0. If the strict inequality holds, it is really easy to prove that the system

is switching to the elastic regime, while if Φ = 0 we need to add some suitable assumptions

to prove this result. However, also this case is really interesting because it is what happens

for instance when (3.3.44) holds.

To be definite, t̄ denotes a time such that there exist a left continuous function t 7→
(σ(t), z(t)) defined on [0, t̄) with values in MN×N

sym × [0,+∞) and an element (σ̄, z̄) of

MN×N
sym × [0,+∞) satisfying the following properties:

(σε(t), zε(t))→ (σ(t), z(t)) for a.e. t ∈ [0, t̂) , (3.3.45)

there exists t̄ε → t̄ such that (σε(t̄ε), zε(t̄ε))→ (σ̄, z̄) , (3.3.46)

(σ̄, z̄) ∈ ∂K and ẑ > 0 , (3.3.47)

Φ(t̄, σ̄, z̄) ≤ 0 and Ψ(σ̄, z̄) < 0 . (3.3.48)

Denoting with (σsl(t; t̄), zsl(t; t̄)) the unique solution of (3.3.1) issuing from (σ̄, z̄) at time

t̄ , we will also assume that there exists a sequence tn → t̄ such that

Φ(tn, σsl(tn; t̄), zsl(tn; t̄)) < 0 (3.3.49)

and that there exists η > 0 such that, for every (t, s, σ, z) ∈ (t̄, t̄+η)×(0, η)×(Bη(σ̄, z̄))∩∂K
satisfying Φ(t, σ, z) ≤ 0,

(σ + C(ξ(t+ s)− ξ(t)), z) ∈ intK . (3.3.50)

It is obvious that if the strict inequality holds in (3.3.48), (3.3.49) and (3.3.50) are trivially

satisfied. About the meaning of these two additional conditions, we observe that, according

to the discussion in Remark 3.5, (3.3.49) has the role of preventing the system from following

the slow dynamics equation, while (3.3.50) is a suitable enforcement of the trivial necessary

condition for having an elastic regime while keeping the stress constraint.

Remark 3.20. When ξ is at least C2 regular and Φ(t̄, σ̄, z̄) = 0 the inequality

Cξ̈(t̄) · νK(z̄)(σ̄) + Cξ̇(t̄) · [∇σνK(z̄)(σ̄)]Cξ̇(t̄) < 0 (3.3.51)

implies both (3.3.49)) and (3.3.50). It follows from the definition of Φ, from (3.3.44), and

from (3.2.6), that the vector Cξ̇(t̄) is tangent to ∂K(z̄) at σ̄ , hence Cξ̇(t̄) ·[∇σνK(z̄)(σ̄)]Cξ̇(t̄)
is exactly the second fundamental form of ∂K(z̄) at σ̄ , applied to the tangent vector Cξ̇(t̄).

We omit the proof of (3.3.51), which is based on elementary facts in differential geometry;

the interested reader may refer to [14, Remark 3.19] and [47, Remark 3.12].

The next theorem shows that the hypotheses we made actually guarantee that the system

is going to follow the elastic regime in a right neighborhood of t̄ .
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Theorem 3.21. Assume (1.3.1)-(1.3.4), (2.3.3), and (3.2.2), and define Φ and Ψ as in

(3.2.24), and (3.2.25), respectively. Let t̄ and (σ̄, ζ̄) satisfy (3.3.45)-(3.3.48), and assume

that (3.3.49) and (3.3.50) hold. Let

(σel(t), zel(t)) := (σ̄ + C(ξ(t)− ξ(t̄)), z̄)

and

τ := sup{t > t̄ |(σel(s), zel(s)) ∈ intK for every s ∈ (t̄, t)}.

Then (σε, zε) converge uniformly to (σel, zel) as ε→ 0+ on compact subsets of [t̄, τ).

Proof. Observe that, if 3.3.50 holds, τ is strictly larger than t and τ − t̄ ≥ η , where η is

given by 3.3.50. As in Theorem 3.18 we denote with h1(σ, z) and h2(σ, z) denote two C1
c

functions coinciding with CνK(z)(πK(z)(σ)), and tr(σ)tr(νK(z)(πK(z)(σ))), respectively, in

Beta(σ̂, ẑ) \ intK Since Ψ(σ̄, z̄) < 0, we can apply Lemma 3.17 as in the proof of Theorem

3.18 to get that there there exists ϑ > 0 such that the solutions of (3.2.18) converge, up to

a subsequence, to a function (σ(t), z(t) with values on K solving the problemCξ̇(t)− σ̇(t) = ω(t)h1(σ(t), z(t))

ż(t) = ω(t)h2(σ(t), z(t)),
(3.3.52)

with the Cauchy data (σ̄, ζ̄), for some suitable nonnegative bounded function ω(t), on the

compact subintervals of (t̄, t̄ + ϑ] ; thus we may fix δ < η such that (σ(t), z(t)) ∈ Bη(σ̄, z̄)

for every t ∈ [t̄, t̄+ δ] . By (3.3.48) we can clearly assume that

Ψ(σ(t), z(t)) < 0 (3.3.53)

for every t ∈ [t̄, t̄+ δ] .

Now, we first prove that the open set Aint := {t ∈ (t̄, t̄ + δ) : (σ(t), ζ(t)) ∈ intK}
must be nonempty. If not, (σ(t), z(t)) ∈ ∂K for every t ∈ [t̄, t̄ + δ] . Then we can prove

exactly as in Theorem 3.18 that (3.3.40) is satisfied for every t ∈ [t̄, t̄ + δ] ; by uniqueness,

this implies (σ(t), z(t)) = (σsl(t; t̄), zsl(t; t̄)), but then (3.3.49) and (3.3.53) contradicts the

nonnegativeness of ω(t). It is easily seen, as (σε, zε) converge uniformly to (σ, z) on the

compact subintervals of (t̄, t̄+ δ] that

ω(t) ≡ 0 for every t ∈ Aint . (3.3.54)

We now show that Aint is connected. Indeed, let t̂ ∈ Aint and let (t̂1, t̂2) the connected

component containing t̂ . In (t̂1, t̂2), we have, by (3.3.54), that (σ(t), z(t)) = (σ(t̂1) +

C(ξ(t) − ξ(t̂1), z(t̂1)). Notice that, as (σ(t̂1), z(t̂1)) ∈ ∂K by maximality, we have that

Φ(t̂1, σ(t̂1), ζ(t̂1)) ≤ 0, if not the trajectory goes outside of K . Then, 3.3.50 implies that

t̂2 = t̄+ δ , thus proving that Aint is connected, that is Aint = (t̂1, t̄+ δ). Now, if t̂1 > t̄ , for

every t ∈ [t̄, t̄1] we must have (σ(t), z(t)) ∈ ∂K . In this case, again (3.3.40), (3.3.53) and

(3.3.49) give us a contradiction. Thus the statement of the theorem is proved in (t̄, t̄ + δ] ;

as, for every t < τ , (σel(t), zel(t)) ∈ intK , it is easily seen that the maximal interval such

that the theorem holds is (t̄, τ).
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The statements of Theorems 3.18 and 3.21 can be efficiently joined together in the next

one. Here we have in mind the case where, at a certain time t̂ the stress reaches a point

of the yield surface where the indicator Ψ is negative, so that the evolution is continuous,

and we assume that Φ is strictly positive, since the case Φ ≤ 0 is covered by the previous

Theorem. Then, in a right neighborhood of t̂ , either the evolution follows the slow dynamics,

or a continuous combination between the slow dynamics and the elastic regime. To prepare

the statement, we introduce some notation.

Definition 3.22. For every (σ̂, ẑ) ∈ ∂K satisfying Ψ(σ̂, ẑ) 6= 0, and every t̂ > 0 we define

(σsl, zsl)(t; σ̂, ẑ, t̂) as the unique solution to (3.3.1) starting from the point (σ̂, ẑ) at time t̂ ,

and tmaxsl as the supremum of the maximal open interval of existence for (σsl, zsl)(t; σ̂, ẑ, t̂).

Theorem 3.23. Assume (1.3.1)-(1.3.4), (2.3.3), and (3.2.2), and define Φ and Ψ as in

(3.2.24), and (3.2.25), respectively. Let t̂ > 0 and (σ̂, ẑ) ∈ ∂K be as in Theorem 3.18 and

define (σsl, zsl)(t; σ̂, ẑ, t̂) , and tmaxsl > t̂ as in Definition 3.22. Let

t̄ := inf{t ∈ (t̂, tmaxsl ) : Φ(t, (σsl, zsl)(t; σ̂, ẑ, t̂)) ≤ 0} .

Assume that (3.3.49) and (3.3.50) hold at (σ̄, z̄) := (σsl(t̄), zsl(t̄)) . Let

(σel(t), zel(t)) := (σ̄ + C(ξ(t)− ξ(t̄)), z̄)

and

τ := sup{t > t̄ |(σel(s), zel(s)) ∈ intK for every s ∈ (t̄, t)}.

Then (σε, zε) converges uniformly on compact subsets of (t̂, τ) to the function (σ, z) defined

by

(σ(t), z(t)) :=

(σsl, zsl)(t; σ̂, ẑ, t̂) for t̂ < t ≤ t̄,

(σel(t), zel(t)) for t̄ ≤ t < τ.
(3.3.55)

Proof. Since t̂ , σ̂ , and ẑ are fixed and there is no risk of ambiguity, throughout the proof

we will write (σsl(t), zsl(t)) in place of (σsl, zsl)(t; σ̂, ẑ, t̂). Let τ̂ be the maximal time such

that (σε, zε) converges uniformly to (σ, z) on compact subintervals of (t̂, τ̂); we have to

show that τ̂ = τ . By Theorem 3.18, it follows that τ̂ ≥ t̄ . As in Theorem 3.21, it is easy to

see that τ̂ = τ when τ̂ > t̄ , therefore we have only to exclude τ̂ = t̄ .

In this case, there exist two constants η > 0 and γ > 0 such that, for every (σ, z) ∈
Bη(σ̄, z̄), one has Ψ(σ, z) < −γ . We define c(η2 , γ) as the infimum in Bη

2
(σ̄, z̄) of C(σ, η2 , γ),

where the latter is the constant defined in Lemma 3.17. Now we may fix t̄− η
2 < t̄1 < t̄2 <

t̄ < t̄3 < t̄1 + c(η2 , γ) in a way that (σsl(t̄1), zsl(t̄1)) ∈ B η
2
(σ̄, z̄) and we shall have that for

every (σ, z) ∈ B η
2
(σsl(t̄1), zsl(t̄1)),

Ψ(σ, z) < −γ.

By Lemma 3.17, applied with t̃ = t̃ε = t̄1 , we have that there exists L > 0 such that for ε

sufficiently small %ε(t)
ε ≤ L

γ for every t ∈ [t̄2, t̄3] , thus we may assume %ε(t)
ε w∗ -converges in

L∞((t̄2, t̄3)) to some nonnegative function ω(t). By (3.3.37), (3.3.38), and Theorem 1.15 the

sequence (σε, zε) converges uniformly in [t̄2, t̄3] to a continuous function (σ̃, z̃). Theorem

3.18 gives (σ̃, z̃) = (σsl, zsl) in [t̄2, t̄), while Theorem 3.21 gives (σ̃, z̃) = (σel, zel) in [t̄, t̄3] ,

thus (σ̃, z̃) = (σ, z) in [t̄2, t̄3] . This contradicts the maximality of τ̂ , when τ̂ = t̄ .
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3.4 Softening with discontinuities

3.4.1 The equation of the fast dynamics

The goal of this section is a qualitative study of the equationσ̇f (s) = C(πK(zf (s))(σf (s))− σf (s))

żf (s) = tr(σf (s)) tr
(
σf (s)− πK(zf (s))(σf (s))

)
;

(3.4.1)

this is called the fast dynamics equation and appears, as we shall see, as limit of a rescaled

version of (3.2.18) near a discontinuity point of a viscosity solution.

Under suitable conditions, we shall see the viscosity solution will jump between the two

endpoints of a heteroclinic orbit of (3.4.1), whose existence, together with other properties,

is the object of this subsection.

In order to prove the main theorem of this subsection, we need a preliminary lemma,

showing that the internal variable is constant along the unique solution of (3.4.1), with an

initial condition (σ̄, z̄) satisfying

(σ̄, z̄) /∈ K and tr
(
νK(z̄)(πK(z̄)(σ̄))

)
= 0. (3.4.2)

We preliminarly observe that taking an initial condition outside K easily implies that we

can never reach K in finite time, as the set K is made of critical points of the autonomous

equation (3.4.1). Through the decomposition (3.2.9) we identify MN×N
sym with R×MN×N

D ;

in particular σf (s) is identified with the pair (xf (s), yf (s)) of its spherical and deviatoric

parts. Introducing the function % defined by (3.2.3), which is positive by the previous

remark, we may rewrite equation (3.4.1) in the form
ẋf (s) = −κ

√
N %(xf (s), yf (s), zf (s)) tr

(
νK(zf (s))

(
πK(zf (s))(xf (s), yf (s))

))
,

ẏf (s) = −2µ%(xf (s), yf (s), zf (s))nDK(zf (s))

(
πK(zf (s))(xf (s), yf (s))

)
,

żf (s) =
√
Nxf (s) %(xf (s), yf (s), zf (s))tr

(
νK(zf (s))

(
πK(zf (s))(xf (s), yf (s))

))
.

(3.4.3)

Here κ and µ are defined in (2.3.3) and nDK(zf (s))

(
πK(zf (s))(xf (s), yf (s))

)
is the deviatoric

part of νK(zf (s))

(
πK(zf (s))(xf (s), yf (s))

)
.

Lemma 3.24. Let (σ̄, z̄) ∈ [MN×N
sym × (0,+∞)] \ K satisfying (3.4.2), and let x̄ and ȳ

the spherical and the deviatoric part of σ̄ , respectively. Then, for every t ∈ R , the unique

solution to equation (3.4.3) with Cauchy data (xf (0), yf (0), zf (0)) = (x̄, ȳ, z̄) is given by

(xf (s), yf (s), zf (s)) = (x̄, y(s), z̄)

where y(s) solves the equation

ẏ(s) = −2µ%(x̄, y(s), z̄)ND
K(z̄)(πK(z̄)(x̄, ȳ)) (3.4.4)

with Cauchy condition y(0) = ȳ .
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Proof. Let y(s) be the unique solution to (3.4.4) with Cauchy condition y(0) = ȳ . Then,

for every s′ > 0

(x̄, y(s′)) =
(
x̄, ȳ − 2µ

∫ s′

0

%(x̄, y(s), z̄)nDK(z̄)(πK(z̄)(x̄, ȳ)) ds
)

=

=
(
x̄, ȳ − 2µnDK(z̄)(πK(z̄)(x̄, ȳ))

∫ s′

0

%(x̄, y(s), z̄) ds
)

=

=
(

(x̄, ȳ)− 2µ νK(z̄)(πK(z̄)(x̄, ȳ))

∫ s′

0

%(x̄, y(s), z̄) ds
)
,

Therefore πK(z̄)(x̄, y(s′)) = πK(z̄)(x̄, ȳ), provided (x̄, y(s′), z̄) /∈ K; this allows us to check

that (x̄, y(s), z̄) solves (3.4.3), at least for small |s| . The conclusion for every s follows, as

solutions to (3.4.3) can never reach K in finite time.

Now we are able to prove the existence of a heteroclinic orbit of (3.4.1) starting from a

point (σ̂, ẑ) ∈ ∂K under suitable hypotheses on the slow-fast indicator Ψ.

Theorem 3.25. Assume that (1.3.1)-(1.3.4), (2.3.3), (3.2.2), and (3.2.10)-(3.2.11) are sat-

isfied. Let Φ , Ψ be as in (3.2.24) and (3.2.25), respectively. Let (σ̂, ẑ) ∈ ∂K and suppose

that

Ψ(σ̂, ẑ) > 0 (3.4.5)

or

Ψ(σ̂, ẑ) = 0 and ∇Ψ(σ̂, ẑ) · ( −C νK(ẑ)(σ̂)

tr(σ̂) tr(νK(ẑ)(σ̂)) , 1) < 0. (3.4.6)

Then equation (3.4.1) has a unique solution (σ̂f (s), ẑf (s)) (up to time-translations) satisfy-

ing

lim
s→−∞

(σ̂f (s), ẑf (s)) = (σ̂, ẑ). (3.4.7)

Moreover, the limit

(σ∞, z∞) := lim
s→+∞

(σ̂f (s), ẑf (s)) (3.4.8)

exists and satisfies the following conditions

(σ∞, z∞) ∈ ∂K, z∞ > 0, (3.4.9)

Ψ(σ∞, z∞) ≤ 0, (3.4.10)

tr(σ∞) < 0, tr(νK(z∞)(σ∞)) > 0. (3.4.11)

Proof. We first observe that, by (3.2.2), (3.2.8), and by (3.2.25), both (3.4.5) and (3.4.6)

imply that

tr(σ̂) < 0, tr(νK(ẑ)(σ̂)) > 0. (3.4.12)

Moreover, due to our regularity assumptions on K we may assume that in a suitably small

neighborhood of (σ̂, ẑ) an oriented distance function r from ∂K is well defined; this is a

C1 extension of the function % , defined by (3.2.3), to the interior of K . In view of the same

assumptions, we may also locally define a minimal distance projection onto ∂K(z), denoted
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by π∂K(z) , which obviously coincides with πK(z) outside of K(z). For all these reasons, the

Cauchy problem σ
′(z) =

−C νK(z)(σ(z))

tr(σ(z)) tr(νK(z)(π∂K(z)(σ(z))))

σ(ẑ) = σ̂

(3.4.13)

is well defined and admits a unique solution, which shall be denoted by σ̂(z). For z suffi-

ciently close to ẑ we then have that tr(σ̂(z)) < 0 and tr(νK(z)(π∂K(z)(σ(z))) > 0; moreover

for z < ẑ , sufficiently close to ẑ we can prove that (σ̂(z), z) /∈ K . Indeed, as r(σ̂, ẑ) = 0, it

suffices to show that in a left open neighborhood of ẑ one has

d
dz r(σ̂(z), z) < 0. (3.4.14)

By a direct computation, similar to that in (3.2.7), exploiting (3.4.13) and (3.2.25) we get:

d

dz
r(σ̂(z), z) =

Ψ(σ̂(z), z)

tr(σ̂(z)) tr(νK(z)(π∂K(z)(σ̂(z))))
. (3.4.15)

Then (3.4.5) implies that d
dz r(σ̂(z), z) < 0 for z = ẑ , thus (3.4.14) follows; if (3.4.6) holds,

deriving Ψ(σ̂(z), z), we get that

d
dz r(σ̂(ẑ), ẑ) = 0 and d2

dz2 r(σ̂(ẑ), ẑ) > 0,

which in its turn implies (3.4.14). We thus may fix z̄ < ẑ such that, for every z ∈ [z̄, ẑ),

the following three hold

%(σ̂(z), z) > 0 , (3.4.16)

tr(σ̂(z)) < 0 , (3.4.17)

tr(νK(z)(πK(z)(σ̂(z)))) > 0 ; (3.4.18)

we may indeed replace π∂K with πK as (σ̂(z), z) /∈ K . Now, let ẑf (s) the unique solution

to the autonomous Cauchy problemżf (s) = tr(σ̂(zf (s))) tr(σ̂(zf (s))− πK(zf (s))(σ̂(zf (s))))

zf (0) = ẑ;

by (3.4.16)-(3.4.18), we have that tr(σ̂(z)) tr(σ̂(z) − πK(z)(σ̂(z)) < 0, for every z ∈ [z̄, ẑ),

with equality in z = ẑ ; the theory of autonomous equations implies that ẑf (s) is defined

for every s ≤ 0 and satisfies

lim
t→−∞

ẑf (s) = ẑ, ˙̂zf (s) < 0 for every t ≤ 0;

it now suffices to put σ̂f (s) := σ̂(ẑf (s)), to get a solution to (3.4.1) satifying (3.4.7).

To prove uniqueness, let (σ(s), z(s)) a solution to (3.4.1) satisfying (3.4.7); (3.4.12)

implies that there exists s̄ ∈ R such that, for every s ≤ s̄ , one has ż(s) < 0. Then z(s) is

invertible in (−∞, t̄) with inverse s(z). If we put σ(z) := σ(s(z)), it is easy to see that σ(z)

solves (3.4.13), thus coincides with σ̂(z); the theory of autonomous equation now implies

that (σ(s), z(s)) and (σ̂f (s), ẑf (s)) may only differ by a time translation, thus the first part

of the statement is proven.
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Now, let (−∞, S) the maximal interval of definition for (σ̂f (s), ẑf (s)); observe that, as

orbits can never reach K in finite time, (σ̂f (s), ẑf (s)) also solves (3.4.3). We split σ̂f (s) in

its spherical part x̂f (s) and in its deviatoric part ŷf (s) as in (3.2.9), and we observe that,

by (3.4.3), the following equality holds:

κ ˙̂zf (s) = −x̂f (s) ˙̂xf (s). (3.4.19)

Moreover, (3.4.12) implies that there exist s̄ < S such that ˙̂xf (s) < 0 for every s ≤ s̄ .

Let us prove that ˙̂xf (s) < 0 for every s < S . Indeed, if there exists s1 < S such that
˙̂xf (s1) = 0, by (3.4.3), as %(x̂f (s1), ŷf (s1), zf (s1) > 0, it must be

tr(νK(ẑf (s1))(σ̂f (s1))) = 0;

by Lemma 3.24, this implies x̂f (s) = x̂f (s1) for all s , a contradiction. In particular there

exists

xS := lim
s→S

x̂f (s) < x̂ < 0, (3.4.20)

where x̂ is the spherical part of σ̂ . Now (3.4.19) implies that ˙̂zf (s) < 0 for every s < S . In

particular there exists zS := lim
s→S

ẑf (s) < ẑ .

We now show that zS is greater than zero. Indeed, by (3.4.3), the fact that ˙̂xf (s) <

0 for every s < S is equivalent to the inequality

tr(νK(ẑf (s))(πK(ẑf (s))(x̂f (s), ŷf (s)))) > 0 for every s < S, (3.4.21)

and also, as %(x̂f (s), ŷf (s), ẑf (s)) > 0, to the inequality

tr(πK(ẑf (s))(σ̂f (s)) < tr(σ̂f (s)) =
√
Nx̂f (s) for every s < S. (3.4.22)

By (3.2.5) and (3.2.16), (3.4.21) is equivalent to

tr(πK(ẑf (s))(σ̂f (s))) + a
√
Nẑf (s) > 0,

where a is the positive constant defined by (3.2.10); thus, by (3.4.22) we conclude that

x̂f (s) + aẑf (s) > 0 for every s < S (3.4.23)

which in the limit gives zS >
|xS |
a > 0, as claimed.

We now show that (σ̂f (s), ẑf (s)) is bounded, which in particular implies that S = +∞ .

Clearly, it suffices to prove that ŷf (s) is bounded. We have, by (3.4.1), the negativeness of

x̂f (s) and (3.4.22), that

d
ds
|ŷf (s)|2

2 = ŷf (s) · ˙̂yf (s) =

= 2µ ŷf (s) ·
(
πK(ẑf (s))(σ̂f (s))− σ̂f (s)

)
=

= 2µ σ̂f (s) ·
(
πK(ẑf (s))(σ̂f (s))− σ̂f (s)

)
−

− 2 µ√
N
x̂f (s) tr

(
πK(ẑf (s))(σ̂f (s))− σ̂f (s)

)
≤

≤ 2µ σ̂f (s) ·
(
πK(ẑf (s))(σ̂f (s))− σ̂f (s)

)
≤ 0 ,

as a consequence of (3.2.8); this proves that |ŷf (s)|2 is decreasing, thus ŷf (s) is bounded.
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Thus S = +∞ and zS is the limit of ẑf (s) at +∞ , which shall be denoted with z∞

from now on; by the previous discussion, we also have that z∞ > 0, as required by (3.4.9).

Now we prove that σ̂f (s) has a limit at +∞ . To do that, we observe that ẑf (s) is strictly

decreasing, thus globally invertible; we thus express σ̂ in function of z and we have to show

that there exists lim
z→z∞

σ̂(z). We already know that σ̂(z) is bounded and that its derivative

satisfies

σ̂′(z) =
−C νK(z)(σ̂(z))

tr(σ̂(z)) tr(νK(z)(πK(z)(σ̂(z))))
(3.4.24)

thus the claim will follow once we get that

lim inf
z→z∞

tr(νK(z)(πK(z)(σ̂(z)))) > 0. (3.4.25)

Suppose that (3.4.25) is false; first, observe that in this case the liminf must be a limit,

as a consequence of the boundedness of σ̂(z) and of Lemma 3.8. Therefore we will have,

exploiting (3.2.25),

lim
z→z∞

Ψ(σ̂(z), z) = −2µ. (3.4.26)

Moreover, observe that by (3.2.5) and (3.2.15),

lim
z→z∞

tr(νK(z)(πK(z)(σ̂(z)))) = 0⇔ lim
z→z∞

1
z [

tr(πK(z)(σ̂(z)))√
N

+ az] = 0; (3.4.27)

on the other hand, clearly limz→z∞ tr(νK(z)(πK(z)(σ̂(z)))) = 0 implies that

lim
z→z∞

[tr(πK(z)(σ̂(z)))−
√
Nx̂(z)] = 0, (3.4.28)

thus combining (3.4.27) and (3.4.28), we get that

lim
z→z∞

x̂(z) = −az∞. (3.4.29)

Now, by (3.2.5), (3.2.15), (3.2.16), and (3.4.22), we have that

|tr(νK(z)(πK(z)(σ̂(z))))| ≤ | 1z [
tr(πK(z)(σ̂(z)))√

N
+ az]| ≤

≤ 1
z∞

[
tr(πK(z)(σ̂(z)))√

N
+ az] ≤ 1

z∞
[x̂(z) + az] . (3.4.30)

By (3.4.24), x̂′(z) = −κ
x̂(z) ; this fact, together with (3.4.29) and (3.4.30), yields that

lim sup
z→z∞

|tr(νK(z)(πK(z)(σ̂(z))))|
z − z∞

≤ 1

z∞
(
κ

az∞
+ a). (3.4.31)

Since (3.4.15) gives
d
dz%(σ̂(z), z) = Ψ(σ̂(z),z)

tr(σ̂(z)) tr(νK(z)(πK(z)(σ̂(z)))) , (3.4.32)

recalling that tr(νK(z)(πK(z)(σ̂(z)))) > 0 for all z > z∞ , we conclude by (3.4.26), (3.4.29),

and (3.4.31), that

lim inf
z→z∞

(z − z∞) ddz%(σ̂(z), z) ≥ 2µz∞√
N(κ+az∞)

> 0.

This finally implies that

lim
z→z∞

%(σ̂(z), z) = −∞,
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contradicting the nonnegativeness of % .

We thus have that there exists

σ∞ := lim
z→z∞

σ̂(z) ,

thus the proof of (3.4.8) is concluded. It is obvious that (σ∞, z∞) ∈ ∂K as it must be

a critical point of (3.4.1), thus (3.4.9) is proved. Concerning (3.4.11), it immediately fol-

lows from (3.4.25) and (3.4.20). Finally, as %(σ̂(z), z) ≥ 0 for z > z∞ , we must have
d
dz%(σ̂(z), z) ≥ 0 for z = z∞ ; observing that tr(σ∞) tr(νK(z∞)(σ∞)) < 0 by (3.4.11), from

(3.4.32) we immediately get (3.4.10).

Remark 3.26. It is easy to show that, if an orbit of the system (3.4.1) has (σ̂, ẑ) as an

α -limit point, then (σ̂, ẑ) is indeed its unique α -limit point; indeed, by the same arguments

used in the proof of the previous theorem we can show that in this case z(s) is strictly

decreasing in a neighborhood of −∞ , thus it has ẑ as a limit; the rest of the proof follows

from (3.4.24), and Lemma 3.8.

We end up this analysis of equation (3.4.1) by remarking that there are some cases where

we can improve (3.4.10), that is showing that Ψ(σ∞, z∞) < 0. We omit the details of the

following example, which can be found in [14, Example 4.4].

Example 3.27. We suppose that for every z ∈ (0,+∞), K(z) is an ellipsoid of the form

K(z) := {σ ∈MN×N
sym |(x+ z)2 + |y|2

b2 = z2}, (3.4.33)

where x and y are as in (3.2.9). Notice that K(1) satisfies (3.2.10)-(3.2.11) with a = 1.

Suppose that, if κ and µ are as in (2.3.3) and b as in (3.4.33) the following condition holds:

κN ≥ 2µ
b2 . (3.4.34)

Let (σ̂(z), z) be the heteroclinic trajectory joining the points (σ̂, ẑ) and (σ∞, z∞) whose

existence is guaranteed by the previous theorem. Then, if (3.4.34) holds, by [14, Example

4.4] one has

Ψ(σ∞, z∞) < 0 .

3.4.2 Convergence to the fast dynamics

We want now to investigate how equation (3.4.1) governs the jump of our viscosity

solution when it reaches a point on the yield surface where the elastic-inelastic indicator

is strictly positive (which means that we are in the inelastic regime), while the slow-fast

indicator satisfies (3.4.5), or (3.4.6); we will see how a rescaled version of the solution

converges to a heteroclinic solution of the auxiliary system (3.4.1), whose asymptotic values

at s = ±∞ give the asymptotic values of the viscosity solution before and after the jump

time. Both the cases where (3.4.5) and (3.4.6) hold will be treated simultaneously.

Throughout this part of the chapter, t̂ denotes a time such that there exist a left con-

tinuous function t 7→ (σ(t), z(t)) defined on [0, t̂) with values in MN×N
sym × [0,+∞) and an
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element (σ̂, ẑ) of MN×N
sym × [0,+∞) satisfying the following properties:

(σε(t), zε(t))→ (σ(s), z(t)) for a.e. t ∈ [0, t̂) , (3.4.35)

(σ(t), z(t))→ (σ̂, ẑ) as t→ t̂−, (3.4.36)

(σ̂, ẑ) ∈ ∂K and ẑ > 0, (3.4.37)

Ψ(σ̂, ẑ) satisfies (3.4.5) or (3.4.6), (3.4.38)

Φ(t̂, σ̂, ẑ) > 0. (3.4.39)

For instance, we can take t̂ = t1 defined by (3.2.20), if (3.3.22) holds and Ψ(σ1, z1) > 0,

or t̂ = t2 defined by (3.3.5), provided that (3.4.6) holds for (σ̂, ẑ) = (σ2, z2) defined in

Proposition 3.10. In the latter case we have Ψ(σ2, z2) = 0 and in general, by Remark 3.11,

we have the weak inequality

∇Ψ(σ2, z2) · ( −C νK(z2)(σ2)

tr(σ2) tr(νK(z2)(σ2)) , 1) ≤ 0;

thus, assuming (3.4.6), we are excluding the degenerate case when equality holds.

By (3.4.35) and (3.4.36) we also may fix a sequence t̂ε → t̂ such that

(σε(t̂ε), zε(t̂ε))→ (σ̂, ẑ); (3.4.40)

Indeed, by (3.4.39), and Lemma 3.15 we can find another sequence, still denoted by t̂ε ,

which preserves (3.4.40), and satisfies in addition, for every ε > 0,

%(σε(t̂ε), zε(t̂ε)) > cε, (3.4.41)

where c is a positive constant independent of ε .

We finally recall, as we have already dicussed in Remark 3.4 and in Proposition 3.10,

that in the case t̂ = t2 the internal variable z is strictly decreasing in a left neighborhood

of t2 , thus discontinuities can appear only in the softening regime.

We start by fixing an open neighborhood Uδ1 := (t̂− δ1, t̂+ δ1)×Bδ1(σ̂, ẑ) of (t̂, σ̂, ẑ), in

a way that (3.3.24) holds. If (3.4.5) holds, we may assume for a suitable choice of δ1 there

exists a positive constant γ1 such that

Ψ(σ, z) ≥ γ1 for every (σ, z) ∈ Bδ1(σ̂, ẑ); (3.4.42)

if instead (3.4.6) holds, we may assume that there exists a positive constant γ4 such that

∇Ψ(σ, z) · ( −C νK(z)(πK(z)(σ))

tr(σ) tr(νK(z)(πK(z)(σ)) , 1) ≤ −γ4 (3.4.43)

for every (σ, z) ∈ Bδ1(σ̂, ẑ) \ intK .

We now define the exit time from Bδ1(σ̂, ẑ)

b1ε := inf{t ∈ (t̂ε, t̂ε + δ1) : (σε(t), zε(t)) ∈ ∂Bδ1(σ̂, ẑ)}; (3.4.44)

by the previous assumptions for small ε we will trivially have t̂ε < b1ε . We then fix a

positive decreasing sequence δk ↘ 0+ , starting from δ1 , and consequently we define, for

every k ∈ N ,

bkε := sup{t ∈ (t̂ε, b
1
ε) : (σε(t), zε(t)) ∈ ∂Bδk(σ̂, ẑ)}. (3.4.45)
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Next lemma, which will be crucial in the remainder of the section, shows that the exit

times bkε tend to t̂ when ε goes to 0 and that the difference b1ε − bkε is of order ε for fixed

k .

Lemma 3.28. Assume (1.3.1)-(1.3.4), (2.3.3), and (3.2.2), and let Φ , Ψ be as in (3.2.24),

and (3.2.25), respectively. Let t̂ > 0 satisfy (3.4.35)-(3.4.39). Let b1ε be given by (3.4.44)

and bkε be given for every k ∈ N, k > 1 by (3.4.45). Then, for every k ∈ N :

a) bkε → t̂ as ε→ 0+ ;

b) supε>0
b1ε−b

k
ε

ε ≤ ck < +∞,

where ck is a constant depending on k . Moreover, for every k ∈ N , there exists a constant

mk such that

%(σε(b
k
ε), zε(b

k
ε)) > mk. (3.4.46)

Proof. As we already observed in the proof of Theorem 3.25, both (3.4.5) and (3.4.6) imply

tr(σ̂) < 0; by (3.2.26) this means that

tr(σ̂) < −min{κ,2µ}
MK

√
N

,

where MK is as in (1.3.4) and κ, 2µ as in (2.3.3). Provided we have chosen δ1 suitably

small, we may clearly assume throughout the proof that

tr(σε(t)) < −min{κ,2µ}
2MK

√
N

for every t ∈ (t̂ε, b
1
ε); (3.4.47)

Concerning part a) of the statement, it clearly suffices to show this is true for b1ε. As

t̂ε → t̂ this will be proved once we get:

lim sup
ε→0+

(b1ε − t̂ε) = 0. (3.4.48)

By Lemma 3.15 we have that %ε(t) > 0 for every t ∈ (t̂ε, b
1
ε), hence (3.2.23) holds.

First we prove the lemma assuming that (3.4.5) holds, which implies on its turn (3.4.42).

With this condition, with the help of (3.3.24) and (3.2.23), we get that %̇ε(t) ≥ γ1
1
ε%ε(t);

dividing by %ε(t), we get

%̇ε(t)

%ε(t)
≥ γ1

ε
for every t ∈ (t̂ε, b

1
ε) . (3.4.49)

Integrating (3.4.49) between t̂ε and b1ε , using (3.4.41) and (3.4.44) we finally get the in-

equality

b1ε − t̂ε ≤
ε

γ1
log(

δ1
cε

)

which implies (3.4.48). Concerning part b), we fix k ∈ N ; applying (3.4.49) and neglecting
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the negative term %ε(t̂ε), we get

δk + o(1) = |(σε(bkε), zε(b
k
ε))− (σε(t̂ε), zε(t̂ε))|

≤ |(σε(bkε)− σε(t̂ε), 0)|+ |(0, ζε(bkε)−, zε(t̂ε))|

= |
∫ bkε

t̂ε

σ̇ε(s) ds|+ |
∫ bkε

t̂ε

żε(s) ds|

≤
∫ bkε

t̂ε

|Cξ̇(s)− σ̇ε(s)| ds+ |C|
∫ akε

t̂ε

|ξ̇(s)| ds+

∫ bkε

t̂ε

|żε(s)| ds

≤ (|C|+ |tr(σ̂)|+ δ1)

∫ bkε

t̂ε

%ε
ε

(s) ds+ |C|
∫ bkε

t̂ε

|ξ̇(s)| ds

≤ 1
γ1

(|C|+ |tr(σ̂)|+ δ1)

∫ bkε

t̂ε

%̇ε(s) ds+ |C|
∫ bkε

t̂ε

|ξ̇(s)| ds

≤ 1
γ1

(|C|+ |tr(σ̂)|+ δ1)%ε(b
k
ε) + |C|

∫ bkε

t̂ε

|ξ̇(s)| ds .

(3.4.50)

From this and part a) of the statement, we get (3.4.46). Then, integrating (3.4.49) between

bkε and b1ε we get that for ε small enough

b1ε−b
k
ε

ε ≤ 1
γ1

log(
%ε(b

1
ε)

%ε(bkε )
) ≤ 1

γ1
log( δ1mk ),

and the conclusion then follows.

Assume instead (3.4.6), which implies (3.4.43). As (3.4.6) implies tr(νK(z)(σ̂)) > 0 we

may assume

tr(νK(zε(t))(πK(zε(t))(σε(t))) > 0 for every t ∈ (t̂ε, b
1
ε).

By this, facts, (3.2.21) and (3.4.47) we then easily get the existence of a positive constant

C such that

żε(t) ≤ −C
%ε(t)

ε
for every t ∈ (t̂ε, b

1
ε). (3.4.51)

In particular, for fixed ε > 0, the function żε(t) never vanishes in the prescribed interval.

We also immediately get, as zε(t) < ẑ + δ1 for every t ∈ (t̂ε, b
1
ε) that there exists a positive

constant R̃ independent of ε such that:∫ b1ε

t̂ε

%ε(t)

ε
dt ≤ R̃ . (3.4.52)

Differentiating the function Ψ along the trajectories, we get

d
dtΨ(σε(t), zε(t)) = ∇Ψ(σε(t), zε(t)) · (σ̇ε(t), żε(t)) =

= ∇Ψ(σε(t), zε(t)) · (Cξ̇(t), 0) +

+ żε(t)∇Ψ(σε(t), zε(t)) · (−C(ξ̇(t)−σ̇ε(t))
żε(t)

, 1) =

= ∇Ψ(σε(t), zε(t)) · (Cξ̇(t), 0) +

+żε(t)∇Ψ(σε(t), zε(t)) · (
−C νK(zε(t))(πK(zε(t))(σε(t)))

tr(σε(t))tr(νK(zε(t))(πK(zε(t))(σε(t)))
, 1) ;
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this equality, together with (3.4.51)) and (3.4.43), implies that there exist two positive

constants L and R such that

d

dt
Ψ(σε(t), zε(t)) ≥ R

%ε(t)

ε
− L|C||ξ̇(t)| for every t ∈ (t̂ε, b

1
ε) . (3.4.53)

We denote with Mξ the supremum of |ξ̇(t)| in (t̂ε−δ1, t̂ε+δ1), and we fix 0 < η < Rγ2

4L|C|Mξ
,

where γ2 is the constant given by (3.3.24). For ε small enough, by the definition of t̂ε , we

shall have

Ψ(σε(t̂ε), zε(t̂ε)) ≥ −η .

We then define:

t̂1ε := inf{∈ (t̂ε, b
1
ε) :

%ε(t)

ε
≥ γ2

4η
}

t̂2ε := inf{t ∈ (t̂ε, b
1
ε) : Ψ(σε(t), zε(t)) ≤ −2η}.

Now, let t̃ε := t̂1ε ∧ t̂2ε ∧ b1ε ; exploiting (3.2.23), the same argument used to prove (3.3.29)

shows that t̂ε → t̂ when ε goes to 0. Moreover t̃ε < b1ε ; to get this, it suffices show that

sup
t∈[t̂ε,t̃ε]

|(σε(t), zε(t))− (σ̂, ẑ)| → 0 (3.4.54)

as ε goes to 0, and this can be proved proceeding exactly as in the proof of (3.3.30), since
%ε(t)
ε is equibounded in the time interval [t̂ε, t̃ε] .

Next we show that for small ε one has t̃ε < t̂2ε , which in his turn implies t̃ε = t̂1ε , so

t̂1ε → t̂ when ε goes to 0 and

Ψ(σε(t̂
1
ε), zε(t̂

1
ε)) > −2η . (3.4.55)

Suppose by contradiction that along some infinitesimal subsequence t̃ε = t̂2ε , that is to say

Ψ(σε(t̃ε), zε(t̃ε)) = −2η . Then, integrating (3.4.53)), since the function %ε(t) is positive we

get

−η = Ψ(σε(t̂
2
ε), zε(t̂

2
ε))−Ψ(σε(t̂ε), zε(t̂ε)) ≥ −L|C|

∫ t̂2ε

t̂ε

|ξ̇(t)| dt

which in the limit gives, by absolute continuity of the integral, that −η ≥ 0, a contradiction.

So (3.4.55) holds, and
%ε(t̂

1
ε)

ε = γ2

4η . Actually, we have

%ε(t)

ε
>
γ2

4η
for every t ∈ (t̂1ε, b

1
ε). (3.4.56)

Also this can be proved by contradiction. We observe that %̇ε(t̂
1
ε) ≥ −

γ2

2 +γ2 > 0, by (3.2.23)

and (3.3.24). If (3.4.56) is false, let t̂3ε be the first time in (t̂1ε, b
1
ε) such that %ε(t̂

3
ε) = γ2

4η ;

then %̇ε(t̂
3
ε) ≤ 0. But, by (3.4.53), for every t ∈ (t̂1ε, t̂

3
ε) we shall have d

dtΨ(σε(t), zε(t)) ≥ 0,

hence, by (3.4.55),

Ψ(σε(t), zε(t) > −2η for every t ∈ (t̂1ε, t̂
3
ε) ;

by this, (3.3.24), and (3.2.23) we infer that %̇ε(t̂
3
ε) ≥ γ2 − γ2

4 > 0, which is a contradiction.

Then, by (3.4.56) and (3.4.52), for ε sufficiently small we conclude that

γ2(b1ε − t̂1ε) ≤ 4ηR̃; (3.4.57)
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as t̂1ε − t̂ε → 0, we get that lim supε→0 γ2(b1ε − t̂ε) ≤ 4ηR̃ , and by the arbitrariness of η ,

(3.4.48) follows, so part a) of the statement is proved.

Concerning part b), we fix k ∈ N , k > 1. By the definition of bkε and t̂ε we shall have,

for any t ∈ [bkε , b
1
ε] , that

δk + o(1) = |(σε(t), ζε(t)− (σε(t̂ε), zε(t̂ε))| ;

it follows, proceeding as in (3.4.50), that there exists a positive constant W such that

δk + o(1) ≤W (

∫ t

t̂ε

%ε(s)

ε
ds+

∫ t

t̂ε

|ξ̇(s)| ds). (3.4.58)

This in turn implies, by (3.4.53) and the fundamental theorem of calculus that, up to

redefining the constant W ,

δk + o(1) ≤W [Ψ(σε(t), ζε(t))−Ψ(σε(t̂ε), zε(t̂ε)) +

∫ t

t̂ε

|ξ̇(s)| ds] . (3.4.59)

By the definition of t̂ε , Ψ(σε(t̂ε), ζε(t̂ε)) = o(1); the absolute continuity of the integral and

part a) of the statement now yield that, for ε small enough,

Ψ(σε(t), ζε(t)) ≥
δk

2W

for every t ∈ [bkε , b
1
ε] . Substituting in (3.2.23), this gives

%̇ε(t) ≥
δk

2W

%ε(t)

ε
for every t ∈ [bkε , b

1
ε] , (3.4.60)

and we conclude that, for ε small enough

b1ε − bkε
ε

≤ 2W

δk
log(

%ε(b
1
ε)

%ε(bkε)
) ≤ 2W

δk
log(

δ1
%ε(bkε)

) .

It then follows that part b) of the statement is immediate, once we get (3.4.46). To get

a lower bound for %ε(b
k
ε) we observe that a fortiori (3.4.60) holds, with δk+1 in place of δk ,

for any t ∈ [bk+1
ε , bkε ] . Since clearly

δk − δk+1 ≤ |(σε(bkε), zε(b
k
ε)− (σε(b

k+1
ε ), zε(b

k+1
ε )| ,

proceeding as in (3.4.58), we obtain that there exists a positive constant W̃ such that

δk − δk+1 ≤ W̃ (

∫ bkε

bk+1
ε

%ε(s)

ε
ds+

∫ bkε

bk+1
ε

|ξ̇(s)| ds). (3.4.61)

Applying (3.4.60), with δk+1 in place of δk , and the fundamental theorem of calculus, and

neglecting the negative term −%ε(bk+1
ε ), we get, up to redefining the constant W̃ , that for

ε small enough

%ε(b
k
ε) ≥ (δk − δk+1)

δk+1

2W̃
:= mk,

and conclusion then follows.
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We are now ready to prove the main result of this section. Notice that in the statement

of the Theorem we are arbitrarily selecting one of the infinitely many solutions of (3.4.1)

satisfying (3.4.7), which can differ by a time translation.

Theorem 3.29. Assume that (1.3.1)-(1.3.4), (2.3.3), (3.2.2), and (3.2.10)-(3.2.11) are sat-

isfied. Let Φ , Ψ be as in (3.2.24), and (3.2.25), respectively. Let t̂ > 0 , (σ̂, ẑ) ∈ ∂K , such

that (3.4.5) or (3.4.6) hold. Assume that Φ(t̂, σ̂, ẑ) > 0 . Let (σf (s), zf (s) be a fixed solution

of the problem: 
σ̇f (s) = C(πK(zf (s))(σf (s))− σf (s))

żf (s) = tr(σf (s)) tr(σf (s)− πK(zf (s))(σf (s)))

lim
s→−∞

(σf (s), zf (s)) = (σ̂, ẑ)

(3.4.62)

Then there exists b̂1ε → t̂ such that, if we define (σ̂1
ε(s), ẑ1

ε(s)) := (σε(b̂
1
ε+εs), zε(b̂

1
ε+εs)) for

every s ∈ R , (σ̂1
ε(s), ẑ1

ε(s)) converges uniformly on compact subsets of R to (σf (s), zf (s)) .

Proof. This proof is reminiscent of [55, Lemma 4.3]. Fix δ1 > 0 as in (3.3.24) and let b1ε
be given by (3.4.44). We may clearly assume that δ1 < |(σ̂, ẑ)− (σ∞, z∞)| where (σ∞, z∞)

satisfies (3.4.8). We also define χε(s) := ξ̇(b1ε + εs).

First of all, we prove that there exists a sequence cε such that

(σε(b
1
ε − εcε + εs), zε(b

1
ε − εcε + εs))→ (σf (s), zf (s)) (3.4.63)

as ε goes to 0. To simplify notation, in this part of the proof we write (σ1
ε(s), z1

ε(s)) in

place of (σε(b
1
ε + εs), zε(b

1
ε + εs)). Fix a sequence εj → 0. We start by observing that the

function (σ1
εj (s), z

1
εj (s)) solves the problem
σ̇1
εj (s) = C(πK(z1

εj
(s))(σ

1
εj (s))− σ

1
εj (s)) + εCχεj (s),

ż1
εj (s) = tr(σ1

εj (s)) tr(σ1
εj (s)− πK(z1

εj
(s))(σ

1
εj (s))),

(σ1
εj (0), z1

εj (0)) = (σεj (b
1
εj ), zε(b

1
εj )),

(3.4.64)

in the interval [−
b1εj
εj
,
t̂+δ1−b1εj

εj
] . As (σεj (b

1
εj ), zεj (b

1
εj )) belongs to the compact set ∂Bδ1(σ̂, ẑ)

we may assume, possibly passing to a subsequence that (σεj (b
1
εj ), zεj (b

1
εj )) converges to

(σ̂1, ẑ1) ∈ ∂Bδ1(σ̂, ẑ) as j → +∞ . Notice that (σ̂1, ẑ1) has a strictly positive distance from

K as a consequence of (3.4.46). Therefore, Lemma 3.28 and the Continuous Dependence

Theorem imply that (σ1
εj (s), z

1
εj (s)) converges uniformly on compact subsets of R , as j →

+∞ , to the solution (σ1(s), z1(s)) of the problem
σ̇1(s) = C(πK(z1(s))(σ

1(s))− σ1(s)),

ż1(s) = tr(σ1(s)) tr(σ1(s)− πK(z1(s))(σ
1(s))),

(σ1(0), z1(0)) = (σ̂1, ẑ1).

(3.4.65)

We now show that

lim
s→−∞

(σ1(s), z1(s)) = (σ̂, ẑ). (3.4.66)

Actually, recalling Remark 3.26, it suffices to show that there exist sk → +∞ such that

lim
k→+∞

(σ1(−sk), z1(−sk)) = (σ̂, ẑ). (3.4.67)



3. The spatially homogeneous case 69

To do that, we take δk and bkε as in Lemma 3.28, and we define S1,k
εj :=

b1εj
−bkεj
εj

; by

Lemma 3.28 and a diagunal argument, we may suppose, eventually passing to a subsequence,

that for every k ∈ N there exists

sk := lim
j→+∞

S1,k
εj ∈ R+ .

We define (σkεj (s), z
k
εj (s)) := (σεj (b

k
εj+εjs), zεj (b

k
εj+εjs)); by repeating the above arguments

we may suppose that for every k ∈ N there exists (σ̂k, ẑk) ∈ ∂Bδk(σ̂, ẑ) \ K such that

(σkεj (s), z
k
εj (s)) converges, as j → +∞ , uniformly on compact subsets of R , to the solution

(σk(s), zk(s)) of the problem
σ̇k(s) = C(πK(zk(s))(σ

k(s))− σk(s)),

żk(s) = tr(σk(s)) tr(σk(s)− πK(zk(s))(σ
k(s))),

(σk(0), zk(0)) = (σ̂k, ẑk).

(3.4.68)

Moreover, equality (σkεjj (S
1,k
εj ), zkεj (S

1,k
εj )) = (σεj (b

1
ε), zεj (b

1
εj )) implies that

(σk(sk), zk(sk)) = (σ̂1, ẑ1)

for every k , hence by the uniqueness of solutions for Cauchy problems we get

(σk(s), zk(s)) = (σ1(s− sk), z1(s− sk)). (3.4.69)

It follows that

(σ1(−sk), z1(−sk)) = (σ̂k, ẑk). (3.4.70)

As δk → 0, we have that (σ̂k, ẑk)→ (σ̂, ẑ) as k goes to +∞ , hence

lim
k→+∞

(σ1(−sk), z1(−sk)) = (σ̂, ẑ); (3.4.71)

since (σ̂, ẑ) is an equilibrium point for equation (3.4.1), necessarily sk → +∞ as k → +∞ ;

so, (3.4.67) is proved. By Theorem (3.25), there exists a constant c ∈ R such that

(σ1(s), z1(s)) = (σf (s+ c), zf (s+ c))

By (3.4.65), we have that c belongs to the set

C := {s ∈ R : (σf (s), zf (s)) ∈ ∂Bδ1(σ̂, ẑ)} (3.4.72)

which easily turns out to be compact, thanks to (3.4.7) and the assumption δ1 < |(σ̂, ẑ) −
(σ∞, z∞)| .

So far we have proved that for every εj → 0 there exists a subsequence εjh and a

constant c ∈ C , possibly depending on εjh , such that

(σεjh (b1εjh
+ εjhs), zε(b

1
εjh

+ εjhs))→ (σf (s+ c), zf (s+ c)) ,

which is to say

(σεjh (b1εjh
+ εjh(s− c)), zε(b1εjh + εjh(s− c)))→ (σf (s), zf (s)) .

From this (3.4.63) easily follows; moreover, we can take cε ∈ C for every ε , so that, setting

b̂1ε := b1ε − εcε , by compactness of C we have b̂1ε → t̂ when ε goes to 0, therefore again

(3.4.63) gives immediately the conclusion.
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3.5 Statement of the main result

We collect the results of the previous sections in the next theorem, which gives a pro-

cedure to construct a viscosity solution to our evolution problem under quite general as-

sumptions; in fact, if these assumptions are satisfied at every step of the construction, the

viscosity solution is also unique. The theorem will determine a possibly infinite sequence of

times t0 < t1 < · · · < ti < . . . such that in each interval (ti−1, ti] the solution, denoted here

by (σi−1, zi−1) is continuous and satisfies either the slow dynamics, or the elastic regime,

or a combination of the two. A jump may occur at time ti if the value (σi−1(ti), zi−1(ti))

satisfies (3.4.5) or (3.4.6). In this case the new starting point (σ+
i , z

+
i ) for the solution in

the interval (ti, ti+1] is determined by taking the limit as s → +∞ of the solution of the

fast dynamics originating from (σi−1(ti), zi−1(ti)) at s = −∞ . To prepare the technical

statement of the theorem it is convenient to introduce some notation.

Definition 3.30. For every (σ̂, ẑ) ∈ ∂K satisfying Ψ(σ̂, ẑ) 6= 0, and every T > 0 we define

(σsl, zsl)(t; σ̂, ẑ, T ) as the unique solution to (3.3.1) starting from the point (σ̂, ẑ) at time

T . For every (σ̂, ẑ) ∈ ∂K we define (σel, zel)(t; σ̂, ẑ, T ) = (σ̂+C(ξ(t)− ξ(T )), ẑ). For every

(σ̂, ẑ) ∈ ∂K satisfying (3.4.5) or (3.4.6) we define (σf , zf )(s; σ̂, ẑ) as the unique solution to

(3.4.1) having (σ̂, ẑ) as an α -limit point.

To simplify our notation, in the statement of the theorem we also put

∂Kf := {(σ, z) ∈ ∂K : (σ, z) satisfy (3.4.5) or (3.4.6) }.

Theorem 3.31. Let (σ0, z0) ∈ intK , let t0 = 0 , t1 as in (3.2.20), and (σ0(t), z0(t)) =

(σ0 + C(ξ(t)− ξ(0)), z0) . For every i ≥ 1 with ti < +∞ define

(σ+
i , z

+
i ) =

(σi−1, zi−1)(ti) if Ψ(σi−1(ti), zi−1(ti)) < 0,

lim
s→+∞

(σf , zf )(s;σi−1(ti), zi−1(ti)) if (σi−1(ti), zi−1(ti)) ∈ ∂Kf .

If Ψ(σ+
i , z

+
i ) < 0 , let t̂i be the maximal time of existence for (σsl, zsl)(t;σ

+
i , z

+
i , ti) , and

t̄i := inf{t ≥ ti : Φ(t, (σsl, zsl)(t;σ
+
i , z

+
i , ti)) ≤ 0}.

If t̂i = t̄i , put ti+1 := t̂i , and

(σi(t), zi(t)) = (σsl, zsl)(t;σ
+
i , z

+
i , ti)

for every ti ≤ t ≤ ti+1 ; if instead t̂i > t̄i , put (σ̄i, z̄i) := (σsl, zsl)(t̄i, σ
+
i , z

+
i , ti) ,

ti+1 := sup{t > t̄i |(σel, zel)(t; σ̄i, z̄i, t̄i) ∈ intK for every s ∈ (t̄i, t)},

and

(σi(t), zi(t)) =

(σsl, zsl)(t;σ
+
i , z

+
i , ti) for ti < t ≤ t̄i,

(σel, zel)(t; σ̄i, z̄i, t̄i) for t̄i ≤ t ≤ ti+1.

Define (σ(t), z(t)) :=
∑
i≥1 1(ti−1,ti](σi−1(t), zi−1(t)) . Assume that

Φ(σ(ti), z(ti)) > 0 for every i ≥ 1, (3.5.1)

(3.3.49) and (3.3.50) hold at t̄i for every i with ti ≤ t̄i < t̂i (3.5.2)

lim inf
t→t−i+1

Φ(t, σ(t), z(t)) > 0 for every i with ti+1 = t̂i < +∞. (3.5.3)
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Define e(t) and p(t) through the consitutive relations in (3.1.1), and put T := supi ti . Then

(e(t), p(t), σ(t), z(t)) is the unique viscosity solution of (3.1.1) in [0, T ) .

Proof. The result follows from Theorems 3.18, 3.21, 3.23, and 3.29.

Remark 3.32. Notice that assumption (3.5.3) ensures that whenever ti+1 = t̂i < +∞ we

can extend by continuity (σsl, zsl) in ti+1 thanks to Proposition 3.10, hence at every step

the left limit (σ(ti), z(ti)) is well-defined. Notice that the statement of the theorem covers

also the case when t̄i = ti , which is likely to happen for instance after a jump. Concerning

the other assumptions in the theorem, observe that by construction and Theorem 3.25, we

always have at least the weak inequality Ψ(σ+
i , z

+
i ) ≤ 0. By construction we also have

Φ(σ(ti), z(ti)) ≥ 0 for every i , since at time ti either we reach the yield surface from the

interior of the elastic domain, or we were following the slow dynamics with postive Φ at

previous times. Similarly, the weak inequality in (3.5.3) is always true whenever ti+1 = t̂i .

Thus our construction works at least for the nondegenerate cases where equality is excluded

while a higher-order analysis is needed in the remaining situations to get insight of the limit

behavior of the viscous approximations.
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Chapter 4

Rescaled viscosity evolution

4.1 Overview of the chapter

The study of the spatially homogeneous case in the previous chapter has higlighted that,

for many initial data, we cannot expect in general that an evolution satifying the equations

(a)-(f) of Chapter 2, Section 2.2 is smooth in time. This is due to the nonconvexity of the

problem, since the model allows for a softening regime. Moreover, we have seen that a way

to catch the behavior of the system at jump times is the introduction of a time rescaling and

the use of a fast time s , which moves while the original time is frozen. Following this idea

(also used in [18, 32, 33] for rate independent dissipative problems in finite dimension), in

this chapter we introduce a notion of generalized solution to give a meaning to the evolution

after the first discontinuity time. The idea, which will be developed in the next chapter, is

to consider a viscoplastic approximation of Perzyna-type as in Chapter 2, Section 2.4 and to

take the limit as the viscosity parameter tends to 0 of a suitable time-rescaled version of the

solutions. The properties of this limit give rise to the notion of a rescaled viscosity evolution,

which is expressed in terms of a rescaled time s , related to the original time by the equality

t = t◦(s), where t◦ is a nondecreasing locally Lipschitz function. The intervals where t◦ is

constant correspond to time discontinuities in the original variable t . The advantage in this

approach is that all these functions will be continuous with respect to s , while continuity

cannot be expected with respect to the the original time t .

The definition of rescaled viscosity evolution that we give in this chapter is different

from the original one contained in [10, Definition 4.1]. Following the ideas of [11, Sections

3 and 4], in the definition we will replace the energy-dissipation balance and the partial

flow rule of [10, Definition 4.1] with a measure-theoretical formulation of the flow rule (e) of

Chapter 2. The motivation for this approach is that the structure of this definition really

resembles the classical formulation of the problem, and the equations satisfied by a rescaled

viscosity evolution are the rigorous counterpart of the classical ones. However, there is

also a disadvantage, since condition (ev3 ′′)◦ of Definition 4.5 is formulated in terms of a

suitable representative σ̂◦(s) of the stress σ◦(s), which has to satisfy the integration by

parts formula (4.2.3). The existence itself of this representative is not a priori guaranteed

and is part of the proof. Nevertheless, in the last section of the chapter we will show that
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this representative has an intrinsic character. Indeed, if we assume strict convexity of K(1)

it can be obtained in Ω as the limit of averages of the stress σ◦(s).

The goal of this chapter is to show that the two definitions are indeed equivalent. The

proof will also give us the possibility to introduce some tools that will be used in the next

chapter to prove the existence of a rescaled viscosity evolution. In this perspective, it should

also be noticed that, since [10, Definition 4.1] replaces a differential inclusion with an energy

equality, it also requires less a priori information about the time regularity of the involved

functions. This is why the existence theorem that will be proved in Chapter 5 will rely on

proving the energy-dissipation balance (4.3.1) instead than directly (ev3 ′′)◦.

For all the notation and the assumptions on the model we refer to Chapters 1 and 2.

4.2 Quasistatic evolution

The definition of rescaled viscosity evolution that we are going to give in this section

involves a suitable representative of the stress σ , that we now define. In the definition

the measure [σ : p] is the one defined by (2.3.10)-(2.3.11). Notice that we are not a priori

claiming that such a representative exists for any given admissible stress. We recall that,

as in Chapter 2, the space ΠΓ0
(Ω) of admissible plastic strains is defined as the set of

all p ∈ Mb(Ω ∪ Γ0;MN×N
sym ) for which there exist u ∈ BD(Ω), w ∈ H1(Ω;RN ), and e ∈

L2(Ω;MN×N
sym ) satisfying (2.3.1).

Definition 4.1. Let p ∈ ΠΓ0
(Ω) and ζ ∈ C0(Ω)+ . Let σ ∈ L2(Ω;MN×N

sym ) be such that

div σ ∈ Ln(Ω;RN ) and [σν] ∈ L∞(Γ1;RN ). Let

µ :=

Ln + |p| if σ ∈ K(ζ) ,

Ln if σ /∈ K(ζ) .

We say that a function σ̂ ∈ L2
µ(Ω∪Γ0;MN×N

sym ) is a precise representative of σ with respect

to p and ζ if σ̂ = σ Ln -a.e. on Ω, and

σ ∈ K(ζ)⇒ σ̂ ∈ Kµ(ζ) , (4.2.1)

σ ∈ K(ζ)⇒ [σ : p] =
(
σ̂ :

p

µ

)
µ on Ω ∪ Γ0 , (4.2.2)

where Kµ(ζ) is defined by (1.3.16), and p
µ is the Radon-Nikodym derivative of p with

respect to µ .

Remark 4.2. Observe that (1.3.4) assures that σ belongs to L∞(Ω;MN×N
sym ), and thus to

space Σ(Ω) defined by (2.3.8), whenever σ ∈ K(ζ), so that [σ : p] makes sense. Clearly one

can take σ̂ = σ as a precise representative whenever σ /∈ K(ζ). The choice to contemplate

this obvious case in Definition 4.1 will be useful to write condition (ev3 ′′)◦ in a more compact

way.

Using Proposition 2.3, we can easily prove that condition (4.2.2) is equivalent to the

following integration by parts formula: for every ϕ ∈ C1(Ω) we have

〈ϕσ̂, p〉 = −〈σ̂, ϕ(e− Ew)〉 − 〈σ̂, (u− w)�∇ϕ〉+

+ 〈f, ϕ(u− w)〉+ 〈g, ϕ(u− w)〉Γ1
,

(4.2.3)
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where f := −div σ , g := [σν] , u ∈ BD(Ω), w ∈ H1(Ω;RN ), and e ∈ L2(Ω;MN×N
sym ) satisfy

(2.3.1), and the duality product in the left-hand side is the standard duality between a

bounded measurable function and a bounded measure.

Throughout the chapter we will assume that

u◦: [0,+∞)→ BD(Ω) is weakly∗ continuous ,

e◦: [0,+∞)→ L2(Ω;MN×N
sym ) is weakly continuous ,

p◦: [0,+∞)→Mb(Ω ∪ Γ0;MN×N
sym ) is 1-Lipschitz ,

z◦: [0,+∞)→ C0(Ω)+ is locally Lipschitz ,

t◦: [0,+∞)→ [0,+∞) is nondecreasing, surjective, and locally Lipschitz.

(4.2.4)

As usual, we set

σ◦(s) := Ce◦(s) and ζ◦(s) := V (z◦(s)) for every s ∈ [0,+∞) . (4.2.5)

Since now p◦(s) ∈Mb(Ω ∪ Γ0;MN×N
sym ) (see [50] for some examples showing that we cannot

expect p◦(s) ∈ L2(Ω;MN×N
sym )), the derivative of p◦ with respect to s can be defined only

in the weak∗ sense given by Theorem 1.8, namely

ṗ◦(s) := w∗- lim
h→0

p◦(s+ h)− p◦(s)
h

(w∗ -topology of Mb(Ω ∪ Γ0;MN×N
sym )) . (4.2.6)

We define

B◦ := {s ∈ [0,+∞) : σ◦(s) ∈ K(ζ◦(s))} and A◦ := [0,+∞) \B◦ . (4.2.7)

Remark 4.3. The continuity properties of σ◦ and ζ◦ imply that A◦ is open. Indeed, by

convexity, for every ζ ∈ C0(Ω̄)+ the function σ 7→ d2(σ,K(ζ)) is weakly lower semicontin-

uous in L2(Ω;MN×N
sym ). From (1.3.7), we deduce that

|d2(σ,K(ζ1))− d2(σ,K(ζ2))| ≤ 2MK‖ζ1 − ζ2‖2

for every σ ∈ L2(Ω;MN×N
sym ) and every ζ1, ζ2 ∈ C0(Ω̄)+ . It follows that (σ, ζ) 7→ d2(σ,K(ζ))

is lower semicontinuous with respect to the weak topology in L2(Ω;MN×N
sym ) and to the

strong topology of C0(Ω). Since σ◦= Ce◦ and since e◦ is continuous for the weak topology

of L2(Ω;MN×N
sym ) and ζ◦ is continuous for the strong topology of C0(Ω) by (5.4.44), it

follows that s 7→ d2(σ◦(s),K(ζ◦(s))) is lower semicontinuous on [0,+∞). Therefore the set

A◦S is open.

The data of the problem f , g , and w appear only through the composite functions

f(t◦(s)), g(t◦(s)), and w(t◦(s)). We will frequently use the shorthands f◦(s), g◦(s), and

w◦(s) in place of f(t◦(s)), g(t◦(s)), and w(t◦(s)). The displacement u◦(s), the elastic and

plastic strain e◦(s) and p◦(s), and the boundary displacement w◦(s) are related by the

kinematic condition (2.3.1), which reads in this case as

Eu◦(s) = e◦(s) + p◦(s) in Ω ,

p◦(s) = (w(t◦(s))− u◦(s))� νHn−1 in Γ0 ,

while the stress σ◦(s) has to satisfy the equilibrium condition

−divσ◦(s) = f◦(s) in Ω , [σ◦(s)ν] = g◦(s) on Γ1.
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It follows from these two conditions and (2.3.42) that for every s such that σ◦(s) ∈
L∞(Ω;MN×N

sym ) we can define the measure [σ◦(s) :p◦(s)] and the duality 〈σ◦(s),p◦(s)〉 as

in (2.3.10)-(2.3.11), and (2.3.12), respectively. If in addition we suppose

e◦: [0,+∞)→ L2(Ω;MN×N
sym ) is strongly continuous and L1-a.e. differentiable , (4.2.8)

the stress σ◦(s) can be put in duality with the rate of plastic strain ṗ◦(s) at L1 -a.e.

s ∈ [0,+∞) such that σ◦(s) ∈ L∞(Ω;MN×N
sym ), as the next remark highlights.

Remark 4.4. Let s ∈ [0,+∞) be such that the derivatives σ̇◦(s), ṗ◦(s), and ẇ◦(s) exist.

We claim that for every such s , the measure ṗ◦(s) ∈ ΠΓ0
(Ω), so that for every χ ∈ Σ(Ω) we

can define the measure [χ : ṗ◦(s)] and the duality 〈χ, ṗ◦(s)〉 according to (2.3.10)-(2.3.11),

and (2.3.12), respectively. Together with (1.3.4), this implies in particular that the duality

〈σ◦(s), ṗ◦(s)〉 and the measure [σ◦(s) : ṗ◦(s)] are correctly defined for L1 -a.e. s ∈ [0,+∞)

such that σ◦(s) ∈ K(ζ◦(s)).

To prove the claim, we notice that, if s ∈ [0,+∞) has the required properties, the

difference quotients
1

h
E(u◦(s+ h)− u◦(s))

converge weakly∗ in Mb(Ω;MN×N
sym ) to ė◦(s) + ṗ◦(s); moreover, using (2.3.1) and the esti-

mate proved in [52, Proposition 2.4 and Remark 2.5], taking also into account the continuity

of the trace operator from H1(Ω;RN ) into L1(∂Ω;RN ), we can prove that there exists a

constant C such that

1

h
‖u◦(s+ h)− u◦(s)‖1 ≤

≤ C
( 1

h
‖p◦(s+ h)− p◦(s)‖1 +

1

h
‖w◦(s+ h)−w◦(s)‖H1 +

1

h
‖E(u◦(s+ h)− u◦(s))‖1

)
.

Therefore the difference quotients of u◦ are bounded in BD(Ω), thus converge weakly∗

in BD(Ω), up to a subsequence, to a function u̇◦(s). We can easily prove, arguing

for instance as in [13, Lemma 2.1], that (u̇◦(s), ė◦(s), ṗ◦(s), ẇ◦(s)) satisfy (2.3.1), hence

ṗ◦(s) ∈ ΠΓ0
(Ω), as required. It also follows that the limit u̇◦(s) is uniquely determined by

(ė◦(s), ṗ◦(s), ẇ◦(s)) and hence does not depend on the chosen subsequence.

Finally, to give the definition of rescaled viscosity evolution we need a suitable extension

of the notion of normal cone. Indeed, The classical Prandtl-Reuss flow rule is usually

formulated in terms of a differential inclusion involving the normal cone NC(ξ) to a convex

set C at some point ξ ∈ C . In convex analysis, the normal cone is extended by setting

NC(ξ) = Ø whenever ξ /∈ C . For our purposes we find it convenient to consider a different

extension. Given a Hilbert space X and a convex closed subset C of X , for every ξ ∈ X
we define the extended normal cone Next

C (ξ) to C at ξ in the following way:

Next
C (ξ) :=

NC(ξ) if ξ ∈ C,

{λ(ξ − πC(ξ)) : λ ≥ 0} if ξ /∈ C ,
(4.2.9)

where πC denotes the minimal distance projection. Unlike the normal cone of convex

analysis, Next
C is not a monotone operator. However, the multi-valued map ξ 7→ Next

C (ξ)
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has closed graph, that is, if ξj → ξ and vj ∈ Next
C (ξj) for every j , then any limit point v

of vj belongs to Next
C (ξ). The simple verification is left to the reader.

We are now finally ready to define our notion of generalized solution. Notice that, here

and henceforth, among the hypotheses on the data of the problem, we are in particular

assuming that the uniform safe-load condition (2.3.45)-(2.3.48) is satisfied.

Definition 4.5. Assume that f , g and w satisfy (2.3.42)-(2.3.48), and let u0 , e0 , p0 , z0

be as in (2.3.53)-(2.3.57). Consider (u◦, e◦,p◦, z◦, t◦) satisfying (4.2.4), define σ◦, ζ◦ and

ṗ◦ as in (4.2.5)-(4.2.6), let A◦ and B◦ be as in (4.2.7) and set

µ(s) :=

Ln if s ∈ A◦ ,

Ln + |ṗ◦(s)| if s ∈ B◦ .
(4.2.10)

We say that (u◦, e◦,p◦, z◦, t◦) is a rescaled viscosity evolution with data f , g , and w and

initial condition (u0, e0, p0, z0, 0) if e◦ satisfies (4.2.8) and the following conditions hold:

(ev0)◦ Initial condition: (u◦(0), e◦(0),p◦(0), z◦(0), t◦(0)) = (u0, e0, p0, z0, 0).

(ev1)◦ Weak kinematic admissibility : for every s ∈ [0,+∞)

Eu◦(s) = e◦(s) + p◦(s) in Ω ,

p◦(s) = (w(t◦(s))− u◦(s))� νHn−1 in Γ0 .
(4.2.11)

(ev2)◦ Equilibrium condition: for every s ∈ [0,+∞)

−divσ◦(s) = f(t◦(s)) in Ω , [σ◦(s)ν] = g(t◦(s)) on Γ1. (4.2.12)

(ev3 ′)◦ Partial stress constraint :

σ◦(s) ∈ K(ζ◦(s)) for every s ∈ [0,+∞) \ U◦, (4.2.13)

where

U◦ := {s ∈ (0,+∞) : t◦ is constant in a neighbourhood of s}. (4.2.14)

(ev3 ′′)◦ Flow rule: for L1 -a.e. s ∈ [0,+∞) we have ṗ◦(s) � µ(s) and there exists a precise

representative σ̂◦(s) of σ◦(s) with respect to ṗ◦(s) and ζ◦(s) such that

ṗ◦(s)

µ(s)
∈ Next

Kµ(s)(ζ
◦(s))(σ̂

◦(s)) , (4.2.15)

where Kµ(s)(ζ
◦(s)) and Next

Kµ(s)(ζ
◦(s)) are defined by (1.3.16), and (4.2.9) respectively.

(ev4)◦ Evolution law for the internal variable: for L1 -a.e. s ∈ [0,+∞) the strong C0(Ω)-limit

ż◦(s) := s- lim
h→0

z◦(s+ h)− z◦(s)
h

(4.2.16)

exists, and

ż◦(s) = ρ1 ?
(
(ρ2 ? trσ◦(s)) tr ṗ◦(s)

)
in Ω for L1-a.e. s ∈ (0,+∞) ; (4.2.17)
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moreover, if we define

w◦(s) := w(t◦(s)) and χ◦(s) := χ(t◦(s)) , (4.2.18)

where χ is given by (2.3.45)-(2.3.48), we have that

‖χ̇◦(s)‖∞ + ‖Eẇ◦(s)‖2 ≤ 1 . (4.2.19)

Notice that, if (4.2.8) and (4.2.11) hold, by Remark 4.4 we have that ṗ◦(s) ∈ ΠΓ0
(Ω) for

L1 -a.e. s ∈ [0,+∞), therefore it makes sense to speak of a precise representative according

to Definition 4.1.

Remark 4.6. If (u◦, e◦,p◦, z◦, t◦) is a rescaled viscosity evolution with data f , g , and w ,

then (u◦◦ϕ, e◦◦ϕ,p◦◦ϕ, z◦◦ϕ,ϕ−1◦t◦◦ϕ) is a rescaled viscosity evolution with data f◦ϕ ,

g◦ϕ , and w◦ϕ for every C1 bijective increasing function ϕ : [0,+∞)→ [0,+∞).

We shall frequently use the inclusion

A◦⊂ U◦ (4.2.20)

which trivially follows from (4.2.13) and (4.2.7).

4.3 Equivalent formulation in energetic form

The goal of this section is to state and prove the main theorem of the chapter, showing

that Definition 4.5 is indeed equivalent to another one, where the measure theoretical for-

mulation of the flow rule (4.2.15) is replaced by the energy-dissipation balance (4.3.1) and

the partial flow rule (4.3.2), which accounts for the behavior of the system at jump times.

This formulation, which shares some features with the so-called energetic formulation for

rate-independent processes (for this notion we refer to [31]), does not require the additional

information (4.2.8) on the regularity in time of the stress σ◦(s) and is the one that we will

use in the next chapter to prove the existence of an evolution satisfying Definition 4.5. We

now state the announced result.

Theorem 4.7. Assume that f , g and w satisfy (2.3.42)-(2.3.48), that u0 , e0 , p0 , and

z0 are as in (2.3.53)-(2.3.57), and that (4.2.19) holds. Let u◦, e◦, p◦, z◦, and t◦ satisfy

(4.2.4). Let σ◦, ζ◦, and ṗ◦ be defined as in (4.2.5)-(4.2.6), and let A◦ and B◦ as in (4.2.7).

Then the following conditions are equivalent:

(a) (u◦, e◦,p◦, z◦, t◦) is a rescaled viscosity evolution with data f , g , and w , and initial

condition (u0, e0, p0, z0, 0) , according to Definition 4.5;

(b) conditions (ev0)◦, (ev1)◦, (ev2)◦, (ev3 ′)◦, (ev4)◦ of Definition 4.5 are satisfied, as well

as the following two properties:
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Energy-dissipation balance: for every S ∈ [0,+∞)

Q(e◦(S))−Q(e0)+

∫ S

0

H(ṗ◦(s), ζ◦(s)) ds+

∫ S

0

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds =

=

∫ S

0

(
〈σ◦(s), Eẇ(t◦(s))〉 − 〈L(t◦(s)), ẇ(t◦(s))〉

)
ṫ◦(s) ds− (4.3.1)

−
∫ S

0

〈L̇(t◦(s)),u◦(s)〉 ṫ◦(s) ds + 〈L(t◦(S)),u◦(S)〉 − 〈L(0), u0〉 ,

where d2 is defined in (1.3.17), and L(t) in (2.3.43).

Partial flow-rule: for L1 -a.e. s ∈ [0,+∞) with σ◦(s) /∈ K(ζ◦(s)) we have

ṗ◦(s) ∈ L2(Ω;MN×N
sym ) and

〈σ◦(s)− πK(ζ◦(s))(σ
◦(s)), ṗ◦(s)〉 = ‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) . (4.3.2)

Remark 4.8. For every ζ ∈ C0(Ω)+ the function s 7→ H(ṗ◦(s), ζ) is measurable on [0,+∞)

by Theorem 1.8. Approximating s 7→ ζ◦(s) by piecewise constant functions, we find that

s 7→ H(ṗ◦(s), ζ◦(s)) is measurable on [0,+∞), so the first integral in (4.3.1) makes sense.

Let ϕi be a dense sequence in the unit ball of L2(Ω;MN×N
sym ), composed of continuous

functions with compact support. Since, taking into account (1.2.1),

‖ṗ◦(s)‖2 = sup
i
〈ϕi, ṗ◦(s)〉,

the function s 7→ ‖ṗ◦(s)‖2 is measurable, so the second integral in (4.3.1) makes sense.

It easily follows from (4.3.2) that there exists a measurable function λ : A◦ → [0,+∞)

such that

ṗ◦(s) = λ(s)
(
σ◦(s)− πK(ζ◦(s))(σ

◦(s))
)

(4.3.3)

for L1 -a.e. s ∈ A◦. This justifies the choice of the name flow-rule for condition (4.3.2).

Remark 4.9. Notice that the energy-dissipation balance, together with (2.3.42) and (4.2.4),

implies that the function s 7→ Q(e◦(s)) is continuous. As the quadratic form Q is coer-

cive, the weak continuity of s 7→ e◦(s) from [0,+∞) to L2(Ω;MN×N
sym ) implies the strong

continuity. Together with the Lipschitz continuity of s 7→ p◦(s), this gives that also u◦ is

continuous from [0,+∞) to BD(Ω) with respect to the norm topology.

We also observe that for every s1 , s2 ∈ [0,+∞) we have

χ◦(s2)− χ◦(s1) =

∫ s2

s1

χ̇◦(s) ds , (4.3.4)

where the last term is a Bochner integral in the Banach space L2(Ω;MN×N
sym ). Since ‖ · ‖∞

is convex and lower semicontinuous in L2(Ω;MN×N
sym ), the Jensen inequality and (4.2.19)

imply that

‖χ◦(s2)− χ◦(s1)‖∞ ≤ |s2 − s1| . (4.3.5)

However we remark that (4.3.4) and (4.3.5) do not imply the time differentiability of χ◦

with respect the L∞ norm.
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Before starting the proof of the theorem, we first notice that the energy-dissipation

balance (4.3.1) can be expressed in terms of the function χ that appears in the safe load

condition (2.3.45)-(2.3.48). This will be useful in the proof of Theorem 4.7, and also to get

the existence of a rescaled viscosity evolution in the next chapter.

Proposition 4.10. Let f , g , and w be as in (2.3.42). Assume that u◦, e◦, p◦, z◦, and

t◦ satisfy (4.2.4), (4.2.11), and (4.2.12), and that the safe load condition (2.3.45)-(2.3.48)

holds. For every s ∈ [0,+∞) let us define

w◦(s) := w(t◦(s)) and χ◦(s) := χ(t◦(s)) . (4.3.6)

Then (4.3.1) is equivalent to

Q(e◦(S))−Q(e0) +

∫ S

0

(
H(ṗ◦(s), ζ◦(s)) + 〈χ̇◦(s),p◦(s)〉

)
ds−

− 〈χ◦(S),p◦(S)〉+ 〈χ(0), p0〉+

∫ S

0

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds = (4.3.7)

=

∫ S

0

〈σ◦(s)− χ◦(s), Eẇ◦(s)〉 ds−
∫ S

0

〈χ̇◦(s), e◦(s)〉 ds+ 〈χ◦(S), e◦(S)〉 − 〈χ(0), e0〉 ,

where 〈χ◦(s),p◦(s)〉 and 〈χ̇◦(s),p◦(s)〉 are defined according to (2.3.12) for every s ∈
[0,+∞) .

Proof. For every s ∈ [0,+∞) we put L◦(s) := L(t◦(s)). Since L◦ ∈ H1
loc([0,+∞);BD(Ω)′)

and w◦ ∈ H1
loc([0,+∞);H1(Ω;RN )), the scalar function s 7→ 〈L◦(s),w◦(s)〉 belongs to

H1
loc([0,+∞)) and its derivative is given by s 7→ 〈L̇◦(s),w◦(s)〉+ 〈L◦(s), ẇ◦(s)〉 . Therefore

we have

−
∫ S

0

〈L◦(s), ẇ◦(s)〉 ds−
∫ S

0

〈L̇◦(s),u◦(s)〉 ds+ 〈L◦(S),u◦(S)〉 − 〈L◦(0), u0〉 =

=

∫ S

0

〈L̇◦(s),w◦(s)− u◦(s)〉 ds+ 〈L◦(S),u◦(S)−w◦(S)〉 − 〈L◦(0), u0 −w(0)〉 .
(4.3.8)

By (2.3.44), for L1 -a.e. s ∈ [0,+∞) we have

〈L̇◦(s),w◦(s)− u◦(s)〉 = 〈ḟ
◦
(s),w◦(s)− u◦(s)〉+ 〈ġ◦(s),w◦(s)− u◦(s)〉Γ1

. (4.3.9)

By (2.3.47) χ̇◦(s) ∈ L∞(Ω;MN×N
sym ), while (2.3.45) gives −div χ̇◦(s) = ḟ

◦
(s) in Ω and

[χ̇◦(s)ν] = ġ◦(s) on Γ1 for L1 -a.e. s ∈ [0,+∞). Therefore we can apply the integration-

by-parts formula (2.3.29), which together with (4.3.9) gives

〈L̇◦(s),w◦(s)− u◦(s)〉 = −〈χ̇◦(s),p◦(s)〉 − 〈χ̇◦(s), e◦(s)〉+ 〈χ̇◦(s), Ew◦(s)〉 (4.3.10)

for L1 -a.e. s ∈ [0,+∞). This proves that s 7→ 〈χ̇◦(s),p◦(s)〉 is measurable; by (2.3.48) and

by (2.3.13), we deduce that s 7→ 〈χ̇◦(s),p◦(s)〉 belongs to L1
loc([0,+∞)).

Similarly we prove

〈L◦(s),u◦(s)−w◦(s)〉 = 〈χ◦(s),p◦(s)〉+ 〈χ◦(s), e◦(s)〉 − 〈χ◦(s), Ew◦(s)〉 (4.3.11)
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for every s ∈ [0,+∞). By (4.3.8), (4.3.10), and (4.3.11) we have

−
∫ S

0

〈L◦(s), ẇ◦(s)〉 ds−
∫ S

0

〈L̇◦(s),u◦(s)〉 ds+ 〈L◦(S),u◦(S)〉 − 〈L◦(0), u0〉 =

= −
∫ S

0

〈χ̇◦(s),p◦(s)〉 ds−
∫ S

0

〈χ̇◦(s), e◦(s)〉 ds−
∫ S

0

〈χ◦(s), Eẇ◦(s)〉 ds+

+ 〈χ◦(S),p◦(S)〉 − 〈χ(0), p0〉+ 〈χ◦(S), e◦(S)〉 − 〈χ(0), e0〉.

Therefore (4.3.1) is equivalent to (4.3.7).

The proof of Theorem 4.7 needs some preliminary work, where we use some tools that

will also be employed in the remainder of the thesis. A first point is to deduce from (4.3.1)

some suitable estimates allowing us to improve the time regularity of the stress. In this

perspective, taking into account the previous proposition, it will be useful to study some

properties of the function s 7→ 〈χ◦(s),p◦(s)〉 , where the duality, thanks to (2.3.45)-(2.3.46) is

correctly defined according to (2.3.12). They are collected in the next lemma, where we also

prove (4.3.13) and (4.3.14) that need the a-priori information on the time differentiability

of σ◦.

Lemma 4.11. Assume that u◦, e◦, p◦, z◦, and t◦ satisfy (4.2.4), (4.2.11), and (4.2.12),

and that the safe load condition (2.3.45)-(2.3.48) holds. Define χ◦ as in (4.3.6). Then, for

every s′ ∈ [0,+∞) the functions s 7→ 〈χ◦(s),p◦(s′)〉 and s 7→ 〈χ◦(s′),p◦(s)〉 are globally

Lipschitz continuous with Lipschitz constants ‖p0‖1 + s′ and Mkζm , respectively. Therefore

s 7→ 〈χ◦(s),p◦(s)〉 is locally Lipschitz continuous. Moreover, for L1 -a.e. s ∈ [0,+∞) ,

d

ds
〈χ◦(s),p◦(s′)〉 = 〈χ̇◦(s),p◦(s′)〉 . (4.3.12)

If in addition e◦ is differentiable with respect to the strong topology of L2(Ω;MN×N
sym ) for

L1 -a.e. s ∈ [0,+∞) , then

d

ds
〈χ◦(s′),p◦(s)〉 = 〈χ◦(s′), ṗ◦(s)〉 , (4.3.13)

d

ds
〈χ◦(s),p◦(s)〉 = 〈χ̇◦(s),p◦(s)〉+ 〈χ◦(s), ṗ◦(s)〉 (4.3.14)

for L1 -a.e. s ∈ [0,+∞) .

Proof. Let us fix s′ ∈ [0,+∞). The integration-by-parts formula (2.3.29), together with

(2.3.45)-(2.3.47), gives

〈χ◦(s),p◦(s′)〉 = 〈χ◦(s), Ew◦(s′)− e◦(s′)〉+

+ 〈f◦(s),u◦(s′)−w◦(s′)〉+ 〈g◦(s),u◦(s′)−w◦(s′)〉Γ1

(4.3.15)

for every s, s′ ∈ [0, S] . In view of the differentiability properties of χ◦, f◦ and g◦ given

by (4.2.19) and (2.3.42), this implies that s 7→ 〈χ◦(s),p◦(s′)〉 is absolutely continuous, as

well as (4.3.12). By (4.2.19) and (2.3.13) we also get that |〈χ̇◦(s),p◦(s′)〉| ≤ (‖p0‖1 + s′),

therefore the global Lipschitz continuity of s 7→ 〈χ◦(s),p◦(s′)〉 follows.
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The Lipschitz continuity of s 7→ 〈χ◦(s′),p◦(s)〉 and the estimate of the Lipschitz constant

are an immediate consequence of the 1-Lipschitz continuity of p◦, together with (2.3.13)

and (2.3.46). To prove (4.3.13), we preliminarly observe that at each s ∈ [0,+∞) such that

e◦(s) is differentiable, by Remark 4.4 the measure [χ◦(s′) : ṗ◦(s)] , as well as the duality

〈χ◦(s′), ṗ◦(s)〉 , are correctly defined according to (2.3.10)-(2.3.11), and (2.3.12), respectively.

By Proposition 2.3, for a.e. s ∈ [0,+∞) and every ψ ∈ C1(Ω), with ψ = 0 in a neighborhood

of ∂Ω \ Γ0 , we have

〈[χ◦(s′) : ṗ◦(s)], ψ〉 = −〈ψχ◦(s′), ė◦(s)− Eẇ◦(s)〉 −

− 〈χ◦(s′), (u̇◦(s)− ẇ◦(s))�∇ψ〉+ 〈f◦(s′), ψ(u̇◦(s)− ẇ◦(s))〉 .
(4.3.16)

Now, if e◦ is differentiable at s , the right-hand side is clearly the limit of the corresponding

difference quotients. Therefore (4.3.16) and the analogous formula for the difference quo-

tients, which can be deduced again from Proposition 2.3, imply that at L1 -a.e. s ∈ [0,+∞),

the derivative of the function s 7→ 〈[χ◦(s′) :p◦(s)], ψ〉 equals to 〈[χ◦(s′) : ṗ◦(s)], ψ〉 , hence

for every 0 ≤ s1 ≤ s2 < +∞

〈[χ◦(s′) :p◦(s2)− p◦(s1)], ψ〉 =

∫ s2

s1

〈[χ◦(s′) : ṗ◦(s)], ψ〉 ds. (4.3.17)

We then consider a sequence ψk ∈ C∞(Ω̄) , with 0 ≤ ψk ≤ 1 in Ω̄ and ψk = 0 in a

neighborhood of ∂Ω\Γ0 , such that ψk(x)→ 1 for every x ∈ Ω∪Γ0 . We now apply (4.3.17)

to ψk . Since (2.3.13) implies that the integrands in the right-hand side are uniformly

bounded, we can apply the Dominated Convergence Theorem and we finally get

〈χ◦(s′),p◦(s2)− p◦(s1)〉 =

∫ s2

s1

〈χ◦(s′), ṗ◦(s)〉 ds (4.3.18)

for every 0 ≤ s1 ≤ s2 < +∞ .

To prove (4.3.14) we first observe that, by a direct computation and using (4.3.18) and

(4.3.13), for every s and h we have

1

h

(
〈χ◦(s+ h),p◦(s+ h)〉 − 〈χ◦(s),p◦(s)〉

)
=

=
1

h

∫ s+h

s

(
〈χ◦(s+ h), ṗ◦(τ)〉+ 〈χ̇◦(τ),p◦(s)〉

)
dτ .

Now, using (4.2.4), (4.3.5), and (2.3.13), we easily get that

1

h

∫ s+h

s

〈χ◦(s+ h)− χ◦(τ), ṗ◦(τ)〉 dτ ≤ h .

Similarly, using also (4.2.19), we can prove that

1

h

∫ s+h

s

〈χ̇◦(τ),p◦(s)− p◦(τ)〉 dτ ≤ h .

It follows that
1
h

(
〈χ◦(s+ h),p◦(s+ h)〉 − 〈χ◦(s),p◦(s)〉

)
=∫ s+h

s

(
〈χ◦(τ), ṗ◦(τ)〉+ 〈χ̇◦(τ),p◦(τ)〉

)
dτ +Rh ,

where the remainder term Rh goes to 0 when h tends to 0. Therefore, (4.3.14) follows

from the Lebesgue differentiation Theorem.
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We first want to prove that conditions (b) in the statement of Theorem 4.7 are sufficient

for the existence of a rescaled viscosity evolution. To this end, we want to use (4.3.1) and

(4.3.2) to deduce (4.2.8). We need two different strategies depending on whether (4.2.13)

is satisfied or not. First, we deal with the case when the stress constraint is satisfied. The

key estimate contained in the next theorem will help us to prove differentiability of σ◦ in

the set B◦. In the proof of the theorem, we will make use of the following Gronwall-type

inequality, whose proof can be found in [15, Lemma 7.3].

Lemma 4.12. Let φ : [0, T ] → [0,+∞[ be a bounded measurable function, let ψ : [0, T ] →
[0,+∞[ be an integrable function, and χ(t) a positive nondecreasing function. Suppose that

φ(t)2 ≤
∫ t

0

φ(s)ψ(s) ds+
(∫ t

0

ψ(s) ds
)2

+ χ(t) (4.3.19)

for every t ∈ [0, T ] . Then

φ(t) ≤ 3

2
(

∫ t

0

ψ(s) ds+
√
χ(t)) (4.3.20)

for every t ∈ [0, T ] .

Theorem 4.13. Let S > 0 , and assume that (u◦, e◦,p◦, z◦, t◦) satisfy the hypotheses of

Theorem 4.7. Define σ◦, ζ◦, and ṗ◦ as in (4.2.5) and (4.2.6). Let A◦ and B◦ be as in

(4.2.7). Assume that condition (b) of Theorem 4.7 holds. Then there exists LS > 0 such

that

‖σ◦(s2)− σ◦(s1)‖2 ≤ LS(s2 − s1) (4.3.21)

for every 0 ≤ s1 < s2 ≤ S with s1 ∈ B◦.

Proof. We fix 0 ≤ s1 < s2 ≤ S with s1 ∈ B◦. Denoting with V(p◦, ζ◦(s1); s1, s2) the

total variation of p◦ on [s1, s2] with respect to the functional H(·, ζ) introduced in (1.3.20),

Theorem 1.8 implies that

V(p◦, ζ◦(s1); s1, s2) =

∫ s2

s1

H(ṗ◦(s), ζ◦(s1)) ds . (4.3.22)

As ζ◦ is locally Lipschitz continuous, using the estimate (1.3.14), together with (4.3.22), we

get that there exits a positive constant MS such that

H(p◦(s2)− p◦(s1), ζ◦(s1)) ≤
∫ s2

s1

H(ṗ◦(s), ζ◦(s)) ds+MS(s2 − s1)2 . (4.3.23)

Taking into account the energy-dissipation balance (4.3.7), we get the inequality

Q(e◦(s2))−Q(e◦(s1)) +H(p◦(s2)− p◦(s1), ζ◦(s1)) +

∫ s2

s1

〈χ̇◦(s),p◦(s)〉 ds ≤

≤
∫ s2

s1

〈σ◦(s)− χ◦(s), Eẇ◦(s)) ds−
∫ s2

s1

〈χ̇◦(s), e◦(s)〉 ds+ 〈χ◦(s2),p◦(s2)〉 −(4.3.24)

− 〈χ◦(s1),p◦(s1)〉+ 〈χ◦(s2), e◦(s2)〉 − 〈χ◦(s1), e◦(s1)〉+MS(s2 − s1)2 .

Since σ◦(s1) ∈ K(ζ◦(s1)) and ζ◦(s1) ∈ C0(Ω), by Proposition 2.5 we get

〈σ◦(s1),p◦(s2)− p◦(s1)〉 ≤ H(p◦(s2)− p◦(s1), ζ◦(s1)) , (4.3.25)
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where the duality is defined according to (2.3.12). As σ◦(s1)−χ◦(s1)) belongs to the space

Σ0(Ω) defined by (2.3.32), by the integration by parts formula proved in Proposition 2.3

and (4.3.25) we get

〈σ◦(s1)− χ◦(s1), e◦(s1)− e◦(s2)〉 =

= 〈σ◦(s1)− χ◦(s1),p◦(s2)− p◦(s1)〉 − 〈σ◦(s1)− χ◦(s1), Ew◦(s2)− Ew◦(s1) ≤

≤ H(p◦(s2)− p◦(s1), ζ◦(s1))− 〈χ◦(s1),p◦(s2)− p◦(s1)〉 −

−
∫ s2

s1

〈σ◦(s1)− χ◦(s1), Eẇ◦(s)) ds .

(4.3.26)

By a direct computation, and using (4.3.12), we have

〈χ◦(s2),p◦(s2)〉−〈χ◦(s1),p◦(s1)〉−〈χ◦(s1),p◦(s2)−p◦(s1)〉 =

∫ s2

s1

〈χ̇◦(s),p◦(s2)〉 ds , (4.3.27)

while the similar equality

〈χ◦(s2), e◦(s2)〉−〈χ◦(s1), e◦(s1)〉−〈χ◦(s1), e◦(s2)−e◦(s1)〉 =

∫ s2

s1

〈χ̇◦(s), e◦(s2)〉 ds (4.3.28)

is straighforward.

Summing (4.3.24) and (4.3.26), by the use of (4.3.27) and (4.3.28) we obtain that

Q(e◦(s2))−Q(e◦(s1)) + 〈σ◦(s1), e◦(s1)− e◦(s2)〉 ≤

≤
∫ s2

s1

‖σ◦(s)− σ◦(s1)‖2‖Eẇ◦(s))‖2 +

∫ s2

s1

〈χ◦(s1)− χ◦(s), Eẇ◦(s))〉 ds+

+

∫ s2

s1

〈χ̇◦(s), e◦(s2)− e◦(s)〉 ds+

∫ s2

s1

〈χ̇◦(s),p◦(s2)− p◦(s)〉 ds+MS(s2 − s1)2 .

(4.3.29)

The inequality ∫ s2

s1

〈χ̇◦(s),p◦(s2)− p◦(s)〉 ds ≤ (s2 − s1)2 (4.3.30)

easily follows from (2.3.13), the 1-Lipschitz continuity of p◦ and (4.2.19). The latter also

implies that there exists a positive constant, still denoted by MS , such that∫ s2

s1

〈χ◦(s1)− χ◦(s), Eẇ◦(s))〉 ds ≤MS(s2 − s1)2. (4.3.31)

Moreover, we easily have that∫ s2

s1

〈χ̇◦(s), e◦(s2)− e◦(s)〉 ds ≤
∫ s2

s1

‖χ̇◦(s)‖2‖e◦(s)− e◦(s1)‖2 ds+

‖e◦(s2)− e◦(s1)‖2
∫ s2

s1

‖χ̇◦(s)‖2 ds . (4.3.32)

Now the left-hand side of (4.3.29) equals 1
2 〈σ

◦(s2)−σ◦(s1), e◦(s2)− e◦(s1)〉 , as a direct

computation shows. Taking into account the coerciveness and the continuity of the quadratic
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form Q , from(4.3.30), (4.3.31), and (4.3.32), we obtain that there exists a constant BS such

that, for every s2 ∈ (s1, S] :

‖σ◦(s2)− σ◦(s1)‖22 ≤ BS
(∫ s2

s1

‖σ◦(s)− σ◦(s1)‖2(‖Eẇ◦(s))‖2 + ‖χ̇◦(s)‖2) ds+

+ ‖σ◦(s2)− σ◦(s1)‖2
∫ s2

s1

‖χ̇◦(s)‖2 ds+ (s2 − s1)2
)
.

Let ψ(s) be given by ‖Eẇ◦(s))‖2 + ‖χ̇◦(s)‖2 . By the previous estimate and the Cauchy

inequality the exists a constant CS such that

‖σ◦(s2)− σ◦(s1)‖22 ≤

CS

(∫ s2

s1

‖σ◦(s)− σ◦(s1)‖2 ψ(s) ds+
( ∫ s2

s1

ψ(s) ds
)2

+ (s2 − s1)2
)
.

(4.3.21) now follows immediately by applying Lemma 4.12 with φ(s) and χ(s) given by

‖σ◦(s)−σ◦(s1)‖2 and (s− s1)2 , respectively, taking into account that ψ(s) is bounded by

(4.2.19).

The differentiability of σ◦ as an L2 -valued function for L1 -a.e. s ∈ B◦ follows now from

the following abstract result. It deals with differentiation of a function v from an interval to

a reflexive Banach space, which satisfies the Lipschitz condition ‖v(s2)−v(s1)‖ ≤ L(s2−s1)

when one of the points s1 , s2 belongs to a fixed closed set.

Theorem 4.14. Let S > 0 , let A be an open subset of (0, S) , and let B := [0, S] \A . Let

X be a reflexive Banach space, let L > 0 , and v : [0, S]→ X be a function such that

‖v(s2)− v(s1)‖ ≤ L(s2 − s1) (4.3.33)

for every 0 ≤ s1 < s2 ≤ S with s1 ∈ B . Then for L1 -a.e. s0 ∈ B there exists

v̇(s0) := s- lim
h→0

v(s0 + h)− v(s0)

h
, (4.3.34)

where the limit is taken in the strong topology of X .

Proof. Let ṽ : [0, S]→ X be the function defined by ṽ(s) := v(s) if s ∈ B , and

ṽ(s) :=
s− a
b− a

v(b) +
b− s
b− a

v(a)

if s ∈ A and (a, b) is the connected component of A containing s . It follows easily from

(4.3.33) that ṽ satisfies the Lipschitz estimate

‖ṽ(s2)− ṽ(s1)‖ ≤ L(s2 − s1) (4.3.35)

for every 0 ≤ s1 < s2 ≤ S . It follows from the general theory of absolutely continuous

functions with values in reflexive Banach spaces (see, e.g., [4, Appendix]) that for L1 -a.e.

s0 ∈ [0, S] there exists the limit

˙̃v(s0) := s- lim
h→0

ṽ(s0 + h)− ṽ(s0)

h
. (4.3.36)
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On the other hand, by the Lebesgue Differentiation Theorem for L1 -a.e. s0 ∈ B we have

lim
h→0+

L1(A ∩ (s0 − h, s0 + h))

h
= 0 . (4.3.37)

Let us fix s0 satisfying (4.3.36) and (4.3.37). We want to prove that (4.3.34) holds. Fisrt

of all we observe that, by (4.3.37), s0 cannot be an endpoint of a connected component of

A . For every h with s0 + h ∈ [0, S] we define ηh in the following way. If s0 + h ∈ B , then

ηh := h ; if s0 + h ∈ A and (ah, bh) is the connected component of A containing s0 + h , we

set ηh = ah − s0 . Note that s0 + ηh ∈ B , ηh ≤ h , and ηh has the same sign as h .

Let us prove that

ηh → 0 as h→ 0 . (4.3.38)

If h > 0 this is obvious, since 0 < ηh ≤ h by construction. To prove that ηh → 0 as

h → 0− , we assume by contradiction that ηhi → η < 0 for some sequence hi → 0− . By

construction the interval (s0+ηhi , s0+hi) is contained in A . It follows that (s0+η, s0) ⊂ A .

This contradicts the fact that s0 is not an endpoint of a connected component of A , and

concludes the proof of (4.3.38).

If s0 + h ∈ A and h > 0, then

h− ηh = L1((ah, s0 + h)) ≤ L1(A ∩ (s0 − h, s0 + h)) ,

where the last inequality follows from the inclusion (ah, s0 + h) ⊂ A and the inequality

s0 ≤ ah . By (4.3.37), this implies that

lim
h→0+

ηh
h

= 1 . (4.3.39)

On the other hand, if s0 + h ∈ A and h < 0, then (s0 + ηh, s0 + h) ⊂ A , thus

0 < h− ηh =≤ L1(A ∩ (s0 − ηh, s0 + ηh)) .

By (4.3.37) and (4.3.38), we conclude that

lim
h→0−

ηh
h

= 1 . (4.3.40)

As s0 + ηh ∈ B , (4.3.36) implies that

˙̃̇(s0) := s- lim
h→0

v(s0 + ηh)− v(s0)

ηh
. (4.3.41)

To prove (4.3.35), it is enough to show that

v(s0 + h)− v(s0)

h
− v(s0 + ηh)− v(s0)

ηh
(4.3.42)

tends to 0. We write (4.3.42) as Ih and IIh , where

Ih :=
v(s0 + h)− v(s0)

h
− v(s0 + ηh)− v(s0)

h
,

IIh :=
v(s0 + ηh)− v(s0)

h
− v(s0 + ηh)− v(s0)

ηh
.
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As s0 + ηh ∈ B and ηh ≤ h , by (4.3.33) we have

‖Ih‖ ≤ L
h− ηh
h

→ 0 , (4.3.43)

where the convergence to 0 follows from (4.3.39) and (4.3.40). As for the second term, we

have

‖IIh‖ =
(ηh
h
− 1
)‖v(s0 + ηh)− v(s0)‖

ηh
→ 0 , (4.3.44)

where the convergence to 0 follows from (4.3.39), (4.3.40), and (4.3.41). From (4.3.43) and

(4.3.44) we deduce that (4.3.42) tends to 0, and this concludes the proof.

We turn to the case when s ∈ A◦, that is when (4.2.13) is not satisfied. Assuming (4.3.2)

and strong continuity of σ◦, we are able to prove that in the set A◦, p◦ is L2 -valued up to

constant measure and Lipschitz continuous in the L2 topology. This enables us to deduce

the Lipschitz continuity of σ◦ in A◦. Since A◦ is open, this implies that σ◦ is differentiable

with respect to time for L1 -a.e. s ∈ A◦. This is the object of the following three lemmas.

We premit that absolute continuity of p◦ could also be deduced from the ≤ inequality in

(4.3.1), as we will be forced to do in the next chapter. Here we prefer a different statement

since, in the present form, Lemma 4.15 proves useful for both the implications of Theorem

4.7.

Lemma 4.15. Assume that (u◦, e◦,p◦, z◦, t◦) satisfy the hypotheses of Theorem 4.7, and

conditions (ev0)◦, (ev1)◦, (ev2)◦, (ev3 ′)◦, (ev4)◦ of Definition 4.5. Define σ◦, ζ◦, and ṗ◦ as

in (4.2.5) and (4.2.6). Let A◦ and B◦ be as in (4.2.7). Let (a, b) be a connected component

of A◦, and let c ∈ (a, b) . If (4.3.2) holds and s 7→ e◦(s) is strongly continuous as a

function from [0, S] to L2(Ω;MN×N
sym ) , then p◦− p◦(c) ∈ Liploc((a, b);L2(Ω;MN×N

sym )) . In

particular, for L1 -a.e. s ∈ (a, b) , ṗ◦(s) is the strong limit in L2(Ω;MN×N
sym ) , as h → 0 , of

the difference quotient 1
h (p◦(s+h)−p◦(s)) , and ṗ◦ ∈ L∞loc((a, b);L2(Ω;MN×N

sym )) . Moreover,

for every s1, s2 ∈ (a, b) , we have

p◦(s2)− p◦(s1) ∈ L2(Ω;MN×N
sym ) and p◦(s2)− p◦(s1) =

∫ s2

s1

ṗ◦(s) ds , (4.3.45)

where the last term is a Bochner integral in L2(Ω;MN×N
sym ) .

Proof. By (4.3.2) for L1 -a.e. s ∈ (a, b) we have ṗ◦(s) ∈ L2(Ω;MN×N
sym ) and there exists a

measurable function λ : A◦→ [0,+∞) such that

ṗ◦(s) = λ(s)
(
σ◦(s)− πK(ζ◦(s))(σ

◦(s))
)

(4.3.46)

for L1 -a.e. s ∈ (a, b).

We now show that λ(s) is locally bounded in (a, b). To this aim, we fix a < s1 < s2 < b .

Observe that by our hypotheses the function s 7→ σ◦(s)−πK(ζ◦(s))(σ
◦(s)) is continuous also

with respect to the L1(Ω;MN×N
sym ) norm topology, therefore there exists η > 0 such that

‖σ◦(s)− πK(ζ◦(s))(σ
◦(s))‖1 ≥ η for every s ∈ [s1, s2] . Since ‖ṗ◦(s)‖1 ≤ 1 for L1 -a.e. s , we

get from (4.3.46) that λ(s) ≤ 1
η for L1 -a.e. s ∈ [s1, s2] . It then follows, again using (4.3.46)

that there exits C(s1, s2) such that

‖ṗ◦(s)‖2 ≤ C(s1, s2) (4.3.47)



4.3 Equivalent formulation in energetic form 4. Rescaled viscosity evolution

for L1 -a.e s ∈ [s1, s2] .

This fact and the measurability of s 7→ 〈ϕ, ṗ◦(s)〉 for every ϕ ∈ C0
0 (Ω;MN×N

sym ) im-

ply that s 7→ 〈ψ, ṗ◦(s)〉 is measurable for every ψ ∈ L2(Ω;MN×N
sym ), hence ṗ◦: [a1, b1] →

L2(Ω;MN×N
sym ) is weakly measurable. By Pettis Theorem it is also strongly measurable, so

that (4.3.47) implies that ṗ◦ ∈ L∞loc((a, b);L2(Ω;MN×N
sym )). For every ϕ ∈ C0

0 (Ω;MN×N
sym ),

the function s 7→ 〈ϕ, ṗ◦(s)〉 is measurable and bounded, hence, for every s1, s2 ∈ (a, b), we

have

〈ϕ,p◦(s2)− p◦(s1)〉 =

∫ s2

s1

〈ϕ, ṗ◦(s)〉 ds =
〈
ϕ,

∫ s2

s1

ṗ◦(s) ds
〉
,

where the last equality follows from the fact that the Bochner integral of ṗ◦ in the last

term is well defined in L2(Ω;MN×N
sym ). By the arbitrariness of ϕ , this proves (4.3.45). The

inclusion p◦− p◦(c) ∈ Liploc((a, b);L2(Ω;MN×N
sym )) follows now from (4.3.45), as well as the

statement about the difference quotients, thanks to the Differentiation Theorem for Bochner

integrals.

Lemma 4.16. Assume that (u◦, e◦,p◦, z◦, t◦) satisfy the hypotheses of Theorem 4.7 and

conditions (ev0)◦, (ev1)◦, (ev2)◦, and (ev3 ′)◦ of Definition 4.5. Let (a, b) be as in Lemma

4.15 and assume that (4.3.45) holds. Then, for every a < s1 < s2 < b ,

u◦(s2)− u◦(s1) ∈ H1
Γ0

(Ω;RN ) , (4.3.48)

where H1
Γ0

(Ω;RN ) is defined by (1.2.3).

Proof. Let us fix a < s1 < s2 < b . From the weak kinematic admissibility (4.2.11), we have

Eu◦(s2)− Eu◦(s1) = e◦(s2)− e◦(s1) + p◦(s2)− p◦(s1) in Ω , (4.3.49)

p◦(s2)− p◦(s1) = ((w◦(s2)−w◦(s1))− (u◦(s2)− u◦(s1)))� νHn−1 in Γ0 .(4.3.50)

As the measure p◦(s2) − p◦(s1) belongs to L2(Ω;MN×N
sym ), it does not charge Γ0 , so that

the left-hand side of (4.3.50) is 0; since w◦(s) is constant in (a, b) by (4.2.20), we get

u◦(s2)− u◦(s1) = 0 Hn−1 -a.e. on Γ0 . Moreover, the right-hand side of (4.3.49) belongs to

L2(Ω;MN×N
sym ). By (1.2.2) we have u◦(s2)− u◦(s1) ∈ H1(Ω;RN ).

Lemma 4.17. Under the assumptions of Lemma 4.16, the function e◦ belongs to the space

ACloc((a, b);L
2(Ω;MN×N

sym )) and

αQ‖ė◦(s)‖2 ≤ βQ‖ṗ◦(s)‖2 (4.3.51)

for L1 -a.e. s ∈ (a, b) . In particular, under the assumptions of Lemma 4.15, the function

e◦ belongs to Liploc((a, b);L
2(Ω;MN×N

sym ))

Proof. Let us fix a < s1 < s2 < b . By (4.2.20) and by (4.2.12) we have that σ◦(s2)−σ◦(s1)

belongs to the set Σ0(Ω) defined by (2.3.32), so that from (2.3.33), (4.3.48), and (4.3.49),

we get

〈σ◦(s2)− σ◦(s1), e◦(s2)− e◦(s1)〉 = 〈σ◦(s2)− σ◦(s1),p◦(s1)− p◦(s2)〉 ; (4.3.52)

by (2.3.4) this yields 2αQ‖e◦(s2) − e◦(s1)‖2 ≤ 2βQ‖p◦(s1) − p◦(s2)‖2 , and the conclusion

follows from (4.3.45).
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As a second step towards the proof of Theorem 4.7 we use the previous results to prove

that condition (b) in the statement of Theorem 4.7 implies a weak formulation of the flow

rule

ṗ◦(s, x) ∈ NK(ζ◦(s,x))(σ
◦(s, x))

for almost all s such that σ◦(s) ∈ K(ζ◦(s)). This weak formulation is a measure-theoretical

counterpart of the so-called maximal dissipation principle (see [28]).

Theorem 4.18. Let (u◦, e◦,p◦, z◦, t◦) be a rescaled viscosity evolution with data f , g , and

w satisfying (2.3.42)-(2.3.48) and initial condition (u0, e0, p0, z0, 0) as in (2.3.53)-(2.3.57),

and define σ◦, ζ◦, and ṗ◦ as in (4.2.5) and (4.2.6). Let A◦ and B◦ as in (4.2.7). Then,

for L1 -a.e. s ∈ B◦

H(ṗ◦(s), ζ◦(s)) = 〈σ◦(s), ṗ◦(s)〉 , (4.3.53)

where the duality in the right-hand side is defined according to (2.3.12).

Proof. As σ̇◦(s) exists for L1 -a.e. s ∈ B◦ by Theorems 4.13 and 4.14, applying Remark 4.4

we obtain that 〈σ◦(s), ṗ◦(s)〉 is well-defined at L1 -a.e. s ∈ B◦. Moreover, by Proposition

2.5, we have the inequality

〈σ◦(s), ṗ◦(s)〉 ≤ H(ṗ◦(s), ζ◦(s)) . (4.3.54)

To prove the converse inequality, we first observe that, for every s > 0 such that the

derivatives χ̇◦(s) and ė◦(s) exist, the function s 7→ 〈χ◦(s), e◦(s)〉 is trivially differentiable

and
d

ds
〈χ◦(s), e◦(s)〉 = 〈χ̇◦(s), e◦(s)〉+ 〈χ◦(s), ė◦(s)〉 . (4.3.55)

By (4.3.7), for every s ∈ [0,+∞) and h > 0 we have the energy inequality

Q(e◦(s+ h))−Q(e◦(s)) +

∫ s+h

s

(
H(ṗ◦(τ), ζ◦(τ)) + 〈χ̇◦(τ),p◦(τ)〉

)
dτ −

− 〈χ◦(s+ h),p◦(s+ h)〉+ 〈χ◦(s),p◦(s)〉 ≤
∫ s+h

s

〈σ◦(τ)− χ◦(τ), Eẇ◦(τ)〉 dτ −

−
∫ s+h

s

〈χ̇◦(τ), e◦(τ)〉 dτ + 〈χ◦(s+ h), e◦(s+ h)〉 − 〈χ◦(s), e◦(s)〉 .

Dividing by h and taking the limit as h tends to 0, by (4.3.14), (4.3.55), and the Lebesgue

Differentiation Theorem, we get

〈σ◦(s)−χ◦(s), ė◦(s)〉+H(ṗ◦(s), ζ◦(s))− 〈χ◦(s), ṗ◦(s)〉 ≤ 〈σ◦(s)−χ◦(s), Eẇ◦(s)〉 (4.3.56)

for L1 -a.e. s ∈ [0,+∞). As σ◦(s)−χ◦(s) belongs to the set Σ0(Ω) defined by (2.3.32), the

integration by parts formula given by Proposition 2.3 implies that, when s ∈ B◦, (4.3.56) is

equivalent to

〈σ◦(s), ṗ◦(s)〉 ≥ H(ṗ◦(s), ζ◦(s)) ,

as required.

Remark 4.19. As a technical point, notice that Theorem 4.18 could not be proved directly

after Theorem 4.14 as it may seem at a first glance, since the use of (4.3.14) requires the

time differentiability of e◦ for L1 -a.e. s ∈ [0,+∞), and not only in B◦.
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We are ready to prove one implication in Theorem 4.7.

Proof of Theorem 4.7: part one. Assume (b). Then (4.2.8) follows from Remark 4.9, The-

orems 4.13, 4.14 and Lemma 4.17. It remains to show that (ev3 ′′)◦. Using Definition

4.1 and (4.2.9) it is easy to see that (4.3.2) is equivalent to (ev3 ′′)◦ when s ∈ A◦ with

σ̂◦(s) := σ◦(s), therefore we have only to deal with the case s ∈ B◦. By Proposition 2.5,

the measure H(ṗ◦(s), ζ◦(s)) − [σ◦(s) : ṗ◦(s)] , which is correctly defined for L1 -a.e. s ∈ B◦

thanks to Remark 4.4, is a nonnegative measure on Ω∪Γ0 .Therefore equality (4.3.53) implies

that

H(ṗ◦(s), ζ◦(s)) = [σ◦(s) : ṗ◦(s)] on Ω ∪ Γ0. (4.3.57)

for L1 -a.e. s ∈ B◦.
Let us fix s ∈ B◦ such that ṗ◦(s) exists and (4.3.57) holds. Let E(s) ⊂ Ω and F (s) ⊂

Ω ∪ Γ0 be two disjoint Borel sets such that E(s) ∪ F (s) = Ω ∪ Γ0 and µs(s)(E(s)) =

Ln(F (s)) = 0, where µs(s) denotes the singular part of µ(s) with respect to the Lebesgue

measure. By (2.3.26) and (2.3.27) we have that

[σ◦(s) : ṗ◦(s)] = σ◦(s) : ṗ◦a(s) on E(s) , (4.3.58)

where ṗ◦a(s) denotes the absolutely continuous part of ṗ◦(s) with respect to the Lebesgue

measure. We define

σ̂◦(s, x) := σ◦(s, x) for Ln-a.e. x ∈ E(s) , (4.3.59)

σ̂◦(s, x) := ∂ 0H
( ṗ◦(s)
µ(s)

(x), ζ◦(s, x)
)

for µs(s)-a.e. x ∈ F (s) , (4.3.60)

where ∂ 0H(ξ, ζ◦(s, x)) denotes the element of ∂ξH(ξ, ζ◦(s, x)) with minimum norm. Ob-

serve that by the definition of µ(s), for µ(s)-a.e. x ∈ F (s) we have

ṗ◦(s)

µ(s)
(x) =

ṗ◦(s)

|ṗ◦(s)|
(x).

Therefore, thanks to the continuity of x 7→ ζ◦(s, x), [48, Lemma 3.16] yields that for L1 -a.e.

s ∈ B◦ the function σ̂◦(s) belongs to L∞µ(s)(Ω ∪ Γ0;MN×N
sym ). It is obvious that σ̂◦(s, x) =

σ◦(s, x) for Ln -a.e. x ∈ Ω.

We now prove that σ̂◦(s) is a precise representative σ̂◦(s) of σ◦(s) with respect to ṗ◦(s)

and ζ◦(s). Since σ◦(s, x) ∈ K(ζ◦(s, x) for Ln -a.e. x ∈ Ω when s ∈ B◦, and ∂ 0H(ξ, ζ) ⊆
K(ξ) for every ξ ∈MN×N

sym and ζ ∈ (0,+∞) by [40, Corollary 23.5.3], we get (4.2.1). Since

σ̂◦(s, x) = σ◦(s, x) for |ṗ◦a(s)| -a.e. x ∈ E(s), using (4.3.58) we can easily deduce that

[σ◦(s) : ṗ◦(s)] =
(
σ̂◦(s) :

ṗ◦(s)

µ(s)

)
µ(s) on E(s) . (4.3.61)

By (4.3.60) and the Euler identity, we get

σ̂◦(s, x) :
ṗ◦(s)

µ(s)
(x) = H

( ṗ◦(s)
µ(s)

(x), ζ◦(s, x)
)

for µ(s)-a.e. x ∈ F (s) ,

therefore (4.3.57) implies that

[σ◦(s) : ṗ◦(s)] =
(
σ̂◦(s) :

ṗ◦(s)

µ(s)

)
µ(s) on F (s) .
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From this and (4.3.61) we get (4.2.2).

It only remains to prove (4.2.15). Using [40, Theorem 23.5] we can prove that, when

s ∈ B◦, condition (4.2.15) is equivalent to

σ̂◦(s, x) ∈ ∂pH
( ṗ◦(s)
µ(s)

(x), ζ◦(s, x)
)

for µ(s)-a.e. x ∈ Ω ∪ Γ0 ,

where ∂p denotes the subdifferential with respect to the first variable. Since ∂pH is posi-

tively homogeneous of degree 0 and µ(s)� Ln on E(s), taking into account (4.3.59) this

is equivalent to the fact that both the following inclusions are satisfied:

σ◦(s, x) ∈ ∂pH(ṗ◦a(s)(x), ζ◦(s, x)) for Ln-a.e. x ∈ Ω , (4.3.62)

σ̂◦(s, x) ∈ ∂pH
( ṗ◦(s)
µ(s)

(x), ζ◦(s, x)
)

for µ(s)-a.e. x ∈ F (s) , (4.3.63)

where, in (4.3.62), we also used the fact that Ln(F (s)) = 0. By construction, (4.3.63) is

satisfied. Taking the absolutely continuous part in (4.3.57), we easily get that

σ◦(s, x) : ṗ◦a(s)(x) = H(ṗ◦a(s)(x), ζ◦(s, x)) (4.3.64)

for Ln -a.e. x ∈ Ω. At every x ∈ Ω such that σ◦(s, x) ∈ K(ζ◦(s, x)), by the definition of

H for every ξ ∈MN×N
sym we get that σ◦(s, x) : ξ ≤ H(ξ, ζ◦(s, x)). Combining this inequality

with (4.3.64) we get

σ◦(s, x) : (ξ − ṗ◦a(s)(x)) ≤ H(ξ, ζ◦(s, x))−H(ṗ◦a(s)(x), ζ◦(s, x))

for every ξ ∈ MN×N
sym and Ln -a.e. x ∈ Ω. This implies (4.3.63). Therefore we have shown

that (b) =⇒ (a). The proof of the converse implication, which needs some other preliminary

lemmas, will restart after Lemma 4.22.

To prove the implication (a) =⇒ (b) in Theorem 4.7 we need some other preliminary

lemmas, and to fix some notation. We define

Qχ(s, e◦(s)) := Q(e◦(s))− 〈χ◦(s), e◦(s)〉 , (4.3.65)

τ ◦(s) := σ◦(s)− χ◦(s) (4.3.66)

for every s ∈ [0,+∞). It is easily seen that τ ◦ belongs to the space Σ0(Ω) defined by

(2.3.32). For every fixed S > 0 we set A◦S := A◦ ∩ [0, S] and B◦S := B◦ ∩ [0, S] . A key

point for proving Theorem 4.7 is showing that, if (u◦, e◦,p◦, z◦, t◦) is a rescaled viscosity

evolution, the function s 7→ Qχ(s, e◦(s)) is absolutely continuous. This is the object of the

following three lemmas.

Lemma 4.20. Let S > 0 . Assume that the hypotheses of Theorem 4.7 and that conditions

(ev0)◦, (ev1)◦, (ev2)◦, and (4.2.19) of Definition 4.5 are satisfied. Then there exists a

constant LS such that

|Qχ(s2, e
◦(s2))−Qχ(s1, e

◦(s1))| ≤ LS |s2 − s1| (4.3.67)

for every s1 and s2 in B◦S .
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Proof. Let s1 and s2 be as in the statement of the lemma. Since τ ◦(s) ∈ Σ0(Ω) for every

s , a direct algebraic computation and Proposition 2.3 give

Qχ(s2, e
◦(s2))−Qχ(s1, e

◦(s1)) + 1
2 〈χ

◦(s2)− χ◦(s1), e◦(s1) + e◦(s2)〉 =

= 1
2 〈τ
◦(s2) + τ ◦(s1), e◦(s2)− e◦(s1)〉 =

= 1
2 〈τ
◦(s1) + τ ◦(s2), Ew◦(s2)− Ew◦(s1)〉 − 1

2 〈τ
◦(s1) + τ ◦(s2),p◦(s2)− p◦(s1)〉 .

Let ζS be an upper bound for ‖ζ◦(s)‖∞ on [0, S] ; by (1.3.4) and (2.3.46), we get that

‖τ ◦(si)‖∞ ≤MK(ζm + ζS) (4.3.68)

for i = 1, 2. Therefore (4.2.4) and (2.3.13) give

| 12 〈τ
◦(s1) + τ ◦(s2),p◦(s2)− p◦(s1)〉| ≤MK(ζm + ζS)|s2 − s1| .

By (4.3.68) and (4.2.19)

| 12 〈τ
◦(s1) + τ ◦(s2), Ew◦(s2)− Ew◦(s1)〉| ≤ Ln(Ω)

1
2MK(ζm + ζS)|s2 − s1| .

Denoting with CS an upper bound for ‖e◦(s)‖2 on [0, S] , (4.3.5) yields

| 12 〈χ
◦(s2)− χ◦(s1), e◦(s1) + e◦(s2)〉| ≤ Ln(Ω)

1
2CS |s2 − s1| .

The conclusion follows easily from the previous inequalities.

Lemma 4.21. Let S > 0 , assume that the hypotheses of Theorem 4.7 hold, and that

(u◦, e◦,p◦, z◦, t◦) is a rescaled viscosity evolution with data f , g , and w and initial condition

(u0, e0, p0, z0, 0) . Then ∫ S

0

‖ṗ◦(s)‖2 d2(σ◦(s), ζ◦(s)) ds < +∞ . (4.3.69)

If we define the function g(s) by

g(s) := −
∫ s

0

H(p◦(τ), ζ◦(τ)) dτ −
∫ s

0

‖ṗ◦(τ)‖2 d2(σ◦(τ), ζ◦(τ)) dτ + 〈χ◦(τ),p◦(τ)〉 ,

for every s ≥ 0 , we have that the function g is absolutely continuous. Moreover, if (a, b) is

a connected component of A◦, then the equality

Qχ(s2, e
◦(s2))−Qχ(s1, e

◦(s1)) = g(s2)− g(s1) (4.3.70)

holds for every a ≤ s1 ≤ s2 ≤ b .

Proof. Fix a and b as in the statement. As µ(s) = Ln when s ∈ A◦, it is easily seen that

(4.2.15) is equivalent to (4.3.2). Therefore the hypotheses of Lemma 4.15 are satisfied, hence

‖ṗ◦(s)‖2 is locally bounded in (a, b) and (4.3.45) holds. By Lemma 4.17 this implies that

e◦ is Lipschitz continuous in [s1, s2] for every a < s1 < s2 < b . It follows that the function

s 7→ Qχ(s, e◦(s)) is Lipschitz continuous on [s1, s2] . Moreover, since χ◦ is constant on

[a, b] , we have
d
dsQχ(s, e◦(s)) = 〈τ ◦(s), ė◦(s)〉 (4.3.71)
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for L1 -a.e. s ∈ [s1, s2] . By (4.3.45) we also get that

d
ds 〈χ

◦(s),p◦(s)〉 = 〈χ◦(s), ṗ◦(s)〉 (4.3.72)

for L1 -a.e. s ∈ [s1, s2] , where in this case the right-hand side can be equivalently regarded

as the generalized duality defined by (2.3.12), or the usual scalar product of L2 .

By definition of the extended normal cone, Next
K(ζ◦(s))(σ

◦(s)) ⊂ NK(ζ◦(s))(πK(ζ◦(s))(σ
◦(s)),

where the latter is the usual normal cone of Convex Analysis. As µ(s) = Ln for every

s ∈ (a, b), inclusion (4.2.15) and [40, Theorem 23.5] give that

πK(ζ◦(s))(σ
◦(s)) ∈ ∂pH(ṗ◦(s), ζ◦(s))

for L1 -a.e. s ∈ (a, b). Therefore, the Euler identity implies that

〈πK(ζ◦(s))(σ
◦(s)), ṗ◦(s)〉 = H(ṗ◦(s), ζ◦(s)) (4.3.73)

for L1 -a.e. s ∈ (a, b). As we already noticed, when s ∈ A◦, (4.2.15) is equivalent to (4.3.2),

which in its turn is equivalent (4.3.3). The latter gives

‖ṗ◦(s)‖2 d2(σ◦(s), ζ◦(s)) = 〈σ◦(s)− πK(ζ◦(s))(σ
◦(s)), ṗ◦(s)〉

for L1 -a.e. s ∈ A◦S , so that using (4.3.73) we get

H(ṗ◦(s), ζ◦(s)) + ‖ṗ◦(s)‖2 d2(σ◦(s), ζ◦(s)) = 〈σ◦(s), ṗ◦(s)〉 . (4.3.74)

Recalling that Eẇ◦(s) = 0 in A◦S , by an integration by parts argument using (4.3.48), we

get

〈σ◦(s), ṗ◦(s)〉 = 〈τ ◦(s), ṗ◦(s)〉+ 〈χ◦(s), ṗ◦(s)〉 = −〈τ ◦(s), ė◦(s)〉+ 〈χ◦(s), ṗ◦(s)〉 . (4.3.75)

With this, integrating (4.3.74) between s1 and s2 and taking into account (4.3.71) and

(4.3.72), we obtain that

Qχ(s2, e
◦(s2))−Qχ(s1, e

◦(s1)) +

∫ s2

s1

H(ṗ◦(s), ζ◦(s)) ds+

+

∫ s2

s1

‖ṗ◦(s)‖2 d2(σ◦(s), ζ◦(s)) ds = 〈χ◦(s1),p◦(s2)− p◦(s1)〉 ,
(4.3.76)

where we used the fact that χ◦ is constant in [a, b] .

So far, (4.3.76) holds for a < s1 ≤ s2 < b ; by continuity of the function s 7→ e◦(s), it is

also true when a = s1 and b = s2 . Therefore, since a and b belong to B◦S and taking into

account (2.3.13) and (4.3.67), we get∫ b

a

‖ṗ◦(s)‖2 d2(σ◦(s), ζ◦(s)) ds ≤

≤
∫ b

a

H(ṗ◦(s), ζ◦(s)) ds+ LS(b− a) + ‖χ◦(a)‖∞‖p◦(b)− p◦(a)‖1 .

By the Lipschitz continuity of p◦ and recalling that ‖ṗ◦(s)‖2 d2(σ◦(s), ζ◦(s)) = 0 in B◦S ,

this immediately implies (4.3.69). Taking into account that s 7→ 〈χ◦(s),p◦(s)〉 is locally

Lipschitz continuous by Lemma 4.11, it follows that g(s), as defined in the statement, is

absolutely continuous. By (4.3.76), the proof is concluded.
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We are now in position to prove that Qχ is absolutely continuous.

Lemma 4.22. Under the assumptions of Lemma 4.21, the function s 7→ Qχ(s, e◦(s)) be-

longs to AC([0, S]) . Moreover

d
dsQχ(s, e◦(s)) = 〈τ ◦(s), ė◦(s)〉 − 〈χ̇◦(s), e◦(s)〉 (4.3.77)

for L1 -a.e. s ∈ [0, S] .

Proof. The absolute continuity of Qχ trivially follows from Lemmas 4.20 and 4.21. Since

e◦ is almost everywhere differentiable, a direct computation gives (4.3.77).

After these preliminary lemmas, we can now complete the proof of Theorem 4.7.

Proof of Theorem 4.7: part 2. Assume (a). When s ∈ A◦, it is easy to see that condition

(4.2.15) is equivalent to (4.3.2), therefore only (4.3.1) has to be proved. Fix S > 0. Since

(4.2.15) is equivalent to (4.3.63) for L1 -a.e. s ∈ B◦S , the Euler identity and (4.2.2) give that

H(ṗ◦(s), ζ◦(s)) = 〈σ◦(s), ṗ◦(s)〉

for L1 -a.e. s ∈ B◦S . This equality can be also written in the form

H(ṗ◦(s), ζ◦(s)) + ‖ṗ◦(s)‖2 d2(σ◦(s), ζ◦(s)) = 〈σ◦(s), ṗ◦(s)〉 , (4.3.78)

observing that the additional term equals 0 in B◦S . By (4.3.74) this equality holds true

indeed for L1 -a.e. s ∈ [0, S] , provided that the duality in the right-hand side is understood

as the generalized duality defined by (2.3.12) when s ∈ B◦S and as the usual L2 duality

product when s ∈ A◦S .

Integrating by parts as in Proposition 2.3 and recalling the definition of τ ◦, we get that

〈σ◦(s), ṗ◦(s)〉 = −〈τ ◦(s), ė◦(s)〉+ 〈τ ◦(s), Eẇ◦(s)〉+ 〈χ◦(s), ṗ◦(s)〉 (4.3.79)

for L1 -a.e. s ∈ B◦S . By (4.3.75), recalling that Eẇ◦(s) = 0 in A◦S , this equality holds true

for L1 -a.e. s ∈ [0, S] .

Summing (4.3.77) with (4.3.78) and taking into account (4.3.79), we get

d
dsQχ(s, e◦(s)) +H(ṗ◦(s), ζ◦(s)) + ‖ṗ◦(s)‖2 d2(σ◦(s), ζ◦(s)) =

= 〈τ ◦(s), Eẇ◦(s)〉 − 〈χ̇◦(s), e◦(s)〉+ 〈χ◦(s), ṗ◦(s)〉

for L1 -a.e. s ∈ [0, S] . Using (4.3.14) we obtain

d
dsQχ(s, e◦(s)) +H(ṗ◦(s), ζ◦(s)) + 〈χ̇◦(s),p◦(s)〉+ ‖ṗ◦(s)‖2 d2(σ◦(s), ζ◦(s)) =

= 〈τ ◦(s), Eẇ◦(s)〉 − 〈χ̇◦(s), e◦(s)〉+ d
ds 〈χ

◦(s),p◦(s)〉

for L1 -a.e. s ∈ [0, S] . Integrating between 0 and S , by the absolute continuity of the

function s 7→ Qχ(s, e◦(s)) and recalling the definitions of Qχ and τ ◦, we obtain (4.3.7),

which is equivalent to (4.3.1) by Proposition 4.10. This concludes the proof.
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4.4 Intrinsic charachter of the precise representative

The main difficulty in Theorem 4.7 is the choice of a representative σ̂◦(s) that satis-

fies simultaneously the flow rule and (4.2.2). However, this representative has an intrinsic

character, provided we assume that the elastic domain is strictly convex. Indeed, if K(1)

is strictly convex, i.e., λ ξ1 + (1 − λ) ξ2 is an interior point of K(1) for every 0 < λ < 1

and every pair of distinct points ξ1 , ξ2 ∈ K(1), then, for fixed s and x , H(ξ, ζ◦(s, x))

is differentiable with respect to ξ at all points ξ 6= 0 (see, e.g., [40, Corollary 23.5.4 and

Theorem 25.1]) and we keep the notation ∂ξH(ξ, ζ◦(s, x)) for the partial gradient. Under

this hypothesis, for L1 -a.e. s ∈ B◦ the representative σ̂◦(s) of σ◦(s) is uniquely determined

µ(s)-a.e. on Ω ∪ Γ0 by (4.3.63) as

σ̂◦(s, x) = σ◦(s, x) for Ln-a.e. x ∈ Ω , (4.4.1)

σ̂◦(s, x) = ∂ξH
( ṗ◦(s)
µ(s)

(x), ζ◦(s, x)
)

for µ(s)-a.e. x ∈ Ω ∪ Γ0 . (4.4.2)

The following theorem shows that, under the same hypothesis, σ̂◦(s) can be obtained

in Ω as the limit of σ◦r(s) as r → 0, where for every r > 0 and every s ∈ [0,+∞) the

spherical averages σ◦r(s) ∈ C(Ω;MN×N
sym ) are defined by

σ◦r(s, x) :=
1

Ln(B(x, r) ∩ Ω)

∫
B(x,r)∩Ω

σ◦(s, y) dy . (4.4.3)

Theorem 4.23. Assume that K(1) is strictly convex. Let (u◦, e◦,p◦, z◦, t◦) be a rescaled

viscosity evolution with data f , g , and w satisfying (2.3.42)-(2.3.48) and initial condition

(u0, e0, p0, z0, 0) as in (2.3.53)-(2.3.57), and define σ◦, ζ◦, and ṗ◦ as in (4.2.5) and (4.2.6).

Let σ̂◦(s) be a representative of σ◦(s) as in (ev3 ′)◦, and let σ◦r be defined by (4.4.3). Then

σ◦r(s)→ σ̂◦(s) strongly in L1
µ(s)(Ω;MN×N

sym ) for L1 -a.e. s ∈ [0,+∞) .

Proof. This proof closely follows that of [13, Theorem 6.6], which was in its turn inspired by

[2, Theorem 3.7]. Let A◦ and B◦ as in (4.2.7). We observe that σ◦r(s)→ σ◦(s) strongly in

L1(Ω;MN×N
sym ) for every s . When s ∈ A◦, we have µ(s) = Ln and σ̂◦(s) = σ◦(s) µ(s)-a.e.,

so that the result is obvious in this case.

When s ∈ B◦, ‖σ◦r(s)‖∞ is bounded uniformly with respect to r , so it is enough to

prove that σ◦r(s)→ σ̂◦(s) strongly in L1
|ṗ◦(s)|(U ;MN×N

sym ) for every open set U ⊂⊂ Ω.

Let us fix U . Since σ◦r(s) → σ◦(s) strongly in L2(U ;MN×N
sym ), div σ◦r(s) → div σ◦(s)

strongly in Ln(U ;RN ), and σ◦r(s) is bounded in L∞(U ;MN×N
sym ), by (2.3.24) we have

〈[σ◦r(s) : ṗ◦(s)], ϕ〉 → 〈[σ◦(s) : ṗ◦(s)], ϕ〉 (4.4.4)

for every ϕ ∈ C0
0 (U) and for L1 -a.e. s ∈ B◦. As x 7→ σ◦r(s, x) is a continuous function, by

(2.3.22) we have

〈[σ◦r(s) : ṗ◦(s)], ϕ〉 = 〈ϕσ◦r(s), ṗ◦(s)〉 , (4.4.5)

where the duality in the right-hand side is the standard duality between a continuous func-

tion and a measure. By (4.3.57), we also have H(ṗ◦(s), ζ◦(s)) = [σ◦(s) : ṗ◦(s)] on Ω ∪ Γ0 .

Therefore the definition (1.3.19) of H(ṗ◦(s), ζ◦(s)), (4.4.4), and (4.4.5) together with the



4.4 Intrinsic charachter of the precise representative 4. Rescaled viscosity evolution

boundedness of σ◦r(s), imply that

σ◦r(s) :
ṗ◦(s)

µ(s)
⇀ H

( ṗ◦(s)
µ(s)

, ζ◦(s)
)

weakly∗ in L∞µ(s)(U) (4.4.6)

for L1 -a.e. s ∈ B◦.
Let us fix s ∈ B◦ such that (4.4.2) and (4.4.6) hold. Since σ◦r(s) is bounded in

L∞µ(s)(U ;MN×N
D ), there exists a sequence rj → 0 such that σ◦rj (s) ⇀ σ∗ for some σ∗ ∈

L∞µ(s)(U ;MN×N
sym ). From (4.4.6) we deduce that

σ∗ :
ṗ◦(s)

µ(s)
= H

( ṗ◦(s)
µ(s)

, ζ◦(s)
)

µ(s)-a.e. on U . (4.4.7)

Let us fix ξ ∈MN×N
sym and ε > 0. We denote the unit ball of MN×N

sym by BMN×Nsym
. As the

function x 7→ ζ◦(s, x) is continuous, arguing as kn the proof of Lemma 2.4 for j large enough,

only depending on ε and U , we have σ◦rj (s, x) ∈ K(ζ◦(s, x)) + εBMN×Nsym
for every x ∈ U .

We then have σ◦rj (s, x) : ξ ≤ H(ξ, ζ◦(s, x)) + ε|ξ| for every x in U . As σ◦rj (s) : ξ ⇀ σ∗ : ξ

weakly∗ in L∞µ(s)(U), by the arbitrariness of ε we have also σ∗(x) : ξ ≤ H(ξ, ζ◦(s, x)) for

µ(s)-a.e. x in U , where σ∗(x) denotes the value of σ∗ at the point x . Taking (4.4.7) into

account, we get

σ∗ :
(
ξ − ṗ

◦(s)

µ(s)

)
≤ H(ξ, ζ◦(s))−H

( ṗ◦(s)
µ(s)

, ζ◦(s)
)

µ(s)-a.e. on U . (4.4.8)

In view of the differentiability properties of H , this implies

σ∗ = ∂ξH
( ṗ◦(s)
µ(s)

, ζ◦(s)
)

µ(s)-a.e. on U .

By (4.4.2) we deduce that σ∗ = σ̂◦(s) µ(s)-a.e. on U . Since the limit does not depend on

the sequence rj , we conclude that

σ◦r(s) ⇀ σ̂◦(s) weakly∗ in L∞µ(s)(U ;MN×N
D ) .

Since ṗ◦(s)� µ(s), we get

σ◦r(s) ⇀ σ̂◦(s) weakly∗ in L∞|ṗ◦(s)|(U ;MN×N
D ) . (4.4.9)

Now, as
∣∣∣ ṗ◦(s)µ(s) (x)

∣∣∣ > 0 for |ṗ◦(s)| -a.e. x on Ω ∪ Γ0 , and NK(ξ) = {0} if ξ is in the

interior of K , for L1 -a.e. s ∈ B◦ we deduce from (4.2.15) that σ̂◦(s, x) ∈ ∂K(ζ◦(s, x)) for

|ṗ◦(s)|-a.e. x ∈ U . On the other hand we easily have that σ◦r(s, x) ∈ Kr(s, x) for every

x ∈ U , where Kr(s, x) is the closed convex set defined by

Kr(s, x) := conv
( ⋃
y∈B(x,r)∩Ω

K(ζ◦(s, y))
)
.

When r tends to 0, by the continuity of the function x 7→ ζ◦(s, x) we have that Kr(s, x)→
K(ζ◦(s, x)) in the Hausdorff distance, uniformly for x ∈ U . Therefore the strict convexity

of K(ζ◦(s, x)) and [54, Corollary 2] can be used to improve the weak∗ convergence in (4.4.9)

and to obtain strong convergence in L1
|ṗ◦(s)|(U ;MN×N

sym ).
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We are finally in position to give another equivalent definition of a rescaled viscosity

evolution under hypotheses of strict convexity. To be definite, in the next theorem we show

that, if K(1) is strictly convex, it is enough that (4.2.15) is satisfied in Ω with σ̂◦(s) equal

to the limit of the spherical averages, provided that a different form of the flow rule holds

at the boundary (see (4.4.11) below).

Theorem 4.24. Assume that K(1) is strictly convex. Let f , g , and w satisfy (2.3.42)-

(2.3.48), let u0 , e0 , p0 , and z0 be as in (2.3.53)-(2.3.57) and suppose that (4.2.19) holds.

Let u◦, e◦, p◦, z◦, and t◦ satisfy (4.2.4), let σ◦, ζ◦, and ṗ◦ be defined as in (4.2.5)-

(4.2.6), let σ◦r be defined as in (4.4.3), let A◦ and B◦ be as in (4.2.7), and let µ(s) be as

in (4.2.10). Then the following conditions are equivalent:

(a) (u◦, e◦,p◦, z◦, t◦) is a rescaled viscosity evolution with data f , g , and w , and initial

condition (u0, e0, p0, z0, 0) , according to Definition 4.5;

(b) the function e◦: [0,+∞) → L2(Ω;MN×N
sym ) is strongly continuous on [0,+∞) and

differentiable L1 -a.e. on [0,+∞) , conditions (ev0)◦, (ev1)◦, (ev2)◦, (ev3 ′)◦, (ev4)◦ of

Definition 4.5 are satisfied, for L1 -a.e. s ∈ [0,+∞) we have that ṗ◦(s) � µ(s) , the

sequence σ◦r(s) converges strongly in L1
µ(s)(Ω;MN×N

sym ) to a function σ̂◦(s) as r → 0+ ,

and

ṗ◦(s)

µ(s)
∈ Next

KΩ
µ(s)

(ζ◦(s))(σ̂
◦(s)) in L2

µ(s)(Ω;MN×N
sym ) , (4.4.10)

[σ◦(s)ν] · (ẇ◦(s)− u̇◦(s)) = H
( ṗ◦(s)
µ(s)

, ζ◦(s)
) µ(s)

Hn−1
Hn−1-a.e. on Γ0 ,(4.4.11)

where for every ζ ∈ C0(Ω̄) and every µ ∈M+
b (Ω)

KΩ
µ (ζ) := {σ ∈ L2

µ(Ω;MN×N
sym ) : σ(x) ∈ K(ζ(x)) for µ-a.e. x ∈ Ω}

and Next
KΩ
µ (ζ) is the corresponding extended normal cone in L2

µ(Ω;MN×N
sym ) according to

(4.2.9).

Notice that, under the assumptions in (b), the existence of

u̇◦(s) := w∗- lim
h→0

u◦(s+ h)− u◦(s)
h

(w∗ -topology of BD(Ω))

follows from Remark 4.4. The same remark assures that (u̇◦(s), ė◦(s), ṗ◦(s), ẇ◦(s)) satisfy

the weak kinematic admissibility condition. In particular, ṗ◦(s) = (ẇ◦(s)− u̇◦(s))� νHn−1

on Γ0 , so that µ(s) � Hn−1 on Γ0 . Moreover, under the same assuptions, σ̂◦(s) ∈
L∞µ(s)(Ω;MN×N

sym ) for L1 -a.e. s ∈ B◦. On the other hand, when s ∈ A◦ we have µ(s) = Ln ,

so that, by the Lebesgue Differentiation Theorem, σ̂◦(s) = σ◦(s) ∈ L2(Ω;MN×N
sym ).

Proof of Theorem 4.24. Assume (a). Taking into account Definition 4.5 and Theorem 4.23,

in order to obtain (b) it only remains to prove (4.4.11). By Remark 4.4 we have ṗ◦(s) =

(ẇ◦(s) − u̇◦(s)) � νHn−1 on Γ0 for L1 -a.e. s ∈ [0,+∞). On the other hand ṗ◦(s) ∈
L2(Ω;MN×N

sym ) for L1 -a.e. s ∈ A◦ by (ev3 ′′)◦. We deduce that for these values of s we have

ẇ◦(s) − u̇◦(s) = 0 Hn−1 -a.e. on Γ0 . Since µ(s)
Hn−1 = Ln

Hn−1 = 0 Hn−1 -a.e. on Γ0 for every

s ∈ A◦, we obtain (4.4.11) for L1 -a.e. s ∈ A◦.
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We now consider the case s ∈ B◦. By (4.3.57), we have

H(ṗ◦(s), ζ◦(s)) = [σ◦(s) : ṗ◦(s)] on Γ0 .

On the other hand, by Remark 4.4 and (2.3.11), we have

[σ◦(s) : ṗ◦(s)] = [σ◦(s)ν] · (ẇ◦(s)− u̇◦(s))Hn−1 on Γ0 . (4.4.12)

The last two equalities imply (4.4.11).

Conversely, assume (b). Since Ln � µ(s), by the Lebesgue Differentiation Theorem we

get σ̂◦(s) = σ◦(s) Ln -a.e. on Ω. For L1 -a.e. s ∈ B◦ we extend σ̂◦(s) to Ω∪ Γ0 by setting

σ̂◦(s, x) = ∂ξH
( ṗ◦(s)
µ(s)

(x), ζ◦(s, x)
)

for µ(s)-a.e. x on Γ0 . (4.4.13)

As ∂ξH(ξ, ζ) ⊆ K(ζ) (see [40, Corollary 23.5.3]), we have σ◦(s, x) ∈ K(ζ◦(s, x)) for µ(s)-

a.e. x ∈ Γ0 . On the other hand, for every s ∈ B◦ we have σ̂◦(s, x) ∈ K(ζ◦(s, x)) for Ln -a.e.

x on Ω. Since ζ◦(s) is continuous, arguing as in the proof of Theorem 4.23 we find that

σ̂◦(s, x) ∈ K(ζ◦(s, x)) for µ(s)-a.e. x on Ω . This gives (4.2.1).

Since (4.4.13) is equivalent to ṗ◦(s)
µ(s) (x) ∈ NK(ζ◦(s,x)(σ̂

◦(s, x)) for µ(s)-a.e. x ∈ Γ0 (see

[40, Theorem 23.5]), combining this with (4.4.10) we get (4.2.15).

We claim that σ̂◦(s) satisfies (4.2.2). Let us fix an open set U ⊂⊂ Ω. Arguing as in the

proof of Theorem 4.23 we find that

〈ϕσ◦r(s), ṗ◦(s)〉 → 〈[σ◦(s) : ṗ◦(s)], ϕ〉

for every ϕ ∈ C0(U) and for L1 -a.e. s ∈ B◦. Here the duality in the left-hand side is the

standard duality between a continuous function and a measure. It follows that

[σ◦(s) : ṗ◦(s)] =
(
σ̂◦(s) :

ṗ◦(s)

µ(s)

)
µ(s) on Ω . (4.4.14)

To prove the same equality on Γ0 , we first observe that (4.4.11) and (4.4.12) give

[σ◦(s) : ṗ◦(s)] = H
( ṗ◦(s)
µ(s)

, ζ◦(s)
)
µ(s) µ(s)-a.e. on Γ0 .

By (4.4.13) and the Euler identity we have

H
( ṗ◦(s)
µ(s)

, ζ◦(s)
)

= σ̂◦ :
ṗ◦(s)

µ(s)
µ(s)-a.e. on Γ0 ,

so that (4.2.2) follows from (4.4.14) and the last two equalities. This concludes the proof.



Chapter 5

Existence of a rescaled viscosity

evolution

5.1 Overview of the chapter

This chapter is devoted to proving the existence of a rescaled viscosity evolution according

to Definition 4.5. We will see that this kind of generalized solution appears in the limit, as

the viscosity parameter ε tends to 0, of a suitable time rescaled version of the solutions of

the viscoplastic problem considerd in Chapter 2, Section 2.4. Therefore, as a first step in

Section 5.2 we investigate the well-posedness of such a problem. We first prove (Theorem 5.3)

that for every function ζ(t, x) in a suitable function space there exists a solution uζε(t, x),

eζε(t, x), pζε(t, x), σζε (t, x) of (a), (b), (c), and (eε ) (see Chapter 2, Section 2.4), adapting a

result obtained by Suquet [50]. Then we prove the existence of a viscoplastic evolution by a

fixed point argument (Theorem 5.5).

An energy estimate (Theorem 5.4) allows us to prove the existence of change of variables

t = t◦ε(s), uniformly Lipschitz with respect to s , such that the rescaled functions p◦ε(s, x) :=

pε(tε(s), x) are uniformly Lipschitz with respect to s , in a suitable function space. The

Ascoli-Arzelà Theorem provides the existence of a subsequence (not relabelled), such that

t◦ε(s)→ t◦(s) and p◦ε(s, ·) ⇀ p◦(s, ·) ,

the latter in a weak topology. A further argument, based on the uniqueness of the solution

to an auxiliary variational problem, shows that

e◦ε(s, ·) ⇀ e◦(s, ·) , u◦ε(s, ·) ⇀ u◦(s, ·) , σ◦ε(s, ·) ⇀ σ◦(s, ·) .

The compactness ensured by the presence of the convolutions in the evolution law for the

internal variable allows us to prove that

z◦ε(s, x)→ z◦(s, x) and ζ◦ε(s, x)→ ζ◦(s, x) ,

uniformly with respect to x . The goal of this chapter is showing that these limit functions

satisfy all conditions in (b) of Theorem 4.7, which are equivalent to those in Definition 4.5.
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A brief outline of the development of the long proof, which will run through three Sections,

will be given in Section 5.3, after the statement of the existence result (Theorem 5.6). The

main theoretical difficulty in the proof is that the total variation, with respect to time, of the

plastic strain can be controlled only in a nonreflexive Banach space, while no such a control

is available for the elastic part. As we are not a priori allowed to take time derivatives

of the stress for L1 -a.e. s ∈ [0,+∞), we need a delicate approximation argument of the

integrals that appear in the energy-dissipation balance (4.3.1). We will consider two different

approximations on the set A◦ defined in (4.2.7), where the stress σ◦ is locally absolutely

continuous in time, and on its complement, where instead we have an uniform bound on the

spatial L∞ -norm of the stress. Then we will conclude the proof with the help of the results

of Chapter 1, Section 1.5.

For all the notation and the assumptions on the model we refer to Chapters 1 and 2.

5.2 The viscoplastic approximations

In this section, given a viscosity parameter ε > 0, we study the existence of a solution

to the Perzyna-type viscoplastic evolution problem corresponding to Cam-Clay plasticity.

Definition 5.1. Let f , g , and w be as in (2.3.42), consider u0 ∈ H1(Ω;RN ), e0 ∈
L2(Ω;MN×N

sym ), p0 ∈ L2(Ω;MN×N
sym ), z0 ∈ C0(Ω), and let ε > 0. An ε-viscoplastic evolution

with data f , g , and w , and initial condition (u0, e0, p0, z0) is a function (uε, eε,pε, zε),

with

uε ∈ H1
loc([0,+∞);H1(Ω;RN )) , eε ∈ H1

loc([0,+∞);L2(Ω;MN×N
sym )) ,

pε ∈ H1
loc([0,+∞);L2(Ω;MN×N

sym )) , zε ∈ H1
loc([0,+∞);L2(Ω)),

zε(t) ∈ C0(Ω) for every t ∈ [0,+∞) ,

(5.2.1)

such that, setting

σε(t) := Ceε(t) and ζε(t) := V (zε(t)) , (5.2.2)

the following conditions are satisfied:

(ev0)ε initial condition: (uε(0), eε(0),pε(0), zε(0)) = (u0, e0, p0, z0);

(ev1)ε kinematic admissibility: for every t ∈ [0,+∞)

Euε(t) = eε(t) + pε(t) Ln-a.e. in Ω ,

uε(t) = w(t) Hn−1-a.e. in Γ0 ;
(5.2.3)

(ev2)ε equilibrium condition: for every t ∈ [0,+∞)

−divσε(t) = f(t) in Ω , [σε(t)ν] = g(t) on Γ1. (5.2.4)

(ev3)ε regularized flow rule: for L1 -a.e. t ∈ [0,+∞)

ṗε(t) = N ε
K(σε(t), ζε(t)) Ln-a.e. in Ω , (5.2.5)

where N ε
K is defined by (2.4.5).
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(ev4)ε evolution law for the internal variable: for L1 -a.e. t ∈ [0,+∞)

żε(t) = ρ1 ?
(
ρ2 ? trσε(t)) tr ṗε(t)

)
Ln-a.e. in Ω . (5.2.6)

Remark 5.2. Let us fix t ∈ [0,+∞) such that the derivatives ṗε(t) exists. Then the

following conditions are equivalent:

ṗε(t) = N ε
K(σε(t), ζε(t)) Ln-a.e. in Ω , (5.2.7)

σε(t) ∈ ∂pHε(ṗε(t), ζε(t)) Ln-a.e. in Ω , (5.2.8)

σε(t)− εṗε(t) ∈ ∂pH(ṗε(t), ζε(t)) Ln-a.e. in Ω . (5.2.9)

Indeed, by (2.4.7) we have ∂σH∗ε(σε(t), ζε(t)) = N ε
K(σε(t), ζε(t)), so that (5.2.7) and (5.2.8)

are equivalent by a standard property of conjugate functions (see, e.g., [19, Corollary I.5.2]).

The equivalence between (5.2.8) and (5.2.9) follows immediately from (2.4.2).

To prove the existence of an ε -viscoplastic evolution we will use a fixed point argument.

To this end, in the next theorem we prove existence and continous dependence on the data

for a similar problem with prescribed ζ . We present here a simpler proof than the original

one, which was obtained by adapting the arguments of [50]. The one we give here is again

an adaptation of a result by Suquet, contained in his Ph.D. thesis [51]. We report it for the

reader’s convenience.

Theorem 5.3. Let ζ ∈ C0([0,+∞);L2(Ω)+) and let f , g , w , u0 , e0 , p0 , ε be as in

Definition 5.1. Assume that (u0, e0, p0) satisfies the kinematic admissibility condition at

t = 0 :
Eu0 = e0 + p0 Ln-a.e. in Ω ,

u0 = w(0) Hn−1-a.e. in Γ0 ,
(5.2.10)

and that the safe load condition (2.3.45)-(2.3.48) holds. Then there exists a unique function

(uζε , e
ζ
ε ,p

ζ
ε ) , with

uζε ∈ H1
loc([0,+∞);H1(Ω;RN )) , eζε ∈ H1

loc([0,+∞);L2(Ω;MN×N
sym )) ,

pζε ∈ H1
loc([0,+∞);L2(Ω;MN×N

sym )) ,
(5.2.11)

such that setting

σζε (t) = Ceζε (t),

the following conditions are satisfied:

(ev0)ζε initial condition: (uζε (0), eζε (0),pζε (0)) = (u0, e0, p0) ;

(ev1)ζε kinematic admissibility: for every t ∈ [0,+∞)

Euζε (t) = eζε (t) + pζε (t) Ln-a.e. in Ω ,

uζε (t) = w(t) Hn−1-a.e. in Γ0 ;
(5.2.12)



5.2 The viscoplastic approximations 5. Existence of a rescaled viscosity evolution

(ev2)ζε equilibrium condition: for every t ∈ [0,+∞)

−divσζε (t) = f(t) in Ω , [σζε (t)ν] = g(t) on Γ1. (5.2.13)

(ev3)ζε regularized flow rule: for L1 -a.e. t ∈ [0,+∞)

ṗζε (t) = N ε
K(σζε (t), ζ(t)) Ln-a.e. in Ω , (5.2.14)

where N ε
K is defined by (2.4.5).

Since the right-hand side of (5.2.14) belongs to C0([0,+∞), L2(Ω,MN×N
sym )) by (1.3.7), it

follows that

pζε ∈ C1([0,+∞), L2(Ω,MN×N
sym )) . (5.2.15)

Moreover, for every T > 0 there exists a constant Cε,T such that

max
t∈[0,T ]

‖σζ1
ε (t)− σζ2

ε (t)‖2 ≤ Cε,T max
t∈[0,T ]

‖ζ1(t)− ζ2(t)‖2 (5.2.16)

max
t∈[0,T ]

‖ṗζ1
ε (t)− ṗζ2

ε (t)‖2 ≤ Cε,T max
t∈[0,T ]

‖ζ1(t)− ζ2(t)‖2 (5.2.17)

for every ζ1 , ζ2 in C0([0,+∞);L2(Ω)+) .

Proof. Let A := C−1 . If a triple (uζε , e
ζ
ε ,p

ζ
ε ) satisfies conditions (ev0)ζε -(ev3)ζε , then for

L1 -a.e. t ∈ [0,+∞)

Eu̇ζε (t)− Aσ̇ζε (t) = N ε
K(σζε (t), ζ(t)) Ln-a.e. in Ω . (5.2.18)

Let us define τ ζε ∈ H1
loc([0,+∞);L2(Ω;MN×N

sym )) by

τ ζε (t) := σζε (t)− χ(t). (5.2.19)

By (2.3.32), (2.3.45), and (5.2.13) we have τ ζε (t) ∈ Σ0(Ω) for every t ∈ [0,+∞) and hence,

integrating by parts, for L1 -a.e. t ∈ [0,+∞) we obtain

〈Aτ̇ ζε (t), σ̂〉 = −〈N ε
K(χ(t) + τ ζε (t), ζ(t)), σ̂〉+ 〈Eẇ(t)− Aχ̇(t), σ̂〉 (5.2.20)

for every σ̂ ∈ Σ0(Ω). The initial condition for τ ζε is given by

τ ζε (0) = σ0 − χ(0) , (5.2.21)

where σ0 := Ce0 .

Conversely, assume that τ ζε ∈ H1
loc([0,+∞); Σ0(Ω)) and that (5.2.20) holds for L1 -

a.e. t ∈ [0,+∞). If we define σζε (t) through (5.2.19), then (5.2.13) follows from (2.3.45).

Moreover, for L1 -a.e. t ∈ [0,+∞), we obtain by (5.2.20) that Aσ̇ζε (t) +N ε
K(σζε (t), ζ(t)) −

Eẇ(t) are orthogonal to Σ0(Ω) in L2(Ω;MN×N
sym ). Therefore, by (2.3.33), for L1 -a.e. t ∈

[0,+∞) there exists vζε (t) ∈ H1
Γ0

(Ω;RN ) such that Evζε (t) = Aσ̇ζε (t) + N ε
K(σζε (t), ζ(t)) −

Eẇ(t) Ln -a.e. in Ω. If we define

uζε (t) := w(t) +

∫ t

0

vζε (τ) dτ + u0 −w(0) , eζε (t) = Aσζε (t) , pζε (t) := Euζε (t)− eζε (t) ,
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then the triple (uζε , e
ζ
ε ,p

ζ
ε ) satisfies conditions (ev1)ζε -(ev3)ζε . If, in addition, (5.2.21) holds,

then the initial condition (ev0)ζε is satisfied.

Since Σ0(Ω) is a closed linear subspace of L2(Ω;MN×N
sym ), denoting with PΣ0

the linear

orthogonal projection onto Σ0(Ω), it is clear that (5.2.20) is equivalent to the generalized

ODE

Aτ̇ ζε (t) + PΣ0
(N ε
K(χ(t) + τ ζε (t), ζ(t))) = PΣ0

(Eẇ(t)− Aχ̇(t)) (5.2.22)

in H1
loc([0,+∞); Σ0(Ω)). By the 1-Lipschitz continuity of PΣ0 and (1.3.4) for every τ ∈

Σ0(Ω) and every t ∈ [0,+∞) we have

‖PΣ0
(N ε
K(χ(t) + τ, ζ(t)))‖2 ≤ 1

ε (‖τ‖2 + ‖χ(t)‖2 +MK‖ζ(t)‖2) . (5.2.23)

Using Lemma 1.1, for every τ1 , τ2 ∈ Σ0(Ω) and every t ∈ [0,+∞) we get that

‖PΣ0
(N ε
K(χ(t) + τ2, ζ(t)))− PΣ0

(N ε
K(χ(t) + τ1, ζ(t)))‖2 ≤ 2

ε‖τ2 − τ1‖2 . (5.2.24)

Since w ∈ H1
loc([0,+∞);H1(Ω;RN ) and χ∈H1

loc([0,+∞);L2(Ω;MN×N
sym ) we easily have

PΣ0
(Eẇ(t)− Aχ̇(t)) ∈ L2

loc([0,+∞); Σ0(Ω)) . (5.2.25)

Since A is bounded and invertible, using (5.2.23), (5.2.24), and (5.2.25) the Cauchy-Lipschitz

Theorem gives the existence of a unique solution τ ζε ∈ H1
loc([0,+∞); Σ0(Ω)) of (5.2.20) with

initial condition (5.2.21).

To prove estimate (5.2.16) we consider two solutions σ1 and σ2 corresponding to ζ1

and ζ2 in C0([0, T ];L2(Ω;MN×N
sym )), respectively. Subtracting (5.2.20) corresponding to

τ 1 := σ1 − χ and τ 2 := σ2 − χ , taking σ̂ = σ1(t) − σ2(t) as test function, and using

Lemma 1.1 we obtain

d
dt

1
2‖σ1(t)− σ2(t)‖2A ≤ 1

ε

[
‖σ1(t)− σ2(t)‖2 + 2MK‖ζ1(t)− ζ2(t)‖2

]
‖σ1(t)− σ2(t)‖2 .

To get (5.2.16) it is enough to apply Gronwall inequality. The other inequality (5.2.17)

follows from (ev3)ζε using (1.3.7) and (5.2.16).

The following theorem shows that the modified flow rule (ev3)ε can be replaced by a

suitable stress constraint and an energy-dissipation balance.

Theorem 5.4. Let ζ ∈ C0([0,+∞);L2(Ω)+) and let f , g , w , u0 , e0 , p0 , ε be as in

Definition 5.1. Assume that the safe load condition (2.3.45)-(2.3.48) holds. Let (uζε , e
ζ
ε ,p

ζ
ε )

be a function satisfying (5.2.11), the initial condition (ev0)ε , the kinematic admissibility

(ev1)ζε , and the equilibrium condition (ev2)ζε of Theorem 5.3, with σζε (t) := Ceζε (t) .

Then (uζε , e
ζ
ε ,p

ζ
ε ) satisfies the regularized flow rule (ev3)ζε of Theorem 5.3 if and only if

the following properties are simultaneously satisfied:

(ev3 ′)ζε modified stress constraint: for L1 -a.e. t ∈ [0,+∞)

σζε (t)− εṗζε (t) ∈ K(ζ(t)) ; (5.2.26)
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(ev3 ′′)ζε energy-dissipation balance: for every T > 0 we have

Q(eζε (T ))−Q(e0) +

∫ T

0

(
H(ṗζε (t), ζ(t))− 〈χ(t), ṗζε (t)〉

)
dt+

+ε

∫ T

0

‖ṗζε (t)‖22 dt =

∫ T

0

〈σζε (t)− χ(t), Eẇ(t)〉 dt−
∫ T

0

〈χ̇(t), eζε (t)〉 dt+

+ 〈χ(T ), eζε (T )〉 − 〈χ(0), e0〉 .

(5.2.27)

Proof. Suppose that (uζε , e
ζ
ε ,p

ζ
ε ) satisfies (ev3)ζε . By (1.3.22) we have ∂pH(ṗζε (t), ζ(t)) ⊂

K(ζ(t)). Therefore (5.2.9) implies (ev3 ′)ζε .

Since H(·, ζ) is convex and positively homogeneous of degree one, the Euler relation

gives 〈σ, p〉 = H(p, ζ) whenever σ ∈ ∂pH(p, ζ). Therefore, (5.2.9) implies

H(ṗζε (t), ζ(t)) = 〈σζε (t)− εṗζε (t), ṗζε (t)〉 , (5.2.28)

which is equivalent to

H(ṗζε (t), ζ(t)) + ε‖ṗζε (t)‖22 = 〈σζε (t), ṗζε (t)〉 . (5.2.29)

By (5.2.12) we have

〈σζε (t), ṗζε (t)〉 = 〈σζε (t), Eu̇ζε (t)〉 − 〈σζε (t), ėζε (t)〉 . (5.2.30)

Since u̇ζε (t)− ẇ(t) ∈ H1
Γ0

(Ω;RN ) by (5.2.12), using (2.3.45) and (5.2.13) we obtain

〈σζε (t), Eu̇ζε (t)〉 = 〈σζε (t), Eẇ(t)〉+ 〈χ(t), Eu̇ζε (t)〉 − 〈χ(t), Eẇ(t)〉 . (5.2.31)

Combining (5.2.29), (5.2.30), and (5.2.31), we deduce that

〈σζε (t), ėζε (t)〉+H(ṗζε (t), ζ(t)) + ε‖ṗζε (t)‖22 = 〈σζε (t)− χ(t), Eẇ(t)〉+ 〈χ(t), Eu̇ζε (t)〉 .

By (5.2.12) we have

〈σζε (t), ėζε (t)〉+H(ṗζε (t), ζ(t))− 〈χ(t), ṗζε (t)〉+ ε‖ṗζε (t)‖22 =

= 〈σζε (t)− χ(t), Eẇ(t)〉+ d
dt 〈χ(t), eζε (t)〉 − 〈χ̇(t), eζε (t)〉 .

(5.2.32)

The energy-dissipation balance (ev3 ′′)ζε can be obtained from (5.2.32) by integration.

Conversely, assume that (uζε , e
ζ
ε ,p

ζ
ε ) satisfies conditions (ev3 ′)ζε and (ev3 ′′)ζε . By dif-

ferentiating (ev3 ′′)ζε we obtain (5.2.32). Thanks to (5.2.30) and (5.2.31), from (5.2.32) we

deduce (5.2.29), which is equivalent to (5.2.28). By (ev3 ′)ζε for L1 -a.e. t ∈ (0,+∞) we have

σζε (t)− εṗζε (t) ∈ K(ζ(t)) = ∂pH(0, ζ(t)) . (5.2.33)

Since H(·, ζ(t)) is convex and H(0, ζ(t)) = 0, condition (5.2.9) follows easily from (5.2.28)

and (5.2.33).

Theorem 5.5. Let f , g , w , u0 , e0 , p0 , ε be as in Definition 5.1. Assume that (u0, e0, p0)

satisfies the kinematic admissibility condition (5.2.10) at t = 0 and that the safe load con-

dition (2.3.45)-(2.3.48) holds. Then there exists an ε-viscoplastic evolution with data f , g ,

and w and initial condition (u0, e0, p0, z0) .
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Proof. Let us fix T > 0. We will apply a fixed-point argument in C0([0, T ];L2(Ω; Im)),

where Im := [ζm,+∞). Given ζ ∈ C0([0, T ];L2(Ω; Im)), by Theorem 5.3 we can find a

unique function (uζε , e
ζ
ε ,p

ζ
ε ), satisfying (5.2.11) and (ev0)ζε -(ev3)ζε . Define

aζε (t) := ρ2 ? trσζε (t) . (5.2.34)

As trσζε ∈ C0([0, T ];L2(Ω)), we deduce from (2.3.41) that aζε ∈ C0([0, T ];C1(Ω)). By

(5.2.15) we have aζε tr ṗζε ∈ C0([0, T ];L2(Ω)), hence (2.3.41) gives that ρ1?(aζε tr ṗζε ) belongs

to C0([0, T ];C1(Ω)). Let zζε ∈ C1([0, T ];C1(Ω)) be defined by

zζε (t) = z0 +

∫ t

0

ρ1 ? (aζε (τ) tr ṗζε (τ)) dτ . (5.2.35)

It satisfies

zζε (0) = z0 and żζε (t) = ρ1 ? (aζε (t) tr ṗζε (t)) for every t ∈ [0, T ] .

Let us define the operator G : C0([0, T ];L2(Ω; Im))→ C0([0, T ];L2(Ω; Im)) by

G(ζ) := V (zζε ) . (5.2.36)

It follows from the definitions that, if ζ is a fixed point of G , then (uζε , e
ζ
ε ,p

ζ
ε , z

ζ
ε ) is an

ε -viscoplastic evolution with data f , g , and w and initial condition (u0, e0, p0, z0).

To find a fixed point we will apply Schauder’s theorem. In the rest of the proof C will

denote a positive constant, depending only on T , ε , Ω, e0 , w , χ , ρ1 , ρ2 , αQ , and βQ ,

which may change from line to line. By (2.3.49) and (5.2.27) in Theorem 5.4 we have

max
t∈[0,T ]

‖eζε (t)‖22 ≤ C + C max
t∈[0,T ]

‖eζε (t)‖2 ,

which implies

max
t∈[0,T ]

‖eζε (t)‖2 ≤ C . (5.2.37)

Using this inequality in (5.2.27) and taking into account (2.3.49), we obtain∫ T

0

‖ṗζε (t)‖22 dt ≤ C
ε . (5.2.38)

From (2.3.41), (5.2.34), and (5.2.37) it follows that

max
t∈[0,T ]

‖aζε (t)‖∞ ≤ C .

Thus, ‖aζε (t) tr ṗζε (t)‖2 ≤ C‖ṗζε (t)‖2 , and hence, by (2.3.41),

‖żζε (t)‖∞ ≤ C‖ṗζε (t)‖2 and ‖∇żζε (t)‖∞ ≤ C‖ṗζε (t)‖2 . (5.2.39)

Inequalities (5.2.38) and (5.2.39) imply that the norm of żζε in L2([0, T ];H1(Ω)) is

bounded by a constant independent of ζ . Therefore, the norm of zζε−z0 in H1([0, T ];H1(Ω))

uniformly bounded. It follows that

zζε − z0 ∈ C0,1/2([0, T ];H1(Ω)) ,
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and its norm is bounded by a constant independent of ζ . This implies that there exists a

closed ball B in H1(Ω) such that

zζε − z0 ∈ C0,1/2([0, T ];B) for every ζ ∈ C0([0, T ];L2(Ω; Im)) .

Since B is compact in L2(Ω), the set {zζε : ζ ∈ C0([0, T ];L2(Ω; Im))} is relatively compact

in C0([0, T ];L2(Ω; Im)) by the Arzelà-Ascoli Theorem. Therefore the operator G defined

by (5.2.36) maps C0([0, T ];L2(Ω; Im)) into a compact subset of C0([0, T ];L2(Ω; Im)).

To apply Schauder’s Theorem, it is enough to show that the operator G is continuous

from C0([0, T ];L2(Ω; Im)) to C0([0, T ];L2(Ω; Im)). The continuity of the map ζ 7→ σζε
follows from (5.2.16). Then (2.3.41) and (5.2.34) imply the continuity of ζ 7→ aζε from

C0([0, T ];L2(Ω; Im)) to C0([0, T ];C1(Ω)). Using (2.3.41) and (5.2.17) we obtain the conti-

nuity of ζ 7→ ρ1 ? (aζε tr ṗζε ) from C0([0, T ];L2(Ω; Im)) to C0([0, T ];C1(Ω)). Then (5.2.35)

gives the continuity of ζ 7→ zζε from C0([0, T ];L2(Ω; Im)) to C1([0, T ];C1(Ω)). The conti-

nuity of G follows now easily from (5.2.36).

5.3 Statement of the main result

We now state the main result of the chapter.

Theorem 5.6. Assume that the safe load condition (2.3.45)-(2.3.48) holds. Let f , g ,

and w be as in (2.3.42), and assume that u0 , e0 , p0 , z0 satisfy (2.3.53)-(2.3.57). Then

there exists a rescaled viscosity evolution with data f , g , and w , and initial condition

(u0, e0, p0, z0, 0) .

The proof will be given in Sections 5.4, 5.5, and 5.6 according to the following scheme. In

Section 5.4 we introduce an intrinsic rescaling of all the ε -viscoplastic evolutions through a

change of variables t = t◦ε(s), and prove that, up to a subsequence, these rescaled functions,

together with t◦ε converge to a function (u◦, e◦,p◦, z◦, t◦) satisfying (4.2.4) and conditions

(ev0)◦, (ev1)◦, (ev2)◦, and (ev3 ′)◦. As a first step towards the proof of the energy-dissipation

balance (4.3.7), which is equivalent to (4.3.1) by Proposition 4.10, in Section 5.5 we prove

the energy inequality (5.5.1). The proof relies on the lower semicontinuity of the terms∫ S

0

(
H(ṗ◦(s), ζ◦(s)) + 〈χ̇◦(s),p◦(s)〉

)
ds− 〈χ◦(S),p◦(S)〉+ 〈χ0, p0〉 ,∫ S

0

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds , (5.3.1)

which is proved in Lemmas 5.10- 5.13. At the end of Section 5.5 we also prove the evolution

law for the internal variable (ev4)◦. The proof of the energy-dissipation balance is completed

in Section 5.6, where we prove the energy inequality (5.6.2) through a suitable discrete

approximation of the integrals that appear in this inequality. Note that (5.6.2) is not the

opposite of (5.5.1), since the term (5.3.1) is replaced by∫
A◦S

〈σ◦(s)− πK(ζ◦(s))(σ
◦(s)), ṗ◦(s)〉 ds .

This finally allows us to deduce the partial flow-rule (4.3.2) from (5.5.1) and (5.6.2).
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5.4 Proof of Theorem 5.6: Part one

We start with a technical lemma.

Lemma 5.7. Let u ∈ BD(Ω) . Then there exists a sequence uk of Lipschitz functions from

Ω into RN , with uk = 0 on ∂Ω , such that

uk → u strongly in L1(Ω;RN ), (5.4.1)

Euk ⇀ (Eu) Ω− u� νHn−1 Γ0 weakly∗ in Mb(Ω ∪ Γ0;RN ). (5.4.2)

Proof. It is enough to prove the theorem in a neighbourhood of each point of ∂Ω: the global

result can be obtained through a partition of unity. Since Ω has Lipschitz boundary, we

may assume that it is the subgraph of a Lipschitz function, i.e.,

Ω := {x ∈ RN : x̂ ∈ A , a < xn < h(x̂)} ⊂ R := A×(a, b) , (5.4.3)

where x̂ := (x1, . . . , xn−1), A is an open rectangle in Rn−1 , a, b ∈ R , a < b , and h : A →
(a, b) is a Lipschitz function. We may also assume that suppu ⊂⊂ R and that Γ0 ⊂ R∩∂Ω.

Since Ω has Lipschitz boundary, by a standard approximation result (see, e.g., [52,

Chapter II, Theorem 3.2]) there exists a sequence vk ∈ C∞(Ω̄;RN ) such that

vk → u in L1(Ω;RN ),

Evk ⇀ (Eu) Ω weakly∗ in Mb(Ω̄;RN ), (5.4.4)

‖Evk‖1 → ‖Eu‖1,

and therefore (see, e.g., [52, Chapter II, Theorem 3.1])

vk → u in L1(∂Ω;RN ). (5.4.5)

Since suppu ⊂⊂ R , we may assume that supp vk ⊂⊂ R for every k .

Using the special form (5.4.3) of Ω, we can define a sequence of Lipschitz functions

ψj : Ω→ [0, 1] by ψj(x) := min{j(h(x̂)− xn), 1} . Then ψj = 0 on the graph of h , ψj → 1

on Ω, and ∇ψj ⇀ −νHn−1 Γ0 weakly∗ in Mb(Ω ∪ Γ0;RN ). Therefore for every k we

have

ψjvk → vk in L1(Ω;RN ),

E(ψjvk) ⇀ Evk − vk � νHn−1 Γ0 weakly∗ in Mb(Ω ∪ Γ0;RN ).
(5.4.6)

Since the weak∗ convergence is metrisable on bounded sets of Mb(Ω∪Γ0;RN ), it follows

from (5.4.4), (5.4.5) and (5.4.6), that for every k we can select jk so that (5.4.1) and (5.4.2)

are satisfied by uk := ψjkvk , which vanishes on ∂Ω by the properties of ψj and vk .

Proof of Theorem 5.6. If we apply Lemma 5.7 to u = u0 −w(0) we find a sequence uε0 in

H1(Ω;RN ) such that

uε0 = w(0) Hn−1-a.e. in Γ0, (5.4.7)

uε0 ⇀ u0 weakly∗ in BD(Ω), (5.4.8)

Euε0 ⇀ (Eu0) Ω + (w(0)− u0)� νHn−1 Γ0 weakly∗ in Mb(Ω ∪ Γ0;RN ). (5.4.9)
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We define pε0 := Euε0 − e0 . From the weak kinematic admissibility condition (2.3.55), and

from (5.4.9), we have

pε0 ⇀ p0 weakly∗ in Mb(Ω ∪ Γ0;RN ). (5.4.10)

By Theorem 5.5 there exists an ε -viscoplastic evolution (uε, eε,pε, zε) with boundary

datum w and initial condition (uε0, e0, p
ε
0, z0). The energy equality (5.2.27), together with

(2.3.38) and (2.3.49), implies that for every T > 0 there exists a constant CT , independent

of ε , such that

sup
t∈[0,T ]

‖eε(t)‖2 ≤ CT and sup
t∈[0,T ]

‖σε(t)‖2 ≤ CT (5.4.11)

(see the proof of (5.2.37)). The same equality and the same estimates, together with (5.4.11),

give also that for every T > 0 there exists a constant MT , independent of ε , such that∫ T

0

‖ṗε(t)‖1 dt ≤MT < +∞ . (5.4.12)

Let s◦ε : [0,+∞)→ [0,+∞) be the absolutely continuous, increasing, and bijective func-

tion defined by

s◦ε(t) :=

∫ t

0

(‖ṗε(τ)‖1 + ‖χ̇(τ)‖∞ + ‖Eẇ(τ)‖2 + 1) dτ. (5.4.13)

It is easy to see that

s◦ε(t2)− s◦ε(t1) ≥ t2 − t1 for every 0 ≤ t1 < t2 < +∞. (5.4.14)

Let t◦ε : [0,+∞)→ [0,+∞) be the inverse of s◦ε . By (5.4.14) t◦ε satisfies

0 < t◦ε(s2)− t◦ε(s1) ≤ s2 − s1 for every 0 ≤ s1 < s2 < +∞.

By the Arzelà-Ascoli Theorem we may assume that t◦ε converges uniformly on compact sets

to a function t◦: [0,+∞)→ [0,+∞) such that

0 ≤ t◦(s2)− t◦(s1) ≤ s2 − s1 for every 0 ≤ s1 < s2 < +∞.

We observe that t◦(0) = 0. Let us prove that

t◦(s)→ +∞ when s→ +∞ (5.4.15)

Indeed, by (2.3.48), (5.4.11), (5.4.12), and (5.4.13), for every T > 0 there exists a constant

sT , independent of ε , such that s◦ε(T ) < sT . This gives T ≤ t◦ε(sT ) for every ε , which

implies T ≤ t◦(sT ), and concludes the proof of (5.4.15).

Define the rescaled functions on [0,+∞) by

u◦ε(s) := uε(t
◦
ε(s)) , e◦ε(s) := eε(t

◦
ε(s)) , p◦ε(s) := pε(t

◦
ε(s)) , z◦ε(s) := zε(t

◦
ε(s)) ,

f◦ε(s) := f(t◦ε(s)) , g◦ε(s) := g(t◦ε(s)) , w◦ε(s) := w(t◦ε(s)) , (5.4.16)

σ◦ε(s) := σε(t
◦
ε(s)) , ζ◦ε(s) := ζε(t

◦
ε(s)) , χ◦ε(s) := χ(t◦ε(s)) .

Note that by (5.2.2)

σ◦ε(s) := Ce◦ε(s) and ζ◦ε(s) := V (z◦ε(s)) (5.4.17)
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for every s ∈ [0,+∞). Since t◦ε(s) → t◦(s) uniformly on compact sets, the continuity

properties of f , g , w , and χ imply that for every s ∈ [0,+∞) we have that

f◦ε(s)→ f◦(s) strongly in Ln(Ω;RN ) , g◦ε(s)→ g◦(s) strongly in L∞(Γ1;RN ) ,

w◦ε(s)→ w◦(s) strongly in H1(Ω;RN ) , χ◦ε(s)→ χ◦(s) strongly in L2(Ω;RN ) ,

(5.4.18)

where

f◦ ∈ H1
loc([0,+∞);Ln(Ω;RN )) , g◦ ∈ H1

loc([0,+∞);L∞(Γ1;RN )) ,

w◦ ∈ H1
loc([0,+∞);H1(Ω;RN )) , χ◦ ∈ H1

loc([0,+∞);L2(Ω;MN×N
sym ))

are defined by

f◦(s) := f(t◦(s)) , g◦(s) := g(t◦(s)) , w◦(s) := w(t◦(s)) , χ◦(s) := χ(t◦(s)). (5.4.19)

From the definitions of s◦ε and t◦ε we obtain easily that

‖p◦ε(s2)− p◦ε(s1)‖1 + ‖χ◦ε(s2)− χ◦ε(s1)‖∞ + ‖Ew◦ε(s2)− Ew◦ε(s1)‖2 ≤ s2 − s1 (5.4.20)

for every 0 ≤ s1 < s2 , hence

‖ṗ◦ε(s)‖1 + ‖χ̇◦ε(s)‖∞ + ‖Eẇ◦ε(s)‖2 ≤ 1 for L1-a.e. s ∈ [0,+∞) . (5.4.21)

Let M be an upper bound of ‖pε0‖1 (see (5.4.10)). From (5.4.20) we get

‖p◦ε(s)‖1 ≤M + s (5.4.22)

for every s ∈ [0,+∞). Passing to the limit in (5.4.20), we obtain

‖χ◦(s2)− χ◦(s1)‖∞ + ‖Ew◦(s2)− Ew◦(s1)‖2 ≤ s2 − s1 (5.4.23)

for every 0 ≤ s1 < s2 , hence

‖χ̇◦(s)‖∞ + ‖Eẇ◦(s)‖2 ≤ 1 for L1-a.e. s ∈ [0,+∞) . (5.4.24)

For every S > 0, let

BS := {p ∈Mb(Ω ∪ Γ0;MN×N
sym ) : ‖p‖1 ≤M + S} .

There exists a distance dS on BS inducing the weak∗ convergence such that

dS(p, q) ≤ ‖p− q‖1 for every p, q ∈ BS . (5.4.25)

By (5.4.20) we have that p◦ε(s) ∈ BS for every s ∈ [0, S] and every ε > 0. By (5.4.20)

and (5.4.25), the sequence p◦ε(s) is equicontinuous on [0, S] with respect to the distance dS .

We then apply the Arzelà-Ascoli Theorem for every S > 0 and we find that there exists a

subsequence, still denoted by p◦ε , and a function p◦: [0,+∞) → Mb(Ω ∪ Γ0;MN×N
sym ) such

that

p◦ε(s) ⇀ p◦(s) weakly∗ in Mb(Ω ∪ Γ0;MN×N
sym ) (5.4.26)
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for every s ∈ [0,+∞). By lower semicontinuity we obtain from (5.4.20)

‖p◦(s2)− p◦(s1)‖1 ≤ s2 − s1 (5.4.27)

for every 0 ≤ s1 < s2 , hence

‖ṗ◦(s)‖1 ≤ 1 for L1-a.e. s ∈ [0,+∞) . (5.4.28)

where the time derivative ṗ◦(s) is defined as in (4.2.6). Moreover, from (5.4.20) and (5.4.26)

we obtain that

p◦ε(sε) ⇀ p◦(s) weakly∗ in Mb(Ω ∪ Γ0;MN×N
sym ) (5.4.29)

for every s ∈ [0,+∞) and every sε → s .

We now show that for every s ∈ [0,+∞) there exist e◦(s) ∈ L2(Ω;MN×N
sym ) and u◦(s) ∈

BD(Ω) such that (u◦(s), e◦(s),p◦(s),w◦(s)) satisfies the weak kinematic admissibility con-

dition (4.2.11), σ◦(s) := C e◦(s) satisfies the equilibrium condition (4.2.12), and

e◦ε(sε) ⇀ e◦(s) weakly in L2(Ω;MN×N
sym ) , (5.4.30)

u◦ε(sε) ⇀ u◦(s) weakly∗ in BD(Ω) , (5.4.31)

for every sε → s .

Let us fix s ∈ [0,+∞). By (5.4.11) the sequence ‖e◦ε(s)‖2 is bounded uniformly with

respect to ε , thus there exists a subsequence e◦εj (s) of e◦ε(s), possibly depending on s , and

a function e◦(s) ∈ L2(Ω;MN×N
sym ) such that

e◦εj (s) ⇀ e◦(s) weakly in L2(Ω;MN×N
sym ) . (5.4.32)

By (5.4.26) and (5.4.32), the kinematic admissibility condition (5.2.3) implies that the se-

quence uεj (s) is bounded in BD(Ω). Therefore, up to extracting a further subsequence, it

converges weakly∗ in BD(Ω) to a function u◦(s) ∈ BD(Ω) such that Eu◦(s) = e◦(s)+p◦(s)

in Ω. By considering suitable extensions and arguing as in [13, Lemma 2.1] we obtain also

that p◦(s) = (w◦(s) − u◦(s))� νHn−1 in Γ0 . Therefore weak kinematic admissibility con-

dition (4.2.11) is satisfied.

Passing to the limit in (5.2.4) we obtain the equilibrium condition (4.2.12). This implies

Q(e◦(s)) ≤ Q(e◦(s) + Eϕ)− 〈f◦(s), ϕ〉Ω − 〈g◦(s), ϕ〉Γ1 (5.4.33)

for every ϕ ∈ H1
Γ0

(Ω;Rn). By strict convexity the inequality is strict, unless Eϕ = 0 Ln -a.e.

in Ω. It remains to prove (5.4.30) and (5.4.31) for an arbitrary sequence sε → s . As in the

previous step, we see that ‖e◦ε(sε)‖2 is bounded uniformly with respect to ε . Let e◦ε̂j (sε̂j )

be a subsequence of e◦ε(sε) which converges to a function ê(s) weakly in L2(Ω;Rn). The

previous arguments, together with (5.4.29), show that there exists a function û(s) ∈ BD(Ω)

such that u◦ε̂j (sε̂j ) ⇀ û(s) weakly∗ in BD(Ω), Eû(s) = ê(s) + p◦(s) in Ω, and p◦(s) =

(w◦(s)−û(s))� νHn−1 in Γ0 . By difference we obtain that E(û(s)−u◦(s)) = ê(s)−e◦(s) in

Ω and (û(s)−u◦(s))� ν = 0 Hn−1 -a.e. on Γ0 . By (1.2.2) we have û(s)−u◦(s) ∈ H1(Ω;Rn)

and û(s)− u◦(s) = 0 on Γ0 .

By (5.4.33) we have Q(e◦(s)) ≤ Q(ê(s))−〈f◦(s), û(s)−u◦(s)〉Ω−〈g◦(s), û(s)−u◦(s)〉Γ1
.

Exchanging the roles of e◦(s) and ê(s) we obtain Q(e◦(s)) = Q(ê(s)) − 〈f◦(s), û(s) −
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u◦(s)〉Ω − 〈g◦(s), û(s) − u◦(s)〉Γ1
. The strict convexity argument mentioned after (5.4.33)

yields e◦(s) = ê(s) Ln -a.e. in Ω, which in turn gives u◦(s) = û(s) Ln -a.e. in Ω. This

shows that the limit does not depend on the subsequence, and concludes the proof of (5.4.30)

and (5.4.31).

Let us prove that

e◦ is weakly continuous in L2(Ω;MN×N
sym ). (5.4.34)

Let sk be a sequence converging to s . For every fixed k , we can apply (5.4.30) with

sε = sk for every ε , and we find εk > 0 such that dw(e◦εk(sk), e◦(sk)) < 1
k , where dw

is a distance which metrises the weak topology on bounded subsets of L2(Ω;MN×N
sym ). By

(5.4.30), e◦εk(sk) ⇀ e◦(s) weakly in L2(Ω;MN×N
sym ), so that the previous inequality gives

e◦(sk) ⇀ e◦(s) weakly in L2(Ω;MN×N
sym ). This concludes the proof of the weak continuity

of e◦. In a similar way we can prove that u◦: [0,+∞)→ BD(Ω) is weakly∗ continuous.

Define now for every s ∈ [0,+∞)

a◦ε(s) = ρ2 ? trσ◦ε(s) , (5.4.35)

a◦(s) := ρ2 ? trσ◦(s) , (5.4.36)

so that, by (5.2.6) and (5.4.16),

ż◦ε(s) = ρ1 ?
(
a◦ε(s) tr ṗ◦ε(s)

)
(5.4.37)

for L1 -a.e. s ∈ [0,+∞). Using (2.3.41) and (5.4.11), we can prove that for every S > 0

there exists a constant C◦S , independent of ε , such that

sup
s∈[0,S]

‖a◦ε(s)‖∞ ≤ C◦S , sup
s∈[0,S]

‖∇a◦ε(s)‖∞ ≤ C◦S . (5.4.38)

Therefore for every s , the functions a◦ε(s) are equicontinuous and equibounded on Ω. Since

σ◦ε(s) ⇀ σ◦(s) weakly in L2(Ω,MN×N
sym ), the sequence a◦ε(s) converges to a◦(s) pointwise

in Ω. It follows that

a◦ε(s)→ a◦(s) strongly in C0(Ω) (5.4.39)

for every s ∈ [0,+∞).

By (5.4.28) and (5.4.38) we have ‖a◦ε(s) tr ṗ◦ε(s)‖1 ≤
√
nC◦S for L1 -a.e. s ∈ [0, S] , and

hence by (2.3.41) and (5.4.37)

‖ż◦ε(s)‖∞ ≤
√
nC◦S‖ρ1‖∞ and ‖∇ż◦ε(s)‖∞ ≤

√
nC◦S‖∇ρ1‖∞ . (5.4.40)

This implies that

‖z◦ε(s2)− z◦ε(s1)‖∞ + ‖∇z◦ε(s2)−∇z◦ε(s1)‖∞ ≤M◦S |s2 − s1| (5.4.41)

for every s1, s2 ∈ [0, S] , where M◦S :=
√
nC◦S(‖ρ1‖∞ + ‖∇ρ1‖∞).

We can then apply the Arzelà-Ascoli Theorem as in the proof of (5.4.26). This gives

a subsequence, still denoted z◦ε , such that z◦ε(s) ⇀ z◦(s) weakly∗ in W 1,∞(Ω) for every

s ∈ [0,+∞), which implies

z◦ε(s)→ z◦(s) strongly in C0(Ω) . (5.4.42)
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Using (5.4.41), we deduce that

z◦ε → z◦ strongly in C0([0, S];C0(Ω)) . (5.4.43)

Passing to the limit in (5.4.41), we get

‖z◦(s2)− z◦(s1)‖∞ + ‖∇z◦(s2)−∇z◦(s1)‖∞ ≤M◦S |s2 − s1| (5.4.44)

for every s1, s2 ∈ [0, S] .

Let us fix r > n . Since W 1,r(Ω) is reflexive, it follows from (5.4.44) that the strong

W 1,r limit

ż◦(s) := s- lim
h→0

z◦(s+ h)− z◦(s)
h

(5.4.45)

exists for L1 -a.e. s ∈ [0,+∞), and that ż◦ ∈ L∞loc([0,+∞);W 1,r(Ω)). Since the embedding

of W 1,r(Ω) into C0(Ω) is continuous, the limit in (5.4.45) takes place in C0(Ω) and ż◦ ∈
L∞loc([0,+∞);C0(Ω)). Moreover, from (5.4.41) and (5.4.42) we obtain that

z◦ε(sε)→ z◦(s) strongly in C0(Ω) (5.4.46)

for every s ∈ [0,+∞) and every sε → s .

For every s ∈ [0,+∞) let us define

ζ◦(s) := V (z◦(s)) . (5.4.47)

The initial condition (ev0)◦ follows easily from the definitions of u◦, e◦, p◦, z◦, and t◦,

thanks to (5.4.8) and (5.4.10).

To prove (ev3 ′)◦ we need Lemmas 5.8 and 5.9. The proof will be continued after

Lemma 5.9.

We start with an elementary result about the convergence of inverse functions. To this

end we introduce some notation. For every t ∈ [0,+∞) we set

s◦−(t) := sup{s ∈ [0,+∞) : t◦(s) < t} , (5.4.48)

s◦+(t) := inf{s ∈ [0,+∞) : t◦(s) > t} , (5.4.49)

with the convention sup Ø = 0, so that s◦−(0) = 0. We also define the set

S◦ := {t ∈ [0,+∞) : s◦−(t) < s◦+(t)} (5.4.50)

Lemma 5.8. Let s◦− and s◦+ be as in (5.4.48) and (5.4.49), respectively. Then

s◦−(t) ≤ s◦+(t) and t◦(s◦−(t)) = t = t◦(s◦+(t)) (5.4.51)

for every t ∈ [0,+∞) , and

s◦−(t◦(s)) ≤ s ≤ s◦+(t◦(s)) (5.4.52)

for every s ∈ [0,+∞) . Moreover the set S◦ defined by (5.4.50) is at most countable, and

the set U◦ introduced in (4.2.14) satisfies

U◦=
⋃
t∈S◦

(s◦−(t), s◦+(t)) . (5.4.53)
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Finally

s◦−(t) ≤ lim inf
ε→0

s◦ε(t) ≤ lim sup
ε→0

s◦ε(t) ≤ s◦+(t) (5.4.54)

for every t ∈ [0,+∞) .

Proof. All assertions are well-known properties of monotone functions, except for the last

one. We only prove the first inequality in (5.4.54). If s◦−(t) = 0 the inequality is obvious.

If s◦−(t) > 0 we fix 0 < s < s◦−(t). By the definition of s◦− , we have t◦(s) < t ; for ε

small enough, this implies t◦ε(s) < t , hence s < s◦ε(t). This gives s ≤ lim infε s
◦
ε(t), and the

conclusion follows from the arbitrariness of s < s◦−(t).

Lemma 5.9. Let t ∈ [0,+∞) \ S◦, where S◦ is the set defined in (5.4.50). Then

uε(t) ⇀ u◦(s◦−(t)) weakly∗ in BD(Ω) , (5.4.55)

eε(t) ⇀ e◦(s◦−(t)) weakly in L2(Ω;MN×N
sym ) , (5.4.56)

pε(t) ⇀ p◦(s◦−(t)) weakly∗ in Mb(Ω ∪ Γ0;MN×N
sym ) , (5.4.57)

zε(t)→ z◦(s◦−(t)) strongly in C0(Ω̄) . (5.4.58)

Proof. Since t /∈ S◦, Lemma 5.8 gives s◦ε(t)→ s◦−(t). By (5.4.16) we have uε(t) = u◦ε(s
◦
ε(t)),

eε(t) = e◦ε(s
◦
ε(t)), pε(t) = p◦ε(s

◦
ε(t)), zε(t) = z◦ε(s

◦
ε(t)). Therefore the conclusion follows

from (5.4.29), (5.4.30), (5.4.31), and (5.4.46).

Proof of Theorem 5.6 (continuation). By (2.3.38), (2.3.49), (5.2.27), and (5.4.11), for every

T > 0 we have

ε2

∫ T

0

‖ṗε(t)‖22dt→ 0 .

This implies that a subsequence, not relabelled, satisfies

εṗε(t)→ 0 strongly in L2(Ω;MN×N
sym )

for L1 -a.e. t ∈ [0,+∞). This fact, together with Lemma 5.9, yields that

σε(t)− εṗε(t) ⇀ σ◦(s◦−(t)) weakly in L2(Ω;MN×N
sym ) ,

ζε(t)→ ζ◦(s◦−(t)) strongly in C0(Ω̄) ,

for L1 -a.e. t ∈ [0,+∞). Since K is convex, the inclusion σε(t) − εṗε(t) ∈ K(ζε(t)),

established in (5.2.26), passes to the limit and we obtain

σ◦(s◦−(t)) ∈ K(ζ◦(s◦−(t))). (5.4.59)

By (5.4.34), (5.4.44), and the left continuity of s◦, (5.4.59) holds for every t ∈ [0,+∞). A

similar proof shows that

σ◦(s◦+(t)) ∈ K(ζ◦(s◦+(t))). (5.4.60)

Let U◦ be the set defined in (4.2.14) and let s ∈ [0,+∞) \ U◦. By (5.4.52) and (5.4.53)

we have

either s = s◦−(t◦(s)) or s = s◦+(t◦(s)) . (5.4.61)



5.5 Energy inequality and evolution law 5. Existence of a rescaled viscosity evolution

The partial stress constraint (ev3 ′)◦ of Definition 4.5 follows now from (5.4.59), (5.4.60),

and (5.4.61).

It remains to prove the energy-dissipation balance (4.3.1), the partial flow-rule (4.3.2),

and the evolution law for the internal variable (ev4)◦. The proof will be continued after

Remark 5.14.

5.5 Proof of Theorem 5.6: energy inequality and evolu-

tion law

The goal of the first part of this section is to prove that the functions u◦, e◦, p◦, z◦,

w◦, σ◦, ζ◦, and χ◦ introduced in the previous section satisfy the energy inequality

Q(e◦(S))−Q(e0) +

∫ S

0

(
H(ṗ◦(s), ζ◦(s)) + 〈χ̇◦(s),p◦(s)〉

)
ds−

− 〈χ◦(S),p◦(S)〉+ 〈χ0, p0〉+

∫ S

0

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds ≤ (5.5.1)

≤
∫ S

0

〈σ◦(s)− χ◦(s), Eẇ◦(s)〉 ds−
∫ S

0

〈χ̇◦(s), e◦(s)〉 ds+ 〈χ◦(S), e◦(S)〉 − 〈χ0, e0〉

for every S > 0, where χ0 := χ(0) = χ◦(0). To this aim we prove four lower semicontinuity

results concerning the integrals in the left-hand side of (5.5.1) and the functions p◦ε , σ◦ε ,

ζ◦ε , and χ◦ε defined in (5.4.16).

Lemma 5.10. For every S > 0 , ψ ∈ C0(Ω)+ , and ζ ∈ C0([0,+∞);C0(Ω)+) we have∫ S

0

H(ψṗ◦(s), ζ(s)) ds ≤ lim inf
ε→0

∫ S

0

H(ψṗ◦ε(s), ζ(s)) ds . (5.5.2)

Proof. Since the function s 7→ ṗ◦(s) is weakly∗ measurable from [0,+∞) to Mb(Ω ∪
Γ0;MN×N

sym ), it is possible to define µε , µ ∈Mb((0, S)×(Ω ∪ Γ0);MN×N
sym ) by setting

〈ϕ, µε〉 :=

∫ S

0

〈ϕ(s, ·), ṗ◦ε(s)〉 ds and 〈ϕ, µ〉 :=

∫ S

0

〈ϕ(s, ·), ṗ◦(s)〉 ds

for every ϕ ∈ C0
0 ((0, S)×(Ω ∪ Γ0);MN×N

sym ). If ϕ ∈ C1
c ((0, S)×(Ω ∪ Γ0);MN×N

sym ), we have

〈ϕ, µε〉 = −
∫ S

0

〈∂sϕ(s, ·),p◦ε(s)〉 ds→ −
∫ S

0

〈∂sϕ(s, ·),p◦(s)〉 ds = 〈ϕ, µ〉,

by (5.4.22) and (5.4.26). Since ‖ṗ◦ε(s)‖1 ≤ 1 and ‖ṗ◦(s)‖1 ≤ 1 by (5.4.21) and (5.4.28),

by uniform approximation we obtain 〈ϕ, µε〉 → 〈ϕ, µ〉 for every ϕ ∈ C0
0 ((0, S)×(Ω ∪

Γ0);MN×N
sym )), i.e.,

µε ⇀ µ weakly∗ in Mb((0, S)×(Ω ∪ Γ0);MN×N
sym ). (5.5.3)

Since s 7→ |ṗ◦(s)| is weakly∗ measurable from [0,+∞) to Mb(Ω∪Γ0), we define λε , λ ∈
Mb((0, S)×(Ω ∪ Γ0)) by setting

〈φ, λε〉 :=

∫ S

0

〈φ(s, ·), |ṗ◦ε(s)|〉 ds and 〈φ, λ〉 :=

∫ S

0

〈φ(s, ·), |ṗ◦(s)|〉 ds
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for every φ ∈ C0
0 ((0, S)×(Ω ∪ Γ0)). It is easy to see that µε � λε and µ� λ . Moreover

dµε
dλε

(s, x) =
dṗ◦ε(s)

d|ṗ◦ε(s)|
(x) and

dµ

dλ
(s, x) =

dṗ◦(s)

d|ṗ◦(s)|
(x) .

Using the definition of H , see (1.3.20), it follows that∫ S

0

H(ψṗ◦ε(s), ζ(s)) ds =

∫
(0,S)×(Ω∪Γ0)

H(ψ(x)
dµε
dλε

(s, x), ζ(s, x)) dλε(s, x) , (5.5.4)∫ S

0

H(ψṗ◦(s), ζ(s)) ds =

∫
(0,S)×(Ω∪Γ0)

H(ψ(x)
dµ

dλ
(s, x), ζ(s, x)) dλ(s, x) . (5.5.5)

By (5.5.3) we can now apply Reshetnyak’s lower semicontinuity Theorem [39, Theorem 2]

and we obtain ∫
(0,S)×(Ω∪Γ0)

H(ψ(x)
dµ

dλ
(s, x), ζ(s, x)) dλ(s, x) ≤

≤ lim inf
ε→0

∫
(0,S)×(Ω∪Γ0)

H(ψ(x)
dµε
dλε

(s, x), ζ(s, x)) dλε(s, x) .

(5.5.6)

Inequality (5.5.2) follows now from (5.5.4), (5.5.5), and (5.5.6).

Lemma 5.11. For every S > 0 , and every ψ ∈ C0(Ω)+ , we have∫ S

0

H(ψṗ◦(s), ζ◦(s)) ds ≤ lim inf
ε→0

∫ S

0

H(ψṗ◦ε(s), ζ
◦
ε(s)) ds . (5.5.7)

Proof. As ζ◦ ∈ C0([0,+∞);C0(Ω)) by (5.4.44) and (5.4.47), we can apply Lemma 5.10 and

we obtain ∫ S

0

H(ψṗ◦(s), ζ◦(s)) ds ≤ lim inf
ε→0

∫ S

0

H(ψṗ◦ε(s), ζ
◦(s)) ds ,

for every S > 0. Using (1.3.10), (1.3.12), (5.4.21), and the definition of H we obtain for

every s ∈ [0,+∞)

|H(ψṗ◦ε(s), ζ
◦(s))−H(ψṗ◦ε(s), ζ

◦
ε(s))| ≤MK‖ψ‖∞‖ζ◦ε(s)− ζ

◦(s)‖∞ .

By (5.4.17), (5.4.43), and (5.4.47) ‖ζ◦ε(s) − ζ
◦(s)‖∞ → 0 uniformly on compact sets, and

inequality (5.5.7) follows.

Lemma 5.12. For every S > 0 , we have∫ S

0

(
H(ṗ◦(s), ζ◦(s)) + 〈χ̇◦(s),p◦(s)〉

)
ds− 〈χ◦(S),p◦(S)〉+ 〈χ0, p0〉 ≤

≤ lim inf
ε→0

∫ S

0

(
H(ṗ◦ε(s), ζ

◦
ε(s))− 〈χ◦ε(s), ṗ◦ε(s)〉

)
ds .

(5.5.8)

Proof. We consider a sequence ψk ∈ C∞(Ω̄) , with 0 ≤ ψk ≤ 1 in Ω̄ and ψk = 0 in a

neighbourhood of Γ̄1 , such that ψk(x)→ 1 for every x ∈ Ω ∪ Γ0 . By (2.3.49) the function

H(ṗ◦ε(s), ζ
◦(s))− χ◦ε(s) : ṗ◦ε(s) is positive Ln -a.e. in Ω for every s ∈ [0,+∞), hence

H(ψk ṗ
◦
ε(s), ζ

◦(s))− 〈ψk χ◦ε(s), ṗ◦ε(s)〉 ≤ H(ṗ◦ε(s), ζ
◦(s))− 〈χ◦ε(s), ṗ◦ε(s)〉 . (5.5.9)
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Integrating by parts in time, we have∫ S

0

〈ψk χ◦ε(s), ṗ◦ε(s)〉 ds = −
∫ S

0

〈ψk χ̇◦ε(s),p◦ε(s)〉 ds+

+ 〈ψk χ◦ε(S),p◦ε(S)〉 − 〈ψk χ0, p
ε
0〉 .

(5.5.10)

Performing the change of variables t = t◦ε(s), we get∫ S

0

〈ψk χ̇◦ε(s),p◦ε(s)〉 ds =

∫ Tε

0

〈ψk χ̇(t),pε(t)〉 dt , (5.5.11)

where Tε := t◦ε(S). As ψk = 0 on Γ1 , integrating by parts in space and using (5.2.3), we

obtain for every t ∈ [0, Tε]

〈ψk χ̇(t),pε(t)〉 = −〈ψk χ̇(t), eε(t)− Ew(t)〉 −

− 〈χ̇(t), (uε(t)−w(t))�∇ψk〉+ 〈ḟ(t), ψk (uε(t)−w(t))〉 .

which, thanks to Lemma 5.9 converges to

−〈ψk χ̇(t), e◦(s◦−(t))− Ew(t)〉 − 〈χ̇(t), (u◦(s◦−(t))−w(t))�∇ψk〉+

+ 〈ḟ(t), ψk (u◦(s◦−(t))−w(t))〉 .

By (2.3.28), this expression equals to 〈[χ̇(t) :p◦(s◦−(t))], ψk〉 ; as ‖pε(t)‖1 is bounded by

(5.4.10) and (5.4.12), while ‖χ̇(t)‖∞ is locally integrable by (2.3.48), the Dominated Con-

vergence Theorem yields

lim
ε→0

∫ Tε

0

〈ψk χ̇(t),pε(t)〉 dt =

∫ T

0

〈[χ̇(t) :p(s◦−(t))], ψk〉 dt .

Let ω(t) := χ̇(t) if the derivative exists at t , and ω(t) = 0 otherwise. By (1.4.17) and

(5.4.19) we get

χ̇◦(s) = ω(t◦(s)) ṫ◦(s) for L1-a.e. s ∈ [0, S].

This equality, together with the change of variables formula (1.4.18), yields∫ T

0

〈[χ̇(t) :p(s◦−(t))], ψk〉 dt =

∫ T

0

〈[ω(t) :p(s◦−(t))], ψk〉 dt =

=

∫ S

0

〈[χ̇◦(s) :p◦(s◦−(t◦(s)))], ψk〉 ds =

∫ S

0

〈[χ̇◦(s) :p◦(s)], ψk〉 ds ,
(5.5.12)

where the last equality follows from the fact that χ̇◦(s) = 0 for L1 -a.e. s ∈ U◦ and that

s◦−(t◦(s)) = s for L1 -a.e. s ∈ [0, S]\U◦ (indeed, by (5.4.52) and (5.4.53), the only exceptions

are the points of the form s = s◦+(t) for t ∈ S◦). We conclude that

lim
ε→0

∫ S

0

〈ψk χ̇◦ε(s),p◦ε(s)〉 ds =

∫ S

0

〈[χ̇◦(s) :p◦(s)], ψk〉 ds . (5.5.13)

Another integration-by-parts argument, using (5.4.7), (5.4.8), (5.4.10), and (5.4.18),

shows that

lim
ε→0

(
〈ψk χ◦ε(S),p◦ε(S)〉 − 〈ψk χ0, p

ε
0〉
)

= 〈[χ◦(S) :p◦(S)], ψk〉 − 〈[χ0 : p0], ψk〉 . (5.5.14)
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By (5.5.7), (5.5.9), (5.5.13), and (5.5.14) we finally get∫ S

0

(
H(ψk ṗ

◦(s), ζ◦(s)) + 〈[χ̇◦(s) :p◦(s)], ψk〉
)
ds− 〈[χ◦(S) :p◦(S)], ψk〉+

+ 〈[χ0 : p0], ψk〉 ≤ lim inf
ε→0

∫ S

0

(
H(ψk ṗ

◦
ε(s), ζ

◦
ε(s))− 〈ψk χ◦ε(s), ṗ◦ε(s)〉

)
ds ≤

≤ lim inf
ε→0

∫ S

0

(
H(ṗ◦ε(s), ζ

◦
ε(s))− 〈χ◦ε(s), ṗ◦ε(s)〉

)
ds .

Using (1.3.12), (2.3.48), (5.4.27), (5.4.28), and (5.4.44) we can pass to the limit as k →∞ ,

applying the Dominated Convergence Theorem, and we obtain (5.5.8) .

We recall that we are adopting convention (1.2.1) about Lp -norms.

Lemma 5.13. Let S > 0 , and let A◦ be as in (4.2.7). Then∫
A◦S

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds ≤ lim inf
ε→0+

∫
A◦S

‖ṗ◦ε(s)‖2 d2(σ◦ε(s),K(ζ◦ε(s))) ds , (5.5.15)

where

A◦S = A◦∩ [0, S] . (5.5.16)

Proof. Since e◦ is continuous for the weak topology of L2(Ω;MN×N
sym ) by (5.4.34), and ζ◦ is

continuous for the strong topology of C0(Ω) by (5.4.44), by Remark 4.3 A◦ is open. Observe

that we can equivalently define A◦ as the set of times s such that d2(σ◦(s),K(ζ◦(s))) > 0 .

We fix a compact set C ⊂ A◦S and a continuous function ψ : C → [0,+∞) such that

d2(σ◦(s),K(ζ◦(s))) > ψ(s) for every s ∈ C . (5.5.17)

We claim that, for ε sufficiently small, we have

d2(σ◦ε(s),K(ζ◦ε(s))) > ψ(s) for every s ∈ C . (5.5.18)

If not, there exist εk → 0 and sk ∈ C such that d2(σ◦εk(sk),K(ζ◦εk(sk))) ≤ ψ(sk). We

may assume that sk → s0 ∈ C ; now, by (5.4.30), (5.4.46), and (5.4.47), thanks to the

lower semicontinuity of d2(σ,K(ζ)) proved in Remark 4.3, the previous inequality gives

d2(σ◦(s0),K(ζ◦(s0))) ≤ ψ(s0), which contradicts (5.5.17). This proves (5.5.18).

By a standard approximation argument from below, in order to prove (5.5.15), it suffices

to prove ∫
C

‖ṗ◦(s)‖2 ψ(s) ds ≤ lim inf
ε→0+

∫
C

‖ṗ◦ε(s)‖2 ψ(s) ds, (5.5.19)

for every compact C ⊂ A◦S and every continuous function ψ : C → [0,+∞). To this end, let

ϕi be a dense sequence in the unit ball of L2(Ω;MN×N
sym ), composed of continuous functions

with compact support. Since

‖ṗ◦(s)‖2 = sup
i
〈ϕi, ṗ◦(s)〉,

by the Localisation Lemma (see, e.g., [5, Lemma 2.3.2]) we have∫
C

‖ṗ◦(s)‖2 ψ(s) ds = sup

k∑
i=1

∫
Ci

〈ϕi, ṗ◦(s)〉ψ(s) ds, (5.5.20)
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where the supremum is taken over all integers k and over all finite Borel partitions C1, . . . , Ck

of C . For every i the real-valued functions s 7→ 〈ϕi,p◦ε(s)〉 are equi-Lipschitz on [0, S] (by

(5.4.20)) and converge to s 7→ 〈ϕi,p◦(s)〉 for every s (by (5.4.26)), hence the functions

s 7→ 〈ϕi, ṗ◦ε(s)〉 converge 〈ϕi, ṗ◦(s)〉 weakly∗ in L∞([0, S]) . It follows that

k∑
i=1

∫
Ci

〈ϕi, ṗ◦(s)〉ψ(s) ds = lim
ε→0

k∑
i=1

∫
Ci

〈ϕi, ṗ◦ε(s)〉ψ(s) ds ≤ lim inf
ε→0

∫
C

‖ṗ◦ε(s)‖2ψ(s) ds.

Inequality (5.5.19) follows now from (5.5.20).

Remark 5.14. Since d2(σ◦(s), ζ◦(s)) = 0 outside of the set A◦S , by (5.5.15) and the

nonnegativeness of the integrands we easily get∫ S

0

‖ṗ◦(s)‖2 d2(σ◦(s), ζ◦(s)) ds ≤ lim inf
ε→0

∫ S

0

‖ṗ◦ε(s)‖2 d2(σ◦ε(s), ζ
◦
ε(s)) ds . (5.5.21)

We are now in a position to prove the energy inequality (5.5.1).

Proof of Theorem 5.6 (continuation). Let us fix S > 0 and define Tε := t◦ε(S). By (5.2.27)

Q(eε(Tε))−Q(e0) +

∫ Tε

0

(
H(ṗε(t), ζ(t))− 〈χ(t), ṗε(t)〉

)
dt+ ε

∫ Tε

0

‖ṗε(t)‖22 dt =

=

∫ Tε

0

〈σε(t)− χ(t), Eẇ(t)〉 dt−
∫ Tε

0

〈χ̇(t), eε(t)〉 dt+ 〈χ(Tε), eε(Tε)〉 − 〈χ0, e0〉 ,

where χ0 := χ(0). By (5.2.5) we have

Q(eε(Tε))−Q(e0) +

∫ Tε

0

(
H(ṗε(t), ζ(t))− 〈χ(t), ṗε(t)〉

)
dt+

+

∫ Tε

0

‖ṗε(t)‖2 d2(σε(t),K(ζε(t))) dt =

∫ Tε

0

〈σε(t)− χ(t), Eẇ(t)〉 dt−

−
∫ Tε

0

〈χ̇(t), eε(t)〉 dt+ 〈χ(Tε), eε(Tε)〉 − 〈χ0, e0〉 .

Performing the change of variable t = t◦ε(s) in the left-hand side, we obtain

Q(e◦ε(S))−Q(e0) +

∫ S

0

(
H(ṗ◦ε(s), ζ

◦
ε(s))− 〈χ◦ε(s), ṗ◦ε(s)〉

)
ds+

+

∫ S

0

‖ṗ◦ε(s)‖2 d2(σ◦ε(s),K(ζ◦ε(s))) ds =

∫ Tε

0

〈σε(t)− χ(t), Eẇ(t)〉 dt− (5.5.22)

−
∫ Tε

0

〈χ̇(t), eε(t)〉 dt+ 〈χ(Tε), e
◦
ε(S)〉 − 〈χ0, e0〉 .

By the lower semicontinuity of Q , in view of (5.4.30) we have

Q(e◦(S)) ≤ lim inf
ε→0

Q(e◦ε(S)). (5.5.23)

By (5.4.11) and (5.4.56) we have∫ T

0

〈σ◦(s◦−(t))− χ(t), Eẇ(t)〉 dt = lim
ε→0

∫ Tε

0

〈σε(t)− χ(t), Eẇ(t)〉 dt , (5.5.24)
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where T := t◦(S). Let ω(t) := Eẇ(t) if the derivative exists at t , and ω(t) = 0 otherwise.

By (1.4.17) and (5.4.19) we get

Eẇ◦(s) = ω(t◦(s)) ṫ◦(s) for L1-a.e. s ∈ [0, S].

This equality, together with the change of variables formula (1.4.18), yields∫ T

0

〈σ◦(s◦−(t))− χ(t), Eẇ(t)〉 dt =

∫ T

0

〈σ◦(s◦−(t))− χ(t),ω(t)〉 dt =

=

∫ S

0

〈σ◦(s◦−(t◦(s)))− χ◦(s), Eẇ◦(s)〉 ds =

∫ S

0

〈σ◦(s)− χ◦(s), Eẇ◦(s)〉 ds,

where the last equality follows from the fact that Eẇ◦(s) = 0 for L1 -a.e. s ∈ U◦ and that

s◦−(t◦(s)) = s for L1 -a.e. s ∈ [0, S] \ U◦ (see the proof of Lemma 5.12). Therefore, (5.5.24)

gives ∫ S

0

〈σ◦(s)− χ◦(s), Eẇ◦(s)〉 ds = lim
ε→0

∫ Tε

0

〈σε(t)− χ(t), Eẇ(t)〉 dt. (5.5.25)

Similarly, we prove ∫ S

0

〈χ̇◦(s), e◦(s)〉 ds = lim
ε→0

∫ Tε

0

〈χ̇(t), eε(t)〉 dt . (5.5.26)

Inequality (5.5.1) follows now from (5.4.30), (5.5.8), (5.5.21), (5.5.22), (5.5.23), (5.5.25),

and (5.5.26).

To prove the evolution law (4.2.17) we need a technical result on the convergence of ṗ◦ε
to ṗ◦. The proof of Theorem 5.6 will be continued after the following lemma.

Lemma 5.15. Let S > 0 and let ϕε,ϕ ∈ L1([0, S];C0(Ω;MN×N
sym )) . Assume that ϕε → ϕ

strongly in L1([0, S];C0(Ω;MN×N
sym )) . Then s 7→ 〈ϕ(s), ṗ◦(s)〉 is integrable on [0, S] and∫ S

0

〈ϕε(s), ṗ◦ε(s)〉 ds→
∫ S

0

〈ϕ(s), ṗ◦(s)〉 ds as ε→ 0 .

Proof. We start by proving∫ S

0

〈ϕ(s), ṗ◦ε(s)〉 ds→
∫ S

0

〈ϕ(s), ṗ◦(s)〉 ds as ε→ 0 . (5.5.27)

By (5.4.27) we have p◦ ∈ C0([0, S],Mb(Ω ∪ Γ0;MN×N
sym )). Since

〈ϕ(s),
p◦(s+ h)− p◦(s)

h
〉 → 〈ϕ(s), ṗ◦(s)〉 as h→ 0

for L1 -a.e. s ∈ [0, S] , the function s 7→ 〈ϕ(s), ṗ◦(s)〉 is measurable on [0, S] . By (5.4.28)

we have |〈ϕ(s), ṗ◦(s)〉| ≤ ‖ϕ(s)‖∞ for L1 -a.e. s ∈ [0, S] . Since s 7→ ‖ϕ(s)‖∞ is integrable

on [0, S] , the same property holds for s 7→ 〈ϕ(s), ṗ◦(s)〉 .
If ϕ ∈ C1

c ((0, S);C0(Ω;MN×N
sym )) we can write∫ S

0

〈ϕ(s),
p◦ε(s+ h)− p◦ε(s)

h
〉 ds =

∫ S

0

〈ϕ(s− h)−ϕ(s)

h
,p◦ε(s)〉 ds .
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Passing to the limit as h→ 0 we obtain∫ S

0

〈ϕ(s), ṗ◦ε(s)〉 ds = −
∫ S

0

〈ϕ̇(s),p◦ε(s)〉 ds . (5.5.28)

A similar formula holds for p◦. Thus (5.5.27) follows from (5.4.22) and (5.4.26).

Since ‖ṗ◦ε(s)‖1 ≤ 1 and ‖ṗ◦(s)‖1 ≤ 1 by (5.4.21) and (5.4.28), the same conclusion in

the case ϕ ∈ L1([0, S];C0(Ω;MN×N
sym )) follows from the density of C1

c ((0, S);C0(Ω;MN×N
sym ))

in L1([0, S];C0(Ω;MN×N
sym )).

Now, by (5.4.21) we have∣∣∣ ∫ S

0

〈ϕε(s), ṗ◦ε(s)〉 ds−
∫ S

0

〈ϕ(s), ṗ◦ε(s)〉 ds
∣∣∣ ≤ ∫ S

0

‖ϕε(s)−ϕ(s)‖∞ds .

Since the right-hand side tends to 0 as ε→ 0, the conclusion follows from (5.5.27).

We now prove the evolution law (4.2.17).

Proof of Theorem 5.6 (continuation). Let us fix S > 0. Define a◦ε(s) and a◦(s) as in

(5.4.35), and (5.4.36), respectively. We first prove that∫ S

0

〈ϕ(s),a◦ε(s) tr ṗ◦ε(s)〉 ds→
∫ S

0

〈ϕ(s),a◦(s) tr ṗ◦(s)〉 ds (5.5.29)

for every ϕ ∈ L1([0, S];C0(Ω)). We observe that we can write 〈ϕ(s),a◦ε(s) tr ṗ◦ε(s)〉 =

〈ϕ(s)a◦ε(s)I, ṗ
◦
ε(s)〉 and 〈ϕ(s),a◦(s) tr ṗ◦(s)〉 = 〈ϕ(s)a◦(s)I, ṗ◦(s)〉 . Therefore (5.5.29) fol-

lows from Lemma 5.15, because ϕa◦εI → ϕa◦I strongly in L1([0, S];C0(Ω;MN×N
sym )) thanks

to (5.4.38) and (5.4.39). Using the equalities

〈ϕ(s), ρ1 ?
(
a◦ε(s) tr ṗ◦ε(s))

)
〉 = 〈ρ̌1 ?ϕ(s),a◦ε(s) tr ṗ◦ε(s)〉

and

〈ϕ(s), ρ1 ?
(
a◦(s) tr ṗ◦(s)

)
〉 = 〈ρ̌1 ?ϕ(s),a◦(s) tr ṗ◦(s)〉 ,

where ρ̌1(x) := ρ1(−x), from (2.3.41) and (5.5.29) we obtain∫ S

0

〈ϕ(s), ρ1 ?
(
a◦ε(s) tr ṗ◦ε(s)

)
〉 ds→

∫ S

0

〈ϕ(s), ρ1 ?
(
a◦(s) tr ṗ◦(s)

)
〉 ds (5.5.30)

for every ϕ ∈ L1([0, S];L1(Ω)). By (5.4.37) and (5.5.30) we have∫ S

0

〈ϕ(s), ż◦ε(s)〉 ds→
∫ S

0

〈ϕ(s), ρ1 ?
(
a◦(s) tr ṗ◦(s)

)
〉 ds as ε→ 0 (5.5.31)

for every ϕ ∈ L1([0, S];L1(Ω)). On the other hand, if ϕ ∈ C1
c ((0, S);L1(Ω)), we have∫ S

0

〈ϕ(s), ż◦ε(s)〉 ds = −
∫ S

0

〈ϕ̇(s), z◦ε(s)〉 ds ,∫ S

0

〈ϕ(s), ż◦(s)〉 ds = −
∫ S

0

〈ϕ̇(s), z◦(s)〉 ds ,

so that (5.4.43) gives∫ S

0

〈ϕ(s), ż◦ε(s)〉 ds→
∫ S

0

〈ϕ(s), ż◦(s)〉 ds as ε→ 0 .
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By (5.5.31) this implies∫ S

0

〈ϕ(s), ż◦(s)〉 ds =

∫ S

0

〈ϕ(s), ρ1 ?
(
a◦(s) tr ṗ◦(s)

)
〉 ds

for every ϕ ∈ C1
c ((0, S);L1(Ω)), and hence

ż◦(s) = ρ1 ?
(
a◦(s) tr ṗ◦(s)

)
in Ω for L1-a.e. s ∈ [0, S] . (5.5.32)

This concludes the proof of (4.2.17).

The proof of Theorem 5.6 will be continued in Section 5.6 after Lemma 5.23.

5.6 Proof of Theorem 5.6: Conclusion

In this section f , g , w , u0 , e0 , p0 , and z0 are as in Definition 4.5 and satisfy the

uniform safe-load condition (2.3.45)-(2.3.48). We assume that u◦, e◦, p◦, z◦, t◦, σ◦, and

ζ◦ satisfy (4.2.4) and (4.2.5), together with conditions (ev0)◦, (ev1)◦, (ev2)◦, and (ev3 ′)◦ of

Definition 4.5. Let us fix S > 0 and let A◦S be the open set defined by (4.2.7) and (5.5.16).

We also assume that ∫
A◦S

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds < +∞ , (5.6.1)

so that ṗ◦(s), defined by (4.2.6), belongs to L2(Ω;MN×N
sym ) for L1 -a.e. s ∈ A◦S .

The goal of this section is to prove that the functions u◦, e◦, p◦, z◦, w◦, σ◦, ζ◦, and

χ◦ satisfy the energy inequality

Qχ(S, e◦(S))−Qχ(0, e0) +

∫ S

0

(
H(ṗ◦(s), ζ◦(s)) + 〈χ̇◦(s),p◦(s)〉

)
ds−

− 〈χ◦(S),p◦(S)〉+ 〈χ0, p0〉+

∫
A◦S

〈σ◦(s)− πK(ζ◦(s))(σ
◦(s)), ṗ◦(s)〉 ds ≥ (5.6.2)

≥
∫ S

0

〈τ ◦(s), Eẇ◦(s)〉 ds−
∫ S

0

〈χ̇◦(s), e◦(s)〉 ds ,

where χ0 := χ(0) = χ◦(0), and, according to the notation introduced in (4.3.65)-(4.3.66),

τ ◦ := σ◦− χ◦, and Qχ(s, e◦(s)) := Q(e◦(s))− 〈χ◦(s), e◦(s)〉 .
We start by proving that (5.6.1) implies a variant of Lemma 4.15.

Lemma 5.16. Let (a, b) be a connected component of A◦S , and let c ∈ (a, b) . Then p◦−
p◦(c) ∈ ACloc((a, b);L

2(Ω;MN×N
sym )) . In particular, for L1 -a.e. s ∈ (a, b) , ṗ◦(s) is the

strong limit in L2(Ω;MN×N
sym ) , as h → 0 , of the difference quotient 1

h (p◦(s + h) − p◦(s)) ,

and ṗ◦ ∈ L1
loc((a, b);L

2(Ω;MN×N
sym )) . Moreover, for every s1, s2 ∈ (a, b) , we have

p◦(s2)− p◦(s1) ∈ L2(Ω;MN×N
sym ) and p◦(s2)− p◦(s1) =

∫ s2

s1

ṗ◦(s) ds ,

where the last term is a Bochner integral in L2(Ω;MN×N
sym ) .
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Proof. In the proof of Lemma 5.13 we have seen that d2

(
σ◦(s),K(ζ◦(s))

)
is lower semi-

continuous. Therefore for every [a1, b1] ⊂ (a, b), there exists a constant η1 > 0 such that

d2

(
σ◦(s),K(ζ◦(s))

)
≥ η1 for every s ∈ [a1, b1] . By (5.6.1) this gives∫ b1

a1

||ṗ◦(s)||2 ds < +∞ . (5.6.3)

This inequality and the measurability of s 7→ 〈ϕ, ṗ◦(s)〉 for every ϕ ∈ C0
0 (Ω;MN×N

sym ) im-

ply that s 7→ 〈ψ, ṗ◦(s)〉 is measurable for every ψ ∈ L2(Ω;MN×N
sym ), hence ṗ◦: [a1, b1] →

L2(Ω;MN×N
sym ) is weakly measurable. By Pettis Theorem it is also strongly measurable, so

that (5.6.3) implies that ṗ◦ ∈ L1
loc((a, b);L

2(Ω;MN×N
sym )). The rest of the proof follows by

the same arguments as in Lemma 4.15.

Lemma 5.16 implies in particular that the assumptions of Lemmas 4.16 and 4.17 are

satisfied, so that e◦ ∈ ACloc((a, b);L2(Ω;MN×N
sym ), and (4.3.48) and (4.3.51) hold. However,

local absolute continuity of e◦ is not enough for the approximation argument that we will

employ in order to prove (5.6.2). We need to recover at least strong continuity in a and in b

of e◦. This will be done in Lemma 5.18, using a weak L1 -estimate for gradients of solutions

of the elliptic system of linearized elasticity proved in the next theorem. We preliminarly

recall that, for every measurable set B and for every measurable function f defined on B

with values in a finite dimensional Hilbert space, we define

‖f‖1,w,B := sup
t>0

tLn({|f | > t} ∩B) . (5.6.4)

It is well-known that ‖f‖1,w,B ≤ ‖f‖1,B (Chebychev Inequality) and that ‖f1 + f2‖1,w,B ≤
2‖f1‖1,w,B + 2‖f2‖1,w,B for every pair of functions f1, f2 . We now state and prove the

announced regularity result.

Theorem 5.17. For every open set Ω′ ⊂⊂ Ω there exists a constant C depending only on

Ω′ , Ω , and C such that, if p ∈ L2(Ω;MN×N
sym ) and u ∈ H1

loc(Ω;RN ) satisfies the equation

−div (CEu) = −div (Cp) in Ω , (5.6.5)

then we have the estimate

‖∇u‖1,w,Ω′ ≤ C(‖p‖1,Ω + ‖u‖1,Ω) , (5.6.6)

where ‖ · ‖1,w,Ω′ is defined in (5.6.4).

Proof. Let Ω′′ be an open set such that Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω, and let ϕ ∈ C∞c (Ω) be a cutoff

function with ϕ = 1 on Ω′′ and 0 ≤ ϕ ≤ 1. Let p and u be as in the statement, and let

q := Cp , and v := ϕu . It turns out that v has compact support and satisfies the equation

−div (CEv) = −div (ϕq) + q∇ϕ− (CEu)∇ϕ− div (C(u�∇ϕ) in RN . (5.6.7)

The fundamental solution of the operator −div (CEu) is given by

G(x) := a g(x) I + b∇g(x)⊗ x , (5.6.8)
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where g is the fundamental solution of the Laplace operator, a = 1
2(λ+2µ) + 1

2µ , and b =
1

2(λ+2µ) −
1

2µ (see [38, Section 2.5.2] and [52, Chapter II, formula (1.46)]). Since v has

compact support, equation (5.6.7) gives the representation

vi(x) =

n∑
h,k=1

∫
RN

DkGih(x− y)(ϕq)hk(y) dy +

n∑
h=1

∫
RN

Gih(x− y)(q∇ϕ)h(y) dy −

−
n∑
h=1

∫
RN

Gih(x− y)(CEu∇ϕ)h(y) dy +

n∑
h,k=1

∫
RN

DkGih(x− y)(C(u�∇ϕ))hk(y) dy .

For a.e. x ∈ Ω′ it follows that

Djvi(x) = α(x) + β(x)− γ(x) + δ(x) ,

where

α(x) :=

n∑
h,k=1

∫
RN

DjDkGih(x− y)(ϕq)hk(y) dy ,

β(x) :=

n∑
h=1

∫
Ω\Ω′′

DjGih(x− y)(q∇ϕ)h(y) dy ,

γ(x) :=

n∑
h=1

∫
Ω\Ω′′

DjGih(x− y)(CEu∇ϕ)h(y) dy ,

δ(x) :=

n∑
h,k=1

∫
Ω\Ω′′

DjDkGih(x− y)(C(u�∇ϕ))hk(y) dy .

The function DjDkGih is homogeneous of degree −n . Using the explicit expression of

Gih given by (5.6.8) we can check that DjDkGih has mean value 0 on the boundary of each

ball around the origin. Therefore we can apply the Calderon-Zygmund estimate contained

in [49, Chapter II, Theorem 4], obtaining

‖α‖1,w,Ω ≤ C1‖p‖1,Ω , (5.6.9)

where the constant C1 only depends on the function G , and the elasticity tensor C .

To estimate the term γ(x) we introduce the cartesian components clmhk of the tensor C ,

defined by

(CEu)hk =

n∑
l,m=1

clmhkDlum .

It follows that

γ(x) =

n∑
h,k,l,m=1

clmhk

∫
Ω\Ω′′

DjGih(x− y)Dlum(y)Dkϕ(y) dy .

For x ∈ Ω′ , the function y 7→ Gih(x − y) is of class C∞ in Ω \ Ω′′ . Integrating by parts,

we obtain

γ(x) = −
n∑

h,k,l,m=1

clmhk

∫
Ω\Ω′′

DjDlGih(x− y)um(y)Dkϕ(y) dy −

−
n∑

h,k,l,m=1

clmhk

∫
Ω\Ω′′

DjGih(x− y)um(y)DlDkϕ(y) dy .
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As DjDlGih(x−y) and DjGih(x−y) are uniformly bounded when x ∈ Ω′ and y ∈ Ω\Ω′′ ,

we obtain the estimate

‖γ‖∞,Ω′ ≤ C3‖u‖1,Ω , (5.6.10)

where the constant C3 depends on the function G , on the elasticity tensor C , on the pair

Ω′ , Ω′′ , and on the function ϕ .

In a similar, and easier, way we prove the estimates

‖β‖∞,Ω′ ≤ C2‖p‖1,Ω and ‖δ‖∞,Ω′ ≤ C4‖u‖1,Ω , (5.6.11)

where the constants C2 and C4 depend on the function G , on the elasticity tensor C , on

the pair Ω′ , Ω′′ , and on the function ϕ . Inequality (5.6.6) follows now from (5.6.9), (5.6.10),

and (5.6.11).

With the previous estimate, we can prove a continuity result for the stress that we will

use in the sequel.

Lemma 5.18. Let (a, b) be a connected component of A◦S . Then there exists an increasing

sequence sk → b such that σ◦(sk)→ σ◦(b) strongly in L2(Ω;MN×N
sym ) .

Proof. First, we prove that there exists an increasing sequence sk → b such that

d2(σ◦(sk),K(ζ◦(sk)))→ 0 . (5.6.12)

If not, there exist c ∈ (a, b) and η > 0 such that d2(σ◦(s),K(ζ◦(s))) ≥ η for every s ∈ [c, b).

Then (4.2.5), (5.6.1), and (4.3.51) imply that∫ b

c

||σ̇◦(s)||2 ds < +∞.

It follows that σ◦(s) has a strong limit in L2(Ω;MN×N
sym ) as s → b− . Since σ◦(s) ⇀

σ◦(b) weakly in L2(Ω;MN×N
sym ) as s → b− , we deduce that σ◦(s) → σ◦(b) strongly in

L2(Ω;MN×N
sym ) as s→ b− . Since σ◦(b) ∈ K(ζ◦(b)), we conclude that d2(σ◦(s),K(ζ◦(s)))→ 0

as s→ b− , which contradicts our assumption on η . Thus, (5.6.12) is proved and we can fix

such a sequence sk .

Now, let h < k . By Lemma 4.16 we have u◦(sh)−u◦(sk) ∈ H1
Γ0

(Ω;RN ), while σ◦(sh)−
σ◦(sk) ∈ Σ0(Ω) by (4.2.12), thanks to the inclusion A◦S ⊂ U◦ proved in (4.2.20). Then

(4.3.49) implies that

−div (CE(u◦(sh)− u◦(sk))) = −div (C(p◦(sh)− p◦(sk))).

Let us fix an open set Ω′ ⊂⊂ Ω. By (5.6.6) there exists a constant C such that

‖E(u◦(sh)− u◦(sk))‖1,w,Ω′ ≤ C‖p◦(sh)− p◦(sk)‖1 + C‖u◦(sh)− u◦(sk)‖1 ;

then (4.2.5), (4.3.49), the Lipschitz continuity of p◦, and the strong continuity of u : [0, S]→
L1(Ω;RN ) entail that σ◦(sk) is a Cauchy sequence with respect to convergence in measure

in Ω. As σ◦(sk) ⇀ σ◦(b) weakly in L2(Ω;MN×N
sym ), it follows that σ◦(sk) → σ◦(b) in

measure. We now consider the decomposition

σ◦(sk) = πK(ζ◦(sk))(σ
◦(sk)) + (σ◦(sk)− πK(ζ◦(sk))(σ

◦(sk)) . (5.6.13)
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The sequence σ◦(sk) − πK(ζ◦(sk))(σ
◦(sk)) converges to 0 strongly in L2(Ω;MN×N

sym ) by

(5.6.12). As σ◦(sk) → σ◦(b) in measure, this implies that πK(ζ◦(sk))(σ
◦(sk)) → σ◦(b)

in measure. Since πK(ζ◦(sk))(σ
◦(sk)) is uniformly bounded in L∞(Ω;MN×N

sym ), by the Domi-

nated Convergence Theorem we have πK(ζ◦(sk))(σ
◦(sk))→ σ◦(b) strongly in L2(Ω;MN×N

sym ),

therefore (5.6.13) gives σ◦(sk)→ σ◦(b) strongly in L2(Ω;MN×N
sym ), as required.

The next five lemmas provide a discrete approximation of the integrals in (5.6.2). We

start with a result of approximation with Riemann sums for the duality 〈χ̇◦(s),p◦(s)〈 .

Lemma 5.19. Let {sik}0≤i≤ik be a sequence of subdivisions of [0, S] satisfying (1.5.2).

Then

lim
k→∞

ik∑
i=1

∣∣∣〈χ◦(sik)− χ◦(si−1
k ),p◦(si−1

k )〉 −
∫ sik

si−1
k

〈χ̇◦(s),p◦(s)〉 ds
∣∣∣ = 0 , (5.6.14)

lim
k→∞

ik∑
i=1

∣∣∣〈χ◦(sik)− χ◦(si−1
k ),p◦(sik)〉 −

∫ sik

si−1
k

〈χ̇◦(s),p◦(s)〉 ds
∣∣∣ = 0 , (5.6.15)

where all duality products are defined according to (2.3.12) for every s ∈ [0, S] .

Proof. As a starting point we observe that (4.3.12) implies

〈χ◦(sik)− χ◦(si−1
k ),p◦(si−1

k )〉 =

∫ sik

si−1
k

〈χ̇◦(s),p◦(si−1
k )〉 ds (5.6.16)

for every k and every i . Since p◦ is 1-Lipschitz continuous, by (2.3.13) for every k we have∣∣∣ ∫ sik

si−1
k

〈χ̇◦(s),p◦(s)− p◦(si−1
k )〉 ds

∣∣∣ ≤
≤
∫ sik

si−1
k

‖χ̇◦(s)‖∞‖p◦(s)− p◦(si−1
k )‖1 ds ≤ ηk

∫ sik

si−1
k

‖χ̇◦(s)‖∞ ds .

(5.6.17)

It follows from (5.6.16) and (5.6.17) that

ik∑
i=1

∣∣∣〈χ◦(sik)− χ◦(si−1
k ),p◦(si−1

k )〉 −
∫ sik

si−1
k

〈χ̇◦(s),p◦(s)〉 ds
∣∣∣ ≤ ηk ∫ S

0

‖χ̇◦(s)‖∞ ds.

As the right-hand side is finite by (2.3.48), (1.5.2) gives (5.6.14). The same argument proves

(5.6.15).

We introduce the notation

B◦S := {s ∈ [0, S] : σ◦(s) ∈ K(ζ◦(s))} = [0, S] \A◦S . (5.6.18)

Since A◦S is open, B◦S is compact.

Lemma 5.20. For every s1, s2 ∈ B◦S with s1 < s2 we have

1
2 〈τ
◦(s1) + τ ◦(s2), Ew◦(s2)− Ew◦(s1)〉 − 1

2 〈χ
◦(s2)− χ◦(s1), e◦(s2) + e◦(s1)〉 ≤

≤ Qχ(s2, e
◦(s2))−Qχ(s1, e

◦(s1)) + 1
2H(p◦(s2)− p◦(s1), ζ◦(s1)) +

+ 1
2H(p◦(s2)− p◦(s1), ζ◦(s2))− 1

2 〈χ
◦(s2) + χ◦(s1),p◦(s2)− p◦(s1)〉 .

(5.6.19)
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Proof. Let s1 and s2 be as in the statement of the lemma. Since τ ◦(s) ∈ Σ0(Ω) for every

s by (2.3.45) and (4.2.12), a direct algebraic computation and (2.3.29) give

Qχ(s2, e
◦(s2))−Qχ(s1, e

◦(s1)) + 1
2 〈χ

◦(s2)− χ◦(s1), e◦(s1) + e◦(s2)〉 =

= 1
2 〈τ
◦(s2) + τ ◦(s1), e◦(s2)− e◦(s1)〉 =

= 1
2 〈τ
◦(s1) + τ ◦(s2), Ew◦(s2)− Ew◦(s1)〉 − 1

2 〈τ
◦(s1) + τ ◦(s2),p◦(s2)− p◦(s1)〉 .

Since σ◦(si) ∈ K(ζ◦(si)) and ζ◦(si) ∈ C0(Ω) for i = 1, 2, by Proposition 2.5 we obtain

〈σ◦(si),p◦(s2)− p◦(s1)〉 ≤ H(p◦(s2)− p◦(s1), ζ◦(si)). Therefore

〈τ ◦(si),p◦(s2)− p◦(s1)〉 ≤ H(p◦(s2)− p◦(s1), ζ◦(si))− 〈χ◦(si),p◦(s2)− p◦(s1)〉

and (5.6.19) easily follows from the previous equalities.

Lemma 5.21. Let (a, b) be a connected component of A◦S and let a ≤ s1 < s2 ≤ b . Then

0 ≤ Qχ(s2, e
◦(s2))−Qχ(s1, e

◦(s1)) +

∫ s2

s1

H(ṗ◦(s), ζ◦(s)) ds−

− 〈χ◦(s2),p◦(s2)〉+ 〈χ◦(s1),p(s1)〉+

∫ s2

s1

〈σ◦(s)− πK(ζ◦(s))(σ
◦(s)), ṗ◦(s)〉 ds .

(5.6.20)

Proof. We first observe that χ◦ is constant on (a, b) by the inclusion A◦S ⊂ U◦ proved in

(4.2.20). By Lemma 4.11 the function s 7→ 〈χ◦(s),p◦(s)〉 is absolutely continuous on [a, b] .

Since the function s 7→ Qχ(s, e◦(s)) is lower semicontinuous, we can assume that a < s1 .

Moreover Lemma 5.18 provides a sequence sk → b such that Qχ(sk, e
◦(sk))→ Qχ(b, e◦(b)),

so that we may also assume s2 < b . Therefore it is enough to prove the inequality on a

compact subinterval [s1, s2] of (a, b).

By Lemma 5.16, we can apply Lemma 4.17; with this, we get that the function s 7→
Qχ(s, e◦(s))〉 is absolutely continuous on [s1, s2] and, since χ◦ is constant on [s1, s2] , we

have
d
dsQχ(s, e◦(s))〉 = 〈τ ◦(s), ė◦(s)〉 (5.6.21)

for a.e. s ∈ [s1, s2] . Similarly, by Lemma 5.16

d
ds 〈χ

◦(s),p◦(s)〉 = 〈χ◦(s), ṗ◦(s)〉 (5.6.22)

for a.e. s ∈ [s1, s2] , where the right-hand side is the usual scalar product of L2 . In

view of (5.6.21) and (5.6.22), inequality (5.6.20) easily follows from the inequality 0 ≤
d
dsQχ(s, e◦(s)) +H(ṗ◦(s), ζ◦(s))− 〈χ◦(s), ṗ◦(s)〉+ 〈σ◦(s)− πK(ζ◦(s))(σ

◦(s)), ṗ◦(s)〉 , which is

equivalent to

0 ≤ 〈τ ◦(s), ė◦(s)〉+H(ṗ◦(s), ζ◦(s))−

− 〈χ◦(s), ṗ◦(s)〉+ 〈σ◦(s)− πK(ζ◦(s))(σ
◦(s)), ṗ◦(s)〉 .

(5.6.23)

As τ ◦(s) ∈ Σ0(Ω) by (2.3.45) and (4.2.12), from (2.3.33), (4.3.48), and (4.3.49) we get

〈τ ◦(s), e◦(s+ h)− e◦(s)〉 = −〈τ ◦(s),p◦(s+ h)− p◦(s)〉 ;

by Lemmas 4.17 and 5.16, we conclude that 〈τ ◦(s), ė◦(s)〉 = −〈τ ◦(s), ṗ◦(s)〉 , therefore

(5.6.23) is equivalent to

〈σ◦(s), ṗ◦(s)〉 ≤ H(ṗ◦(s), ζ◦(s)) + 〈σ◦(s)− πK(ζ◦(s))(σ
◦(s)), ṗ◦(s)〉 ;
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this inequality can be proved by observing that

〈σ◦(s), ṗ◦(s)〉 = 〈πK(ζ◦(s))(σ
◦(s)), ṗ◦(s)〉+ 〈σ◦(s)− πK(ζ◦(s))(σ

◦(s)), ṗ◦(s)〉 ≤

≤ H(ṗ◦(s), ζ◦(s)) + 〈σ◦(s)− πK(ζ◦(s))(σ
◦(s)), ṗ◦(s)〉 ,

where the inequality follows from the definition of H . This concludes the proof.

Lemma 5.22. Let (sik)0≤i≤ik be a sequence of subdivisions of [0, S] satisfying (1.5.2) and

(1.5.13), with ψ given by the following functions: σ◦, σ◦1B◦S , χ◦1B◦S , and 1B◦S , the first

three with X = L2(Ω;MN×N
sym ) . Let IAk , IBk , and JAk be defined by (1.5.20), (1.5.21), and

(1.5.24), with A = A◦S and B = B◦S . Then

lim
k→∞

∑
i∈IBk

〈τ ◦(si−1
k ), Ew◦(sik)− Ew◦(si−1

k )〉 =

∫ S

0

〈τ ◦(s), Eẇ◦(s)〉 ds , (5.6.24)

lim
k→∞

∑
i∈IAk ∪J

A
k

∫ sik

si−1
k

(‖σ◦(s)‖2 + ‖χ◦(s)‖2 + 1) 1B◦S (s) ds = 0 , (5.6.25)

lim
k→∞

∑
i∈IBk

〈χ◦(sik)− χ◦(si−1
k ), e◦(si−1

k )〉 =

∫ S

0

〈χ̇◦(s), e◦(s)〉 ds , (5.6.26)

lim
k→∞

∑
i∈IBk

〈χ◦(sik)− χ◦(si−1
k ),p◦(si−1

k )〉 =

∫ S

0

〈χ̇◦(s),p◦(s)〉 ds . (5.6.27)

These equalities continue to hold if τ ◦(si−1
k ) , e◦(si−1

k ) , and p◦(si−1
k ) are replaced by τ ◦(sik) ,

e◦(sik) , and p◦(sik) , respectively.

Proof. Equality (5.6.25) follows from (1.5.27), with ψ given by σ◦1B◦S , χ◦1B◦S , and 1B◦S .

Now, recalling that Eẇ◦(s) = 0 for L1 -a.e. s ∈ A◦S by the inclusion A◦S ⊂ U◦ proved in

(4.2.20), and that ‖Eẇ◦(s)‖2 ≤ 1 for L1 -a.e. s ∈ [0, S] by (5.4.24), we get∣∣∣∑
i∈IBk

〈τ ◦(si−1
k ), Ew◦(sik)− Ew◦(si−1

k )〉 −
∫ S

0

〈τ ◦(s), Eẇ◦(s)〉 ds
∣∣∣ ≤

≤
∑
i∈IBk

∫ sik

si−1
k

∣∣〈τ ◦(si−1
k )− τ ◦(s), Eẇ◦(s)〉

∣∣ ds+
∑

i∈IAk ∪J
A
k

∫ sik

si−1
k

|〈τ ◦(s), Eẇ◦(s)〉| ds ≤

≤
∑
i∈IBk

∫ sik

si−1
k

‖τ ◦(si−1
k )− τ ◦(s)‖2 ds+

∑
i∈IAk ∪J

A
k

∫ sik

si−1
k

‖τ ◦(s)‖21B◦S (s) ds .

The first term in the right-hand side vanishes in the limit since τ ◦= σ◦− χ◦ , σ◦ satisfies

(1.5.13), and χ◦ is continuous. As the second one tends to 0 by (5.6.25), equality (5.6.24)

is proved.

Since χ̇◦(s) = 0 for L1 -a.e. s ∈ A◦S ⊂ U◦, and ‖χ̇◦(s)‖∞ ≤ 1 for L1 -a.e. s ∈ [0, S] by

(5.4.24), by adapting the previous argument we can prove (5.6.26). We finally observe that,

by (2.3.13) and (5.4.24),

∑
i∈IAk ∪J

A
k

∣∣∣ ∫ sik

si−1
k

〈χ̇◦(s),p◦(s)〉 ds
∣∣∣ ≤M ∑

i∈IAk ∪J
A
k

∫ sik

si−1
k

1B◦S (s) ds ,

where M is an upper bound of ‖p◦(s)‖1 on [0, S] , and the right-hand side vanishes in the

limit as k →∞ by (5.6.25). Together with (5.6.14) and (5.6.15), this proves (5.6.27). The

last assertion of the lemma can be proved in a similar way.
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Lemma 5.23. Let (sik)0≤i≤ik , IAk , IBk , and JAk be as in Lemma 5.22. Assume that

(si−1
k , sik) is contained in A◦S for every i ∈ JAk . Then there exists a sequence Rk → 0

such that∑
i∈IAk ∪J

A
k

(
Qχ(sik, e

◦(sik))−Qχ(si−1
k , e◦(si−1

k )) +

∫ sik

si−1
k

H(ṗ◦(s), ζ◦(s)) ds−

− 〈χ◦(sik),p◦(sik)〉+ 〈χ◦(si−1
k ),p◦(si−1

k )〉+

+

∫
Ai−1,i
k

〈σ◦(s)− πK(ζ◦(s))(σ
◦(s)), ṗ◦(s)〉 ds

)
≥ −Rk ,

(5.6.28)

where Ai−1,i
k := A◦S ∩ (si−1

k , sik) .

Proof. Define

ÎAk := {i ∈ IAk ∪ JAk : (si−1
k , sik) ⊂ A◦S} and ǏAk := {i ∈ IAk : (si−1

k , sik) ∩B◦S 6= Ø} ;

our assumption on JAk implies that ÎAk ∪ ǏAk = IAk ∪ JAk . By Lemma 5.21, we have

∑
i∈ÎAk

(
Qχ(sik, e

◦(sik))−Qχ(si−1
k , e◦(si−1

k )) +

∫ sik

si−1
k

H(ṗ◦(s), ζ◦(s)) ds− 〈χ◦(sik),p◦(sik)〉+

+ 〈χ◦(si−1
k ),p◦(si−1

k )〉+

∫
Ai−1,i
k

〈σ◦(s)− πK(ζ◦(s))(σ
◦(s)), ṗ◦(s)〉 ds

)
≥ 0 .

For every i ∈ ǏAk , we define si−
2
3

k (respectively si−
1
3

k ) as the supremum (respectively the

infimum) of the connected component of A◦S containing si−1
k (respectively sik ). Notice that

both si−
1
3

k and si−
2
3

k belong to the set B◦S . By Lemma 5.21, we have

0 ≤
∑
i∈ǏAk

(
Qχ(sik, e

◦(sik))−Qχ(si−
1
3

k , e◦(si−
1
3

k )) +

∫ sik

si−
1
3k

H(ṗ◦(s), ζ◦(s)) ds−

− 〈χ◦(sik),p◦(sik)〉+ 〈χ◦(si− 1
3

k ),p◦(si−
1
3

k )〉+

∫ sik

si−
1
3k

〈σ◦(s)− πK(ζ◦(s))(σ
◦(s)), ṗ◦(s)〉 ds

)
and

0 ≤
∑
i∈ǏAk

(
Qχ(si−

2
3

k , e◦(si−
2
3

k ))−Qχ(si−1
k , e◦(si−1

k )) +

∫ si−
2
3k

si−1
k

H(ṗ◦(s), ζ◦(s)) ds−

− 〈χ◦(si− 2
3

k ),p◦(si−
2
3

k )〉+ 〈χ◦(si−1
k ),p◦(si−1

k )〉+

∫ si−
2
3k

si−1
k

〈σ◦(s)−πK(ζ◦(s))(σ
◦(s)), ṗ◦(s)〉 ds

)
.

Therefore to prove (5.6.28) it is enough to show that there exists Rk → 0 such that∑
i∈ǏAk

(
Qχ(si−

1
3

k , e◦(si−
1
3

k ))−Qχ(si−
2
3

k , e◦(si−
2
3

k )) +

∫ si−
1
3k

si−
2
3k

H(ṗ◦(s), ζ◦(s)) ds−

− 〈χ◦(si− 1
3

k ),p◦(si−
1
3

k )〉+ 〈χ◦(si− 2
3

k ),p◦(si−
2
3

k )〉+ (5.6.29)

+

∫
Ai−

2
3
,i− 1

3
k

〈σ◦(s)− πK(ζ◦(s))(σ
◦(s)), ṗ◦(s)〉 ds ≥ −Rk ,

where Ai−
2
3 ,i−

1
3

k := A◦S ∩ (si−
2
3

k , si−
1
3

k ).
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Let B̌k be the union of the intervals (si−1
k , sik) for i ∈ ǏAk . By the definition of ǏAk each

point of B̌k has distance from B◦S less than the constant ηk introduced in (1.5.2). Since

B◦S is compact, we have L1(B̌k ∩A◦S)→ 0. By (5.6.1) this implies that∫
B̌k∩A◦S

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds→ 0 . (5.6.30)

By Lemma 5.20 we have

Qχ(si−
1
3

k , e◦(si−
1
3

k ))−Qχ(si−
2
3

k , e◦(si−
2
3

k )) + 1
2H(p◦(si−

1
3

k )− p◦(si− 2
3

k ), ζ◦(si−
2
3

k )) +

+ 1
2H(p◦(si−

1
3

k )− p◦(si− 2
3

k ), ζ◦(si−
1
3

k ))− 1
2 〈χ

◦(si−
1
3 ) + χ◦(si−

2
3 ),p◦(si−

1
3 )− p◦(si− 2

3 )〉 ≥

≥ 1
2 〈τ
◦(si−

2
3

k ) + τ ◦(si−
1
3

k ), Ew◦(si−
1
3

k )− Ew◦(si− 2
3

k )〉 −

− 1
2 〈χ

◦(si−
1
3 )− χ◦(si− 2

3 ), e◦(si−
1
3 ) + e◦(si−

2
3 )〉 .

Now, recalling that Eẇ◦(s) = 0 for L1 -a.e. s ∈ A◦S ⊂ U◦, and that ‖Eẇ◦(s)‖2 ≤ 1 for

L1 -a.e. s ∈ [0, S] by (5.4.24), we get∣∣ 1
2 〈τ
◦(si−

2
3

k ) + τ ◦(si−
1
3

k ), Ew◦(si−
1
3

k )− Ew◦(si− 2
3

k )〉
∣∣ ≤

≤ C1‖Ew◦(si−
1
3

k )− Ew◦(si− 2
3

k )‖2 ≤ C1

∫ si−
1
3k

si−
2
3k

1B◦S (s) ds ≤ C1

∫ sik

si−1
k

1B◦S (s) ds ,

where C1 is an upper bound of ‖τ ◦(s)‖2 on [0, S] . Similarly, as χ̇◦(s) = 0 for L1 -a.e.

s ∈ A◦S ⊂ U◦ and ‖χ̇◦(s)‖∞ ≤ 1 for L1 -a.e. s ∈ [0, S] by (5.4.24), using (4.3.4) and the

Jensen’s inequality as in Remark 4.9, we get∣∣ 1
2 〈χ

◦(si−
1
3 )− χ◦(si− 2

3 ), e◦(si−
1
3 ) + e◦(si−

2
3 )〉
∣∣ ≤ C2

∫ sik

si−1
k

1B◦S (s) ds ,

where C2 is an upper bound of ‖e◦(s)‖1 on [0, S] . Arguing as before, by (2.3.13) and

(5.4.24), we can also prove that

∣∣ 1
2 〈χ

◦(si−
1
3 )− χ◦(si− 2

3 ),p◦(si−
1
3 ) + p◦(si−

2
3 )〉
∣∣ ≤ C3

∫ sik

si−1
k

1B◦S (s) ds ,

where C3 is an upper bound of ‖p◦(s)‖1 on [0, S] . By this inequality and a direct compu-

tation we deduce that

− 1
2 〈χ

◦(si−
1
3 ) + χ◦(si−

2
3 ),p◦(si−

1
3 )− p◦(si− 2

3 )〉 ≤

≤ −〈χ◦(si− 1
3 ),p◦(si−

1
3 )〉+ 〈χ◦(si− 2

3 ),p◦(si−
2
3 )〉+ C3

∫ sik

si−1
k

1B◦S (s) ds .

Therefore, setting C := C1 +C2 +C3 , from the previous inequalities we obtain that (5.6.29)

holds with

Rk := C
∑
i∈ǏAk

∫ sik

si−1
k

1B◦S (s) ds+

∫
B̌k∩A◦S

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds+

+ 1
2

∑
i∈ǏAk

(
H(p◦(s

i−1
3

k )− p◦(si− 2
3

k ), ζ◦(s
i−2

3

k ))−
∫ s

i−1
3

k

si−
2
3k

H(ṗ◦(s), ζ◦(s))ds
)

+

+ 1
2

∑
i∈ǏAk

(
H(p◦(si−

1
3

k )− p◦(si− 2
3

k ), ζ◦(si−
1
3

k ))−
∫ si−

1
3k

si−
2
3k

H(ṗ◦(s), ζ◦(s)) ds
)
.
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From Lemma 1.10 and from (1.5.27) and (5.6.30) we obtain Rk → 0, concluding the proof.

We are finally ready to conclude the proof of Theorem 5.6.

Proof of Theorem 5.6 (conclusion). Let us fix S > 0 and let A◦S and B◦S be the sets defined

in (5.5.16) and (5.6.18). Let (sik)0≤i≤ik , IAk , IBk , and JAk be as in Lemma 5.22. By Remark

1.14 we may assume that (si−1
k , sik) ⊂ A◦S for every i ∈ JAk . By Lemma 5.22 there exists a

sequence %1
k → 0 such that

∫ S

0

(
〈τ ◦(s), Eẇ◦(s)〉−〈χ̇◦(s), e◦(s)〉

)
ds ≤

≤ 1
2

∑
i∈IBk

〈τ ◦(si−1
k ) + τ ◦(sik), Ew◦(sik)− Ew◦(si−1

k )〉 −

− 1
2

∑
i∈IBk

〈χ◦(sik)− χ◦(si−1
k ), e◦(si−1

k ) + e◦(sik)〉+ %1
k .

By Lemma 5.20 we then deduce that

∫ S

0

(
〈τ ◦(s), Eẇ◦(s)〉−〈χ̇◦(s), e◦(s)〉

)
ds ≤

∑
i∈IBk

(Qχ(sik, e
◦(sik))−Qχ(si−1

k , e◦(si−1
k ))) +

+ 1
2

∑
i∈IBk

H(p◦(sik)− p◦(si−1
k ), ζ◦(si−1

k )) + 1
2

∑
i∈IBk

H(p◦(sik)− p◦(si−1
k ), ζ◦(sik)) +

+ 1
2

∑
i∈IBk

〈χ◦(si−1
k )− χ◦(sik),p◦(sik) + p◦(si−1

k )〉 −

−
∑
i∈IBk

(
〈χ◦(sik),p◦(sik)〉 − 〈χ◦(si−1

k ),p◦(si−1
k )〉

)
+ %1

k ,

where we replaced the term − 1
2 〈χ

◦(si−1
k ) + χ◦(sik),p◦(sik)− p◦(si−1

k )〉 with the equivalent

1
2 〈χ

◦(si−1
k )− χ◦(sik),p◦(sik) + p◦(si−1

k )〉 − 〈χ◦(sik),p◦(sik)〉+ 〈χ◦(si−1
k ),p◦(si−1

k )〉 .

By (5.6.27), Lemma 1.10 provides a sequence %2
k → 0 such that

∫ S

0

(
〈τ ◦(s), Eẇ◦(s)〉−〈χ̇◦(s), e◦(s)〉

)
ds ≤

∑
i∈IBk

(Qχ(sik, e
◦(sik))−Qχ(si−1

k , e◦(si−1
k ))) +

+
∑
i∈IBk

∫ sik

si−1
k

H(ṗ◦(s)), ζ◦(s)) ds+

∫ S

0

〈χ̇◦(s),p◦(s)〉 ds−

−
∑
i∈IBk

(
〈χ◦(sik),p◦(sik)〉 − 〈χ◦(si−1

k ),p◦(si−1
k )〉

)
+ %1

k + %2
k .
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Adding (5.6.28), where Ai−1,i
k := A◦S ∩ (si−1

k , sik), we get

∫ S

0

(
〈τ ◦(s), Eẇ◦(s)〉−〈χ̇◦(s), e◦(s)〉

)
ds ≤

ik∑
i=1

(Qχ(sik, e
◦(sik))−Qχ(si−1

k , e◦(si−1
k ))) +

+

ik∑
i=1

∫ sik

si−1
k

H(ṗ◦(s)), ζ◦(s)) ds+

∫ S

0

〈χ̇◦(s),p◦(s)〉 ds−

− 〈χ◦(S),p◦(S)〉+ 〈χ0, p0〉+
∑

i∈IAk ∪J
A
k

∫
Ai−1,i
k

〈σ◦(s)− πK(ζ◦(s))(σ
◦(s)), ṗ◦(s)〉 ds+ %3

k ≤

≤ Qχ(S, e◦(S))−Qχ(0, e0) +

∫ S

0

(
H(ṗ(s), ζ◦(s)) + 〈χ̇◦(s),p◦(s)〉

)
ds−

〈χ◦(S),p◦(S)〉+ 〈χ0, p0〉+

∫
A◦S

〈σ◦(s)− πK(ζ◦(s))(σ
◦(s)), ṗ◦(s)〉 ds+ %3

k ,

with

%3
k := %1

k + %2
k +Rk +

∫
Bk∩A◦S

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds , (5.6.31)

where Bk is the union of the intervals (si−1
k , sik) for i ∈ IBk . By the definition of IBk each

point of Bk has distance from B◦S less than the constant ηk introduced in (1.5.2). Since

B◦S is compact, we have L1(Bk ∩ A◦S) → 0. By (5.6.1) this implies that the integral in

(5.6.31) tends to 0 as k → ∞ . Therefore %3
k → 0, and the last chain of inequalities yields

(5.6.2). Together with inequality (5.5.1), proved in Section 5.5, this gives (4.3.2) and (4.3.7).

By Proposition 4.10, the latter is equivalent to (4.3.1). By Theorem 4.7, this concludes the

proof of Theorem 5.6.
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Chapter 6

Viscosity solutions

6.1 Overview of the chapter

In this chapter we consider the behavior of the evolution in terms of the original time

variable t . For this purpose, we compose the rescaled viscosity evolution whose existence is

provided by Theorem 5.6 with the left-continuous function

s◦−(t) := sup{s ∈ [0,+∞) : t◦(s) < t} ,

which has the property that t◦(s◦−(t)) = t for every t ≥ 0. The composite function obtained

in this way is called a viscosity evolution (see Definition 6.2). Indeed it has been proved

in Lemma 5.9 that the unrescaled viscoplastic approximations considered in the previous

chapters converge to this viscosity evolution for every t , except for the countable set of the

discontinuity times. We prove that every viscosity evolution satisfies an energy-dissipation

balance and an evolution law for the internal variable, that can be expressed in terms of

integrals depending only on the original time t (see Theorems 6.7 and 6.14). However,

both these integral identities contain terms concentrated on the jump times, whose value

can only be determined by looking at the rescaled formulation (see Remarks 6.8 and 6.15).

Theorem 6.7 shows in addition that, in the vanishing viscosity limit, the viscous dissipation

is concentrated at the discontinuity times.

From a technical point of view, in the proofs we will rely on the notion of “weak∗ -

derivative” for functions of bounded variation with values in the dual of a separable Banach

space introduced in Chapter 1, Section 1.4.

6.2 The energy balance in the original time

We start with a simple Remark that will be useful in some proofs of this chapter.

Remark 6.1. Consider two times s1 and s2 with the property that the open interval

(s1, s2) is contained in the set U◦ defined by (4.2.14), that is the set where t◦ is locally

constant. Therefore, some terms on both sides of the energy-dissipation balance (4.3.1) and
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of the equivalent (4.3.7) vanish, and the energy-dissipation balance simply reads as

Q(e◦(s2))−Q(e◦(s1)) +

∫ s2

s1

H(ṗ◦(s), ζ◦(s)) ds+

+

∫ s2

s1

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds = 〈L(t◦(s2)),u◦(s2)− u◦(s1)〉 , (6.2.1)

or equivalently

Q(e◦(s2))−Q(e◦(s1)) +

∫ s2

s1

H(ṗ◦(s), ζ◦(s)) ds− 〈χ◦(s2),p◦(s2)− p◦(s1)〉+

+

∫ s2

s1

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds = 〈χ◦(s2), e◦(s2)− e◦(s1)〉 , (6.2.2)

for every 0 ≤ s1 < s2 ≤ S such that (s1, s2) ⊂ U◦.

We now want to consider the behavior of the evolution in terms of the original time t .

To this aim we introduce the notion of viscosity evolution. In the next definition, given t◦ as

in (4.2.4), the right inverse functions s◦−(t) and s◦+(t) are defined by (5.4.48), and (5.4.49),

respectively.

Definition 6.2. Assume that f , g , and w satisfy (2.3.42)-(2.3.48), and let u0 , e0 , p0 ,

and z0 be as in (2.3.53)-(2.3.57). We say that (u, e,p, z) is a viscosity evolution with data

f , g , and w and initial condition (u0, e0, p0, z0) if there exists a rescaled viscosity evolution

(u◦, e◦,p◦, z◦, t◦) with the same data and initial condition (u0, e0, p0, z0, 0) such that

u(t) = u◦(s◦−(t)), e(t) = e◦(s◦−(t)), p(t) = p◦(s◦−(t)), z(t) = z◦(s◦−(t)) (6.2.3)

for every t ∈ [0,+∞). Moreover, we define

σ(t) := Ce(t) = σ◦(s◦−(t)), ζ(t) := V (z(t)) = ζ◦(s◦−(t)) , (6.2.4)

where σ◦ and ζ◦ are defined by (4.2.5).

The name viscosity evolution is justified by Lemma 5.9. By Definition 4.5, Remark 4.9

and the left-continuity of s◦− , all functions introduced in Definition 6.2 are left-continuous

in the norm topology of their target spaces. Since

lim
h→0+

s◦−(t+ h) = s◦+(t) (6.2.5)

for every t ∈ [0,+∞), the right limits u(t+), e(t+), p(t+), and z(t+) in the corresponding

norm topologies satisfy

u(t+) = u◦(s◦+(t)), e(t+) = e◦(s◦+(t)), p(t+) = p◦(s◦+(t)), z(t+) = z◦(s◦+(t)) . (6.2.6)

Observe that p has bounded variation as a function from [0, T ] to Mb(Ω∪Γ0,MN×N
sym ), as

p◦ is Lipschitzian and s◦− is nondecreasing; similarly, both z and ζ have bounded variation

as functions from [0, T ] to C0(Ω̄) . It follows from (6.2.5) that the (at most countable) set

S◦ defined by (5.4.50) is the jump set of the monotone function s◦− . By construction all the

functions defined in (6.2.4) are continuous outside S◦.
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Remark 6.3. Notice that σ has bounded variation as a function from [0, T ] to the Banach

space L2(Ω;MN×N
sym ). Indeed, for every 0 ≤ t1 < t2 ≤ T , recalling that s◦−(t1) ∈ B◦ by

(4.2.13), (4.2.7), and (5.4.53), inequality (4.3.21) yields

‖σ(t2)− σ(t1)‖2 ≤ LT (s◦−(t2)− s◦−(t1)) , (6.2.7)

which easily implies the claim as s◦−(t) is nondecreasing.

Given q : [0, T ] → Mb(Ω ∪ Γ0,MN×N
sym ), for every 0 ≤ a ≤ b ≤ T the total variation of

q on [a, b] , denoted by Var(q; a, b), is defined by (1.4.2). Given ζ ∈ C0(Ω)+ the variation

of q on [a, b] with respect to the functional H(·, ζ) introduced in (1.3.20), denoted by

V(q, ζ; a, b), is defined by (1.5.1).

Given a viscosity solution (u, e,p, z) we define µ as the unique Radon measure on [0, T ]

such that

µ([0, t]) = Var(p; 0, t) (6.2.8)

for every t ∈ [0, T ] where t 7→ Var(p; 0, t) is continuous. The continuity properties of p

imply that µ({t}) = 0 for every t /∈ S◦. It follows that the diffuse part µd of µ satisfies

µd = µ−
∑
τ∈S◦

µ({τ})δτ , (6.2.9)

where δτ is the unit mass at τ .

The goal of this section is to derive the precise form of the energy-dissipation balance in

the t variable. We start with a change of variable formula.

Lemma 6.4. Let (u, e,p, z) be a viscosity evolution with data f , g , and w , let T > 0 ,

and let S = s◦−(T ) . Let µ and µd be as in (6.2.8) and (6.2.9), respectively, and define νp

as in Theorem 1.3, with X = Mb(Ω ∪ Γ0;MN×N
sym ) and Y = C0

0 (Ω ∪ Γ0;MN×N
sym ) . Then∫

(s1,s2)\U◦
〈ϕ, ṗ◦(s)〉 ds =

∫ t◦(s2)

t◦(s1)

〈ϕ,νp(t)〉 dµd(t) (6.2.10)

for every ϕ ∈ C0(Ω;MN×N
sym ) and every 0 ≤ s1 < s2 ≤ S , where the duality products

〈ϕ, ṗ◦(s)〉 and 〈ϕ,νp(t)〉 are defined as the integrals of the function ϕ on the set Ω ∪ Γ0

with respect to the measures ṗ◦(s) and νp(t) , respectively.

Proof. We first consider the case ϕ ∈ C0
0 (Ω ∪ Γ0;MN×N

sym ). For every 0 ≤ t1 ≤ t2 ≤ T , by

(1.4.13) we have that∫ t2

t1

〈ϕ,νp(t)〉 dµd(t) = 〈ϕ,p(t2)− p(t1)〉 −
∑

τ∈S◦∩[t1,t2)

〈ϕ,p(τ+)− p(τ)〉 .

By (6.2.3) and the Lipschitz continuity of p◦, we have

〈ϕ,p(t2)− p(t1)〉 =

∫ s◦−(t2)

s◦−(t1)

〈ϕ, ṗ◦(s)〉 ds .

Let τ ∈ S◦. When t2 → τ+, by (6.2.5), (6.2.6) and the previous equality we obtain that

〈ϕ,p(τ+)− p(τ)〉 =

∫ s◦+(τ)

s◦−(τ)

〈ϕ, ṗ◦(s)〉 ds .
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From the last two equalities and (5.4.53) we get∫ t2

t1

〈ϕ,νp(t)〉 dµd(t) =

∫
(s◦−(t1),s◦−(t2))\U◦

〈ϕ, ṗ◦(s)〉 ds . (6.2.11)

Now fix 0 ≤ s1 < s2 ≤ S . By (6.2.11) we have∫ t◦(s2)

t◦(s1)

〈ϕ,νp(t)〉 dµd(t) =

∫
(s◦−(t◦(s1)), s◦−(t◦(s2)))\U◦

〈ϕ, ṗ◦(s)〉 ds .

By (5.4.52) and (5.4.53), if s◦−(t◦(s1)) < s1 , then the open interval (s◦−(t◦(s1)), s1) is con-

tained in the set U◦; a similar property holds for s2 . This concludes the proof when

ϕ ∈ C0
0 (Ω ∪ Γ0;MN×N

sym ).

Let us consider now the case ϕ ∈ C0(Ω;MN×N
sym ). We fix a sequence ψk ∈ C∞(Ω̄) , with

0 ≤ ψk ≤ 1 in Ω̄ and ψk = 0 in a neighbourhood of ∂Ω \ Γ0 , such that ψk(x) → 1 for

every x ∈ Ω∪Γ0 . Since ψkϕ ∈ C0
0 (Ω∪Γ0;MN×N

sym ), formula (6.2.10) holds with ϕ replaced

by ψkϕ . The conclusion can be obtained by passing to the limit as k → +∞ thanks to the

Dominated Convergence Theorem.

In the next two lemmas we prove a change of variable formula for the integral∫
(0,S)\U◦

H(ṗ◦(s), ζ◦(s)) ds .

We begin with the case of a function ζ indepedent of s .

Lemma 6.5. Under the assumptions of Lemma 6.4, we have∫ b

a

H(νp(t), ζ) dµd(t) =

∫
(s◦−(a),s◦−(b))\U◦

H(ṗ◦(s), ζ) ds (6.2.12)

for every ζ ∈ C0(Ω̄)+ and every 0 ≤ a ≤ b ≤ T .

Proof. Let K(ζ) be as in (1.3.15), and let a = t0 ≤ t1 ≤ · · · ≤ tN−1 ≤ tN = b be

a subdivision of [a, b] . By (1.4.13) and (6.2.11), for every 1 ≤ i ≤ N and every ϕ ∈
K(ζ) ∩ C0

0 (Ω ∪ Γ0;MN×N
sym ) we have

〈ϕ,p(ti)− p(ti−1)〉 =

∫ ti

ti−1

〈ϕ,νp(t)〉 dµd(t) +
∑

τ∈S◦∩[ti−1,ti)

〈ϕ,p(τ+)− p(τ)〉 =

=

∫
(s◦−(ti−1),s◦−(ti))\U◦

〈ϕ, ṗ◦(s)〉 ds+
∑

τ∈S◦∩[ti−1,ti)

〈ϕ,p(τ+)− p(τ)〉 ≤

≤
∫

(s◦−(ti−1),s◦−(ti))\U◦
H(ṗ◦(s), ζ) ds+

∑
τ∈S◦∩[ti−1,ti)

H(p(τ)+ − p(τ), ζ) ,

where in the last inequality we used the definition of H . Taking the supremum with respect

to ϕ , by Theorem 1.2 we get

H(p(ti)− p(ti−1), ζ) ≤
∫

(s◦−(ti−1),s◦−(ti))\U◦
H(ṗ◦(s), ζ) ds+

∑
τ∈S◦∩[ti−1,ti)

H(p(τ+)− p(τ), ζ)
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for every 1 ≤ i ≤ N . Summing over i and taking the supremum over all subdivisions, we

obtain

V(p, ζ; a, b) ≤
∫

(s◦−(a),s◦−(b))\U◦
H(ṗ◦(s), ζ) ds+

∑
τ∈S◦∩[a,b)

H(p(τ+)− p(τ), ζ) ,

where V is defined by (1.5.1). Thanks to (1.4.14),this inequality is equivalent to∫ b

a

H(νp(t), ζ) dµd(t) ≤
∫

(s◦−(a),s◦−(b))\U◦
H(ṗ◦(s), ζ) ds . (6.2.13)

To get the converse inequality, let s◦−(a) = s0 ≤ s1 ≤ · · · ≤ sN−1 ≤ sN = s◦−(b) be a

subdivision of [s◦−(a), s◦−(b)] . Using the definition of H , by (6.2.10) we obtain

〈ϕ,p◦(si)− p◦(si−1)〉 ≤
∫

(si−1,si)\U◦
〈ϕ, ṗ◦(s)〉 ds+

∫
(si−1,si)∩U◦

H(ṗ◦(s), ζ) ds =

=

∫ t◦(si)

t◦(si−1)

〈ϕ,νp(t)〉 dµd(t) +

∫
(si−1,si)∩U◦

H(ṗ◦(s), ζ) ds ≤

≤
∫ t◦(si)

t◦(si−1)

H(νp(t), ζ) dµd(t) +

∫
(si−1,si)∩U◦

H(ṗ◦(s), ζ) ds

for every 1 ≤ i ≤ N and every ϕ ∈ K . Taking the supremum over ϕ and using Theorem

1.2 we have

H(p◦(si)− p◦(si−1), ζ) ≤
∫ t◦(si)

t◦(si−1)

H(νp(t), ζ) dµd(t) +

∫
(si−1,si)∩U◦

H(ṗ◦(s), ζ) ds

for every 1 ≤ i ≤ N . By summing over i and taking the supremum over all subdivisions

we get thanks to Theorem 1.8∫ s◦−(b)

s◦−(a)

H(ṗ◦(s), ζ) ds ≤
∫ b

a

H(νp(t), ζ) dµd(t) +

∫
(s◦−(a),s◦−(b))∩U◦

H(ṗ◦(s), ζ) ds ;

here we also exploited the fact that t◦(s◦−(t)) = t for every t (see (5.4.51)). This is clearly

the same as saying∫ b

a

H(νp(t), ζ) dµd(t) ≥
∫

(s◦−(a),s◦−(b))\U◦
H(ṗ◦(s), ζ) ds ,

which concludes the proof.

We now extend the previous lemma to the time-dependent function ζ◦.

Lemma 6.6. Under the assumptions of Lemma 6.4, let ζ be defined by (6.2.4). Then we

have ∫ T

0

H(νp(t), ζ(t)) dµd(t) =

∫
(0,S)\U◦

H(ṗ◦(s), ζ◦(s)) ds . (6.2.14)

Proof. Since t 7→ ζ(t) is left-continuous and has bounded variation there exists a sequence

of left continuous piecewise constant functions ζk(t) := ζ0
k +

∑ik
i=1 ζ

i
k 1(ai−1,ai](t), with ζik ∈

C0(Ω) for every i and every k such that

‖ζk(t)− ζ(t)‖∞ → 0 (6.2.15)
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uniformly for t ∈ [0, T ] (see, for instance [34, Proposition 4.6]). Define

ζ◦k(s) := ζ0
k +

ik∑
i=1

ζik 1(s◦−(ai−1),s◦−(ai)](s) .

By (6.2.12) we easily get∫ T

0

H(νp(t), ζk(t)) dµd(t) =

∫
(0,S)\U◦

H(ṗ◦(s), ζ◦k(s)) ds . (6.2.16)

By (5.4.52) and (5.4.53) we have that s◦−(t◦(s)) = s for L1 -a.e. s ∈ [0, S] \ U◦, which

implies both ζ◦k(s) = ζk(t◦(s)) and ζ◦(s) = ζ(t◦(s)). Then, by (6.2.15) we conclude that

‖ζ◦k(s)− ζ◦(s)‖∞ → 0 (6.2.17)

for L1 -a.e. s ∈ [0, S] \ U◦. Since ‖ṗ◦(s)‖ ≤ 1, and ‖νp(t)‖1 = 1 by (1.4.12), passing to

the limit in (6.2.16) we get the required equality thanks to (6.2.15) and (6.2.17), using the

Lipschitz continuity of H(ξ, ζ) with respect to ζ (see (1.3.14)).

The next theorem finally gives the precise form of the energy balance in the variable t .

Theorem 6.7. Let (u, e,p, z) be a viscosity evolution with data f , g , and w satisfying

(2.3.42) and initial condition (u0, e0, p0, z0) as in (2.3.53)-(2.3.57), let T > 0 , and define

σ and ζ as in (6.2.4). Let S◦ be defined in (5.4.50), and let λ be the Radon measure on

[0,+∞) defined by

λ :=
∑
τ∈S◦

(
Q(e(τ))−Q(e(τ+)) + 〈L(τ),u(τ+)− u(τ)〉

)
δτ . (6.2.18)

Let µ and µd be as in (6.2.8) and (6.2.9), respectively, and define νp as in Theorem 1.3,

with X = Mb(Ω ∪ Γ0;MN×N
sym ) and Y = C0

0 (Ω ∪ Γ0;MN×N
sym ) . Then λ is a positive measure

and

Q(e(T ))−Q(e0) +

∫ T

0

H(νp(t), ζ(t)) dµd(t) + λ([0, T )) =

=

∫ T

0

〈Eẇ(t),σ(t)〉 dt−
∫ T

0

〈L(t), ẇ(t)〉 dt −

−
∫ T

0

〈L̇(t),u(t)〉 dt+ 〈L(T ),u(T )〉 − 〈L(0), u0〉 .

(6.2.19)

Proof. Let S = s◦−(T ) and let U◦ be as in (4.2.14). We start by looking at the term∫ S

0

(
H(ṗ◦(s), ζ◦(s)) + ‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s)))

)
ds

in the energy-dissipation balance. We split this integral into two parts:

I :=

∫
(0,S)\U◦

H(ṗ◦(s), ζ◦(s)) ds , (6.2.20)

II :=

∫
(0,S)∩U◦

(
H(ṗ◦(s), ζ◦(s)) + ‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s)))

)
ds ; (6.2.21)

indeed by (4.2.13) the term ‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) gives a contribution only in U◦.
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If follows from (5.4.53) that

II :=
∑

τ∈S◦∩[0,T )

∫ s◦+(τ)

s◦−(τ)

(
H(ṗ◦(s), ζ◦(s)) + ‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s)))

)
ds .

Since (s◦−(τ), s◦+(τ)) ⊂ U◦ for every τ ∈ S◦, (5.4.51) and (6.2.1) give∫ s◦+(τ)

s◦−(τ)

(
H(ṗ◦(s), ζ◦(s)) + ‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s)))

)
ds =

= Q(e◦(s◦−(τ)))−Q(e◦(s◦+(τ)) + 〈L(τ),u◦(s◦+(τ))− u◦(s◦−(τ))〉 . (6.2.22)

By definition Q(e◦(s◦−(τ))) = Q(e(τ)) and u◦(s◦−(τ)) = u(τ). On the other hand, (6.2.6)

gives Q(e(τ+)) = Q(e◦(s◦+(τ)) and u◦(s◦+(τ)) = u(τ+). Therefore we conclude that

II =
∑

τ∈S◦∩[0,T )

(
Q(e(τ))−Q(e(τ+))− 〈L(τ),u(τ+)− u(τ)〉

)
= λ([0, T )) . (6.2.23)

Moreover, since the left-hand side of (6.2.22) is nonnegative, we have that

Q(e(τ))−Q(e(τ+))− 〈L(τ),u(τ+)− u(τ)〉 ≥ 0

for every τ ∈ S◦, hence λ is a positive measure.

By (6.2.14) and (6.2.20) we have

I =

∫ T

0

H(νp(t), ζ(t)) dµd(t) . (6.2.24)

Arguing as in (5.5.12) we have also∫ S

0

〈Eẇ◦(s),σ◦(s)〉 ds =

∫ T

0

〈Eẇ(t),σ(t)〉 dt . (6.2.25)

With a similar argument we can also prove that∫ S

0

〈L̇(t◦(s)),u◦(s)〉 ṫ◦(s) ds =

∫ T

0

〈L̇(t),u(t)〉 dt , (6.2.26)

while the equality ∫ S

0

〈L(t◦(s)), ẇ(t◦(s))〉 ṫ◦(s) ds =

∫ T

0

〈L(t), ẇ(t)〉 dt (6.2.27)

is simply (1.4.18) with h(t) and ϕ(s) replaced by 〈L(t), ẇ(t)〉 and t◦(s), respectively.

Since, by construction, Q(e◦(S)) = Q(e(T )), L(t◦(S)) = L(T ) and u◦(S) = u(T ), the

required equality follows from (4.3.1), (6.2.23), (6.2.24), (6.2.25), (6.2.26), and (6.2.27) .

Remark 6.8. The energy-dissipation balance (6.2.19) shows in particular that the viscous

dissipation is concentrated at the jump times. Notice that the exact amount of dissipation

occurring at these times can be obtained only from the rescaled formulation, using the

equality

λ :=
∑
t∈S◦

(
Q(e◦(s◦−(t)))−Q(e◦(s◦+(t))) + 〈L(t),u(s◦+(t))− u(s◦−(t))〉

)
δt ,

which follows from (6.2.6) and (6.2.18).
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6.3 The evolution of the internal variable in the original

time

In order to write the evolution law for the internal variable in the original time t , we

first show that, given an exponent r > n , the variation of t 7→ z(t)− z0 as a function from

[0, T ] to W 1,r(Ω) is controlled by the variation of t 7→ p(t) as a function from [0, T ] to

the Banach space Mb(Ω ∪ Γ0). To this aim we first notice that by (5.4.44) s 7→ z◦(s)− z0

is locally absolutely continuous as a function from [0,+∞) to W 1,r(Ω) and, by (2.3.41),

(4.2.17), (5.4.38), and (5.4.39), given S > 0 there exists a positive constant M◦S such that

‖ż◦(s)‖1,r ≤M◦S‖ṗ◦(s)‖1 (6.3.1)

for L1 -a.e. s ∈ [0, S] , where ‖ · ‖1,r denotes the norm in W 1,r(Ω). Moreover (4.2.17)

yields, in particular, that s 7→ ρ1 ?
(
(ρ2 ? trσ◦(s))tr(ṗ◦(s))

)
is locally Bochner integrable as

a function from [0,+∞) to W 1,r(Ω), and consequently to C0(Ω̄) .

As in (5.4.36), we put

a◦(s) := ρ2 ? tr(σ◦(s)) .

Similarly we set

a(t) := ρ2 ? tr(σ(t)) = a◦(s◦−(t)) , (6.3.2)

where the last equality follows from (6.2.4). We start with the following lemma which is a

refinement of Lemma 6.4.

Lemma 6.9. Under the assumptions of Lemma 6.4, let ϕ◦: [0, S] → C0(Ω̄;MN×N
sym ) be

a bounded measurable function such that ϕ(t) := ϕ◦(s◦−(t)) has bounded variation as a

function from [0, T ] to the Banach space C0(Ω̄;MN×N
sym ) . Then∫

(s1,s2)\U◦
〈ϕ◦(s), ṗ◦(s)〉 ds =

∫ t◦(s2)

t◦(s1)

〈ϕ(t),νp(t)〉 dµd(t) (6.3.3)

for every 0 ≤ s1 < s2 ≤ S .

Proof. If ϕ◦(s) does not depend on s , the result is proved in Lemma 6.4. The general case

can be obtained by approximating ϕ(t) with piecewise constant functions, arguing as in

Lemma 6.6.

As a consequence we get the following corollary, for every exponent r > n .

Corollary 6.10. Under the assumptions of Lemma 6.4, let σ be defined as in (6.2.4),

and let a◦(s) and a(t) be as in (5.4.36) and (6.3.2). Then t 7→ ρ1 ?
(
a(t)tr(νp(t))

)
is

µd -Bochner integrable as a function from [0, T ] to W 1,r(Ω) , and consequently to C0(Ω̄) ,

and ∫
(s1,s2)\U◦

ρ1 ?
(
a◦(s)tr(ṗ◦(s))

)
ds =

∫ t◦(s2)

t◦(s1)

ρ1 ?
(
a(t)tr(νp(t))

)
dµd(t) (6.3.4)

for every 0 ≤ s1 < s2 ≤ S .
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Proof. Observe that a(t) has bounded variation as a consequence of Remark 6.3. Fix

ϕ ∈ C0(Ω) and let I be the identity matrix. We have that

〈ϕ,a(t)tr(νp(t))〉 = 〈ϕa(t)I,νp(t)〉 , (6.3.5)

and similarly

〈ϕ,a◦(s)tr(ṗ◦(s))〉 = 〈ϕa◦(s)I, ṗ◦(s)〉 , (6.3.6)

where the duality product is defined as an integral on Ω∪Γ0 If a(t) does not depend on t ,

from (6.3.5) and Theorem 1.3, we get that t 7→ 〈ϕ,a(t)tr(νp(t))〉 is µd -integrable in [0, T ]

for every ϕ ∈ C0
0 (Ω ∪ Γ0). The same result holds when a(t) depends on t . This can be

proved by approximating a(t) with piecewise constant functions, arguing as in Lemma 6.6.

Moreover, arguing as at the end of Lemma 6.4, we can prove that t 7→ 〈ϕ,a(t)tr(νp(t))〉 is

µd -integrable in [0, T ] for every ϕ ∈ C0(Ω).

Let ρ̌1(x) := ρ1(−x). Since 〈ϕ, ρ1 ?
(
a(t)tr(νp(t))

)
〉 = 〈ρ̌1 ? ϕ,a(t)tr(νp(t))〉 , we de-

duce that t 7→ 〈ϕ, ρ1 ?
(
a(t)tr(νp(t))

)
〉 is µd -integrable in [0, T ] for every ϕ ∈ C0(Ω).

It follows that t 7→ ρ1 ?
(
a(t)tr(νp(t))

)
is µd -weakly measurable from [0, T ] to W 1,r(Ω).

By Pettis’ Theorem and by the boundedness of a(t) and νp(t), this implies that t 7→
ρ1 ?

(
a(t)tr(νp(t))

)
is µd -Bochner integrable from [0, T ] to W 1,r(Ω), and consequently

to C0(Ω̄) . On the other hand, as it has been observed at the beginning of the section,

s 7→ ρ1 ?
(
a◦(s)tr(ṗ◦(s))

)
is L1 -Bochner integrable as a function from [0, S] to C0(Ω̄) .

We now fix ϕ ∈ C0(Ω) and define ϕ◦(s) := (ρ̌1 ? ϕ)a◦(s)I and ϕ(t) := (ρ̌1 ? ϕ)a(t)I .

Then (6.3.5) and (6.3.6) hold with ϕ replaced by ρ̌1 ? ϕ . Therefore Lemma 6.9 gives∫
(s1,s2)\U◦

〈ϕ, ρ1 ?
(
a◦(s)tr(ṗ◦(s))

)
〉 ds =

∫ t◦(s2)

t◦(s1)

〈ϕ, ρ1 ?
(
a(t)tr(νp(t))

)
〉 dµd(t)

for every 0 ≤ s1 < s2 ≤ S . By the arbitrariness of ϕ and standard properties of the Bochner

integral, this equality is equivalent to (6.3.4).

We are now in a position to prove the estimate for the variation of z . For every r > n

and every 0 ≤ a < b < +∞ , we define

Var1,r(z; a, b) :=sup
{ N∑
i=1

‖z(ti)−z(ti−1)‖1,r : a = t0 ≤ t1 ≤ · · · ≤ tN = b, N ∈ N
}
, (6.3.7)

where ‖ · ‖1,r denotes the norm in W 1,r(Ω).

Theorem 6.11. Let (u, e,p, z) be a viscosity evolution with data f , g , and w satisfying

(2.3.42)-(2.3.48) and initial condition (u0, e0, p0, z0) as in (2.3.53)-(2.3.57), and let T > 0 .

Let µ and µd be as in (6.2.8) and (6.2.9), respectively, and define νp as in Theorem 1.3,

with X = Mb(Ω ∪ Γ0;MN×N
sym ) and Y = C0

0 (Ω ∪ Γ0;MN×N
sym ) . Assume that the uniform

safe-load condition (2.3.45)-(2.3.48) holds. Let r > n and let Var(p; a, b) be defined as in

(1.4.2). Then there exists a positive constant CT such that

Var1,r(z; a, b) ≤ CT Var(p; a, b) (6.3.8)

for every 0 ≤ a < b ≤ T .
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Proof. Let S = s◦−(T ), fix 0 ≤ a ≤ t1 < t2 ≤ b ≤ T , and let a◦(s) and a(t) be as in (5.4.36)

and (6.3.2). By the definition of z , the Lipschitz continuity of z◦, and (4.2.17), we have

‖z(t2)− z(t1)‖1,r =
∥∥∥∫ s◦−(t2)

s◦−(t1)

ż◦(s) ds
∥∥∥

1,r
≤

≤
∥∥∥∫

(s◦−(t1),s◦−(t2))\U◦
ρ1 ?

(
a◦(s)tr(ṗ◦(s))

)
ds
∥∥∥

1,r
+
∥∥∥∫

(s◦−(t1),s◦−(t2))∩U◦
ż◦(s) ds

∥∥∥
1,r
.

(6.3.9)

By Corollary 6.10, recalling (5.4.51) we get.∫
(s◦−(t1),s◦−(t2))\U◦

ρ1 ?
(
a◦(s)tr(ṗ◦(s))

)
ds =

∫ t2

t1

ρ1 ?
(
a(t)tr(νp(t))

)
dµd(t) .

Since a(t) is uniformly bounded in C0(Ω) and ‖νp(t)‖1 = 1 for µd -a.e. t (see (1.4.5)),

by standard properties of the convolution the integrand in the right-hand side is uniformly

bounded in W 1,r(Ω), therefore∥∥∥ ∫
(s◦−(t1),s◦−(t2))\U◦

ρ1 ?
(
a◦(s)tr(ṗ◦(s))

)
ds
∥∥∥

1,r
≤ CTµd((t1, t2)) (6.3.10)

for a suitable constant CT .

To estimate the second integral in the right-hand side of (6.3.9), let ζm > 0 be the

constant in (2.3.38), and let χ(t) be a function satisfying the uniform safe-load condition.

Fix τ ∈ S◦∩[t1, t2) (see (5.4.50)). Observe that by Remark 4.4 for L1 -a.e. s ∈ [s◦−(τ), s◦+(τ))

the duality product 〈χ(τ), ṗ◦(s)〉 is correctly defined according to (2.3.12). Moreover, by

(4.2.18) and (5.4.51) we have χ(τ) = χ◦(s◦+(τ)). By (2.3.36) we get that

r0‖ṗ◦(s)‖1 ds ≤ H(ṗ◦(s), ζm)− 〈χ(τ), ṗ◦(s)〉 ,

where r0 > 0 is as in (2.3.46). With these facts, (2.3.38), (6.2.2), and (4.3.18) give

r0

∫ s◦+(τ)

s◦−(τ)

‖ṗ◦(s)‖1 ds ≤
∫ s◦+(τ)

s◦−(τ)

(
H(ṗ◦(s), ζm)− 〈χ(τ), ṗ◦(s)〉

)
ds ≤

≤
∫ s◦+(τ)

s◦−(τ)

(
H(ṗ◦(s), ζ◦(s))− 〈χ(τ), ṗ◦(s)〉

)
ds =

=

∫ s◦+(τ)

s◦−(τ)

H(p◦(s), ζ◦(s)) ds− 〈χ(τ),p◦(s◦+(τ))− p◦(s◦−(τ))〉 ≤ (6.3.11)

≤ Q(e◦((s◦−(τ)))−Q(e◦((s◦+(τ))) + 〈χ(τ), e◦(s◦+(τ))− e◦(s◦−(τ))〉 =

=
1

2
〈σ◦(s◦−(τ)) + σ◦(s◦+(τ))− 2χ(τ), e◦(s◦−(τ))− e◦(s◦+(τ))〉 .

By (2.3.45) and (4.2.12), 1
2 (σ◦(s◦−(τ))+σ◦(s◦+(τ))−2χ(τ) ∈ Σ0(Ω), where Σ0(Ω) is defined

by (2.3.32). Since Ew◦(s) = Ew(τ) for every s ∈ [s◦−(τ), s◦+(τ)] , Proposition 2.3 yields that

1
2 〈σ

◦(s◦−(τ)) + σ◦(s◦+(τ))− 2χ(τ), e◦(s◦−(τ))− e◦(s◦+(τ))〉 =

= 1
2 〈σ

◦(s◦−(τ)) + σ◦(s◦+(τ))− 2χ(τ),p◦(s◦+(τ))− p◦(s◦−(τ))〉 .
(6.3.12)



6. Viscosity solutions 143

By (4.2.13), we have that σ◦(s◦+(τ)) ∈ K(ζ◦(s◦+(τ))) and σ◦(s◦−(τ)) ∈ K(ζ◦(s◦−(τ))), there-

fore, taking into account (2.3.46)

‖σ◦(s◦−(τ)) + σ◦(s◦+(τ))− 2χ(τ)‖∞ ≤ 2MK [LS(‖z0‖∞ + S) + ζm] , (6.3.13)

where MK is the constant in (1.3.4), ζm is given by (2.3.38), and LS is the Lipschitz

constant of ζ◦ on [0, S] . By (2.3.13), (6.3.11), (6.3.12), and (6.3.13), we conclude that there

exist a constant CT , independent of t , such that∫ s◦+(τ)

s◦−(τ)

‖ṗ◦(s)‖1 ds ≤ CT ‖p◦(s◦+(τ))− p◦(s◦−(τ))‖1 = CT ‖p(τ+)− p(τ)‖1 , (6.3.14)

where the last equality follows from (6.2.6).

Using (5.4.53), (6.3.1), and (6.3.14) we get that, up to redefining the positive constant

CT ∥∥∥∫
(s◦−(t1),s◦−(t2))∩U◦

ż◦(s) ds
∥∥∥

1,r
≤

∑
τ∈S◦∩[t1,t2)

∫ s◦+(τ)

s◦−(τ)

∥∥∥ż◦(s)∥∥∥
1,r
ds ≤

≤ CT
∑

τ∈S◦∩[t1,t2)

‖p(τ+)− p(τ)‖1 . (6.3.15)

Finally, putting together (6.3.9), (6.3.10), and (6.3.15), from the definitions of µ and µd we

get

‖z(t2)− z(t1)‖1,r ≤ CT
(
µd((t1, t2)) +

∑
τ∈S◦∩[t1,t2)

‖p(τ+)− p(τ)‖1
)

=

= CT

(
µd((t1, t2)) +

∑
τ∈S◦∩[t1,t2)

µ({τ})
)

= CTµ([t1, t2)) = CTVar(p; t1, t2) .

From this the conclusion easily follows.

The proof of the following lemma could be recovered by repeating the arguments of [34,

Sections 6 and 12]; for the reader’s convenience we give here an independent proof based on

the results in Chapter 1, Section 1.4.

Lemma 6.12. Under the assumptions of Lemma 6.4, there exists a unique Bochner µ-

integrable function νz,µ : [0, T ]→ C0(Ω̄) such that

z(b)− z(a) =

∫ b

a

νz,µ(t) dµ(t) (6.3.16)

for every a, b ∈ [0, T ] with a ≤ b , such that µ({a}) = µ({b}) = 0 .

Proof. Fix r > n , and a, b ∈ [0, T ] , with a ≤ b , such that µ({a}) = µ({b}) = 0. Let λ be

the unique Radon measure on [0, T ] such that λ([0, t]) = Var1,r(z; 0, t) for every t ∈ [0, T ]

where t 7→ Var1,r(z; 0, t) is continuous. By (6.3.8), λ is absolutely continuous with respect

to µ ; in particular, we have λ({a}) = λ({b}) = 0. By Theorem 1.3 and the reflexivity

of W 1,r(Ω), there exists a unique weakly λ-measurable function νz : [0, T ] → W 1,r(Ω)

satisfying

〈y,z(b)− z(a)〉 =

∫ b

a

〈y,νz(t)〉 dλ(t)
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for every y in the dual of W 1,r(Ω); since the latter is separable, by Pettis’ Theorem νz is

λ -measurable, therefore it is Bochner integrable with respect to λ by (1.4.5). It then follows

that

z(b)− z(a) =

∫ b

a

νz(t) dλ(t) .

By the Sobolev Imbedding Theorem and (1.4.5) νz ∈ L∞λ ([0, T ];C0(Ω̄)) . By the Radon-

Nikodym Theorem, λ has a density dλ
dµ (t) with respect to µ ; therefore the conclusion follows

with νz,µ(t) = νz(t) dλdµ (t).

We now study the evolution law for the internal variable in the original time t . The first

result concerns only the continuity points of z .

Proposition 6.13. Let (u, e,p, z) be a viscosity evolution with data f , g , and w satisfying

(2.3.42)-(2.3.48) and initial condition (u0, e0, p0, z0) as in (2.3.53)-(2.3.57), and let T > 0 .

Define σ as in (6.2.4). Let µ and µd be as in (6.2.8) and (6.2.9), respectively. Define νp

as in Theorem 1.3, with X = Mb(Ω ∪ Γ0;MN×N
sym ) and Y = C0

0 (Ω ∪ Γ0;MN×N
sym ) , and let

νz,µ as in Lemma 6.12. Then

νz,µ(t) = ρ1 ?
(
(ρ2 ? tr(σ(t)))tr(νp(t))

)
(6.3.17)

for µd -a.e. t ∈ [0, T ] .

Proof. It clearly suffices to show that the required equality holds for µ-a.e. t ∈ [0, T ] \ S◦.
Fix t ∈ [0, T ] \ S◦; this implies that µ({t}) = 0. We shall additionally require that the

following properties are satisfied in t :

lim
h→0+

µ([t− h, t+ h])

µd([t− h, t+ h])
= 1 , (6.3.18)

lim
h→0+

1

µ([t− h, t+ h])

∫
[t−h,t+h]

νz,µ(τ) dµ(τ) = νz,µ(t) , (6.3.19)

lim
h→0+

1

µd([t− h, t+ h])

∫ t+h

t−h
ρ1 ?

(
a(τ)tr(νp(τ))

)
dµd(τ) = ρ1 ?

(
a(t)tr(νp(t))

)
.(6.3.20)

This is not restrictive, as the Besicovitch Differentiation Theorem guarantees that all these

properties are satisfied for µ-a.e. t ∈ [0, T ] \ S◦. Notice that, by (6.3.15), the Sobolev

Imbedding Theorem, and the definitions of µ and µd , we have that

1

µd([t− h, t+ h])

∥∥∥∫
(s◦−(t−h),s◦−(t+h))∩U◦

ż◦(s) ds
∥∥∥
∞
≤

≤ CT
1

µd([t− h, t+ h])

∑
τ∈S◦∩[t−h,t+h)

‖p(τ+)− p(τ)‖1 ≤

≤ CT
µ([t− h, t+ h])− µd([t− h, t+ h])

µd([t− h, t+ h])
→ 0 (6.3.21)

when h → 0+ thanks to (6.3.18). We fix a sequence hj → 0+ such that µ({t + hj}) =

µ({t − hj}) = 0 for every j . Defining a◦(s) and a(t) as in (5.4.36) and (6.3.2), and using

the definition of z , the Lipschitz continuity of z◦, and the evolution law in the rescaled
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time s (4.2.17), by (6.3.4), (6.3.16), (6.3.18), (6.3.19), (6.3.20), and (6.3.21) we finally get

νz,µ(t) = lim
j→+∞

1

µd([t− hj , t+ hj ])

∫
[t−hj ,t+hj ]

νz,µ(t) dµ(t) =

= lim
j→+∞

1

µd([t− hj , t+ hj ])
(z(t+ hj)− z(t− hj)) =

= lim
j→+∞

1

µd([t− hj , t+ hj ])

∫ s◦−(t+hj)

s◦−(t−hj)
ż◦(s) ds =

= lim
j→+∞

1

µd([t− hj , t+ hj ])

∫
(s◦−(t−hj),s◦−(t+hj))\U◦

ż◦(s) ds =

= lim
j→+∞

1

µd([t− hj , t+ hj ])

∫
(s◦−(t−hj),s◦−(t+hj))\U◦

ρ1 ?
(
a◦(s)tr(ṗ◦(s))

)
ds =

= lim
j→+∞

1

µd([t− hj , t+ hj ])

∫ t+hj

t−hj
ρ1 ?

(
a(τ)tr(νp(τ))

)
dµd(τ) =

= ρ1 ?
(
a(t)tr(νp(t))

)
,

as required.

We are finally in position to prove the evolution law for the internal variable in the

original time t .

Theorem 6.14. Let (u, e,p, z) be a viscosity evolution with data f , g , and w satisfying

(2.3.42)-(2.3.48) and initial condition (u0, e0, p0, z0) as in (2.3.53)-(2.3.57), and let T > 0 .

Define σ as in (6.2.4). Let S◦ be as in (5.4.50), and let λz be the locally bounded C0(Ω)-

valued Radon measure on [0,+∞) defined by

λz :=
∑
t∈S◦

(z(t+)− z(t))δt. (6.3.22)

Let µ and µd be as in (6.2.8) and (6.2.9), respectively, and let νp be as in Theorem 1.3.

Then

z(T ) = z0 +

∫ T

0

ρ1 ?
(
(ρ2 ? tr(σ(t)))tr(νp(t))

)
dµd(t) + λz([0, T )) , (6.3.23)

where the integral is a Bochner integral in the space C0(Ω) .

Proof. Using the left continuity of t 7→ z(t) we deduce from (6.3.16) that

z(T )− z0 =

∫
[0,T )

νz,µ(t) dµ(t) ,

νz,µ(t)µ({t}) = z(t+)− z(t) for every t ∈ [0,+∞) .

Therefore, using the definitions of µd and λz ((6.2.9) and (6.3.22)), we obtain

z(T )− z0 =

∫ T

0

νz,µ(t) dµd(t) + λz([0, T )) .

Equality (6.3.23) follows now from (6.3.17).
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Remark 6.15. By (6.3.23) the value of z(T ) is uniquely determined by z0 , t 7→ σ(t),

t 7→ p(t), provided we know the behavior of z at its discontinuity points. This can be

deduced from the rescaled formulation, using the equality

λz =
∑
t∈S◦

(z◦(s◦+(t))− z◦(s◦−(t)))δt ,

which follows from (6.2.6) and (6.3.22).
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