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Abstract. A dimension reduction analysis is undertaken using Γ-convergence
techniques within a relaxation theory for 3D nonlinear elastic thin domains of

the form

Ωε := {(x1, x2, x3) : (x1, x2) ∈ ω, |x3| < εfε(x1, x2)},
where ω is a bounded domain of R2 and fε is an ε-dependent profile. An
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1. Introduction

Dimensional reduction through asymptotic analysis is by now a well established
theory in a linear setting. Specifically, the work of Ciarlet et al. [?], has
paved the way for a variety of studies ranging from linearly elastic plates [?] to
various beam models [?], [?], [?], or shells [?], and also spanning various constitutive
behaviors [?].

There have, however, been comparatively few studies in a nonlinear setting (other
than the semi-linear setting of [?], [?], [?] in the case of rods). To our knowledge, a
quasi-exhaustive list can be readily drawn: in [?], fully nonlinear homogeneous elas-
tic plate models are obtained, thereby providing a rigorous mathematical framework
for prior work [?]. Note the absence, in that work, of the well thought of require-
ment that the energy density become infinite as the jacobian of the transformation
tends to 0. The only attempt in that direction is to be found in [?]. In [?], fully
nonlinear beam models are obtained while in [?] a very thorough investigation of the
monotone, albeit not necessarily variational, case is undertaken, again in a 3D-1D
setting. Nonlinear shell models are also discussed in [?], [?] in the footstep of [?].

1



2 ANDREA BRAIDES, IRENE FONSECA, AND GILLES FRANCFORT

Finally, a general study of Γ-convergence and dimensional reduction is proposed in
[?].

As emphasized in [?], thin film technology has drastically improved as of late
and a precise control over thickness as well as material composition of a film is
possible. This motivated in part the study in [?] of the optimal(ly worst!) design
of a two-phase nonlinearly elastic thin film. In a different direction, “optimal”
stiffeners for a linearly elastic plate with fixed average thickness are analyzed in [?]
under directional restrictions on the stiffeners, and the existence of a Kirchhoff-
like plate model is established (at least formally) as limit of 3D domains with
(locally) periodic profiles, i.e., profiles of the form {|x3| < εf(x, x/ετ )}, where ε is
the thickness of the domain, 0 < τ < ∞ determines the period of the oscillations,
and f(x, .) is periodic.

In the present paper, we propose, in the context of fully nonlinear elasticity, a
general approach that allows for material heterogeneity as well as rapidly varying
profiles. We show in Theorem ?? that membrane-type models of the form firstly
derived in [?] are generic; of course, Theorem ?? is a mere abstract existence result
and a more precise determination of the membrane energy density in the spirit of [?]
is unfeasible with such a degree of generality. We then proceed in the remainder of
the paper to specialize the obtained energy density to more specific settings. Section
?? is devoted to revisiting the model obtained in [?] for transversally inhomogeneous
thin domains. Section ?? examines a typical homogenization type problem, namely
that in which both microstructure and profile periodically oscillate on a scale that is
comparable to that of the thickness of the domain. Finally, Section ?? investigates
the optimal problem discussed in [?] without the restriction that the mixtures be
of cylindrical type, that is allowing for any kind of two-phase mixture, provided of
course that the resulting volume fraction of each material be independent of the
transverse variable x3, a must if one is to hope for a plate-like behavior.

It is worthwhile at this point to be somewhat more specific, so as to achieve a
better understanding of the scope and limitations of the model. A profiled 3D thin
domain Ω(ε) is considered; it is of the form

Ω(ε) := {(x1, x2, x3) : (x1, x2) ∈ ω and |x3| < εfε(x1, x2)},

where ω is a bounded domain of R2 and fε(x1, x2) determines the ε-dependent
profile x3 = ±fε(x1, x2). This domain is filled with an elastic material with
elastic energy density W(ε)(x1, x2, x3; ·). Let us assume, for the sake of illus-
tration, that Ω(ε) is clamped on its lateral boundary and subject to body loads
F (ε)(x1, x2, x3), so that, for fixed ε, in order to reach equilibrium the transforma-
tion field u(ε)(x1, x2, x3) seeks to minimize

w 7→
∫

Ω(ε)

W(ε)(x1, x2, x3;Dw) dx−
∫

Ω(ε)

F (ε) · w dx,

among all kinematically admissible fields w.
Note that the displacement field u(ε)(x) − x can be used in lieu of the trans-

formation field u(ε) at the expense of an obvious change in the expression for the
energy density, namely

W (ε)(x1, x2, x3;Dw) :=W(ε)(x1, x2, x3; I +Dw).

We will denote the displacement field by u(ε) as well and will not refer any further
to transformation fields.
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It is tempting to reformulate this problem on a “fixed” domain through a 1/ε-
dilation in the transverse direction x3. Set

Ω := ω × (−1, 1),
Ωε := {(x1, x2, x3) : (x1, x2, εx3) ∈ Ω(ε)},

uε(x1, x2, x3) := u(ε)(x1, x2, εx3),
Wε(x1, x2, x3; ·) := W (ε)(x1, x2, εx3; ·),
Fε(x1, x2, x3) := F (ε)(x1, x2, εx3).

Equivalently, uε wants to minimize

v 7→
∫

Ωε

Wε

(
x1, x2, x3;D1v

∣∣∣D2v
∣∣∣1
ε
D3v

)
dx−

∫
Ωε

Fε · v dx

among all kinematically admissible fields v on Ωε, where (ξ1|ξ2|ξ3), with ξi ∈ R3,
i = 1, 2, 3, stands for the 3 × 3 matrix with columns ξ1, ξ2, ξ3. Under appropriate
coercivity assumptions on Wε (or W (ε)), it is easily checked (cf. Remark ??)
that, for a subsequence {εk} of {ε}, there exists u ∈ W 1,p(ω; R3) such that (uεk −
u)χΩεk

→ 0 strongly in Lp(R3), where χΩεk
denotes the characteristic function of

Ωεk , provided that {FεχΩε} (resp. {F (ε)χΩ(ε)}) is bounded in Lp(R3), with p > 1.
It then makes sense to investigate the Γ(Lp)–limit of the functionals

v 7→ Eε(v;ω) :=
∫

Ωε

Wε

(
x1, x2, x3;D1v

∣∣∣D2v
∣∣∣1
ε
D3v

)
dx

since minimizers of Eε – if they exist – will Lp-converge to minimizers of that Γ(Lp)–
limit, and thus a characterization of the latter will entail an asymptotic effective
energy for equilibria states of Ωε. This is what the present paper undertakes.

This approach depends on the adopted scaling in a non trivial way. Indeed,
a different kind of estimate on the loads – or, as the language of asymptotics
would have it, a different scaling on the loads – will render the subsequent analysis
obsolete. In particular, note that the usual scaling of linearized elasticity, that is
loads such that 1

εF (ε)3 is of the same order as F (ε)1, F (ε)2, is not amenable to the
proposed setting; a rescaling of u(ε)3 as

(uε)3(x1, x2, x3) := εu(ε)3(x1, x2, εx3)

is that proposed in linearized elasticity (cf. e.g. [?]). It can be shown, however, to
prohibit local models in the limit [?].

We now close this introduction with a few remarks of a mathematical nature.
Firstly, it should be noted that there is nothing in the analysis that precludes a
higher (or lower) number of horizontal and vertical directions, the setting being
then of mappings from RN into Rd with N, d ∈ N arbitrary, although the physical
meaning becomes dubious. The reader’s attention should be drawn to the pervading
problem of the explicit appearance of the parameter ε in the functional. This is
a source of numerous difficulties and it prompts extreme caution when extracting
subsequences (see e.g. the extraction of the subsequence {εR} in the proof of
Theorem ??). We also have to appeal to both Γ–limits and Γ–liminfs. Let us recall
that if {En} is a sequence of functions from a Banach space X into R and E is a
function from X into R, then

Γ1. E is the Γ(X)– lim inf of En if, for any x in X,

E(x) = inf
{xn}
{lim inf
n→0+

En(xn) : xn → x in X},

Γ2. E is the Γ(X)– lim sup of Eε if, for every x in X,

E(x) = inf
{xn}
{lim sup
n→0+

En(xn) : xn → x in X}.

Also
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Γ3. if Γ(X)– lim inf En = Γ(X)– lim supEn then the common value is called the
Γ(X)-limit of En.
Therefore, E(u) = Γ– limEn(u) if and only if

i) whenever un → u in X then

E(u) ≤ lim inf
n→+∞

En(un),

ii) there exists a sequence {un} such that un → u in X and

E(u) = lim inf
n→+∞

En(un).

Moreover, given a family of maps Eε : X → R, ε > 0, and if u ∈ X then we say
that

Γ4. Γ(X)– limEε(u) = E(u) if E(u) = Γ(X)– limEεn(u) for every sequence
εn → 0+.
Hence, it can be shown that Γ(X)– limEε(u) = E(u) if and only if

i) for every sequences {un} and {εn} such that un → u in X and εn → 0+

then
E(u) ≤ lim inf

n→+∞
Eεn(un),

ii) for every sequence {εn} converging to 0+ there exists a sequence {un}
such that un → u in X and

E(u) = lim
n→+∞

Eεn(un).

Finally, we adopt the following notation: Greek letters will always run from 1 to
2 when taken as indices. Thus coordinates will be denoted by xα, x3. The notation
(Fα|F3) will refer to the 3× 3 matrix with column elements F1, F2, F3 (3 vectors in
R3). We will identify W 1,p(Ω) ∩

{
u : ∂u

∂x3
= 0
}

with W 1,p(ω) (Ω := ω × (−1, 1)).
Also, attention will be paid to the order in which limits are taken. As a last point,
→ will always denote strong convergence whereas ⇀ (resp. ∗

⇀) will denote weak
(resp. weak-*) convergence.

2. A compactness result in a general setting

In all that follows, {ε} is any decreasing sequence of real numbers with limit 0.
We assume that {Wε(x;F )}ε is a sequence of Carathéodory functions on Ω×R3×3

such that, for a.e. x in Ω, and any F in R3×3,

(2.1) β′|F |p − 1
β′
≤Wε(x;F ) ≤ β(1 + |F |p), 0 < β′ ≤ β <∞, 1 ≤ p <∞.

For each ε let fε(xα) be a continuous function on ω such that, for some γ > 0
independent of ε,

(2.2) 0 < γ ≤ fε(xα) ≤ 1, for all xα ∈ ω,

and set, for any open subset A of ω,

Aε := {(xα, x3) : xα ∈ A, |x3| < fε(xα)},

and
∂tAε := {(xα, x3) : |x3| < fε(xα), xα ∈ ∂A}.

Note that ωε = Ωε. Define, for any u in Lp(Ω; R3),

Eε(v;A) :=

{∫
Aε
Wε

(
xα, x3;Dαv

∣∣∣ 1εD3v
)
dxαdx3, if v ∈W 1,p(Aε; R3),

+∞, otherwise,
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and, for any u in Lp(Ω; R3),

J{ε}(u;A) := inf
{vε}

{
lim inf
ε→0+

Eε(vε;A) : vε ∈W 1,p(Aε; R3) and(2.3)

(vε − u)χAε → 0 in Lp(Ω; R3)
}
.

Remark 2.1. J{ε}(u; ·) is an increasing function on open subsets of ω.

Remark 2.2. If u ∈ W 1,p(ω; R3), i.e., u does not depend upon x3, then (??)
implies that J{ε}(u;ω) < ∞, as immediately seen upon inserting vε = u in the
definition (??) of J{ε}.

Remark 2.3. Assume that p > 1. We claim that energy bounded sequences are
compact in Lp in the sense of (??) below, and with limit in W 1,p(ω; R3). Indeed,
let {vε} be a sequence in W 1,p(Ωε; R3) with, say, vε = 0 on ∂tωε and

sup
ε

∫
Ωε

Wε

(
xα, x3;Dαvε

∣∣∣1
ε
D3vε

)
dxαdx3 <∞

Note that fε must be such that the trace of vε is meaningful on ∂tωε.
We must show that there exist u in W 1,p

0 (ω; R3) and a subsequence {εk} of {ε}
such that

(2.4) (vεk − u)χΩεk
→ 0 in Lp(Ω; R3).

In view of (??), (??),∫
ω×(−γ,γ)

(
|Dαvε|p +

1
εp
|D3vε|p

)
dxαdx3(2.5)

≤
∫
ωε

(
|Dαvε|p +

1
εp
|D3vε|p

)
dxαdx3 <∞,

so that Poincaré’s inequality and Rellich’s theorem imply the existence of an element
u in W 1,p(ω × (−γ, γ); R3) and of a subsequence {εk} of {ε} such that

(2.6)

{
vεk ⇀ u in W 1,p(ω × (−γ, γ); R3),
vεk(xα,±γ)→ u(xα,±γ) in Lp(ω; R3).

Further, (??) implies that D3u = 0, i.e., that u lies in W 1,p
0 (ω; R3). Finally,∫

ωε

|vεk − u|p dxαdx3 =
∫
ω×(−γ,γ)

|vεk − u|p dxαdx3

+
∫
ω

∫ fε(xα)

γ

|vεk − u|p dxαdx3 +
∫
ω

∫ −γ
−fε(xα)

|vεk − u|p dxαdx3

=
∫
ω×(−γ,γ)

|vεk − u|p dxαdx3

+
∫
ω

∫ fε(xα)

γ

∣∣∣∣∫ x3

γ

D3vεk(xα, s) ds+ vεk(xα, γ)− u(xα)
∣∣∣∣p dxαdx3

+
∫
ω

∫ −γ
−fε(xα)

∣∣∣∣∫ x3

−γ
D3vεk(xα, s) ds+ vεk(xα,−γ)− u(xα)

∣∣∣∣p dxαdx3

≤
∫
ω×(−γ,γ)

|vεk − u|p dxαdx3

+C
{∫

ω

|vεk(xα,±γ)− u(xα)|p dxα +
∫
ωε

|D3vεk |p dxαdx3

}
,

so that (??) and (??) imply (??).
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Remark 2.4. Note that given a function u ∈ W 1,p(ω; R3) then J{ε}(u; Ω) < ∞,
and, conversely, if (uε−u)χΩε → 0 in L1 and {uε} is an energy-bounded sequence,
then we may assume that u ∈ W 1,p(ω; R3), where we have used the fact that the
sequence {fε} is uniformly bounded away from zero (see (??)).

Introduce a countable collection C of subsets of ω such that, for any δ > 0 and
any open subset A of ω, there exists a finite union CA of disjoint elements of C
satisfying {

CA ⊂ A,
L2(A) ≤ L2(CA) + δ.

Denote by R the countable collection of all finite unions of elements of C, i.e.,

R :=
{
∪ki=1Ci : k ∈ N, Ci ∈ C

}
.

A diagonalization argument, together with a simple argument of Γ-convergence
based on the separable and metrizable character of Lp(Ω; R3) – see Proposition 7.9
in [?] – permits to assert the existence, for any sequence {ε} ↘ 0+, of a subsequence
{εR} such that, upon setting

J{εR}(u;A) := inf
{vεR}

{
lim inf
εR→0+

EεR(vεR ;A) : vεR ∈W 1,p(AεR ; R3) and(2.7)

(vεR − u)χAεR → 0 in Lp(Ω; R3)
}
,

then, for each u in Lp(Ω; R3) and each C in R, there exists a sequence {vCεR} in
W 1,p(CεR ; R3) such that

(2.8)

(vεR − u)χεR → 0 in Lp(Ω; R3)
J{εR}(u;C) = lim

εR→0+
EεR(vεR ;C).

In other words, J{εR}(·;C) is the Γ(Lp)–limit of EεR(·;C), for every C ∈ R. We
then prove the following

Theorem 2.5. For any u ∈W 1,p(ω; R3), any open subset A of ω, and any decreas-
ing sequence {ε} ↘ 0+, J{εR}(·;A) defined in (??) is the Γ(Lp)–limit of EεR(·;A).

Furthermore, there exists a Carathéodory function W{εR} : R2×R3×2 → R such
that

(2.9) J{εR}(u;A) = 2
∫
A

W{εR}(xα;Dαu) dxα.

Proof. We extend to the present framework the so-called direct methods of the
theory of Γ-convergence (see [?] Part II).

The proof is divided into four steps. A first step is devoted to a lemma which
will be used in the sequel. The second step establishes the claim that J{εR}(u;A)
is the Γ(Lp)–limit of EεR(u;A). The third step ensures that J{εR}(u; ·) is a finite
nonnegative Radon measure. The fourth, and final step, is a mere application of a
result in [?] (see Theorem 4.3.2) ensuring the integral representation (??).

Step 1. In this step we observe that approximating sequences may as well take
the value u on the lateral boundary of Aε.

Lemma 2.6. Let u ∈W 1,p(A; R3) where A is an open subset of ω. If {ε} ⊂ {εR}
and vε ∈W 1,p(Aε; R3) are such that{

(vε − u)χAε → 0 in Lp(Ω; R3),
J{εR}(u;A) = lim

ε→0+
Eε(vε;A),
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then there exists a sequence {wε} ⊂ W 1,p(Aε; R3) which satisfies (??) and is such
that

wε = u in {(xα, x3) : xα ∈ A \Kε and |x3| < fε(xα)}

for some compact set Kε ⊂ A.

Proof. The proof relies on De Giorgi’s slicing argument, and on the possibility of
considering cut-off functions which are independent of the variable x3. Set

C := sup
ε

∫
Aε

(
1 + |Dαvε|p +

1
εp
|D3vε|p

)
dxαdx3,

and note that C <∞ by virtue of (??). Define

(2.10) K(ε) :=

∣∣∣∣∣
[

1

||vε − u||1/2Lp(Aε)

]∣∣∣∣∣,
where |[a]| stands for the integer part of the number a, and M(ε) := |[

√
K(ε)]|; set

also

A(ε) :=
{
xα ∈ A : dist(xα, ∂A) <

M(ε)
K(ε)

}
.

Note that, in view of (??), K(ε)↗∞ while L2(A(ε))↘ 0+ as ε↘ 0+. Subdivide
A(ε) into M(ε) disjoint subsets,

Aεi :=

{
xα ∈ A : dist(xα, ∂A) ∈

[
i

K(ε)
,
i+ 1
K(ε)

)}
, i = 0, . . . ,M(ε)− 1.

Then, there exists i(ε) ∈ {0, ....,M(ε)− 1} such that

(2.11)
∫

(Aεi )ε

(
1 + |Dαvε|p +

1
εp
|D3vε|p

)
dxαdx3 ≤

C

M(ε)
,

where (Aεi(ε))ε := {(xα, x3) : xα ∈ Aεi , |x3| < fε(xα)}. Consider φ(ε) ∈ C∞0 (A)
such that

(2.12)


0 ≤ φ(ε) ≤ 1, ||Dαφ(ε)||L∞ ≤ 2K(ε),

φ(ε) =

{
1, if dist(xα, ∂A) > i(ε)+1

K(ε) ,

φ(ε) = 0, if dist(xα, ∂A) ≤ i(ε)
K(ε) ,

and set

(2.13) wε := φ(ε)vε + (1− φ(ε))u.

Note that wε = u in {(xα, x3) : xα ∈ A \ Kε, |x3| < fε(xα)}, with Kε :={
xα ∈ A : dist(xα, ∂A) ≥ i(ε)

K(ε)

}
, and that wε ∈ W 1,p(Aε; R3). Furthermore, in

view of (??),

(2.14) (wε − u)χAε → 0 in Lp(Ω; R3).
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Then, by virtue of the bound from above in (??), together with (??), (??),

(2.15)
J{εR}(u;A) ≥

lim sup
ε→0+

∫
Aε∩[{xα: dist(xα,∂A)>

i(ε)+1
K(ε) }×(−1,1)]

Wε

(
xα, x3;Dαvε

∣∣∣1
ε
D3vε

)
dxαdx3

≥ lim sup
ε→0+

{∫
Aε

Wε

(
xα, x3;Dαwε

∣∣∣1
ε
D3wε

)
dxαdx3

−C
∫
Aε∩[{xα: dist(xα,∂A)<

i(ε)
K(ε)}×(−1,1)]

(1 + |Dαu|p) dxαdx3

−β
∫

(Aε
i(ε))ε

(
1 + |Dαvε|p +

1
εp
|D3vε|p

)
dxαdx3

−C|K(ε)|p
∫

(Aε
i(ε))ε

|vε − u|p dxαdx3

}

≥ lim sup
ε→0+

Eε(wε;A)− C lim inf
ε→0+

L2(A(ε))− Cβ lim inf
ε→0+

1
M(ε)

−β lim inf
ε→0+

||vε − u||p/2Lp(Aε)
= lim sup

ε→0+
Eε(wε;A),

where (??) and (??) have been used in deriving the last inequality in (??). But the
very definition (??) of J{εR}(u;A), together with (??), imply that

J{εR}(u;A) ≤ lim inf
ε→0+

Eε(wε;A),

which, in view of (??), yields the desired result. �

Step 2. Let u ∈W 1,p(A; R3), let A be an open subset of ω. In order to prove that
J{εR}(u;A) is the Γ–limit of EεR(vC

δ

εR ;A) it suffices, in view of its definition (??),
to prove that property Γ3ii) (see the Introduction) holds. To this end, fix δ > 0
and choose a subset Cδ of A in R such thatC

δ ⊂ A,∫
A\Cδ

(1 + |Duα|) dxα <
δ

2β
.

Consider a sequence vC
δ

εR satisfying

lim
εR→0+

EεR(vC
δ

εR ;Cδ) = J{εR}(u;Cδ).

In view of Lemma ??, we may extend vC
δ

εR as u outside CδεR so as to belong to
W 1,p(AεR ; R3), and since J{εR}(u;Cδ) ≤ J{εR}(u;A) for all δ > 0, we have

lim sup
δ→0+

lim sup
εR→0+

EεR(vC
δ

εR ;A)

≤ lim sup
δ→0+

lim
εR→0+

{
EεR(vC

δ

εR ;Cδ) + 2β
∫
A\Cδ

(1 + |Dαu|p) dxαdx3

}
= lim sup

δ→0+
J{εR}(u;Cδ)

≤ J{εR}(u;A)

≤ lim inf
δ→0+

lim inf
εR→0+

EεR(vC
δ

εR ;A).
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Lemma ?? in the Appendix permits to conclude the existence of a decreasing se-
quence {δ(εR)} ↘ 0+ such that

(vC
δ(εR)

εR − u)χAεR → 0 in Lp(Ω; R3)

J{εR}(u;A) = lim
εR→0+

EεR

(
vC

δ(εR)

εR ;A
)
,

which, together with (??), asserts that J{εR}(·;A) is the Γ(Lp)–limit of EεR(·;A).

Step 3. Let u be an element of W 1,p(ω; R3). Implicit in the proof of Step 2 above
is the inner regularity of J{εR}(u;A), namely, for any δ > 0 there exists Cδ ∈ R
such that

(2.16)

{
C
δ ⊂ A,

J{εR}(u;A) ≤ J{εR}(u;Cδ) + δ.

Remark 2.7. Note that (??), together with the trivial inequality

J{εR}(u;A) ≥ J{εR}(u;A \ Cδ) + J{εR}(u;Cδ),

immediately implies that

(2.17) J{εR}(u;A \ Cδ) ≤ δ.

Remark also that (??) is obtained simply upon choosing u as a test function in the
definition (??) of J{εR}(u;A \ Cδ).

We now show that J{εR} is subadditive, that is that for every open subsets
C,B,A of ω with C ⊂⊂ B ⊂ A,

(2.18) J{εR}(u;A) ≤ J{εR}(u;B) + J{εR}(u;A \ C).

To this effect we consider, for any small enough δ > 0, Bδ, Dδ two elements of R
with Bδ ⊂ B,Dδ ⊂ A \ C, such that

(2.19)
∫
A\(Bδ∪Dδ)

(1 + |Dαu|)p dxα < δ.

Note that a small enough δ ensures that Bδ ∩ Dδ 6= ∅. Then, there exist two
sequences

{
vB

δ

εR

}
,
{
vD

δ

εR

}
such that (??) is satisfied for Bδ and Dδ, respectively,

and (see Lemma ??)

vB
δ

εR = u on ∂tBδεR , vD
δ

εR = u on ∂tDδ
εR .

Consider the sequence of Radon measures

λεR :=

{
1 +

∣∣∣Dαv
Bδ

εR

∣∣∣p +
∣∣∣Dαv

Dδ

εR

∣∣∣p
+
(

1
εR

)p (∣∣∣D3v
Bδ

εR

∣∣∣p +
∣∣∣D3v

Dδ

εR

∣∣∣p)}χ(Bδ∩Dδ)εR L
3

where, as usual, (Bδ∩Dδ)εR = {xα, x3;xα ∈ Bδ∩Dδ, |x3| < fεR(xα)}. By virtue of
the coercivity hypothesis in (??), {λεR} is a bounded sequence of finite nonnegative
Radon measures on R3, hence there exists a finite nonnegative Radon measure λ
such that a subsequence of {λεR} – denoted by {λε} – satisfies

(2.20) λε
∗
⇀ λ weakly-* in the sense of measures.

Set λ̂(X) := λ(X × [−1, 1]) for any Borel subset X of ω. Define, for 0 < η < 1,

Sδη := {x ∈ Bδ ∩Dδ : dist(xα, ∂Bδ) = η}.
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The family {Sδη}η is made up of pairwise disjoint elements, thus there exists η0 ∈
(0, 1) such that

(2.21) λ̂(Sδη0) = 0.

For Lδζ , a layer of thickness ζ around Sδη0 , i.e.,

Lδζ := {xα ∈ Bδ ∩Dδ : dist(xα, Sδη0) ≤ ζ},

consider a smooth cut-off function φδζ ∈ C∞0 (R2) such that

(2.22)


||φδζ ||L∞ ≤ 1, ||Dαφ

δ
ζ ||L∞ ≤ C/ζ,

φδζ =

{
0 if xα ∈ Bδ and dist(xα, ∂Bδ) ≥ η0 + ζ,

1 if xα /∈ Bδ or dist(xα, ∂Bδ) ≤ η0 − ζ.

Setting

vζ,ε := φδζv
Dδ

ε + (1− φδζ)vB
δ

ε + χ(A\(Bδ∪Dδ))εu,

then vδζ,ε ∈W 1,p(Aε; R3), and

(vζ,ε − u)χAε → 0 in Lp(Ω; R3).

Thus, by the very definition (??) and in view of (??),

J{εR}(u;A) ≤ lim inf
ε→0+

Eε(vζ,ε;A)(2.23)

≤ J{εR}(u;Bδ) + J{εR}(u;Dδ)

+2β
∫
A\(Bδ∪Dδ)

(1 + |Dαu|) dxα

+β

{
lim sup
ε→0+

λε(Lδζ × (−1, 1)) +
C

ζp
lim sup
ε→0+

∫
(Lδζ)ε

∣∣∣vBδε − vDδε ∣∣∣p dxαdx3

}
,

where (Lδζ)ε := {(xα, x3) : xα ∈ Lδζ and |x3| < fε(xα)}. Since
∣∣∣vBδε − vDδε ∣∣∣χ(Lδζ)ε ≤∣∣∣vBδε − u∣∣∣χBδε +

∣∣∣vDδε − u∣∣∣χDδε , the last term in the last expression in (??) is 0,
while, by virtue of (??),

lim sup
ε→0+

λε(Lζ × (−1, 1)) ≤ λ̂(Lζ).

But, as ζ tends to 0, λ̂(Lδζ) goes to λ̂(Sδη0) = 0 (cf. (??)), therefore, upon letting ζ
tend to 0 in (??), and by (??), we obtain

J{εR}(u;A) ≤ lim inf
δ→0+

[
J{εR}(u;Bδ) + J{εR}(u;Dδ) + βδ

]
≤ J{εR}(u;B) + J{εR}(u;A \ C),

and this proves (??).
Finally, the definition (??) of J{εR}(u;ω) implies the existence of a subsequence

{ε} of {εR} and of an associated subsequence {vε} in W 1,p(ωε; R3) such that

(2.24)

{
(vε − u)χωε → 0 in Lp(Ω; R3),
J{εR}(u;ω) = lim

ε→0+
Eε(vε;ω).

For a well chosen subsequence of {ε}, still denoted by {ε}, there exists a finite
Radon measure µ such that

(2.25) Wε(xα, x3;Dαvε|1/εD3vε)χωεL3 ∗⇀ µ weakly-* in the sense of measures .
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Set, for any Borel subset X ⊂ R3, µ̂(X) := µ(X× [−1, 1]). Then, by virtue of (??),
(??),

(2.26) J{εR}(u;ω) ≥ µ̂(R2),

while, clearly for all open subsets A ⊂ ω,

J{εR}(u;A) ≤ lim inf
ε→0+

Eε(vε;A)(2.27)

= lim inf
ε→0+

∫
Aε

Wε

(
xα, x3;Dαvε

∣∣∣1
ε
D3vε

)
dxαdx3

≤ µ(A× [−1, 1]) = µ̂(A).

In view of (??), (??), (??), (??), Lemma ?? in the Appendix allows us to conclude
that J{εR}(u; ·) is the trace on the open subsets of ω of a finite nonnegative Radon
measure. The bound from above in (??) immediately implies that it is absolutely
continuous with respect to L2bω.

Step 4. In view of the preceding considerations we are now in a position to
apply Theorem 4.3.2 in [?], guaranteeing the existence of an energy density W{εR}
satisfying (??). Indeed, J{εR} maps any pair (u,A), u ∈ W 1,p(ω; R3), A an open
subset of ω, into R, and, furthermore,

(i) J{εR}(u;A) = J{εR}(v;A) whenever u = v, a.e. on R2,
(ii) J{εR}(u; ·) is a finite nonnegative Radon measure,
(iii) J{εR}(u;A) ≤ 2β

∫
A

(1 + |Dαu|p)dxα,
(iv) J{εR}(u+ c;A) = J{εR}(u;A), c ∈ R.
The proof of Theorem ?? is complete. �

Remark 2.8. It follows immediately from the growth condition (??) and the lower-
semicontinuity of the Lp-norm that the density function W{εR} in Theorem ?? still
satisfies (??).

Remark 2.9. The conclusions of Theorem ?? are valid for more general domains
Ωε, since their particular form is not used in the course of the proof. Namely, we
may choose in place of Ωε any open set Ω′ε ⊂ ω × (−1, 1), and consider the set

Aε := (A× (−1, 1)) ∩ Ω′ε
in the definition of Eε(u;A). Of course, the price to pay for such a degree of
generality may be reflected in the possible degeneracy of the limit energy. In fact,
Remarks ??, ??, and ?? do not hold true in general; hence, (??) may fail to describe
fully the Γ–limit of E{εR}, which may be finite also outside W 1,p(ω; R3).

On one end of the spectrum of this degeneracy we have the case where Ω′ε := ∅,
for which the Γ–limit reduces to 0 on the whole Lp(Ω; R3). The same conclusion
holds if we take Ω′ε := ω × (−rε, rε) with limε rε = 0.

Another type of degeneracy may be found when Ω′ε is not connected. As an
example, take Ω′ε := ω× ((−1,−1/2)∪ (1/2, 1)). It is clear that the Γ–limit is given
by a functional defined on pairs of functions in W 1,p(ω; R3), the necessary changes
in the statement and proof of the corresponding Theorem ?? being straightforward.

Finally, it may also be possible that, even though Ω′ε is connected for all ε,
the domain of the Γ–limit is all of W 1,p(Ω; R3). An example of this phenomenon,
obtained by taking Ω′ε to be a domain with a periodical array of cracks, has been
studied in detail by Bhattacharya and Braides [?].

3. First application – Nonhomogeneous plate models

In [?], a nonlinear plate model is derived from a 3D domain of the form ω×(−ε, ε)
occupied by a nonlinearly elastic material upon letting the thickness 2ε tend to 0.
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Specifically, under the assumption that the elastic energy density W is homogeneous
and satisfies

(3.1) β′|F |p − 1
β′
≤W (F ) ≤ β(1 + |F |p), 0 < β′ ≤ β <∞, 1 ≤ p <∞,

it is shown that, for any u ∈W 1,p(ω; R3), any A open subset of ω, and any sequence
{ε} ↘ 0+,

J{ε}(u;A) := inf
{vε}

{
lim inf
ε→0+

∫
A×(−1,1)

W

(
Dαvε

∣∣∣1
ε
D3vε

)
dxαdx3 :

vε ∈W 1,p(A× (−1, 1); R3), vε → u in Lp(A× (−1, 1); R3)

}
,

is given by

J{ε}(u;A) = 2
∫
A

QW (Dαu)dxα,

where
W (F ) := inf

z∈R3
W (F |z), F ∈ R3×2,

and

QW (F ) := inf
φ∈W 1,p

0 (Q′;R3)

∫
Q′
W (F +Dαφ) dxα,

where Q′ is the unit cube (0, 1)2 in R2, and QW is the 2D quasiconvexification of
W . Here we propose to extend this result to the nonhomogeneous case where W is
also function of x3.

We thus assume that W (x3;F ) is a Carathéodory function on (−1, 1) × R3×3

such that

β′|F |p − 1
β′
≤W (x3;F ) ≤ β(1 + |F |p), 0 < β′ ≤ β <∞, for a.e. x3 ∈ (−1, 1),

or, in other words, that Wε defined in Section ?? is independent of ε, and that
fε(xα) ≡ 1, xα ∈ ω.

Direct application of Theorem ?? permits to assert the existence, for any se-
quence {ε} ↘ 0+, of a subsequence {εR} ↘ 0+ such that J{εR}(u;A) defined in
(??) is given by

(3.2) J{εR}(u;A) = 2
∫
A

W{εR}(xα;Dαu)dxα.

It remains to identify W{εR}. To this effect, we define, for any F ∈ R3×2,

W (F ) := inf
λ>0

inf
φ

{
1
2

∫
Q′×(−1,1)

W (x3;F +Dαφ|λD3φ) dxαdx3 :(3.3)

φ ∈W 1,p(Q′ × (−1, 1); R3), φ = 0 on ∂Q′ × (−1, 1)

}
.

Then, the following theorem holds true:

Theorem 3.1. For almost any xα ∈ ω and for all F ∈ R3×2, W{εR}(xα;F ) =
W (F ). Consequently, for all u ∈W 1,p(ω; R3), any A open subset of ω,

Γ(Lp)– limEε(u;A) = J{ε}(u;A) = 2
∫
A

W (Dαu)dxα.
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Proof. Consider any sequence {ε} ↘ 0+ and let {εR} be as (??), (??). Fix F ∈
R3×2 and let x0 be a Lebesgue point for W{εR}(·;F ). Then,

(3.4) W{εR}(x0;F ) = lim
q→∞

q2

∫
Q′(x0;1/q)

W{εR}(xα;F ) dxα,

where Q′(x0; 1/q) is the cube of R2 of center x0 and side length 1/q, and q is large
enough so that Q′(x0; 1/q) ⊂ ω. In view of (??), (??) also reads as

(3.5) W{εR}(x0;F ) = lim
q→∞

q2

2
J{εR}(Fx;Q′(x0; 1/q)).

For q large enough, let {vq
εR
} ⊂W 1,p(Q′(x0; 1/q)× (−1, 1); R3) be such that

(3.6)


vq
εR
→ 0 in Lp(Q′(x0; 1/q)× (−1, 1); R3),

J{εR}(Fx;Q′(x0; 1
q )) =

lim
εR→0+

∫
Q′(x0; 1q )×(−1,1)

W

(
x3;F +Dαv

q
εR

∣∣∣ 1
εR

D3v
q

)
dxαdx3.

Such a sequence exists according to Theorem ??. Set

vq,εR(xα, x3) := qvq
εR

(
x0 +

xα
q
, x3

)
, xα ∈ Q′.

Thus, by virtue of (??), (??) reads as

W{εR}(x0;F ) =(3.7)

1
2

lim
q→∞

lim
εR→0+

∫
Q′×(−1,1)

W

(
x3;F +Dαvq,εR

∣∣∣ 1
qεR

D3vq,εR

)
dxαdx3.

The inequality

(3.8) W{εR}(x0;F ) ≥W (F )

would then be immediate if vq,εR = 0 on ∂Q′ × (−1, 1), because in such a case
Fubini’s theorem would imply that, for a.e. x3 ∈ (−1, 1), vq,εR ∈W 1,p

0 (Q′; R3) and
(??) would become

W{εR}(x0;F ) ≥ 1
2

∫ 1

−1

W (F ) dx3 = W (F ).

Unfortunately, such may not be the case and we have to modify vq,εR accordingly.
To this effect we firstly note that, at the expense of extracting a subsequence of
{q, εR}, still labeled {q, εR}, we are always at liberty, in view of the coercive char-
acter of W (cf. (??)), to assume that the sequence {λq,εR} of nonnegative Radon
measures

λq,εR :=
(

1 + |Dαvq,εR |p + | 1
qεR

D3vq,εR |p
)
χQ′×(−1,1)L3

converges weak-* in the sense of measures to a nonnegative finite Radon measure
λ as {q, εR} → (∞, 0). We then define, for all Borel sets B of R2, λ̂(B) := λ(B ×
[−1, 1]).

We now introduce, for k ≥ 2,

wk,q,εR := φkvq,εR ,

where φk ∈ C∞0 (Q′) is such that
0 ≤ φk ≤ 1, ||Dαφk||L∞ ≤ Ck2,

φk =

{
1 if xα ∈ Q′(0, 1− 1/k),
0 if xα /∈ Q′(0, 1− 1/(k + 1)).
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Note that wk,q,εR(·, x3) ∈W 1,p
0 (Q′; R3) for a.e. x3 ∈ (−1, 1). Thus, recalling (??),

W{εR}(x0;F ) ≥(3.9)

1
2

lim inf
q→∞

lim inf
εR→0+

∫
Q′(0,1− 1

k )×(−1,1)

W

(
x3;F +Dαwk,q,εR

∣∣∣ 1
qεR

D3wk,q,εR

)
dxαdx3

≥ 1
2

lim inf
q→∞

lim inf
εR→0+

{∫
Q′×(−1,1)

W

(
x3;F +Dαwk,q,εR

∣∣∣ 1
qεR

D3wk,q,εR

)
dxαdx3

−β
∫

(Q′\Q′(0,1− 1
k ))×(−1,1)

(1 + |F |p) dxαdx3

−Ck2p

∫
(Q′(0,1− 1

k+1 )\Q′(0,1− 1
k ))×(−1,1)

|vq,εR |p dxαdx3

−C
∫

(Q′(0,1− 1
k+1 )\Q′(0,1− 1

k ))×(−1,1)

(
1 + |Dαvq,εR |p +

∣∣∣ 1
qεR

D3vq,εR
∣∣∣p)dxαdx3

}

≥W (F )− C

k2
− lim sup

q→∞
lim sup
εR→0+

Ck2p

∫
Q′×(−1,1)

|vq,εR |p dxαdx3

−C lim sup
q→∞

lim sup
εR→0+

λq,εR

((
Q′
(

0, 1− 1
k + 1

)
\Q′

(
0, 1− 1

k

))
× (−1, 1)

)
.

Now, in view of (??),

lim sup
q→∞

lim sup
εR→0+

∫
Q′×(−1,1)

|vq,εR |p dxαdx3 =

lim sup
q→∞

qp+2 lim
εR→0+

∫
Q′(x0,

1
q )×(−1,1)

|vq
εR
|p dxαdx3 = 0,

while

lim sup
q→∞

lim sup
εR→0+

λq,εR

((
Q′(0, 1− 1

k + 1

)
\Q′

(
0, 1− 1

k

)
× (−1, 1)

)
≤ λ

((
Q′
(

0, 1− 1
k + 1

)
\Q′

(
0, 1− 1

k

))
× (−1, 1)

)

≤ λ̂
(
Q′ \Q′

(
0, 1− 1

k − 1

))
.

Thus, (??) becomes

W{εR}(x0;F ) ≥W (F )− C

k2
− Cλ̂

(
Q′ \Q

(
0, 1− 1

k − 1

))
,

and (??) is obtained by letting k tend to∞ since Q′(0, 1−1/(k−1)) is an increasing
sequence of open sets with set limits Q′.

Conversely, for any given η > 0, let λ > 0, φ ∈ W 1,∞(Q′ × (−1, 1); R3) with
φ = 0 on ∂Q′ × (−1, 1), be such that

(3.10) W (F ) + η ≥ 1
2

∫
Q′×(−1,1)

W (x3;F +Dαφ|λD3φ) dxαdx3.

This is legitimate because of the density of W 1,∞(Q′× (−1, 1); R3) into W 1,p(Q′×
(−1, 1); R3) – both with zero trace on the boundary ∂Q′ × (−1, 1) – and of the
bound from above in (??). Set

vεR(xα, x3) := Fxα + λεRφ
( xα
λεR

, x3

)
,
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where φ has been laterally extended by Q′-periodicity. Then,

vεR → Fxα in Lp(Ω; R3).

Furthermore, for any open set A ⊂ ω,

J{εR}(Fxα;A) ≤ lim inf
εR→0+

∫
A×(−1,1)

W

(
x3;DαvεR

∣∣∣ 1
εR

D3vεR

)
dxαdx3(3.11)

= lim inf
εR→0+

∫
A×(−1,1)

W
(
x3;F +Dαφ

( xα
λεR

, x3

) ∣∣∣λD3φ
( xα
λεR

, x3

))
dxαdx3.

Since
∫ 1

1
W (x3;F + Dαφ(·, x3)|λD3φ(·, x3)) dx3 is a periodic function in L∞(R2),

it converges weak-* to its average and (??) becomes, in view of (??),

J{εR}(Fxα;A) ≤ L2(A)
∫ 1

−1

∫
Q′
W (x3;F +Dαφ|λD3φ) dxαdx3

≤ 2L2(A) W (F ) + 2ηL2(A).

Letting η tend to 0+ yields

(3.12) J{εR}(Fxα;A) ≤ 2L2(A) W (F ).

But, according to Theorem ??, (??) also reads as∫
A

W{εR}(x0;F )dxα ≤ L2(A) W (F ),

so that, upon choosing x0 ∈ Ω to be a Lebesgue point for W{εR}(·;F ) and A to be
a small ball centered at x0 and of vanishing radius, we obtain

W{εR}(x0;F ) ≤W (F ).

Since finally W{εR}(x0;F ) does not depend upon the choice of sequence {εR}, we
conclude that there is no need to extract a subsequence from {ε}.

In light of Proposition 7.11 in [?], the proof of Theorem ?? is now complete. �

Remark 3.2. Since W{εR}(xα; ·) is the integrand of a lower semicontinuous func-
tional on W 1,p(ω; R3) – namely the Γ(Lp)–limit of EεR(·, ω) –, it is quasiconvex
(see Statement II.5 in [?]). Thus W (F ) defined in (??) is actually quasiconvex.

Remark 3.3. Note that, if W does not depend upon x3, then

W (F ) = QW (F ), F ∈ R3×2.

In other words, the result of [?] is recovered in the homogeneous case. Indeed,
clearly,

W (F ) ≥ inf
φ

{
1
2

∫ 1

−1

∫
Q′
W (F +Dαφ) dxαdx3 : φ ∈W 1,p(Q′ × (−1, 1); R3),

φ = 0 on ∂Q′ × (−1, 1)

}

≥ 1
2

∫ 1

−1

QW (F ) dx3 = QW (F ),

so that
W (F ) ≥ QW (F ).

Conversely, since W (F ) is quasiconvex according to Remark ??, it suffices to prove
that

W (F ) ≤W (F ).
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The continuity and growth of W at infinity imply the existence of z ∈ R3 such that

W (F ) = W (F |z).

The density of W 1,∞
0 (Q′; R3) in Lp(Q′; R3) implies in turn the existence of ξη ∈

W 1,∞
0 (Q′; R3) such that

ξη
η↘0−→ z, strongly in Lp(Q′; R3).

Extend ξη Q′-periodically to R2 and set

φηn(xα, x3) :=
1
n2
x3ξ

η(nxα).

Then,

W (F ) ≤ 1
2

lim inf
n→+∞

∫
Q′×(−1,1)

W (F +Dαφ
η
n|n2D3φ

η
n) dxαdx3

=
1
2

lim inf
n→+∞

∫
Q′×(−1,1)

W

(
F +

1
n
x3Dαξ

η(nxα)
∣∣∣ξη(nxα)

)
dxαdx3

≤ 1
2

lim inf
n→+∞

∫
Q′×(−1,1)

W (F |ξη(nxα)) dxαdx3,

where the uniformly continuous character of W on compact sets has been used in
the last inequality (see e.g. the proof of Lemma 4.1 in [?] for more details). But
W (F |ξη(·)) is a periodic function in L∞(R2), thus weak-* converges to its average
and we obtain

W (F ) ≤
∫
Q′
W (F |ξη(xα)) dxα.

The result is obtained through direct application of Lebesgue’s dominated conver-
gence theorem upon letting η tend to 0.

Remark 3.4. We believe that the result of Theorem ??, appropriately extended,
still holds true in the case of an energy density that also depends upon xα, although
we are not at present in a position to offer a full proof in such a setting.

4. Second application –The periodic case

In this section it is assumed that W (xα, x3;F ) is a Carathéodory function from
Q′ × (−1, 1)× R9 into R satisfying

β′|F |p − 1
β′
≤W (xα, x3;F ) ≤ β(1 + |F |p),

with 1 ≤ p < ∞ and β′, β > 0. The function W is extended by Q′-periodicity to
R2 × (−1, 1)× R9 and we set

Wε(xα, x3;F ) := W
(xα
ε
, x3;F

)
.

Also, we assume that f is a continuous function from Q′ into [0, 1] with 0 < γ ≤
min f and we set

fε(xα) := f
(xα
ε

)
.

We define, for any F ∈ R3×2,

Whom(F ) := lim inf
t↗∞

g(t),
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where, for any t > 0 ,

g(t) :=
1
t2

inf
φ

{∫
(tQ′)f

W (xα, x3;F +Dαφ|D3φ) dxαdx3 : φ ∈W 1,p((tQ′)f ; R3),

φ(xα, x3) = 0 if xα ∈ ∂(tQ′), |x3| < f(xα)

}
,

and where, for A ⊂ R2, Af := {(xα, x3) : xα ∈ A, |x3| < f(xα)}.

Remark 4.1. It is easily shown that

Whom(F ) = inf
t>0

g(t),

and also that, in the definition of g(t), periodic boundary conditions on the test
functions can be imposed in lieu of Dirichlet boundary conditions.

The following theorem holds true:

Theorem 4.2. If u ∈W 1,p(ω; R3) and if A is an open subset of ω, then

Γ(Lp)– limEε(u;A) =
∫
A

Whom(Dαu) dxα.

Proof. Consider a sequence {ε}, with ε↘ 0+. Application of Theorem ?? permits
to assert the existence of a subsequence {εR} of {ε} and of a Carathéodory function
W{εR} such that

J{εR}(u;A) =
∫
A

W{εR}(xα;Dαu) dxα.

We firstly show that W{εR} is independent of xα.
Fix F ∈ R3×2, and let x0, y0 ∈ ω be Lebesgue points for W{εR}(·;F ), so that

W{εR}(x0;F ) = lim
δ→0+

1
δ2

∫
Q′(x0,δ)

W{εR}(xα;F ) dxα(4.1)

= lim
δ→0+

1
δ2
J{εR}(Fxα;Q′(x0, δ)),

– idem for y0. Assume that δ is small enough. According to Lemma ??, there exists
a sequence {ψδεR} with ψδεR = 0 on {(xα, x3) : |x3| < f(xα/εR), xα ∈ ∂Q′(x0, δ)}
and ψδεRχQ′(x0,δ)εR

→ 0 in Lp(Ω; R3) (with, as usual, Q′(x0, δ)εR := {(xα, x3) :
|x3| < f(xα/εR), xα ∈ Q′(x0, δ)}), such that

(4.2) J{εR}(Fxα;Q′(x0, δ)) = lim
εR→0+

EεR(Fxα + ψδεR ;Q′(x0, δ)).

Define the vector τεR ∈ εRZN as

(τεR)i := εR

∣∣∣∣∣
[

(y0 − x0)i
εR

]∣∣∣∣∣, for i = 1, . . . , N.

Cleary τεR → y0 − x0 as εR → 0+. Let

φδεR(xα, x3) := ψδεR(xα − τεR , x3),

where we have extended ψδεR by 0 to [R2 \Q′(x0, δ)]εR .
Fix r > 1 and consider εR small enough so that

(4.3) Q′(y0 − τεR , δ) ⊂ Q′(x0, rδ).
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Since φδεχQ′(y0,δ)εR → 0 in Lp(Ω; R3), we have

J{εR}(Fxα;Q′(y0, δ)) ≤

lim inf
εR→0+

∫
Q′(y0,δ)εR

W

(
xα
εR

, x3;F +Dαφ
δ
εR

∣∣∣∣∣ 1
εR

D3φ
δ
εR

)
dxαdx3

≤ lim inf
εR→0+

∫
Q′(y0−τεR ,δ)εR

W

(
xα + τεR

εR
, x3;F +Dαφ

δ
ε(xα + τεR , x3)

∣∣∣∣∣
1
εR

D3φ
δ
εR(xα − τεR , x3)

)
dxαdx3

≤ lim inf
εR→0+

∫
Q′(x0,rδ)εR

W

(
xα
εR

, x3;F +Dαψ
δ
ε(xα, x3)

∣∣∣∣∣
1
εR

D3ψ
δ
εR(xα, x3)

)
dxαdx3

≤ J{εR}(Fxα;Q′(x0, δ)) + 2β(1 + |F |p)L2(Q′(x0, rδ) \Q′(x0, δ))

where we have used (??), (??) and the periodicity of W (·, x3). Letting r → 1, we
finally obtain

J{εR}(Fxα;Q′(y0, δ)) ≤ J{εR}(Fxα;Q′(x0, δ)),

hence, in view of (??),

W{εR}(y0;F ) = lim
δ→0+

1
δ2
J{εR}(Fxα;Q′(y0, δ)) ≤W{εR}(x0;F ).

Given the arbitrariness of x0 and y0 we conclude that

W{εR}(y0;F ) = W{εR}(x0;F ) =: W{εR}(F ).

We now identify W{εR}(F ). Assuming, without loss of generality, that 0 ∈ ω
and Q′ ⊂ ω, by virtue of Lemma ?? there exists a sequence {ψεR} with ψεR =
0 on {(xα, x3) : |x3| < f(xα/εR), xα ∈ ∂Q′} and ψεRχQ′

εR
→ 0 in Lp(Ω; R3), such

that
W{εR}(F ) = J{εR}(Fxα;Q′) = lim

εR→0+
EεR(Fxα + ψεR ;Q′).

Define

φεR(xα, x3) :=
1
εR

ψεR(εRxα, x3).

Then, φεR ∈ W 1,p

([(
0, 1/εR

)2]f ; R3

)
, and it is equal to 0 as soon as xα ∈

∂(0, 1/εR)2; thus it is an admissible test function in the definition of g(1/εR) and

lim sup
εR→0+

g

(
1
εR

)
≤(4.4)

lim sup
εR→0+

εR
2
∫

h
(0, 1

εR )2
if W (

xα, x3;F +DαφεR |D3φεR
)
dxαdx3

= lim sup
εR→0+

∫
Q′
εR

W

(
xα
εR

, x3;F +DαψεR
∣∣∣ 1
εR

D3ψεR

)
dxαdx3

= W{εR}(F ).

Conversely, consider λn ↗∞ such that g(λn)→ lim inft↗∞ g(t). For each n, take
φn ∈ W 1,p({(0, λn)2 × (−1, 1) : |x3| < f(xα)}; R3) with φn = 0 if xα ∈ ∂(0, λn)2,
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and such that

(4.5) g(λn) +
1
λ3
n

≥ 1
λ2
n

∫
[(0,λn)2]f

W (xα, x3;F +Dαφn|D3φn) dxαdx3.

Set ψnεR := εRφn
(
xα
εR
, x3

)
, where φn has been extended by zero to (|[λn]|+ 1)2, and

then to the whole of R2 by (|[λn]|+ 1)2-periodicity. Then,

J{εR}(Fxα;Q′) ≤ lim inf
εR→0+

EεR(Fxα + ψnεR ;Q′)

= lim inf
εR→0+

∫
Q′
εR

W

(
xα
εR

, x3;F +Dαψ
n
εR

∣∣∣ 1
εR

D3ψ
n
εR

)
dxαdx3

= lim inf
εR→0+

∫
Q′

[∫ f( xα
εR )

−f( xα
εR )

W

(
xα
εR

, x3;F +Dαφn

(xα
εR

, x3

) ∣∣∣
D3φn

(xα
εR

, x3

))
dx3

]
dxα

=
1

(|[λn]|+ 1)2

∫
(0,λn)2

[∫ f(xα)

−f(xα)

W (xα, x3;F +Dαφn(xα, x3)|

D3φn(xα, x3)) dx3

]
dxα

+
1

(|[λn]|+ 1)2

∫
[(0,|[λn]|+1)2\(0,λn)2]f

W (xα, x3;F |0) dxαdx3

≤ λ2
n

(|[λn]|+ 1)2

(
g(λn) +

1
λ3
n

)
+O

(
1
n

)
,

where we have used (??) as well as the (|[λn]|+ 1)2-periodic character of∫ f(·)

f(·)
W (·, x3;F +Dαφ

n(·, x3)|D3φn(·, x3)) dx3.

Thus, letting n tend to ∞,

J{εR}(Fxα;Q′) ≤ lim inf
t↗∞

g(t),

or still

(4.6) W{εR}(F ) ≤ lim inf
t↗∞

g(t).

Recalling (??), (??), we obtain

lim inf
t↗∞

g(t) ≤ lim sup
εR→0+

g

(
1
εR

)
≤W{εR}(F ) ≤ lim inf

t↗∞
g(t),

which proves the desired result. Since the Γ(Lp)–limit of EεR(u;A) is independent
of the specific sequence {εR}, in light of Proposition 7.11 in [?] we conclude that
Eε(u;A) Γ(Lp)-converges to

∫
A
Whom(Dαu) dxα. �

Remark 4.3. Theorem ?? still holds if we only assume that 0 ≤ f ≤ 1. In general,
the description of the Γ–limit is not complete, as there may exist a u /∈W 1,p(ω; R3)
such that J{εR}(u; Ω) < +∞. Nevertheless, some degenerate cases can be dealt with
in the spirit of the homogenization of domain with soft inclusions. This can be done,
for example, if we suppose that for some γ > 0 the set Bγ := {xα ∈ R2 : γ < f(xα)}
contains a periodic connected Lipschitz set (see related work in [?] and [?] Chapter
19).
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5. Third application – Optimal design of a thin film

The kind of dimensional reduction performed in this paper has proved relevant
in the analysis and design of thin films. We refer the interested reader to [?] and
references therein for a detailed motivation of the problem considered below and
for relevant results in the so-called cylindrical case (see Remark ?? below).

It is thus assumed in this section that Wi(F ), i = 1, 2, is a continuous real-valued
function on R3×3 such that

(5.1) β′|F |p − 1
β′
≤Wi(F ) ≤ β(1 + |F |p), 0 < β′ ≤ β <∞, 1 ≤ p <∞,

Our goal is to compute , for any v ∈ W 1,p(ω; R3), any θ ∈ L∞(ω × (−1, 1); [0, 1]),
any open subdomain A ⊂ R2,

J(v; θ;A) := inf
{ε}↘0+

J{ε}(v; θ;A),

where

J{ε}(v; θ;A):= inf
{χε},{vε}

{
lim inf
ε→0+

∫
A×(−1,1)

(χεW1 + (1− χε)W2)
(
Dαvε

∣∣∣1
ε
D3vε

)
dxαdx3 :

vε ∈W 1,p(A× (−1, 1); R3), χε ∈ L∞(A× (−1, 1); {0, 1}),

vε → v in Lp(A× (−1, 1); R3), χε
∗
⇀ θin L∞(A× (−1, 1); [0, 1])

}
.

Let us define, for any F ∈ R3×2, θ ∈ [0, 1],

Ŵ (θ, F ) :=(5.2)

inf
λ>0

inf
φ,χ

{
1
2

∫
Q′×(−1,1)

(χW1 + (1− χ)W2)(F +Dαφ|λD3φ) dxαdx3 :

φ ∈W 1,p(Q′ × (−1, 1); R3), φ = 0 on ∂Q′ × (−1, 1),

χ ∈ L∞(Q′ × (−1, 1); {0, 1}), 1
2

∫
Q′×(−1,1)

χ dxαdx3 = θ

}

= inf
k>0

inf
φ,χ

{
1
2k

∫
Q′×(−k,k)

(χW1 + (1− χ)W2)(F +Dαφ|D3φ) dxαdx3 :

φ ∈W 1,p(Q′ × (−k, k); R3), φ = 0 on ∂Q′ × (−k, k),

χ ∈ L∞(Q′ × (−k, k); {0, 1}), 1
2k

∫
Q′×(−k,k)

χ dxαdx3 = θ

}
.

Remark 5.1. It is easily proved that Ŵ is an upper-semicontinuous function of
(θ, F ) ∈ [0, 1] × R3×2. The proof is a strict analogue to that of Proposition 2.9 in
[?].

The following theorem holds true:

Theorem 5.2.

J(v; θ;A) ≥ 2
∫
A

Ŵ

(
1
2

∫ 1

−1

θ(xα, s) ds,Dv(xα)
)
dxα.

Further, equality holds if θ ∈ L∞(ω; [0, 1]) and if W satisfies the following symmetry
property:

(5.3) W (F |F3) = W (F | − F3), F ∈ R3×2, F3 ∈ R3.
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Remark 5.3. In contrast with the setting investigated in [?] the material distri-
bution – the characteristic functions χε –is not restricted to cylindrical geometries;
in other words χε may also depend on the transverse variable x3. This is the only
difference between Theorem ?? and Theorem 2.3 in [?]. Note that the equality in
Theorem ?? holds if θ is independent of x3, that is if we are truly in a plate-like
setting.

Remark 5.4. The section heading is somewhat misleading since, in truth, Theorem
?? is not a mere application of the results of Section ??; specifically, Theorem ??
cannot be invoked in the current setting because of the presence of the additional
field χε. The proof of Theorem 2.3 in [?] can however be revisited in the light of the
method used to prove Theorem ?? so as to prove Theorem ??. This is the object
of the proof of Theorem ?? below.

Remark 5.5. We conjecture that the symmetry condition (??), although satisfied
in many applications, is not necessary, but confess to our inability at doing away
with it at present. We remark that this hypothesis is not required in the case of
cylindrical inclusions (see [?]).

Proof. The first part of Theorem ?? is contained in the more precise Lemma ??
stated below which is in turn the strict analogue of (part of) Theorem ?? in the
current setting.

Lemma 5.6. For any sequence {ε} ↘ 0+, there exists a subsequence {εR} such
that

J{εR}(v; θ;A) ≥ 2
∫
A

Ŵ

(
1
2

∫ 1

−1

θ(xα, s) ds,Dv(xα)
)
dxα,

thus, in particular,

J(v; θ;A) ≥ 2
∫
A

Ŵ

(
1
2

∫ 1

−1

θ(xα, s) ds,Dv(xα)
)
dxα.

Proof. The subsequence {εR} is defined exactly as in Section ?? (see argument
leading to (??)). The proof is then divided into two steps which will be sketched
below. Only those parts of the argument that differ from analogous parts in the
proofs of Theorem ?? or of Theorem 2.3 in [?] will be detailed. The first step is
devoted to a proof that J{εR}(v; θ; ·) is a finite nonnegative Radon measure which
is absolutely continuous with respect to L2bω. A second step establishes that the

Radon-Nykodim derivative
dJ{εR}(v;θ;·)

dL2 (x0) is, for suitable x0’s in ω, greater than

or equal to 2Ŵ
(

1/2
∫ 1

−1
θ(x0, s) ds,Dαv(x0)

)
.

Step 1. Step 1 is a near verbatim reproduction of Steps 1–3 in the proof of
Theorem ??. Firstly, it is observed, exactly as in Lemma ??, that approximat-
ing sequences for v may as well take the value v on the lateral boundary of
A × (−1, 1). The proof is identical to that of Lemma ??. Then the inner reg-
ularity of J{εR}(v; θ; ·) is established exactly as for (??). We now address the
subadditive character of J{εR}(v; θ; ·). Once again the proof is nearly identical
to that of (??). Note however that the recovery sequences for Bδ, Dδ are pairs(
χB

δ

εR , v
Bδ

εR

)
∈ L∞(Bδ × (−1, 1); {0, 1}) ×W 1,p(Bδ × (−1, 1); R3) – idem for Dδ –,

with {
χB

δ

εR
∗
⇀ θ in L∞(Bδ × (−1, 1); [0, 1]),

vB
δ

εR → v in Lp(Bδ × (−1, 1); R3);
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idem for Dδ. A new pair-sequence is defined as{
χε := χδη0χ

Dδ

ε + (1− χδη0)χB
δ

ε + χ(A\(Bδ∪Dδ))εhε

vζ,ε := φδζv
Dδ

ε + (1− φδζ)vB
δ

ε + χ(A\(Bδ∪Dδ))εu,

where φζ was defined in (??), {hε} is any sequence in L∞(Ω; {0, 1}) converging to
θ weakly-* in L∞(Ω; [0, 1]), and χδη0 is a characteristic function such that

χδη0 =

{
1 if xα /∈ Bδ or dist(xα, ∂Bδ) ≤ η0,

0 otherwise.

Then, clearly, as ε↘ 0+,{
χε

∗
⇀ θ in L∞(A× (−1, 1); [0, 1]),

vζ,ε → v in Lp(A× (−1, 1); R3),

and the remainder of the proof of (??) proceeds as before. Finally, (??), (??)
are unchanged and Lemma ?? permits to conclude that J{εR}(v; θ; ·) is a finite
nonnegative Radon measure. The bound from above in (??) immediately implies
that it is absolutely continuous with respect to L2bω.

Step 2. From the definition of Radon-Nykodim derivative, for almost every x0 ∈ ω,
dJ{εR}(v; θ; ·)

dL2
(x0) = lim

δ→0+

1
δ2
J{εR}(v; θ;Q′(x0, δ))(5.4)

= lim
δ→0+

1
δ2

lim
ε→0+

∫
Q′(x0,δ)×(−1,1)

(χεW1 + (1− χε)W2)
(
Dαvε|

1
ε
D3vε

)
dxαdx3,

where {ε} is a subsequence of {εR} and{
χε

∗
⇀ θ in L∞(Q′(0, δ)× (−1, 1); [0, 1]),

vε → v in Lp(Q′(0, δ)× (−1, 1); R3).

Take x0 ∈ ω to be a Lebesgue point for
∫ 1

−1
θ(·, s) ds and a point of approximate

differentiability for v. Settingχδ,ε := χε(x0 + δxα, x3),

vδ,ε :=
vε(x0 + δxα, x3)− v(x0)

δ

(??) now reads as

dJ{εR}(v; θ; ·)
dL2

(x0) =(5.5)

lim
δ→0+

lim
ε→0+

∫
Q′×(−1,1)

(χδ,εW1 + (1− χδ,ε)W2)
(
Dαvδ,ε

∣∣∣δ
ε
D3vδ,ε

)
dxαdx3.

Note that

(5.6)

lim
δ→0+

lim
ε→0+

1
2

∫
Q′×(−1,1)

χδ,ε dxαdx3 =
1
2

lim
δ

lim
ε

1
δ2

∫
Q′(x0,δ)×(−1,1)

χε dxαdx3

=
1
2

lim
δ→0+

1
δ2

∫
Q′(x0,δ)×(−1,1)

θ dxαdx3

=
1
2

lim
δ→0+

1
δ2

∫
Q′(x0,δ)

(∫ 1

−1

θ(xα, s) ds
)
dxα

=
1
2

∫ 1

−1

θ(x0, s) ds,
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because x0 is a Lebesgue point for
∫ 1

−1
θ(xα, s) ds.

Set Aδ,ε := {(xα, x3) ∈ Q′ × (−1, 1) : χδ,ε(xα, x3) = 1}. Then (??) implies that

lim
δ→0+

lim
ε→0+

1
2
L3(Aδ,ε) =

1
2

∫ 1

−1

θ(x0, s) ds =: Θ.

The remaining of the proof would then be obvious from (??) and the definition
(??) of Ŵ (Θ, Dv(x0)) if

1
2
L3(Aδ,ε) = Θ

and if vδ,ε = Dα(x0)xα on ∂Q′× (−1, 1). Unfortunately, there is no guarantee that
the above holds true and the sequence {χδ,ε, vδ,ε} must be modified accordingly.
This procedure is identical to that described in the proof of Lemma 3.1 in [?] – up
to changing the names of the indices q, n to δ, ε, and also up to replacing θ(x0) by
Θ – and the interested reader is invited to consult pages 185 to 189 of that paper.
Note that in the case where Θ ≡ 1 one should remark, in translating the proof into
our context, that, by virtue of Remark ?? and also of (??), (??),

QW 1(F ) = W 1(F ) = Ŵ (1, F ).

The proof of Lemma ?? is complete. �

We now address the second part of Theorem ?? and thus assume, from now
onward, that θ is independent of x3.

The proof is divided into two steps. In a first step, it is assumed that θ ≡ θ∞
and v ≡ v∞ are, respectively, constant and affine functions and we get the following
result:

Lemma 5.7. Let T be a triangle on the plane. Then there exists a sequence
{vn, χn} ∈W 1,p(T × (−1, 1); R3)× L∞(T × (−1, 1); {0, 1}) with vn = v∞ on ∂T ×
(−1, 1) such that, as n↗∞,{

χn
∗
⇀ θ∞ in L∞(T × (−1, 1); [0, 1]),

vn → v∞ in Lp(T × (−1, 1); R3),

and

J(v∞; θ∞;T ) = lim
n→+∞

∫
T×(−1,1)

(χnW1 + (1− χn)W2)(Dαvn|nD3vn) dxαdx3

= 2L2(T ) Ŵ (θ∞, Dαv∞).

A second step addresses the case of general domains A ⊂ ω, general θ’s and
general v’s, and yields Theorem ??.

Proof of Lemma ??. The proof is a blow-up argument in the spirit of [?]. From
the definition (??) of Ŵ , together with the density of W 1,∞(Q′ × (−1, 1); R3)
into W 1,p(Q′ × (−1, 1); R3), we deduce that, for any η > 0, there exist λη > 0,
φη ∈ W 1,∞(Q′ × (−1, 1); R3), with φη = 0 on ∂Q′ × (−1, 1), and χη ∈ L∞(Q′ ×
(−1, 1); {0, 1}) with 1/2

∫
Q′×(−1,1)

χη dxαdx3 = θ∞ such that
(5.7)

2Ŵ (θ∞, Dαv∞) ≥
∫
Q′×(−1,1)

(χηW1 + (1− χη)W2)(Dαv∞ +Dαφ
η|ληD3φ

η) dxαdx3 − η.

Extend φη, χη to be Q′ × (−2, 2)-periodic by setting

φ
η
, χη(xα, x3) :=


φη, χη(xα, x3), −1 ≤ x3 ≤ 1,
φη, χη(xα,−2− x3), −2 ≤ x3 ≤ −1,
φη, χη(xα, 2− x3), 1 ≤ x3 ≤ 2,
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then extend φ
η
, χη by Q′ × (−2, 2)-periodicity to R3. Note that, in view of (??),

(??) also reads as
(5.8)

4Ŵ (θ∞, Dαv∞)≥
∫
Q′×(−2,2)

!(χηW1 + (1− χη)W2)(Dαv∞ +Dαφ
η|ληD3φ

η
) dxαdx3 − 2η.

Remark 5.8. This is the only instance where assumption (??) is used in this study.

Set {
χηn(xα, x3) := χη(n2xα, nx3),
vηn(xα, x3) := v∞(xα) + 1

n2φ
η
(n2xα, nλ

ηx3).

If Q′(a, r) is a square on R2, then it is easily checked that, as n↗∞,

(5.9)

{
χηn

∗
⇀ θ∞ in L∞(Q′(a, r)× (−1, 1); [0, 1]),

vηn → v∞ in Lp(Q′(a, r)× (−1, 1); R3).

Further, in view of (??), together with the periodic character of vηn, χ
η
n,

J(v∞; θ∞;Q′(a, r)) ≤

lim inf
η→0+

lim
n→+∞

∫
Q′(a,r)×(−1,1)

(χηnW1 + (1− χηn)W2)(Dαv
η
n|nD3v

η
n) dxαdx3

≤ lim sup
η→0+

lim
n→+∞

∫
Q′(a,r)×(−1,1)

(χηnW1 + (1− χηn)W2)(Dαv
η
n|nD3v

η
n) dxαdx3

≤ 2L2(Q′(a, r)) Ŵ (θ∞, Dαv∞).

But, in view of Lemma ??,

J(v∞; θ∞;Q′(a, r)) ≥ 2L2(Q′(a, r)) Ŵ (θ∞, Dαv∞),

so that

J(v∞; θ∞;Q′(a, r)) =

lim
η→0+

lim
n→+∞

∫
Q′(a,r)×(−1,1)

(χηnW1 + (1− χηn)W2)(Dαv
η
n|nD3v

η
n) dxαdx3

= 2L2(Q′(a, r)) Ŵ (θ∞, Dαv∞),

hence, by virtue of Lemma ?? in the Appendix, there exists a sequence {η(n)}n
such that vn := v

η(n)
n , χn := χ

η(n)
n satisfy (??) as well as

(5.10)

J(v∞; θ∞;Q′(a, r)) = lim
n→+∞

∫
Q′(a,r)×(−1,1)

(χnW1 + (1− χn)W2)(Dαvn|nD3vn) dxαdx3

= 2L2(Q′(a, r)) Ŵ (θ∞, Dαv∞).

Consider now a triangle T covered with squares of the type Q′(a, r), a ∈ R2, r >
0, up to a set of measure 1/m, i.e.,

Tm := ∪N(m)
i=1 Q′(ami , r

m
i ) ⊂⊂ T,

with L2(T \Tm) ≤ 1/m. An easy construction, identical to that of Step 2 in Lemma
4.2 in [?] (see Remark 4.4 in [?]) yields (??) for T in lieu of Q′(a, r). The proof of
Lemma ?? is complete. �

In view of Lemma ?? – and in particular of the boundary condition vn = v∞
for the corresponding sequence –, Lemma ?? also holds true if T is replaced by
a triangulation of the plane on which v∞ is continuous and piecewise affine and
θ∞ piecewise constant. Then, let v, θ be arbitrary elements of W 1,p(ω; R3) and
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L∞(ω; [0, 1]), respectively, and consider {wk, θk} a piecewise affine/piecewise con-
stant pair defined on triangulations of the plane such that{

θk → θ a.e. in ω,

wk → v in W 1,p(ω; R3).

For each pair (wk, θk) there exists a pair-sequence {vnk , θnk} defined on the same
triangulation satisfying the properties of Lemma ?? for that triangulation and for
v∞ := wk, θ∞ := θk. A diagonalization process (with n replaced by n(k)) immedi-
ately yields a sequence {vk, χk} ∈ W 1,p(A× (−1, 1); R3)× L∞(A× (−1, 1); {0, 1})
such that

(5.11)

{
χk

∗
⇀ θ in L∞(A× (−1, 1); [0, 1]),

vk → v in Lp(A× (−1, 1); R3),

and

(5.12)

J(v; θ;A) ≤ lim inf
k→+∞

∫
A×(−1,1)

(χkW1 + (1− χk)W2)(Dαvk|n(k)D3vk) dxαdx3

= lim inf
k→+∞

J(vk; θk;A)

= lim inf
k

2
∫
A

Ŵ (θk, Dαvk) dxα.

The bound from above for Wi, the first convergence in (??), Fatou’s lemma, and
the upper semicontinuity property of Ŵ (see Remark ??) imply that

lim inf
k→+∞

∫
A

{β(1+|Dαvk|p)−Ŵ (θk, Dαvk)}dxα ≥
∫
A

{β(1+|Dαv|p)−Ŵ (θ,Dαv)}dxα,

thus ∫
A

Ŵ (θ,Dαv) dxα ≥ lim sup
k→+∞

∫
A

Ŵ (θk, Dαvk) dxα,

which, together with (??), yields

J(v; θ;A) ≤ 2
∫
A

Ŵ (θ,Dαv) dxα.

Lemma ?? provides the other inequality and the proof of Theorem ?? is complete.
�

6. Final Remarks

This paper provides some insight into the characterization of effective energies
for thin structures with varying profiles within a nonlinear setting, and some of
our results have already been used and referred to in the literature on equilibria
of thin structures, such as the papers by Ansini and Braides [?], Braides and
Fonseca [?] and Shu [?]. It is, by no means, a completed subject, as we have
pointed out throughout the text. From the technical point of view, we believe that
Theorem ?? may be extended to the case where the energy density also depends
upon xα (see Remark ??), and condition (??) should not be requested for proving
Theorem ?? (see Remarks ?? and ??).

Finally, although Theorem ?? holds for arbitrary sets Ωε (see Remark ??), in
order to have a complete description of the limit problem it is now known that some
geometrical and structural conditions need to be imposed on Ωε, as illustrated by
the example of Braides and Bhattacharya [?] where the limit problem is 3D
and there is no dimensional reduction in the resulting effective energy.
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7. Appendix

Lemma ?? and Lemma ?? are trivial diagonalization lemmata.

Lemma 7.1. Let ak,j be a doubly indexed sequence of real numbers (k, j ↗∞). If

lim
k

lim
j
ak,j = L,

then there exists a subsequence {k(j)}j ↗∞ such that

lim
j
ak(j),j = L.

Lemma 7.2. Let ak,j be a doubly indexed sequence of real numbers (k, j ↗∞). If

sup
k

lim
j
ak,j = L,

then there exists a subsequence {k(j)}j ↗∞ such that

lim
j
ak(j),j = L.

Let ak,j be a doubly indexed sequence of real numbers (k, j ↗∞). If

lim
k

lim sup
j

ak,j = L = lim
k

lim inf
j

ak,j ,

then there exists a subsequence {k(j)}j ↗∞ such that

lim
j
ak(j),j = L.

The third lemma in this appendix provides sufficient conditions for a mapping
π : O → [0,+∞) to be the trace of a Radon measure, where O is the set of open
subsets of ω and ω is an open subset of RN . It is close in spirit to De Giorgi-
Letta’s criterion [?].

Lemma 7.3. Let π be a mapping from O into R+ and µ be a finite nonnegative
Radon measure on RN . If, for any A,B,C ∈ O,

(i) π(A) ≤ π(A \ C) + π(B), C ⊂ B ⊂ A,
(ii) for any ε > 0, there exists Cε ∈ O with Cε ⊂ A and π(A \ Cε) ≤ ε,
(iii) π(ω) ≥ µ(RN ),
(iv) π(A) ≤ µ(A),

then, π is the restriction of µ to O.

Proof. Recalling (ii), consider dε := dist(Cε, ∂A) > 0. Then, Cε ⊂ Bε := {x ∈
A; dist(x, ∂A) > dε/2}, while Bε ⊂ A. Thus, by (i, iv), and since Cε ⊂ Bε ⊂ A,

π(A) ≤ ε+ π(Bε) ≤ ε+ µ(Bε) ≤ ε+ µ(A).

Hence, letting ε tend to 0,

π(A) ≤ µ(A).

Conversely, since µ is a Radon measure, it is inner regular, so that for any ε > 0,
there exists Cε ∈ O with Cε ⊂ A and µ(A) ≤ ε + µ(Cε). Hence, with the help of
(iii) and of the previously derived inequality,

µ(A) ≤ ε+µ(Cε) = ε+µ(ω)−µ(ω\Cε) ≤ ε+µ(RN )−π(ω\Cε) ≤ ε+π(ω)−π(ω\Cε),

and, since Cε ⊂ A ⊂ ω, (i) implies that µ(A) ≤ ε + π(A), so that the result is
obtained upon letting ε tend to 0. �
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Sci. Paris, 319(I), 1995, 567–572.

[30] Y. Shu Heterogeneous thin films of martensitic materials. To appear in: Arch. Rat. Mech.
Anal.

[31] L. Trabucho, J.M. Viaño Mathematical Modelling of Rods. In: P.G. Ciarlet, J.L. Lions,

editors, Handbook of Numerical Analysis, North Holland, Amsterdam, 1996, 487–974.

(Andrea Braides) S.I.S.S.A, 34014 Trieste, Italy

(Irene Fonseca) Department of Mathematical Sciences, Carnegie Mellon University,

Pittsburgh, PA 15213, USA
E-mail address, I. Fonseca: fonseca@andrew.cmu.edu

(Gilles Francfort) L.P.M.T.M., Université Paris-Nord, 93430 Villetaneuse, France


