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Abstract. We study the first- and second-order regularity properties of the bound-

ary of H-convex sets in the setting of a real vector space endowed with a suitable

group structure: our starting point is indeed a step two Carnot group. We prove

that, locally, the noncharacteristic part of the boundary has the intrinsic cone prop-

erty and that it is foliated by intrinsic Lipschitz continous curves that are twice

differentiable almost everywhere.

1. Introduction

We study the first- and second-order regularity properties of the boundary of H-

convex sets in the setting of a real vector space endowed with a non-commutative

group law. Our interest is motivated by the recent theory of H-convex functions in

Carnot groups. We prove that, locally, the noncharacteristic part of the boundary

of H-convex sets has the intrinsic cone property and that it is “foliated” by intrinsic

Lipschitz continuous curves that are twice differentiable almost everywhere.

We fix our geometric framework. Let Z and T be two real vector spaces and let

G = Z × T be the product space. We let p = (z, t) denote a generic point of G

with z ∈ Z and t ∈ T . Let 〈·, ·〉 be an inner product on G that makes Z and T

orthogonal and let | · | denote the corresponding norm. Let Q : Z × Z → T be a

mapping satisfying the following axioms:

(Q1) Q is bilinear and continuous;

(Q2) Q is skew-symmetric, i.e. Q(z, ζ) = −Q(ζ, z) for all z, ζ ∈ Z;

(Q3) for all t ∈ T and z ∈ Z, z 6= 0, there exists a ζ ∈ Z such that Q(z, ζ) = t.
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Up to a normalization of the quadratic form Q, we can assume that we have

|Q(z, ζ)| ≤ |z||ζ |, for all z, ζ ∈ Z. (1.1)

We introduce the binary operation · : G × G → G

(z, t) · (ζ, τ) =
(
z + ζ, t + τ + Q(z, ζ)

)
. (1.2)

By the axioms (Q1) and (Q2), the operation · is a group law. The associativity

property is a consequence of (Q1). By (Q2), the identity element is 0 ∈ G and the

inverse of p = (z, t) is p−1 = (−z,−t). In general, the group is non-commutative. An

example where all the axioms (Q1)–(Q3) are satisfied is the n-th Heisenberg group

Hn = Cn × R, n ∈ N, with

Q(z, ζ) = Im(zζ̄), z, ζ ∈ Cn,

where zζ̄ = z1ζ̄1 + . . . + znζ̄n. In the setting of Lie algebras, the Axioms (Q1)–(Q3)

identify the Métivier’s algebras.

The left translation by the element p ∈ G is the map τp : G → G, τp(q) = p · q.
It is an affine map of G onto itself as a vector space, i.e., it is the composition of a

translation w.r.t. the sum operation and a linear mapping.

We define the horizontal plane at p = 0 as the linear subspace Z0 := Z × {0} ⊂ G,

and the horizontal plane at p ∈ G as the affine subspace Zp := τp(Z0) = p · Z0. A

horizontal line through 0 ∈ G is a 1-dimensional linear subspace of Z0. A horizontal

line through p ∈ G is an affine line through p contained in Zp, i.e., a line of the form

r := τp(s) = p · s for some horizontal line s through 0. We denote by Rp the set of

all horizontal lines through p and by R =
⋃

p∈G Rp the set of all horizontal lines in

G. Finally, we say that two points p, q ∈ G are horizontally aligned if there exists an

r ∈ R such that p, q ∈ r.

Definition 1.1 (H-convex set). A set C ⊂ G is H-convex if (1 − λ)p + λq ∈ C for

any pair of horizontally aligned points p, q ∈ C and for any 0 ≤ λ ≤ 1.

Equivalently, a set C ⊂ G is H-convex if and only if the set C ∩ Zp is star-shaped

with respect to p, for any p ∈ C.

The family of mappings {δλ}λ>0, δλ(z, t) = (λz, λ2t), is a one parameter group of

automorphisms of G. We call these automorphisms of G dilations. For λ = 0 we let

δλ(z, t) = 0. The class of H-convex sets is stable under dilations.

H-convex sets were introduced by Garofalo and his coauthors as weakly H-convex

sets (see Section 7 of [DGN]). The notion of strongly H-convex set was also introduced

in the same paper. A set C ⊂ G is strongly H-convex if q · δλ(q
−1 · p) ∈ C for all

(not necessarily aligned) p, q ∈ C and all 0 ≤ λ ≤ 1. In [DGN] it was observed

that this stronger notion of convexity is quite restrictive. This was confirmed by the

description of strongly H-convex sets in H1 given in [CCP1]. In the same setting, a
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different notion of convexity, the geodesic convexity, was studied in [MR]: the class

of geodetically convex sets is also quite poor.

On the other hand, any convex set of G in the standard sense is H-convex and there

are H-convex sets which are not convex (see Section 4). In fact, there are H-convex

sets which are not even Lebesgue measurable, as shown by Rickly in his PhD Thesis

[R1]. H-convex sets also arise as sub-level sets of H-convex real valued functions

defined on Carnot groups. Such functions are of interest because of their connection

with nonlinear partial differential equations of the sub-elliptic type (see [BD], [BR],

[CM], [CCP2], [CP], [DGNT], [GM1], [GM2], [LMS], [JLMS], [GT], [M], [R2], [SY],

[W]).

To state our results, we need a few more definitions. For any horizontal line r ∈ R0,

let πr : G → r be the orthogonal projection of G onto r with respect to the fixed inner

product and denote by r⊥ the orthogonal complement of r in G. Define the (left)

group projection π⊥
r : G → r⊥ via the identity

p = π⊥

r (p) · πr(p), for any p ∈ G. (1.3)

The group projection π⊥
r is not the orthogonal projection onto r⊥ (see Section 2).

Next, for p = (z, t) ∈ G define the homogeneous (quasi-)norm

‖p‖ = max{|z|, |t|1/2}. (1.4)

The norm is homogeneous in the sense that ‖δλ(p)‖ = λ ‖p‖ for all λ ≥ 0. Using this

norm we define, for any p ∈ G and ̺ > 0, the balls

B̺(p) =
{
q ∈ G : ‖p−1 · q‖ < ̺

}
. (1.5)

The topology on G induced by these (or equivalent) balls is the standard topology of

G, i.e., the one induced by the inner product. We shall denote by int(C), C̄, ext(C)

and ∂C the topological interior, closure, exterior and boundary of a given set C ⊂ G,

respectively.

Definition 1.2 (Intrinsic cone). i) The (left) open cone with vertex 0 ∈ G, axis

r ∈ R0, aperture α > 0, and height h > 0 is the set

CL(0, r, α, h) =
{
p ∈ G : ‖π⊥

r (p)‖ < α‖πr(p)‖ < αh
}
. (1.6)

Fix one of the two total orderings of r such that 0 ∈ r is the zero. Define the positive

and negative cones

C+
L (0, r, α, h) = CL(0, r, α, h) ∩ {p ∈ G : πr(p) > 0},

C−

L (0, r, α, h) = CL(0, r, α, h) ∩ {p ∈ G : πr(p) < 0}.
(1.7)
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ii) The (left) open cone with vertex p ∈ G, axis r ∈ Rp, aperture α > 0, and height

h > 0 is the set

CL(p, r, α, h) = τp

(
CL(0, τp−1(r), α, h)

)
.

The one-sided cones C+
L (p, r, α, h) and C−

L (p, r, α, h) are defined analogously.

In the following figure it is shown a double-sided cone in H1 with vertex at the

origin and with respect to the equivalent gauge norm

‖p‖ = 4
√

|z|4 + t2.
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Figure 1. Cone in H1

Definition 1.3 (Non-characteristic point). Let C ⊂ G be a set. A point p ∈ ∂C is

non-characteristic if there exists an r ∈ Rp such that r ∩ int(C) ∩ B̺(p) 6= ∅ for all

̺ > 0. In this case, we say that r enters C at p.

We let Σ(C) ⊂ ∂C denote the set of characteristic points of C. Thus p ∈ ∂C is

non-characteristic if and only if p ∈ ∂C \ Σ(C).

Theorem 1.4. Assume (Q1)–(Q3). Let C ⊂ G be an H-convex set and let p ∈
∂C \Σ(C) with τp(r) ∈ Rp entering C at p, for some r ∈ R0. Then there exist ̺ > 0,

α > 0, and h > 0 such that we have for all q ∈ ∂C ∩ B̺(p)

C+
L (q, τq(r), α, h) ⊂ int(C), (1.8)
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C−

L (q, τq(r), α, h) ⊂ ext(C), (1.9)

where the total ordering of r is possibly changed.

Though a more refined construction is likely to provide the interior cone property

under a weaker version of axiom (Q3), this axiom cannot be entirely dropped. The

interior cone property (1.8) is sharp, because the cone C+
L (q, τq(r), α, h) is itself H-

convex. We prove this in the Heisenberg group (Example 4.2).

No regularity for the boundary can be expected at characteristic points. In fact,

for any α > 0 there is a β > 0 such that the set
{
(z, t) ∈ C × R = H1 : |z| < tα < β

}
(1.10)

is H-convex in H1 (see Example 4.4).

Conditions (1.8) and (1.9) express the intrinsic cone property for H-convex sets.

This property was introduced in [FSSC1] and [AS] in order to define intrinsic Lipschitz

continuous graphs inside Carnot groups (see also [MM] for a different construction of

metric cones). The same property appears in the theory of sets with finite horizontal

perimeter and controlled normal (see [MV]).

In the case of the Heisenberg group, Franchi, Serapioni, and Serra Cassano have

recently proved in [FSSC2] that the cone property implies an intrinsic version of Rade-

macher’s theorem. Theorem 1.4 is thus the counterpart of the first-order regularity of

H-convex functions established under various a priori assumptions in [DGN], [LMS],

[JLMS], [M], [SY], and then in [BR] and [R2] in full generality. So far, the best known

regularity of H-convex sets is that they have locally finite horizontal perimeter (see

[Mo]).

Our results on the second-order regularity of H-convex sets have a partial charac-

ter. Roughly speaking, the non-characteristic boundary ∂C \ Σ(C) is “foliated” by

Lipschitz continuous curves in G which are convex in a suitable sense and which are

twice differentiable almost everywhere in the standard sense. We say that a curve

γ : I → G, where I ⊂ R is an interval, is Lipschitz continuous in G if there is a

constant L > 0 such that for all s, σ ∈ I

‖γ(σ)−1 · γ(s)‖ ≤ L|s − σ|. (1.11)

The “convex horizontal sections” of ∂C \Σ(C) are found inside (cosets of) Heisenberg

subgroups of G which are horizontally transversal to the given H-convex set.

We say that a subgroup H of G is a Heisenberg subgroup if it is of the form

H = span
{
(z, 0), (ζ, 0), (0, t)

}
, (1.12)

for some z, ζ ∈ Z and t ∈ T such that Q(z, ζ) = t 6= 0. Finally, a Heisenberg subgroup

H of G is horizontally transversal to a set C ⊂ G at the point 0 ∈ ∂C if there exists

an r ∈ R0 such that r ⊂ H and r enters C at 0.
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Theorem 1.5. Assume (Q1)–(Q3). Let C ⊂ G be an H-convex set, and let H ⊂ G

be a Heisenberg subgroup of G that is horizontally transversal to C at 0, with r ∈ R0

entering C at 0 and r ⊂ H. Then there exists a nonconstant curve γ : I → ∂C ∩ H,

for some interval I = [0, δ], δ > 0, with the following properties:

1) γ is Lipschitz continuous in G and γ(0) = 0;

2) γ = (ζ, τ) for curves ζ : I → Z and τ : I → T such that ζ is twice differentiable

a.e. on I and τ is three times differentiable a.e. on I;

3) the function s 7→ πr(γ(s)) ∈ r, s ∈ [0, δ], is either convex or concave on I.

In general, the curve γ provided by Theorem 1.5 is not unique: there can exist a

curve γ̄ : [0, δ̄] → ∂C ∩ H satisfying 1), 2), and 3) but such that γ([0, s]) 6= γ̄([0, σ])

for all s > 0 and σ > 0 (see Example 4.1).

Theorem 1.5 is the counterpart of the second-order regularity of H-convex func-

tions. In fact, H-convex functions in Hn, n = 1, 2, have second-order horizontal

derivatives almost everywhere (see [GM2], [AM], [DGNT], [M], and [GT] for related

results). Our result should be compared with Theorem 1.1 in [CPT]. In their article,

Capogna, Pauls, and Tyson prove, under a C2-type regularity assumption, that the

epigraph of real valued functions in Carnot groups is H-convex if and only if the

symmetrized horizontal second fundamental form of the boundary is nonnegative.

An overview of the paper is now in order. Section 2 is devoted to the cone property.

In Section 3, we construct the convex and Lipschitz sections. The examples are

discussed in Section 4. In the Appendix we recall some basic algebraic and topological

properties of H-convex sets.

2. Intrinsic cone property

Let r ∈ R0 be a horizontal line through 0. For some z0 ∈ Z with |z0| = 1 we then

have r = {(λz0, 0) : λ ∈ R}. We can identify r with R and give r a natural total

ordering. Here and in the following, we restrict 〈·, ·〉 to Z and T . Let r⊥ denote the

orthogonal complement of r in G. Then we have

G = r⊥ · r, r⊥ ∩ r = {0}, r⊥ is normal in G,

i.e., G is the semi-direct product of the subgroups r⊥ and r.

The orthogonal projection πr : G → r of G onto r is πr(p) = (〈z, z0〉z0, 0), for any

p = (z, t) ∈ G. The left group projection π⊥
r : G → r⊥ defined via (1.3) is given by

the formula

π⊥

r (z, t) =
(
z − 〈z, z0〉z0, t − 〈z, z0〉Q(z, z0)

)
.

This is not the orthogonal projection onto r⊥.



REGULARITY PROPERTIES OF H-CONVEX SETS 7

Analogously, we can define the right group projection π̂⊥
r : G → r⊥ via the identity

p = πr(p) · π̂⊥
r (p). In this case we have the formula

π̂⊥

r (z, t) =
(
z − 〈z, z0〉z0, t + 〈z, z0〉Q(z, z0)

)
.

We introduced the left cones in Definition 1.2. Now let the right open cone with

vertex 0 ∈ G, axis r ∈ R0, aperture α > 0, and height h > 0 be the set

CR(0, r, α, h) =
{
p ∈ G : ‖π̂⊥

r (p)‖ < α‖πr(p)‖ < αh
}
. (2.1)

Finally, let the positive and negative right cones be the sets

C+
R (0, r, α, h) = CR(0, r, α, h) ∩ {p ∈ G : πr(p) > 0},

C−

R (0, r, α, h) = CR(0, r, α, h) ∩ {p ∈ G : πr(p) < 0}.
(2.2)

The right cones with vertex p ∈ G are defined by left translation.

Lemma 2.1. The left and right cones are comparable in the following quantitative

sense:

CL(0, r, α, h) ⊂ CR(0, r, α +
√

2α, h) and CR(0, r, α, h) ⊂ CL(0, r, α +
√

2α, h).

(2.3)

Proof. Indeed, for (z, t) ∈ CL(0, r, α, h) and with b = 〈z, z0〉, we have

|z − bz0| < α|b| and |t − bQ(z, z0)|1/2 < α|b|. (2.4)

From (2.4), we get

|t + bQ(z, z0)|1/2 ≤ |t − bQ(z, z0)|1/2 + |2bQ(z, z0)|1/2 < α|b| +
√

2|b||Q(z, z0)|1/2,

where, by (Q1) along with (1.1), and (Q2), |Q(z, z0)| = |Q(z − bz0, z0)| ≤ |z − bz0| <

α|b|, and thus

|t + bQ(z, z0)|1/2 < (α +
√

2α)|b|.
This shows that (z, t) ∈ CR(0, r, α +

√
2α, h). �

We now compare left cones having the same vertex and different axes. Let r, s ∈ R0

be horizontal lines associated with the points z0, ζ0 ∈ Z, with |z0| = |ζ0| = 1 and

〈z0, ζ0〉 ≥ 0. Namely, let r = {(λz0, 0) ∈ G : λ ∈ R} and s = {(λζ0, 0) ∈ G : λ ∈ R}.
Let the distance between r and s be

dist(r, s) = |z0 − ζ0|. (2.5)

Lemma 2.2. For any k > 1 and ε > 0 there exists an α0 > 0 such that for all 0 <

α < α0 and r, s ∈ R0 with dist(r, s) ≤ α2+ε we have CL(0, r, α, 1) ⊂ CL(0, s, kα, 2).

Proof. With the notation introduced above, we have (z, t) ∈ CL(0, r, α, 1) if and only

if

|z| <
√

1 + α2|b| <
√

1 + α2 and |t − bQ(z, z0)|1/2 < α|b|, (2.6)
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where we let b = 〈z, z0〉. Let δ > 0 be a real number to be fixed later and such that

δ
√

1 + α2 < 1. (2.7)

Assume that |z0 − ζ0| ≤ δ. Then from the inequality on the left hand side of (2.6)

and from |b| ≤ |〈z, ζ0〉| + δ|z| it follows that

|z| < β|〈z, ζ0〉| with β =

√
1 + α2

1 − δ
√

1 + α2
. (2.8)

By the triangle inequality, (Q1), and the right hand side of (2.6) we obtain
∣∣t − 〈z, ζ0〉Q(z, ζ0)

∣∣1/2 ≤
∣∣t − bQ(z, z0)

∣∣1/2
+

∣∣〈z, z0 − ζ0〉Q(z, z0)
∣∣1/2

+
∣∣〈z, ζ0〉Q(z, z0 − ζ0)

∣∣1/2

< α|b| + 2
√

δ|z|
≤ α|〈z, ζ0〉| + (αδ + 2

√
δ)|z|.

By (2.8), we finally get

∣∣t − 〈z, ζ0〉Q(z, ζ0)
∣∣1/2

< γ|〈z, ζ0〉| with γ = α +

√
1 + α2(αδ + 2

√
δ)

1 − δ
√

1 + α2
, (2.9)

and the claim follows from (2.8) and (2.9). In fact, with the choice δ = α2+ε, for any

k > 1 there is an α0 > 0 such that β ≤
√

1 + k2α2 and γ ≤ kα for all 0 < α < α0. �

In the proof of Theorem 1.4 and in the following sections, we shall make free use

of the following observation. For any pair of points p = (z, t) and q = (ζ, τ) in G, the

following statements are equivalent: 1) p and q are horizontally aligned; 2) p ∈ Zq;

3) q ∈ Zp; 4) q−1 · p ∈ Z0; 5) τ − t = Q(z, ζ).

Proof of Theorem 1.4. The proof is divided into a number of steps. The central step

is Step 4, where we study the 3-dimensional case (i.e., the Heisenberg group). We

first prove (1.8) and we show in the last step that (1.9) follows from (1.8).

Step 1. Ler r ∈ R0 be a horizontal line such that τp(r) enters C at p. By Proposition

5.2 in the Appendix, the set int(C) is H-convex and, therefore, the set τp(r)∩int(C) is

a nonempty open interval. One endpoint of this interval is p ∈ ∂C. An easy continuity

argument shows that there is a ̺ > 0 such that τq(r) ∩ int(C) is a nonempty open

interval for all q ∈ ∂C ∩ B̺(p).

We claim that, possibly changing the orientation of r, there exist an α > 0 and

an h > 0 such that C+
L (q, τq(r), α, h) ⊂ int(C) for all q ∈ int(C) ∩ B̺(p). Let

q ∈ ∂C∩B̺(p) and assume without loss of generality that q = 0. This can be achieved

by a left translation. The horizontal line r ∈ R0 is of the form r = {(λz0, 0) ∈ G :

λ ∈ R} for some z0 ∈ Z with |z0| = 1. We assume without loss of generality that
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(z0, 0) ∈ int(C). This can be achieved by a dilatation. We also agree that r is oriented

in such a way that (z0, 0) ∈ r is positive.

There exists 0 < σ < 1 such that Bσ(z0, 0) ⊂ int(C). The number σ does not

depend on our initial choice of ̺ > 0 (possibly take a smaller ̺).

Step 2. Consider the sets E, F ⊂ G

E =
{
(z, t) ∈ G : max{|z − z0|, |t + Q(z, z0)|1/2} ≤ σ, 〈z, z0〉 = 1

}
, (2.10)

F =
{
(z, 0) ∈ G : |z − 〈z, z0〉z0| < σ2〈z, z0〉 ≤ σ2

}
. (2.11)

The set E is a certain “vertical” section of Bσ(z0, 0) and thus it is contained in int(C).

The set E is H-convex. The set F is a truncated, positive cone in Z ×{0}. By (Q1)–

(Q3), we have |Q(z, z0)| = |Q(z−z0, z0)| ≤ |z−z0| and then F ∩{〈z, z0〉 = 1} ⊂ E ⊂
int(C). The set F is also H-convex. Then, from the H-convexity of int(C) it follows

that F ⊂ int(C).

Step 3. Let A be the first H-convex envelope of E ∪ F . Namely,

A =
{
(1 − λ)p1 + λp2 : p1 ∈ E, p2 ∈ F, p1 and p2 horizontally aligned, 0 ≤ λ ≤ 1

}
.

Because E ∪ F ⊂ int(C), from the H-convexity of int(C) it follows that A ⊂ int(C).

We claim there exists an α > 0 depending only on ̺ such that C+
L (0, r, α, 1) ⊂ A.

The claim will be proved, as soon as we show that given (ζ, τ) ∈ C+
L (0, r, α, 1) there

are points p1 = (z1, t1) ∈ E, p2 = (z2, 0) ∈ F , and λ ∈ (0, 1) such that:

a) the points p1 and p2 are horizontally aligned;

b) λp2 + (1 − λ)p1 = (ζ, τ).

Observe that p1 and p2 are horizontally aligned if and only if t1 = Q(z2, z1). State-

ments a) and b) are thus equivalent to the system of equations λz2 + (1 − λ)z1 = ζ

and (1−λ)Q(z2, z1) = τ . Inserting the first equation into the second one, we find the

equation Q(z2, ζ) = τ . By (Q3), this equation has a solution z2 ∈ Z for any given

ζ ∈ Z, ζ 6= 0. Conditions a) and b) are thus equivalent to the system of equations





λz2 + (1 − λ)z1 = ζ

Q(z2, ζ) = τ

Q(z2, z1) = t1.

(2.12)

We solve system (2.12) with the restrictions p1 ∈ E and p2 ∈ F in the 3-dimensional

case, first.

Step 4. Let Z = C, T = R, and Q : C×C → R, Q(z, z′) = Im(zz̄′). Let r ∈ R0 be

the horizontal line identified by z0 ∈ C. We can assume that z0 = 1 ∈ C. This can

be achieved by a rotation in C. Let α > 0 be a real number such that

8(α2 + α) < σ2. (2.13)
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Finally, let (ζ, τ) ∈ C+
L (0, r, α, 1), i.e., with ζ = ξ + iη,

|η| < αξ < α and |τ − ξη|1/2 < αξ. (2.14)

We claim that for all ζ = ξ+iη, τ satisfying (2.14) we can find λ ∈ (0, 1), p1 = (z1, t1) ∈
E and p2 = (z2, 0) ∈ F solutions to the system (2.12). The point p1 = (z1, t1),

z1 = x1 + iy1, belongs to the set E in (2.10) if and only if

x1 = 1, |y1| ≤ σ and |t1 + y1| ≤ σ2. (2.15)

The point p2 = (z2, 0), z2 = x2 + iy2, belongs to the “triangle” F in (2.11) if and only

if

|y2| < σ2x2 ≤ σ2. (2.16)

The parameter λ can be determined through the first equation in (2.12), i.e.,

λz2 + (1 − λ)z1 = ζ. (2.17)

In particular, using the first scalar equation in the vector equation (2.17) we get

λ =
1 − ξ

1 − x2
. (2.18)

With the restriction 0 < x2 < ξ ≤ 1, we have λ ∈ (0, 1). In particular, we fix x2 in

the following way

x2 =
ξ

2
< 1. (2.19)

We solve the second equation in (2.17) and the second equation in (2.12), Q(z2, ζ) = τ ,

in y1 and y2. Using (2.18), we find:





y1 =
1

ξ

(
η − 1 − ξ

ξ − x2

τ
)

y2 =
1

ξ

(
τ + x2η

)
.

(2.20)

We check condition (2.16). By the triangle inequality, (2.14), (2.19) and (2.13)

|y2| =
|τ + x2η|

ξ
≤ |τ − ξη| + |η|(ξ + x2)

ξ
≤ 3(α2 + α)x2 < σ2x2. (2.21)

We check the second condition in (2.15). By the triangle inequality, (2.14), (2.19),

(2.13) and 0 < σ ≤ 1 we find

|y1| =
1

ξ

∣∣∣η − τ
1 − ξ

ξ − x2

∣∣∣ ≤ 1

ξ(ξ − x2)

(
(1 − ξ)|τ − ηξ| + (ξ2 + x2)|η|

)

≤ 4(α2 + α) ≤ σ2 ≤ σ.

(2.22)
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Finally, we check the condition on the right hand side of (2.15). Notice that t1 is

determined by the third equation in (2.12) along with (2.20). We find:

ξ|y1 + t1| = ξ|y2 + (1 − x2)y1| =
1

ξ − x2

∣∣η(ξ − x2) + τ(2ξ − x2ξ − 1)|,

and then by the triangle inequality, (2.14), (2.19) and (2.13)

|y1 + t1| ≤
1

ξ(ξ − x2)

(
|2ξ − x2ξ − 1||τ − ηξ| + |η||2ξ2 − x2ξ

2 − x2|
)

≤ 8(α2 + α) ≤ σ2 ≤ σ.

This estimates finishes the proof of Step 4.

Step 5. In this step, we reduce the general case to the case discussed in the Step 4.

With the reduction made in the Step 1, we show that there exists an α > 0 such that

C+
L (0, r, α3, 1/2) ⊂ int(C), (2.23)

where α does not depend on the vertex 0, but it is uniform in a neighborhood of

0 ∈ ∂C. Given (ζ, τ) ∈ G with ζ 6= 0, by (Q3) there exists a ζ ′ ∈ Z such that

Q(ζ, ζ ′) = τ . We can assume that τ 6= 0, otherwise our claim is clear. Fix such a ζ ′

depending on ζ (it needs not be unique). The linear span

Gζ,τ = span{(ζ, 0), (ζ ′, 0), (0, τ)}

is a 3-dimensional linear subspace of G that is also a subgroup of G isomorphic to the

Heisenberg group H1 = C × R. We denote by sζ ∈ R0 the horizontal line identified

by ζ ∈ Z, ζ 6= 0. By Lemma 2.2, there exists an 0 < α0 ≤ 1/4 such that for all

0 < α < α0 we have

dist(r, sζ) ≤ α5/2 ⇒ C+
L (0, r, 2α3, 1/2) ⊂ C+

L (0, r, α, 1/2) ⊂ C+
L (0, sζ , 2α, 1).

(2.24)

If (ζ, τ) ∈ C+
L (0, r, α3, 1/2) then we have dist(r, sζ) ≤ 2α3 ≤ α5/2. Moreover, by Step

4, we have

Gζ,τ ∩ C+
L (0, sζ, 2α, 1) ⊂ Gζ,τ ∩ int(C), (2.25)

as soon as α is small enough, independently from (ζ, τ) ∈ C+
L (0, r, α3, 1/2). From

(2.24) and (2.25), we deduce that

C+
L (0, r, α3, 1/2) =

⋃

(ζ,τ)∈C+

L
(0,r,α3,1/2)

Gζ,τ ∩ C+
L (0, r, α3, 1/2)

⊂
⋃

(ζ,τ)∈CL(0,r,α3,1/2)

Gζ,τ ∩ C+
L (0, sζ, 2α, 1)

⊂ int(C).
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Step 6. We prove that (1.9) follows from (1.8). We assume that we have p = 0 in

the statement of Theorem 1.4. Let ι : G → G be the mapping ι(p) := p−1 = −p.

Then we have the relations

ι(C+
R (0, r, α, h)) = C−

L (0, r, α, h),

ι(C−

R (0, r, α, h)) = C+
L (0, r, α, h).

(2.26)

Let r ∈ R0, α > 0 and assume that C+
L (p, τp(r), α, 1) ⊂ int(C) for all p ∈ ∂C ∩B̺(0)

for some ̺ > 0. Let β > 0 be such that β +
√

2β = α. For any p, q ∈ ∂C ∩ B̺(0), by

(2.26) it follows that

q /∈ C+
L (p, τp(r), α, 1) ⇔ p−1 · q /∈ C+

L (0, r, α, 1)

⇔ q−1 · p /∈ C−

R (0, r, α, 1).

Now, from (2.3) we deduce that q−1 · p /∈ C−

L (0, r, β, 1). This is equivalent to p /∈
C−

L (q, τq(r), β, 1) and the claim follows. �

3. Horizontal second-order regularity

In this section, we fix the factorization G = r⊥ · r for some r ∈ R0. On identifing r

and R, we have a natural total ordering on r, which is inherited by any τp(r) ∈ Rp,

with p ∈ G.

Let ϕ : W → r be a continuous function, on some open set W ⊂ r⊥. The intrinsic

graph of ϕ is the subset of G

gr(ϕ) =
{
q · ϕ(q) ∈ G : q ∈ W

}
. (3.1)

The function ϕ is intrinsic Lipschitz continuous if there exists a constant L > 0 such

that for all p ∈ gr(ϕ)

CL(p, τp(r), 1/L, +∞) ∩ gr(ϕ) = ∅. (3.2)

Analogously, the intrinsic epigraph of ϕ is the subset of G

epi(ϕ) =
{
p · q ∈ G : p ∈ W, q ∈ τp(r), q > τp(ϕ(p))

}
. (3.3)

Any curve γ : I → gr(ϕ), where I ⊂ R is an interval, has the factorization

γ = κ · ϕ(κ), (3.4)

where κ : I → W and κ(s) = (ζ(s), τ(s)) with ζ(s) ∈ Z and τ(s) ∈ T for all s ∈ I.

Definition 3.1. We say that a function ϕ : W → r is convex along the curve

κ : I → W , I ⊂ R interval, if the function ϕ ◦ κ : I → r = R is convex.

Theorem 3.2. Let C ⊂ G be a closed H-convex set, W ⊂ r⊥ be an open set with

0 ∈ W , and ϕ : W → r be such that epi(ϕ) ∩ U = int(C) ∩ U for some open set U .
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For any ζ ∈ Z with (ζ, 0) ∈ W , there exists a curve γ : I → gr(ϕ), for some interval

I = [0, δ] with δ > 0, such that:

i) γ is Lipschitz continuous in G;

ii) γ = κ · ϕ(κ) for a curve κ : I → W such that ϕ is convex along κ;

iii) κ(s) = (sζ, τ(s)), s ∈ I, for some curve τ : I → T such that τ(0) = 0.

Proof. Without loss of generality, we assume that W =
{
p = (z, t) ∈ r⊥ : |z| <

4, |t| < 4
}
, and ϕ(0) = 0. This is possible by a dilatation and a left translation. By

Theorem 1.4, there exists a constant α > 0 such that for all p ∈ gr(ϕ) ∩ U

CL(p, τp(r), α, +∞) ∩ gr(ϕ) = ∅. (3.5)

In particular, ϕ is continuous and bounded. We can assume that gr(ϕ) ∩ U = gr(ϕ)

and |ϕ| ≤ 1 on W .

Fix ζ ∈ Z such that |ζ | = 1 and (ζ, 0) ∈ W . We set δ = 1 and we construct a curve

γ : [0, 1] → gr(ϕ) such that γ(0) = 0 and i), ii), and iii) hold. The curve γ is obtained

as the limit of a sequence of polygonal curves. Each polygonal curve is made up by

horizontal segments and is contained in the set C. By the H-convexity of C, these

curves enjoy a suitable convexity property which will be explained along the proof.

This property passes to the limit, yielding the convexity of ϕ along the component κ

of γ.

We need a preliminary remark. Let h ∈ N. For some q = (z0, t0) ∈ W , with |z0| < 2

and |t0| < 2, we look for a point p = (z, t) ∈ W such that

(q · ϕ(q))−1 · (p · ϕ(p)) = (ζ/h + ϕ(p) − ϕ(q), 0). (3.6)

By (3.6), the points q · ϕ(q) and p · ϕ(p) are horizontally aligned. This is equivalent

to solving the system
{

z − z0 = ζ/h

t − t0 = Q(ϕ(z, t) + ϕ(z0, t0), z − z0).
(3.7)

Plugging the first equation into the second one, we get the equation for t

t = t0 +
1

h
Q(ϕ(z, t) + ϕ(z0, t0), ζ) =: Φ(t), (3.8)

where Φ : {t ∈ T : |t| < 4} → T is the mapping defined in the right hand side of

(3.8). By (1.1), |ζ | = 1, and |ϕ| ≤ 1, we have |Φ(t)− t0| ≤ 2/h. Then Φ is continuous

from the closed ball B ⊂ T centered at t0 with radius 2/h into itself and therefore

it has at least one fixed point t ∈ B, i.e. there is a solution t ∈ B to (3.8). Notice

that equation (3.8) is essentially one dimensional. Then p = (z, t) is a solution to the

system (3.7).

For any h ∈ N, we define by induction points p0, p1, ..., ph ∈ W . Each of these points

depend on h. We let p0 = 0 and assume that p0, p1, ..., pj−1 ∈ W satisfy pi = (zi, ti)
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with |zi| ≤ i/h and |ti| ≤ 2i/h for i = 0, 1, ..., j − 1. Denote by P h
j ⊂ W the set of

the points p = (z, t) ∈ W solutions to the system (3.7) with data (z0, t0) = pj−1 and

such that |z − zj−1| ≤ 1/h and |t − tj−1| ≤ 2/h. The previous argument proves that

P h
j 6= ∅. Choose one pj ∈ P h

j . This choice is not unique, in general.

Let us define the curve γh : I → G, I = [0, 1], in the following way. Let Ih
j =

[(j − 1)/h, j/h], j = 1, ..., h. Then we have I = Ih
1 ∪ ... ∪ Ih

h . For s ∈ Ih
j we let

γh(s) = h
{( j

h
− s

)(
pj−1 · ϕ(pj−1)

)
+

(
s − j − 1

h

)(
pj · ϕ(pj)

)}
. (3.9)

The sequence of curves (γh)h∈N has the following properties:

a) γh = (ζh, τh) for curves ζh : I → Z and τh : I → T such that

ζh(s) = sζ + h
{( j

h
− s

)
ϕ(pj−1) +

(
s − j − 1

h

)
ϕ(pj)

}
, s ∈ Ih

j ; (3.10)

b) γh = π⊥
r (γh) · πr(γ

h) for curves π⊥
r (γh) : I → W and πr(γ

h) : I → r such that

s 7→ πr(γ
h(s)) ∈ r is convex;

c) the sequence (γh)h∈N is equi-Lipschitz continuous and equi-bounded in G en-

dowed with the quasi-distance induced by the norm (1.4).

Formula (3.10) follows from (3.9) and from the recursive definition of pj. In particular,

we have

πr(γ
h(s)) = h

{( j

h
− s

)
ϕ(pj−1) +

(
s − j − 1

h

)
ϕ(pj)

}
, s ∈ Ih

j . (3.11)

Let gj = pj · ϕ(pj). As the points gj−1, gj ∈ ∂C are horizontally aligned, the segment

joining them is contained in some horizontal line and thus it is contained in C, by

the H-convexity of C. From the H-convexity of C, it also follows that

〈g−1
j · gj−1, g

−1
j · gj+1〉 ≥ 0, j = 1, ..., h − 1. (3.12)

The curve ζh in (3.10) is thus a convex polygonal contained in a 2-dimensional plane

(the plane spanned by ζ and r). This proves that πr(γ
h) is convex.

In order to prove c), we show that there exists a constant L > 0 independent of

h ∈ N such that for all s, σ ∈ I

‖γh(σ)−1 · γh(s)‖ ≤ L|s − σ|. (3.13)

It then follows that the sequence is also equi-bounded, because γh(0) = 0 for all

h ∈ N. In the case s = j/h and σ = (j − 1)/h, we have by (3.6)

γh(σ)−1 · γh(s) = (pj−1 · ϕ(pj−1))
−1 · (pj · ϕ(pj))

= (ζ/h + ϕ(pj) − ϕ(pj−1), 0)

=
(
ζ/h, Q(ϕ(pj) − ϕ(pj−1), ζ/h)

)
·
(
ϕ(pj) − ϕ(pj−1), 0

)
.

(3.14)
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From the second line of (3.14), it follows that

‖γh(σ)−1 · γh(s)‖ ≤ 1/h + |ϕ(pj) − ϕ(pj−1)|. (3.15)

On the other hand, by (3.5) we have

γh(σ)−1 · γh(s) /∈ CL(0, r, α, +∞). (3.16)

By the third line of (3.14), (3.16) is equivalent to

α|ϕ(pj) − ϕ(pj−1)| ≤ max
{
|ζ/h|, |Q(ϕ(pj) − ϕ(pj−1), ζ/h)|1/2

}
. (3.17)

If the maximum on the right hand side of (3.17) is |ζ/h|, we get (3.13) with L = 1+1/α

and |s − σ| = 1/h. If this is not the case, then by (1.1) we have

|ϕ(pj) − ϕ(pj−1)|2 ≤
1

α2
|Q(ϕ(pj) − ϕ(pj−1), ζ/h)| ≤ 1

hα2
|ϕ(pj) − ϕ(pj−1)|,

and we get (3.13) with L = 1 + 1/α2. If s ∈ Ih
j then γh(s) is a linear convex

combination of the points pj−1 · ϕ(pj−1) and pj · ϕ(pj). Thus, the same argument as

above proves that (3.13) holds whenever s, σ ∈ Ih
j . Finally, by the triangle inequality,

(3.13) holds for s, σ ∈ [0, 1]. Concerning the triangle inequality, we need the following

observation. If G is a finite dimensional vector space, then there is a constant c > 1

such that for all p, q ∈ G we have c−1‖q−1 · p‖ ≤ d(p, q) ≤ c‖q−1 · p‖, where d stands

for the Carnot-Carathéodory distance of G, that satisfies the triangle inequality. The

curves γh lie in a finite dimensional subgroup of G and thus the quasi-metric induced

by the norm ‖ · ‖ is equivalent to a metric, in this subgroup.

By Ascoli-Arzelà theorem, the sequence (γh)h∈N has a subsequence, that is still

denoted by (γh)h∈N, which converges uniformly to a curve γ : I → C. The curve γ is

Lipschitz continuous in G and, in fact, we have γ(I) ⊂ gr(ϕ), because γh(j/h) ∈ gr(ϕ)

for all 0 ≤ j ≤ h. Then we have γ = κ · ϕ(κ) for some curve κ : I → W . From the

(pointwise and in fact uniform) convergence πr(γ
h) → πr(γ) = ϕ(κ) and from b), we

deduce that s 7→ ϕ(κ(s)) is convex. �

The proof of Theorem 1.5 follows from Theorem 3.2 and from the following propo-

sition.

Proposition 3.3. Let ϕ : W → r be continuous and let γ : I → gr(ϕ) be a Lipschitz

continuous curve in G with the factorization γ = κ · ϕ(κ). Then κ = (ζ, τ) : I → W

is a Lipschitz continuous curve w.r.t. | · | that solves the differential equation

τ̇(s) + Q
(
ζ̇(s), ζ(s) + 2ϕ(κ(s))

)
= 0 (3.18)

for a.e. s ∈ I. Here, ϕ(κ) is thought of as an element of Z.

Proof. By (1.4), the Lipschitz condition (1.11) is equivalent to the inequalities

|ζ(s)− ζ(σ) + ϕ(κ(s)) − ϕ(κ(σ))| ≤ L|s − σ|, (3.19)
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|τ(s) − τ(σ) + Q(ζ(s) − ζ(σ), ζ(σ) + ϕ(κ(s)) + ϕ(κ(σ)))|1/2 ≤ L|s − σ|. (3.20)

In order to get the expressions on the left hand side of (3.19) and (3.20), we used

three times the group law (1.2) and several times the properties (Q1) and (Q2),

along with (3.4). The inequality (3.19) implies that the curves ζ and ϕ ◦ κ are

both Lipschitz continuous in the standard sense, because the vectors ζ(s) − ζ(σ)

and ϕ(κ(s)) − ϕ(κ(σ)) are orthogonal. The line (3.20) implies that τ is Lipschitz

continuous as well. Moreover, on dividing by |s − σ|1/2 and letting σ → s for s ∈ I

differentiability point of ζ , we get (3.18). �

Proof of Theorem 1.5. Let r ∈ R0 be of the form r = {(λz0, 0) ∈ G : λ ∈ R} for some

z0 ∈ Z with |z0| = 1. The Heisenberg subgroup H is then of the form

H = span{(z0, 0), (ζ0, 0), (0, t)}

for some ζ0 ∈ Z and t ∈ T such that Q(z0, ζ0) = t 6= 0. Moreover, we can assume that

〈z0, ζ0〉 = 0. By Theorem 1.4 there are W ⊂ r⊥, U ⊂ G neighborhood of 0 ∈ G, and

ϕ : W → r intrinsic Lipschitz continuous such that ∂C ∩ U = gr(ϕ) ∩ U . Without

loss of generality, we can also assume that int(C) ∩ U = epi(ϕ) ∩ U and that C is

relatively closed in U .

Let γ : I → gr(ϕ), I = [0, δ], be the curve provided by Theorem 3.2. This curve is

Lipschitz continuous in G and γ = κ ·ϕ(κ) with κ(s) = (sζ0, τ(s)) for some τ : I → T .

By Proposition 3.3, the curve τ is Lipschitz continuous and

τ̇ (s) = 2Q(ϕ(κ(s)), ζ0), (3.21)

where ϕ(κ(s)) is thought of as an element of Z. As τ(0) = 0, it follows that τ(s) is a

multiple of Q(z0, ζ0) and thus γ(s) ∈ H for all s ∈ I. By Theorem 3.2, s 7→ ϕ(κ(s))

is convex and thus twice differentiable a.e. on I. Equation (3.21) implies then that τ

is of class C1,1 with second derivative differentiable almost everywhere. �

4. Examples

In this section we discuss various examples of H-convex sets in the Heisenberg

group H1 = C × R = R3. We use the coordinates z = x + iy ∈ C and t ∈ R. The

bilinear form Q : C × C → R is Q(z, ζ) = Im(zζ̄).

4.1. Convex cone. Let r ∈ R0 be the x-axis, which is identified with R via x ≡
(x, 0) ∈ C × R. We use the standard inner product of R3. Then r⊥ is the yt-plane.

Consider the function ϕ : r⊥ → r defined by ϕ(y, t) =
√
|t|. The intrinsic graph of ϕ

is the subset of C × R

gr(ϕ) =
{
(
√
|t| + iy, t + y

√
|t|) ∈ C × R : y, t ∈ R

}
,
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and the closed intrinsic epigraph of ϕ is

C =
{
(x + iy, t + xy) ∈ C × R : x, y, t ∈ R, x ≥

√
|t|

}
. (4.1)

The set C is a cone in the sense that δλ(C) = C for all λ > 0.

Proposition 4.1. The set C in (4.1) is H-convex.

Before proving this proposition, let us observe that 0 ∈ ∂C is non-characteristic.

Then, by Theorem 1.5, there is a nonconstant Lipschitz curve passing through 0 and

contained in ∂C. This curve is of the form γ(s) = κ(s) · ϕ(κ(s)), s ∈ I ⊂ R, where

κ : I → r⊥ = R2 is κ(s) = (s, τ(s)) for some function τ : I → R such that τ(0) = 0.

The function τ can be determined by the necessary condition (3.21) (with ζ = i and

ϕ(κ(s)) = |τ(s)|1/2). In particular, we get the Cauchy problem

τ̇ (s) = −2|τ(s)|1/2 with τ(0) = 0, (4.2)

for which the solution is not unique. The function ϕ is convex along any curve

s 7→ κ(s) = (s, τ(s)), s ∈ R, with τ solving (4.2).

Proof of Proposition 4.1. It is sufficient to prove that if p0, p1 ∈ ∂C = gr(ϕ) are

horizontally aligned then (1 − λ)p0 + λp1 ∈ C for all 0 ≤ λ ≤ 1. The points p0 =

(x0 + iy0, t0) and p1 = (x1 + iy1, t1) belong to gr(ϕ) if and only if

x2
0 = |t0 − x0y0| and x2

1 = |t1 − x1y1|, with x0, x1 ≥ 0. (4.3)

The points are horizontally aligned if and only if

t1 − t0 = y0x1 − x0y1. (4.4)

With the notation xλ = (1−λ)x0 +λx1, yλ = (1−λ)y0+λy1, and tλ = (1−λ)t0 +λt1,

we have to show that for all 0 ≤ λ ≤ 1

x2
λ ≥ |tλ − xλyλ|. (4.5)

By a short computation, we preliminarly notice that

tλ −xλyλ = (1−λ)2(t0 −x0y0)+λ2(t1 −x1y1)+λ(1−λ)(t0 + t1 −x0y1 −x1y0). (4.6)

We distinguish two cases.

Case 1 :(t0 − x0y0)(t1 − x1y1) ≥ 0. In particular, we can assume that t0 − x0y0 ≥ 0

and t1−x1y1 ≥ 0. This is without loss of generality, because the map (z, t) 7→ (z̄,−t)

preserves H-convexity and maps both C and ∂C onto itself. Then we have

x2
0 = t0 − x0y0 and x2

1 = t1 − x1y1. (4.7)

From (4.7) and (4.4), we deduce that x0+y0 = x1+y1. Using this piece of information

along with (4.7), we finally get t0 + t1 − x0y1 − x1y0 = 2x0x1. The right hand side of
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(4.6) is then a square and we have equality in (4.5) for all 0 ≤ λ ≤ 1. In other words,

(1 − λ)p0 + λp1 ∈ ∂C for all 0 ≤ λ ≤ 1.

Case 2: (t0 − x0y0)(t1 − x1y1) < 0. As above, we can without loss of generality

assume that

x2
0 = t0 − x0y0 and x2

1 = x1y1 − t1. (4.8)

From (4.8) and (4.4), we get x2
0 + x2

1 = (x0 + x1)(y1 − y0), and then using this

information we find

t0 + t1 − x0y1 − x1y0 = 2x0(x0 + y0 − y1). (4.9)

Moreover, the identity after (4.8) and x0x1 > 0 imply

|x0 + y0 − y1| < x1. (4.10)

By the triangle inequality, (4.6), (4.8), (4.9), and (4.10)

|tλ − xλyλ| ≤ (1 − λ)2|t0 − x0y0| + λ2|t1 − x1y1| + 2λ(1 − λ)x0|x0 + y0 − y1|
≤ (1 − λ)2x2

0 + λ2x2
1 + 2λ(1 − λ)x0x1,

where the last inequality is strict if 0 < λ < 1. This proves (4.5) and we have

(1 − λ)p0 + λp1 ∈ int(C) for 0 < λ < 1. �

4.2. Cone. Let r ∈ R0 be the x-axis in H1 = C×R and let C ⊂ H1 be the H-convex

set defined in (4.1). Then the positive cone with vertex 0, axis r, aperture α = 1,

and height h = +∞ is

C+
L (0, r, 1, +∞) = C ∩

{
(x + iy, t) ∈ C × R : |y| < x

}
.

The set C+
L (0, r, 1, +∞) is H-convex because it is the intersection of C with a convex

set in the standard sense.

4.3. Cylindrical H-convex sets. Consider a set C ⊂ H1 with cylindrical symmetry

C =
{
(z, t) ∈ C × R : |z| ≤ f(t)

}
, (4.11)

for some function f : R → [0, +∞).

Proposition 4.2. Let f : R → [0, +∞) be a function such that

(1−λ)2f(t)2 +λ2f(τ)2 +2λ(1−λ)
√

f(t)2f(τ)2 − (τ − t)2 ≤ f((1−λ)t+λτ)2 (4.12)

for all λ ∈ [0, 1] and for all t, τ ∈ R such that

|τ − t| ≤ f(t)f(τ). (4.13)

Then the set C in (4.11) is H-convex.
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Proof. Let p0 = (z, t) and p1 = (ζ, τ) be points in ∂C with z = f(t)eiϑ and ζ = f(τ)eiϕ

for some ϑ, ϕ ∈ [0, 2π). The points are horizontally aligned if and only if

τ − t = Im(zζ̄) = f(t)f(τ) sin(ϑ − ϕ). (4.14)

This equation has solutions only if the condition (4.13) holds. With the notation

pλ = (zλ, tλ) = (1 − λ)p0 + λp1, the set C is H-convex if and only if |zλ| ≤ f(tλ) for

all λ ∈ [0, 1] and for all p0, p1 ∈ ∂C horizontally aligned, i.e.,

(1 − λ)2f(t)2 + λ2f(τ)2 + 2λ(1 − λ)f(t)t(τ) cos(ϑ − ϕ) ≤ f((1 − λ)t + λτ)2.

The most restrictive case is when cos(ϑ−ϕ) ≥ 0. Then, by (4.14) we get the sufficient

condition (4.12). �

4.4. Thin Cusp. We prove that for any α > 0 there is a constant β > 0 such that

the set

C =
{
(z, t) ∈ C × R : |z| < tα < β

}

is H-convex. In the case α ∈ (0, 1], the claim holds even with β = +∞, because the

resulting set is convex in the ordinary sense. For α > 1, we can e.g. choose

β =
( √

2

α(2α − 1)

) α

2α−1

. (4.15)

This choice is not optimal.

Let 0 < t < τ ≤ β be such that (tτ)2α ≥ (τ − t)2. By (4.12) with f(t) = tα and

s = (1 − λ)t + λτ , we have to show that for all s ∈ [t, τ ]

Φ(s) = s2α− 1

(τ − t)2

{
(τ−s)2t2α+(s−t)2τ 2α+2(s−t)(τ−s)

√
(τt)2α − (τ − t)2

}
≥ 0.

Because Φ(t) = Φ(τ) = 0, it is sufficient to show that Φ′′(s) ≤ 0 for s ∈ [t, τ ], where

Φ′′(s) = 2α(2α − 1)s2α−2 − 2

(τ − t)2

{
t2α + τ 2α − 2

√
(τt)2α − (τ − t)2

}
.

The inequality Φ′′(s) ≤ 0 for s ∈ [t, τ ] is implied by Φ′′(τ) ≤ 0, i.e.

α(2α − 1)τ 2α−2(τ − t)2 + 2
√

(τt)2α − (τ − t)2 ≤ t2α + τ 2α. (4.16)

By the elementary inequality (a + b)2 ≤ 2(a2 + b2), (4.16) is implied by the stronger

inequality

2α2(2α − 1)2τ 4α−4(τ − t)4 + 4
(
(τt)2α − (τ − t)2

)
≤ (t2α + τ 2α)2,

that is 2α2(2α−1)2τ 4α−4(τ − t)4 ≤ (t2α−τ 2α)2 +4(τ − t)2. This inequality is satisfied

for 0 < t < τ ≤ β with β as in (4.15).

4.5. Counterexample to Carathéodory’s Theorem. By Carathéodory’s Theo-

rem, any point in the convex hull of a set of Rn is the linear convex combination
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of at most n + 1 points of the set. We show that no such a theorem holds for the

H-convexity. The definition and the properties of the H-convex hulls coH(C) and

co
(n)
H (C), n ∈ N, for a set C ⊂ H1 are in the Appendix.

Proposition 4.3. There exists a set C ⊂ H1 such that for any n ∈ N we have

co
(n)
H (C) ( co

(n+1)
H (C). (4.17)

The construction relies upon the following lemma.

Lemma 4.4. Let K ⊂ H1 be a nonempty bounded set. Then there exist points

p, q ∈ H1 such that:

i) p ∈ H1 \ K and Zp ∩ K 6= ∅;
ii) Zq ∩ (K ∪ {p}

)
= ∅;

iii) Zq ∩ coH(K ∪ {p}) 6= ∅.

Proof. We use the notation w = (zw, tw) ∈ C × R. The set A =
{
zw ∈ C : w =

(zw, tw) ∈ K
}

is bounded in C. Let p = (zp, tp) be a point satisfying i) and such that

dist(zp, A) ≥ diam(A). (4.18)

Here, dist and diam stand for the standard distance and diameter. Let u = (zu, tu) ∈
Zp ∩ K be a point such that

|zu − zp| ≤
4

3
inf

{
|zw − zp| : zw ∈ A, w = (zw, tw) ∈ Zp

}
,

and define

v = (zv, tv) =
(zu + zp

2
,
tu + tp

2

)
.

We have v ∈ coH(K ∪ {p}) and v /∈ K ∪ {p}.
A point q = (zq, tq) belongs to Zv if and only if

tq = tv + Q(zv, zq). (4.19)

In this case, we have iii). Analogously, with w = (zw, tw) ∈ K we have q /∈ Zw if and

only if tq 6= tw + Q(zw, zq). By (4.19), this is equivalent to

tv − tw 6= Q(zw − zv, zq). (4.20)

We choose zq = iσ(zv − zu) for some σ > 0 to be determined. The coordinate tq is

then given by (4.19). With this choice, we have for any w = (zw, tw) ∈ K

Q(zw − zv, zq) = σ|zu − zv|2 + σQ(zw − zu, i(zv − zu))

≥ σ|zu − zv|
{
2|zp − zu| − diam(A)

}

≥ σdist(zp, A)|zu − zv|.
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Here, we used Q(z, ζ) = Im(zζ̄) and (4.18). Because tv − tw is bounded by a constant

independent of w ∈ K, we can choose σ > 0 such that (4.20) holds for all w ∈ K. A

similar argument works with w = p. Then we also have ii). �

We define inductively an increasing sequence (Kn)n∈N of bounded H-convex sets

of H1 in the following way. We let K1 = coH({p1, q1}) for any p1, q1 ∈ H1. Assuming

that Kn ⊂ H1 is already defined, we choose points pn+1, qn+1 ∈ H1 such that i), ii),

and iii) of Lemma 4.4 hold, and we define

Kn+1 = coH(Kn ∪ {pn+1, qn+1}).

The set C =
{
pn, qn ∈ H1 : n ∈ N

}
satisfies (4.17).

5. Appendix

We describe the basic set theoretical, algebraic, and topological properties of the

class of H-convex sets. In this Appendix, we assume that G with the law · satisfies

the Axioms (Q1) and (Q2).

Proposition 5.1.

i) If A is a family of H-convex sets then
⋂

C∈A
C is also H-convex;

ii) For all p ∈ G and λ > 0, the sets τp(C) and δλ(C) are H-convex provided that

C is H-convex.

The proof is elementary. In general, the union of H-convex sets is not H-convex

and for H-convex sets C1, C2 the group product C1 ·C2 = {p · q ∈ G : p ∈ C1, q ∈ C2}
is not in general H-convex.

Proposition 5.2. If C is H-convex, then int(C) is H-convex.

Proof. Let p0, p1 ∈ int(C) be two horizontally aligned points and let 0 < λ < 1.

We show that pλ = (1 − λ)p0 + λp1 ∈ int(C). Without loss of generality, we can

assume that pλ = 0. This can be achieved by a left translation. If p0 = (z0, t0) and

p1 = (z1, t1), we have the system of equations





(1 − λ)z0 + λz1 = 0

(1 − λ)t0 + λt1 = 0

t1 − t0 = Q(z0, z1).

(5.1)

The third equation is the alignment condition. Plugging the third equation into the

second one, we get t0 +λQ(z0, z1) = 0. Using the first equation, along with (Q1) and

(Q2), it follows that t0 = 0 and then t1 = 0, as well. We claim that there exists a ̺ > 0

such that B̺(0) ⊂ C. Indeed, there exists a 0 < σ < 1 such that B0 = Bσ(p0) ⊂ C

and B1 = Bσ(p1) ⊂ C. Our claim will be established as soon as we show that for any

q ∈ B̺(0) there are q0 ∈ B0 and q1 ∈ B1 which are horizontally aligned and such that
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q = (1 − λ)q0 + λq1. If q = (ζ, τ), q0 = (ζ0, τ0), and q1 = (ζ1, τ1) this is equivalent to

solving the system of equations





(1 − λ)ζ0 + λζ1 = ζ

(1 − λ)τ0 + λτ1 = τ

τ1 − τ0 = Q(ζ0, ζ1).

(5.2)

We fix 0 < k < 1 and ̺ > 0 such that

2̺2 + (kσ + |z0|)̺ + (̺ + kσ)(1 + |z1|) < λσ2, (5.3)

and we choose some ζ0 ∈ Z such that

|ζ0 − z0| < kσ < σ. (5.4)

Inserting the third equation of (5.2) into the second one and using the first equation

we find the equation τ0 + Q(ζ0, ζ) = τ , which determines τ0 ∈ T . In particular, we

have

|τ0| ≤ |τ | + |Q(ζ0, ζ)| ≤ |τ | + |ζ0||ζ | ≤ |τ | + (|ζ0 − z0| + |z0|)|ζ |
≤ ̺2 + (kσ + |z0|)̺,

(5.5)

and using (Q1), (Q2), (5.5), and (5.3) we get

|τ0 + Q(ζ0, z0)| ≤ |τ0| + |Q(ζ0 − z0, z0)| ≤ |τ0| + |ζ0 − z0||z0|
≤ ̺2 + (kσ + |z0|)̺ + |z0|kσ < σ2.

(5.6)

By (5.4) and (5.6), we have q0 = (ζ0, τ0) ∈ Bσ(p0). The point q1 = (ζ1, τ1) is deter-

mined by the first two equations in (5.2). Subtracting the first equation in (5.1) from

the first equation in (5.2) we find (1 − λ)(ζ0 − z0) + λ(ζ1 − z1)x = ζ . Then, by (5.4)

and (5.3)

|ζ1 − z1| ≤
1

λ

{
|ζ | + (1 − λ)|ζ0 − z0|

}
≤ 1

λ
(̺ + kσ) < σ2 < σ. (5.7)

Analogously, we have by (5.5)

|τ1| ≤
1

λ

{
|τ | + (1 − λ)|τ0|

}
≤ 1

λ

{
2̺2 + (kσ + |z0|)̺)

}
, (5.8)

and then, by (5.7), (5.8), and (5.3)

|τ1 + Q(ζ1, z1)| ≤ |τ1| + |ζ1 − z1||z1|

≤ 1

λ

{
2̺2 + (kσ + |z0|)̺ + (̺ + kσ)|z1|

}
< σ2.

(5.9)

By (5.7) and (5.9) we have q1 ∈ Bσ(p1). �
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H-convex sets are not necessarily connected. In general, the closure of an H-convex

set is not H-convex. E.g., let

A1 =
{
(x + iy, t) ∈ H1 : 0 < x < 1, y < 0, t < 0

}
,

A2 = {(x + iy, t) ∈ H1 : 2 < x < 3, y > 0, t > 0}.

Then the set A = A1 ∪ A2 is H-convex in H1, but Ā is not H-convex.

Definition 5.3 (H-convex hull). We call H-convex hull of set A ⊂ G, and we denote

it by coH(A), the smallest H-convex set containing A.

Definition 5.4 (H-convexified of order n ). Let A ⊂ G. We define:

co
(1)
H (A) =

{
(1− λ)p1 + λp2 ∈ G : p1 and p2 are horizontally aligned and λ ∈ [0, 1]

}
.

Then we define by induction the H-convexified of A of order n, n ∈ N, as

co
(n)
H (A) := co

(1)
H

(
co

(n−1)
H (A)

)
, n ≥ 2.

Finally, we call the set

co∞H (A) := lim
n→+∞

co
(n)
H (A) =

∞⋃

n=0

co
(n)
H (A). (5.10)

the H-convexified of A.

The H-convexified and the H-convex hull coincide, i.e. for any A ⊂ G we have

coH(A) = co∞H (A).

Proposition 5.5. If A ⊂ G is open, then coH(A) is open. If B ⊂ G is bounded then

coH(B) is bounded.

For a closed set C ⊂ G, coH(C) is not in general closed.
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nia, Viale A. Doria 6–I, 95125, Catania, Italy

E-mail address : garena@dmi.unict.it

URL: http://www.dmi.unict.it/~garena

Andrea Orazio Caruso: Dipartimento di Matematica e Informatica, Università di
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