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Abstract
By exploiting optimal transport theory on Riemannian manifolds and adapting Gromov’s

proof of the isoperimetric inequality in the Euclidean space, we prove an isoperimetric-type
inequality on simply connected constant curvature manifolds.

1 Introduction

Let Mn(K) be a n-dimensional simply connected Riemannian manifold with constant sectional
curvature K ∈ R, that is Mn(K) is either the sphere (K > 0), the Euclidean space (K = 0), or
the hyperbolic space (K < 0). The isoperimetric problem is a very important topic in differential
geometry. The first unified solution in the above model spaces of constant sectional curvature
was given by Schmidt [17, 18]. Later on, a variety of methods have been found to solve it (see
[6] for the more references).
When the dimension n is equal to 2, there is a nice analytic form for the classic isoperimetric
inequality: let E ⊂ M2(K) be a smooth open set, denote by A the area of E, and by L the
length of its boundary. Then

L2 ≥ 4πA − KA2, (1.1)

with equality if and only if E is a geodesic ball. As the area and the length are invariant
under isometries, the domains in question can be identified under the isometry action. For gen-
eral dimension, the isoperimetric inequality states that geodesic balls minimize the perimeter
among all subsets E ⊂ Mn(K) with fixed volume. Here we present a weighted isoperimetric
inequality in any dimension on Mn(K), which generalizes the classic one on the Euclidean space.

Set c(x, y) := 1
2dg(x, y)2, where dg(x, y) is the geodesic distance between x and y on Mn(K),

and for K ∈ R define

GK(r) :=


(
√

Kr) cos(
√

Kr)

sin(
√

Kr)
if K > 0,

1 if K = 0,
(
√

|K|r) cosh(
√

|K|r)
sinh(

√
|K|r)

if K < 0,

(1.2)

`K(r) :=


√

Kr
sin(

√
Kr)

if K > 0,

1 if K = 0,√
|K|r

sinh(
√

|K|r)
if K < 0.

(1.3)
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We denote by ωn the volume of the unit ball in the Euclidean space Rn. Fix a reference point
N ∈ Mn(K) (for instance, the north pole of the sphere when K > 0), and define rx := dg(x,N).
Given E ⊂ Mn(K) a set of finite perimeter, we denote by FE its reduced boundary, and by νx

its measure theoretic outward unit normal at x (see Section 2.2). On the tangent space TNM ,
we use the polar coordinates. We define a map on TNM by

FK : TNM → TNM
(r, θ) 7→ (αK(r), θ)

where

αK(r) :=
re−GK(r)

`K(r)
(1.4)

Observe that α′
K(r) = `K(r)e−GK(r) is positive on [0,+∞) when K ≤ 0 (resp. on [0, π/

√
K)

when K > 0), hence FK is a smooth diffeomorphism from TNM (resp. B(0, π/
√

K)) onto TNM .
Given v ∈ Rn and R ∈ (0, +∞), we set Ev,R = expN (F−1

K (B(v, R))). Remark when v = 0, these
sets are just the geodesic balls centered at N . However, this fact is not yet true in the general
case. Our isoperimetric-type inequality can be read as follows:

Theorem 1.1 Let E ⊂ Mn(K) be set with finite perimeter such that d2
g(·, N) : M → R is

smooth in a neighborhood of E. Then∫
FE

e(n−1)[GK(0)−GK(rx)]
∣∣∇x∇yc(x,N) · νx

∣∣ dH n−1(x)

≥ n ω1/n
n

(∫
E

en[GK(0)−GK(rx)]`K(rx) d vol(x)
)n−1

n

.

(1.5)

Furthermore equality holds if and only if E = Ev,R for some v ∈ Rn and R ∈ (0, +∞).

The assumption that d2(·, N) : M → R is smooth in a neighborhood of E is always satisfied
if K ≤ 0, while for K > 0 it amounts to say that E is at positive distance from the antipodal
point of N .

We also observe that, when K < 0, one has
∣∣∇x∇yc(x, N) · νx

∣∣ ≤ 1, and equality holds only
when E = Ev,R is a geodesic ball centered at N . Hence, we get the following:

Corollary 1.2 If K ≤ 0 then∫
FE

e(n−1)[GK(0)−GK(rx)] dH n−1(x) ≥ nω1/n
n

(∫
E

en[GK(0)−GK(rx)]`K(rx) d vol(x)
)n−1

n

.

for all E ⊂ Mn(K) with finite perimeter. Furthermore equality holds if and only if E is a
geodesic ball (centered at N if K < 0).

We now make some comments on Theorem 1.1. First of all, when K = 0 we have GK =
`K ≡ 1, and we recover the classical isoperimetric inequality on the Euclidean space. When
K 6= 0, compared to the classic one (1.1), our inequality is not invariant under isometry action,
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and it depends on the choice of the pole N ∈ Mn(K). On the other hand, the extremal
domains are transformations of balls on the tangent space TNM without a constraint on the
volume (including all the geodesic balls centered at N), so that our inequality presents a sort of
“invariance under dilations/translation” (although it is not really dilation/translation-invariant),
which is not present in the classical isoperimetric inequality on Mn(K) for K 6= 0. Moreover,
when K < 0 we can “kill” the “translation invariance” and obtain an inequality whose minima
are only the balls centered at the origin.

After proving our result, by “writing it on the tangent space” we realized that the family
of inequalities in Theorem 1.1 can be deduced (in a non-trivial way) by the classical isoperi-
metric inequality on Rn (see Remark 3.3). However, this is a sort of “a-posteriori” proof: we
do not see any easy way to guess a priori what is the right transformation in order to transfer
the classical isoperimetric inequality onto Mn(K), and obtain a “geometric” inequality as for
instance the one in Corollary 1.2. Moreover, we also believe that our approach has an interest
in his own. Indeed, our proof is based on the optimal transport theory. This strategy is due
to Gromov in the Euclidean space, but becomes more complicated in the non-flat case. This
paper is a tentative to understand rearrangement of sets on manifolds via optimal transport
maps. The weights in the above inequalities come from two factors: on one side the tensor field
∇x∇yc(·, N) ∈ Γ(T ∗M ⊗ T ∗

NM) appears in the Monge-Ampère type equations satisfied by our
optimal transport maps, and its determinant is equal to `K(rx)n−1 (in Fermi charts); on the
other hand the tensor field e(n−1)[GK(0)−GK(rx)]∇x∇yc(x,N) is divergence free with respect to x,
and this makes it “suitable” for an integration by parts (see Section 3). Because of the weights,
the best constant in the above inequalities does not depend on the geometry of the manifolds.
This comes from the fact the weights are completely determined by the Riemannian distance and
the curvature tensor, that is, all geometric informations are behind the weights. Let us mention
that optimal transport theory has already revealed being useful to prove geometric inequalities
on manifolds, see for instance [7, 8].

The paper is structured as follows: in Section 2 we collect some preliminaries on Riemannian
geometry and BV functions. Then we prove Theorem 1.1. The rigorous proof of the theorem
is given in Section 3. However, since the argument may seem a bit mysterious, we will give in
Appendix A a more intuitive (but formal) proof which explains the ideas behind our result. In
Section 3.1 we write our inequality on the tangent space, from which one can see the strict link
with the classical isoperimetric inequality.

2 Preliminary results and notation

2.1 Preliminaries on Riemannian geometry

In this section we recall some basic notions of Riemannian geometry and we introduce some
notation, referring to [16] for a general introduction.

Let (M, g) be a smooth complete n-dimensional Riemannian manifold. Given v, w ∈ TxM
tangent vectors at x, we use the notation 〈v, w〉x = gx(v, w) and |v|x =

√
gx(v, v). We denote the

volume element by d vol. In a local chart, it can be expressed as d vol =
√

det(gij)dx. Let ∇ be
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the Levi-Civita connection associated to the metric g. We denote by ∇x the covariant derivative
with respect to the metric g, that is, ∇x : Γ(E) → Γ(E ⊗ T ∗M), where E is a vector bundle on
M , and Γ(E) denotes the space of sections over E [16, Section 2.1.3]. We respectively denote
∇x the contravariant version of covariant derivative, that is, ∇x : Γ(E) → Γ(E ⊗ TM). More
precisely, for any section S ∈ Γ(E) and for any ξ ∈ T ∗

xM we have ∇xS(ξ, ·) := ∇xS(g−1
x (ξ), ·),

where g−1
x (ξ) ∈ TxM satisfies 〈g−1

x (ξ), α〉x = ξ · α for all α ∈ TxM . In particular, when
f : M → R, ∇xf ∈ T ∗

xM is the differential of f at x, ∇xf ∈ TxM is the gradient of f at x,
and ∇x∇xf ∈ TxM ⊗ T ∗

xM is the hessian of f at x. Moreover, for F : M → M we denote by
∇xF ∈ T ∗

xM ⊗ TF (x)M the differential of F at x. Finally, given a function h : M × M → R,
we denote by ∇xh(x, y) (resp. ∇xh(x, y)) and ∇yh(x, y) (resp. ∇yh(x, y)) the differential (resp.
gradient) of h with respect to the x and the y variable respectively.

Given a geodesic γ and X(t) a vector field along γ(t), we use the notation J̇ = dJ
dt :=

∇γ̇(t)J(t). If J̇ = 0, we say that the vector field X(t) is parallel transported along γ(t). A vector
field J(t) along γ is called a Jacobi field if it satisfies the Jacobi equations

J̈ + Riem(J, γ̇)γ̇ = 0,

where Riem denotes the Riemann tensor. Suppose now that γ(t) is a unit-speed geodesic, and
set e1(t) = γ̇(t). Then e1 is parallel transported along γ(t). By completing e1(0) to an orthonor-
mal basis (e1(0), · · · , en(0)) at the point γ(0), by parallel transport we get a orthonormal basis
(e1(t), · · · , en(t)) at the point γ(t). In particular, if we assume M to be a complete manifold with
constant sectional curvature K, then the family

(
te1(t), t

`K(t)e2(t), · · · , t
`K(t)en(t)

)
is a basis for

the (n-dimensional) vector space of the Jacobi fields satisfying J(0) = 0, with `K defined in (1.3).

Definition 2.1 (Fermi chart) Given x ∈ M and v ∈ TxM\{0} such that [0, 1] 3 s 7→ expx(sv)
is the unique minimizing geodesic between x and expx(v), let (e1, · · · , en) be an orthonormal basis
of TxM with e1 =

v

|v|
. The associated Fermi chart x = (x1, · · · , xn) along the unit-speed geodesic

[0, |v|x] 3 s → c(s) := expx(se1)

(which is called the axis of the chart) is defined, after parallel transport of the orthonormal basis
(e1, · · · , en) along the axis, by

q(x) = (q1, · · · , qn) ⇐⇒ q = F(x) := expc(x1)

(
n∑

α=2

xαeα

)
.

We remark that the differential of F on
{
q ∈ Rn | 0 ≤ q1 ≤ |v|x, q2 = . . . = qn = 0

}
is readily

found equal to the identity; so there exists a neighborhood of the axis on which the map F
defines a chart. Note that in this definition we keep the flexibility of rotating all basis vectors
at x but the first one e1. Along the axis, the geodesic motion [0, 1] 3 s → expx(sv) simply reads
s 7→ (s|v|x, 0 . . . , 0), and the chart is normal (in particular, Christoffel symbols vanish), i.e.

gij(q1, 0) = δij , ∂kgij(q1, 0) = 0 ∀ qn ∈ [0, |v|x], ∀ i, j, k ∈ {1, . . . , n},
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(see for instance [2] or [16]).

Now fix y ∈ M , and let rx := dg(x, y) be the distance function from y. The basic observation
is that expy(−∇yc(x, y)) = x for all x ∈ M provided rx is regular at the point x, that is, x is
not in the focal locus of y. Differentiating this relation we get

−dv expy ·∇x∇yc(x, y) = Ix, with v ∈ TyM, x = expy(v),

where Ix : TxM → TxM is the identity map. Equivalently

dv exp−1
y = −∇x∇yc(x, y). (2.1)

Using the Fermi chart associated to the minimizing geodesic between x and y, we have gx =
gy = In the identity matrix. We claim that

−∇x∇yc(x, y) = −∇x∇yc(x, y) = −∇x∇yc(x, y) = −∇x∇yc(x, y) =
(

1 0
0 `K(rx)In−1

)
.

(2.2)
Indeed, for all v, w ∈ TxM we set J(t) := dtv expx ·(tw) for t ∈ [0, 1]. As J is a variation of a
family of geodesics {expx(t(v + sw))} for all t ∈ [0, 1] and for some parameter s, we can see J is
a Jacobi field along the geodesic expx(tv) verifying J(0) = 0 and J̇(0) = w. Therefore, thanks
to the discussion right before Definition 2.1 the desired claim follows from (2.2). In particular
we get

det(−∇x∇yc(x, y)) = det(−∇x∇yc(x, y)) = det(−∇x∇yc(x, y))

= det(−∇x∇yc(x, y)) = `K(rx)n−1
(2.3)

in the Fermi chart. As a consequence we obtain

det(−∇x∇yc(x, y)) det(−∇x∇yc(x, y)) = `K(rx)2n−2,

det(−∇x∇yc(x, y)) det(−∇x∇yc(x, y)) = `K(rx)2n−2.

Observe that both terms above are intrinsic and independent of the choice of coordinates.

Finally we consider the Laplace-Betrami operator ∆ on the space of real functions. In local
coordinates it has the expression

∆ =
1√

det g

n∑
i,j=1

∂

∂xi

(
gij
√

det g
∂

∂xj

)
.

Fix y ∈ M , and as before let rx := dg(x, y) be the distance function from y. Assuming
(M, g) be a complete manifold with constant sectional curvature K and using polar coordi-
nates around the point y, the metric matrix gij at the point x can be expressed as a diagonal
one

(
1, r2

x

`2K(rx)
, . . . , r2

x

`2K(rx)

)
, and a direct calculation leads to

∆
(1

2
r2
x

)
= (n − 1)GK(rx) + 1, (2.4)

with GK(r) defined in (1.2).
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2.2 Preliminaries on BV functions

We recall here some basic properties of functions of bounded variation, referring to [1] for an
exhaustive introduction to the subject.

In the following, vol denotes the volume measure with respect to the Riemannian metric g.
We distinguish between the measure vol and the volume element d vol. The following presenta-
tion in Euclidean spaces can be found in [12] (see also [9, Section 2]).

Given a vector valued Borel measure µ on M (or more generally a vector bundle valued Borel
measure µ on M), we define its total variation as the non-negative Borel measure |µ| defined on
the Borel set E by the formula

|µ|(E) = sup

{∑
n∈N

‖µ(En)‖ : Em ∩ En = ∅,
∪
n∈N

En = E

}
,

where ‖ · ‖ denotes a norm on the vector bundle on which the measure µ takes values. Given a
Borel set E, we say E has finite perimeter if the distributional gradient DχE of its characteristic
function χE is a vector valued Borel measure on M with finite total variation on M , that is,
|DχE |(M) < ∞. For a smooth bounded domain E, we denote by νE the outer unit normal
vector field on the boundary ∂E. It follows from the Divergence Theorem that E is a set of
finite perimeter with DχE = νEdH n−1b∂E and |DχE |(M) = H n−1(∂E). Let us denote Br(x)
the geodesic ball around x with the radius equal to r. Given E ⊂ M be set with finite perimeter,
we denote its reduced boundary by

FE := {x ∈ M | |DχE |(Br(x)) > 0 ∀ r > 0 and
νE(x) := limr→0+ − DχE(Br(x))

|DχE |(Br(x)) exists and is a unit tangent vector at x}.

Here νE(x) ∈ TxM is called the measure theoretic outwards unit normal to E. We say a sequence

of sets En converges to E in L1
loc, and we write En

L1
loc−→ E, if vol

(
C ∩ ((En \E)∪ (E \En))

)
→ 0

for any compact set C ⊂ M . A geometric description of the reduced boundary is the following
structure result(for a proof, see for instance [1, Theorems 3.59]):

Theorem 2.2 (De Giorgi Rectifiability Theorem) Let E ⊂ M be a set with finite perime-
ter. Then, for any x ∈ FE we have

1
r

exp−1
x (Br0(x) ∩ E)

L1
loc−→ {z ∈ TxM : νE(x) · z < 0} as r → 0+

on TxM . Moreover, there holds

DχE = −νE(x)dH n−1bFE, |DχE |(M) = H n−1(FE).

Let E ⊂ M be a Borel set and λ ∈ [0, 1], we denote by E(λ) the set of points x of M having
density λ with respect to E, that is, x ∈ E(λ) if

lim
r→0

vol(E ∩ Br(x))
vol(Br(x))

= λ.
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We define the essential boundary ∂∗E of E by setting ∂∗E = M \ (E(0) ∪ E(1)). By virtue of a
result due to Federer (see [1, Theorems 3.61]), if E is a Borel set of finite perimeter then

FE ⊆ E( 1
2
) ⊆ ∂∗E,

and these three sets are H n−1-equivalent.
Now, suppose E and F two Borel sets of finite perimeter. By [1, Proposition 3.38, Example

3.68, Example 3.97] E ∩ F is a set of finite perimeter. Moreover, if we set

JE,F = {x ∈ FE ∩ FF : νE(x) = νF (x)},

then up to H n−1-null sets we have

F(E ∩ F ) = JE,F ∪ (FE ∩ F (1)) ∪ (FF ∩ E(1)).

Furthermore

νE∩F (x) =


νE(x), if x ∈ FE ∩ F (1),

νF (x), if x ∈ FF ∩ E(1),
νE(x) = νF (x), if x ∈ JE,F ,

at H n−1-a.e. x ∈ F(E ∩ F ).

We also recall the following technical result (see [12, Lemma2.2]):

Lemma 2.3 Let E ⊂ M and F ⊂ M be sets of finite perimeter with vol(E ∩ F ) = 0. Then

νE∪F dH n−1bF(E ∪ F ) = νEdH n−1b(FE \ FF ) + νF dH n−1b(FF \ FE)

and νE(x) = −νF (x) at H n−1-a.e. x ∈ FE ∩ FF

Fix N ∈ M , and let S ∈ BV (M, TNM), that is, S ∈ L1(M, TNM) and distributional
derivative DxS of S has finite total variation on M . By [1, Theorems 3.59 and 3.77], for Hn−1-
a.e. x ∈ FE there exists a vector trE(S)(x) ∈ TNM such that

lim
r→0

1
rn

∫
Br(x)∩E

|S(y) − trE(S)(x)| d vol(y) = 0

Such trE(S) is called the inner trace of S on E. Moreover, by the Lebesgue Decomposition
Theorem the distributional derivative DxS of S can be decomposed as

DxS = ∇c
xS vol+Ds

xS,

where ∇xS denotes the density of the absolutely continuous part of DxS with respect to the
volume measure, and Ds

xS is singular with respect to the volume measure. Similarly, for any
smooth section A of TM⊗T ∗

NM , we decompose the covariant distributional derivative Dx(A ·S)
of A · S

Dx(A · S) = ∇x(A · S)) vol+Ds
x(A · S),
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where (∇x(A·S))c is the density of ∇x(A·S) with respect to the volume measure, and ∇s
x(A·S) is

the singular part of ∇x(A·S) with respect to the volume measure. In particular the distributional
divergence Divx(A · S) of A · S decomposes (with obvious notation) as

Divx(A · S) = divx(A · S) vol+Divs
x(A · S).

We recall the generalized Divergence Theorem in the following form (which is a consequence
of [1, Example 3.97] applied to the pair of functions A · S and χE):∫

E(1)

d
(
Divx(A · S)

)
=
∫
FE

(
A(x) · trE(S)(x)

)
· νE(x) dHn−1(x). (2.5)

Suppose now that Dx(A · S) is a positive definite and symmetric endomorphism on TM . Then
Divx(A · S) is a non negative Radon measure on M , and it is equivalent to the total variation
of Dx(A · S): for all Borel set E ⊂ M ,

1√
n

Divx(A · S)(E) ≤ |Dx(A · S)|(E) ≤ Divx(A · S)(E). (2.6)

Here we recall that the vector bundle TM ⊗ T ∗M (or TM ⊗ T ∗
NM) is endowed the induced

metric by g, that is, for b ∈ TxM ⊗ T ∗
y M with x, y ∈ M , if we write b =

∑
ij bi

j
∂

∂xi
⊗ dyj in a

local chart then |b|2 :=
∑

ijkl gikg
jlbi

jb
k
l. (Let us observe that if everything is smooth then (2.6)

follows from 1√
n

∑n
i=1 λi ≤

√∑n
i=1 λ2

i ≤
∑n

i=1 λi, with λi ≥ 0. In the general case one argues
by approximation.) Thanks to (2.6) we get that both divx(A ·S) vol and Divs

x are non-negative
measures, and in particular

Divx(A · S) − divx(A · S) vol ≥ Divs
x(A · S) ≥ 0. (2.7)

2.3 Preliminaries on optimal transport

Let (M, g), (M ′, g′) be two complete connected n-dimensional Riemannian manifold equipped
with their volume measures vol and vol′. Given two probability measures µ = ρ0 vol and
ν = ρ1 vol′ on M and M ′ respectively, a Borel map Φ : M → M ′ is called a transport map
if Φ#µ = ν, that is

ν(B′) = µ[Φ−1(B′)] ∀B′ ⊂ M ′ Borel.

Given now a function c : M × M ′ → R (called cost), a transport map T is called an optimal
transport map if it minimizes the total cost functional

C(Φ) :=
∫

M
c
(
x,Φ(x)

)
dµ(x)

In this paper, we will consider three cases:

(1) M ′ = M and c(x, y) = 1
2dg(x, y)2 (dg standing for the geodesic distance on (M, g)).

(2) M = M ′ = Rn and c(v, w) = 1
2 |v − w|2.
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(3) M ′ = TNM for some (fixed) point N ∈ M , and c(x, v) = 1
2∇ydg(x,N)2 · v.

The first two cases have been studied by Brenier [3] and McCann [13, 14, 15], while the third
case (and indeed also the first two) is covered by a result of Fathi and the first author [10] (see
also [11] or [20, Chapter 10]).

In all these cases, it is known that there is a unique optimal transport map T . Moreover,
whenever the target measure ν is compactly supported, there exists a locally semiconvex function
ϕ : M → R (i.e. ϕ can be locally written in charts as the sum of a convex and a smooth function)
such that, for µ-a.e. x ∈ M ,

z 7→ ϕ(z) + c(z, T (x)) attains a global minimum at x, (2.8)

and
∇xϕ + ∇xc(x, T (x)) = 0 holds µ-a.e. (2.9)

Finally, ∇x∇xϕ + ∇x∇xc(x, T (x)) exists and is a symmetric matrix µ-a.e., and satisfies the
Monge-Ampère type equation

det
(
∇x∇xϕ + ∇x∇xc(x, T (x))

)
=

ρ0(x)
√

det gx

∣∣det
(
∇y∇xc(x, T (x))

)∣∣
ρ1(T (x))

√
det g′T (x)

(2.10)

at µ-a.e. x.

3 Proof of Theorem 1.1

Let us first explain our strategy. Fix a point N ∈ M as the pole of the manifold, and denote
by Br(N) ⊂ M the geodesic ball of radius r centered at N . Recall that rx := dg(x,N). Given
E ⊂ M , we denote by vol(E) its volume. Moreover, let R ∈ (0, +∞) be the unique positive
number such that vol(E) = vol(BR(N)). The natural adaptation of Gromov argument (see
Section A.1) would be to consider the optimal transport map sending the uniform density on E
onto the uniform density on BR(N). However, as explained in Appendix A this choice presents
some difficulties which is not clear how to bypass. For this reason we want to keep the free-
dom of choosing the radius λ of the target ball, and consider transport E onto the ball Bλ(N),
with λ arbitrary. Moreover, we want also to be free to choose both the source and the target
density. As shown in Appendix A, the best solution in the choice of the radius seems to be to
consider the limit as λ → 0. This leads to consider the “infinitesimal” transport maps, where
we transport a suitable density on E onto the uniform measure on the unit ball in the tangent
plane TNM . Since the proof below may somehow look obscure and it is difficult to understand
the ideas behind it, we suggest the reader to first read the formal argument given in Appendix A.

Proof of Theorem 1.1
Let us define for K ∈ R

ρ̃K(r) :=


( sin(

√
Kr)√

Kr

)n−2
en(GK(0)−GK(r)) if K > 0,

1 if K = 0,( sinh(
√

|K|r)√
|K|r

)n−2
en(GK(0)−GK(r)) if K < 0,
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HK(r) := 1 − e(n−1)[GK(0)−GK(r)],

and
c(x, y) :=

1
2
dg(x, y)2.

Thanks to (2.4), we have

∇y∆xc(x, N) = (n − 1)∇yGK(rx) = (n − 1)∇y∇xc(x,N) · ∇xGK(rx). (3.1)

This gives the following key identity:

divx

(
HK(rx)∇y∇xc(x,N)

)
= divx

(
∇y∇xc(x,N)

)
. (3.2)

Indeed, expanding both sides we get

∇y∇xc(x,N) · ∇xHK(rx) + HK(rx)∇y∆xc(x,N) = ∇y∆xc(x,N),

and so (3.2) follows from (3.1) and the definition of HK . In the following, we will use · both
for denoting the action of covector on a vector, and for the composition of endomorphisms (or
equivalently the product of matrices). Moreover, given A a section of T ∗M ⊗ TM , we denote
by trx[A] the trace of A(x) ∈ T ∗

xM ⊗ TxM . We will need the following result:

Lemma 3.1 Let F be a bounded set with finite perimeter such that c(·, N) : M → R is smooth
in a neighborhood of F , and let S ∈ BVloc(M,TNM). Then∫

FF

(
1 − HK(rx)

)(
∇y∇xc(x,N) · trF (S)(x)

)
· νx dH n−1(x)

=
∫

F (1)

(
1 − HK(rx)

)
d
(
trx[∇y∇xc(x,N) · DxS]

)
.

Proof. Applying (3.2), we infer

divx

(
(1 − HK(rx))∇y∇xc(x,N)

)
= 0 (3.3)

so that

Divx

(
(1 − HK(rx))∇y∇xc(x,N) · S

)
=
(
1 − HK(rx)

)
trx

[
∇y∇xc(x,N) · DxS

]
. (3.4)

Now the result follows from (2.5).
�

• 1: Proof of (1.5). For simplicity of notation, we denote by M the manifold Mn(K).
Moreover, without loss of generality we assume that E coincides with the set of its density
points, i.e. E = E(1).

Since by assumption d2
g(·, N) : M → R is smooth in a neighborhood of E, we can consider

the set
Ẽ := −∇yc(E,N) = (expN )−1(E) ⊂ TNM.
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We now want to transport Ẽ onto the unit ball B(N, 1) ⊂ TNM using the Euclidean quadratic
cost. More precisely, we consider T̃ : TNM → TNM the optimal transport map from

µ̃(dv) := c̃E ρ̃K(|v|N )χẼ(v)dv, c̃E :=
1∫

Ẽ ρ̃K(|v|N )) dv
,

to
ν̃(dw) :=

1
|B(N, 1)|

χB(N,1)(w)dw =
1
ωn

χB(N,1)(w)dw

for the cost function −〈v, w〉N (or equivalently for the cost 1
2 |v − w|2N ).

Let T : M → TNM be defined as

T (x) := T̃ (−∇yc(x,N)), x ∈ M,

set µ := (expN )#µ̃, and write µ = ρE(rx)χE(x) vol(dx). Then, denoting by ḡ the Euclidean
metric on the vector tangent bundle T (TNM),

det
(
dv expN ) =

c̃E ρ̃K(rx)
√

det ḡv

ρE(rx)
√

det gx
for x = expN (v),

which as dv expN = (−∇x∇yc(x,N))−1 implies

ρE(rx) =
c̃E ρ̃K(rx)

∣∣det
(
∇x∇yc(x,N)

)∣∣√det ḡv√
det gx

.

It is clear that T is the optimal transport map from µ to ν̃ for the cost c0(x,w) := ∇yc(x, N) ·
w. Moreover, since c0(·, w) is smooth in a neighborhood of E for all w, thanks to the local
semiconvexity of ϕ the relation (2.9) can be smoothly inverted in terms of T , and we get
T ∈ BVloc(M, TNM). We can therefore apply the above lemma with S = T and F = E∩Bρ(N)
for some ρ > 0, obtaining∫

F(E∩Bρ(N))
e(n−1)[GK(0)−GK(rx)]

(
−∇y∇xc(x,N) · trE(T )(x)

)
· νx dH n−1(x)

=
∫

E∩Bρ(N)
e(n−1)[GK(0)−GK(rx)] d

(
trx[−∇y∇xc(x,N) · DxT ]

)
,

where we recall that Dx denotes the distributional derivative. Recalling that (2.9) holds for
some semiconvex function ϕ : M → R, we get that

−∇y∇xc(x,N) · DxT = Dx∇xϕ + ∇x∇xc(x, T (x))

is symmetric. Moreover by (2.8) we deduce that

−∇y∇xc(x, N) · DxT ≥ −∇y∇xc(x,N) · ∇xT d vol(x) ≥ 0 µ-a.e.,
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i.e. the singular part of −∇y∇xc(x,N) · DxT is non-negative, and the density of its absolutely
continuous part −∇y∇xc(x,N) · ∇xT is non-negative definite µ-a.e. Therefore∫

F(E∩Bρ(N))
e(n−1)[GK(0)−GK(rx)]

(
−∇y∇xc(x,N) · trE(T )

)
· νx dH n−1(x)

≥
∫

E∩Bρ(N)
e(n−1)[GK(0)−GK(rx)] trx[−∇y∇xc(x,N) · ∇xT ] d vol(x).

Moreover by (2.10) T satisfies the Monge-Ampère equation

det
(
−∇w∇xc0(x,w) · ∇xT

)
=

ωn ρE(rx)
√

det gx

∣∣det
(
∇w∇xc0(x, w)

)∣∣
√

det ḡv
(3.5)

vol-a.e. in E, where c0(x,w) := ∇yc(x, N) · w. Therefore, since ∇w∇xc0(x,w) = ∇y∇xc(x,N),
by the arithmetic-geometric inequality we get∫

E∩Bρ(N)
e(n−1)[GK(0)−GK(rx)] trx[−∇y∇xc(x,N) · ∇xT ] d vol(x)

≥ n

∫
E∩Bρ(N)

e(n−1)[GK(0)−GK(rx)] det
(
−∇y∇xc(x,N) · ∇xT

)1/n
d vol(x)

= nω1/n
n c̃

1/n
E

∫
E∩Bρ(N)

e(n−1)[GK(0)−GK(rx)]ρ̃K(rx)1/n

∣∣det
(
∇y∇xc(x,N)

)
det
(
∇x∇yc(x,N)

)∣∣1/n
d vol(x).

Finally, as T (x) ∈ B(N, 1) for vol-a.e. x ∈ E, we have | trE(T )| ≤ 1 and we get∫
F(E∩Bρ(N))

e(n−1)[GK(0)−GK(rx)]
(
−∇y∇xc(x,N) · trE(T )

)
· νx dH n−1(x)

=
∫
F(E∩Bρ(N))

e(n−1)[GK(0)−GK(rx)]
(
−∇x∇yc(x, N) · νx

)
· trE(T ) dH n−1(x)

≤
∫
F(E∩Bρ(N))

e(n−1)[GK(0)−GK(rx)]
∣∣∇x∇yc(x,N) · νx

∣∣ dH n−1(x),

Combining all together, we obtain∫
F(E∩Bρ(N))

e(n−1)[GK(0)−GK(rx)]
∣∣∇x∇yc(x,N) · νx

∣∣ dH n−1(x)

≥ nω1/n
n c̃

1/n
E

∫
E∩Bρ(N)

en[GK(0)−GK(rx)]`K(rx) d vol(x).

Letting ρ → +∞ and observing that

1
c̃E

=
∫

Ẽ
ρ̃K(|v|) dv =

∫
E

en[GK(0)−GK(rx)]`K(rx) d vol(x)
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the result follows.

• 2: The equality case. From the above proof, we see that equality hold if and only if

DsT = 0 (that is, T ∈ W 1,1(M, TNM)), (3.6)

−∇y∇xc(x,N) · ∇xT = λ(x)I vol -a.e. in E (3.7)

and (
−∇y∇xc(x,N) · trE(T )

)
· νx =

∣∣∇x∇yc(x,N) · νx

∣∣ H n−1-a.e. on FE. (3.8)

• Equality holds if E = Ew,R. We observe that, for µ-a.e. x, we have

∇vT̃ = ∇xT · dv(expN ) for x = expN (v),

so that

−∇y∇xc(x,N) · ∇xT = ∇y∇xc(x, N) · ∇xT · dv(expN ) · ∇x∇yc(x,N)

= ∇y∇xc(x, N) · ∇vT̃ · ∇x∇yc(x, N) : TxM → TxM.

In particular (3.5) gives
det
(
∇vT̃

)
= ωnc̃E ρ̃K(|v|N ). (3.9)

We consider a radially symmetric function T̃1 : exp−1
N (Ew,R) → B(w,R) ⊂ TNM defined in polar

coordinates by T̃1(r, θ) = (αK(r), θ), where αK(r) is defined in (1.4). Now using the Euclidean
coordinates on TNM , we define T̃2 : exp−1

N (Ew,R) → B(0, 1) ⊂ TNM by T̃2(z) = (T̃1(z) − w)/R,
and T2(x) := T̃2(−∇yc(x,N)). We want to show that T = T2.

By using Fermi coordinates along the geodesic jointing N to x, gx and gy can be read as the
identity matrix. Moreover, ∇vT̃2 (resp. −∇y∇xc(x,N)) can be expressed as the diagonal matrix(α′

K(rx)
R , αK(rx)

Rrx
, · · · , αK(rx)

Rrx

)
(resp.

(
1, `K(rx), · · · , `K(rx)

)
, see (2.2)). Using the identification

Tv(TNM) = TT̃ (v)(TNM) = TNM , we have

`K(r) =
(∣∣det

(
∇x∇yc(x,N)

)∣∣ ∣∣det
(
∇x∇yc(x,N)

)∣∣)1/2(n−1)
,

and we easily get that the eigenvalues of −∇y∇xc(x,N) · ∇xT2 are all equal since αK solves the
ODE

α′
K(r) =

αK(r)l2K(r)
r

. (3.10)

Thanks to the choice of ρ̃K , the map T̃2 solves (3.9). Moreover, T̃2 is the gradient of some convex

function on TNM . To see this, we have T̃2(z) = 1
R∇(ϕ(|z|) − z · w), where ϕ(t) =

∫ t

0
αK(s)ds.

Hence, the convexity of 1
R(ϕ(|z|) − z · w) comes from its Hessian matrix ∇T̃2 being positive

definite. By uniqueness of the optimal transport map, we get T̃ = T̃2. Hence, (3.6) and (3.7)
are verified.
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To check the last condition (3.8), we write in the Fermi coordinates νx = (ν1
x, ν ′

x) ∈ R×Rn−1.
Let us denote νv = (ν1

v , ν ′
v) ∈ R × Rn−1 the unit outward normal vector of FẼ at v and

ν̃v1 = (ν̃1
v1

, ν̃ ′
v1

) ∈ R × Rn−1 the unit outward normal vector of F
(
FK(Ẽ)

)
at v1 = FK(v).

Here we use the orthonormal basis with respect to the polar coordinates on TNM . Recall
FK(Ẽ) = B(w, R) and αK(|v|) = |v1|. Using (3.10), we have

ν̃v1 =
1√

(ν1
v )2 + |ν ′

v|2`4
K(|v|)

(ν1
v , ν ′

v`
2
K(|v|)).

Similarly, we infer (see also Section 4)

νx =
1√

(ν1
v )2 + |ν ′

v|2`2
K(|v|)

(ν1
v , ν ′

v`K(|v|)).

Therefore, we obtain

νx =
1√

(ν̃1
v1

)2 + |ν̃ ′
v1
|2/`2

K(|v|)

(
ν̃1

v1
,

ν̃ ′
v1

`K(|v|)
)
,

and as a consequence

−∇x∇yc(x,N) · νx =
1√

(ν̃1
v1

)2 + |ν̃ ′
v1
|2/`2

K(|v|)

(
ν̃1

v1
, ν̃ ′

v1

)
.

Hence, since trE(T )(x) = ν̃v1 , (3.8) is verified and we have proved the desired result.

• If equality holds, then E = Ew,R. We prove the result in two steps.

Step 1: E is indecomposable. We have to show that, for any F ⊂ E having finite perimeter and
such that

H n−1(FE) = H n−1(FF ) + H n−1(F(E \ F )),

we have
vol(F ) = 0 or vol(E \ F ) = 0.

To this aim, we first remark that E \F has also finite perimeter. Moreover it is not difficult
to check that H n−1(FF ∩ E) = H n−1(F(E \ F ) ∩ E) = 0. Hence, by applying Theorem 1.1
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we deduce∫
FE

e(n−1)[GK(0)−GK(rx)]
∣∣∇x∇yc(x,N) · νx

∣∣ dH n−1(x)

=
∫
FF

e(n−1)[GK(0)−GK(rx)]
∣∣∇x∇yc(x,N) · νx

∣∣ dH n−1(x)

+
∫
F(E\F )

e(n−1)[GK(0)−GK(rx)]
∣∣∇x∇yc(x,N) · νx

∣∣ dH n−1(x)

≥n ω1/n
n

(∫
F

en[GK(0)−GK(rx)]`K(rx) d vol(x)
)n−1

n

+ nω1/n
n

(∫
E\F

en[GK(0)−GK(rx)]`K(rx) d vol(x)
)n−1

n

≥n ω1/n
n

(∫
E

en[GK(0)−GK(rx)]`K(rx) d vol(x)
)n−1

n

=
∫
FE

e(n−1)[GK(0)−GK(rx)]
∣∣∇x∇yc(x,N) · νx

∣∣ dH n−1(x).

By the strict concavity of the function t 7→ t(n−1)/n we obtain min{vol(F ), vol(E \F )} = 0, and
the claim is proved.

Step 2: E = Ew,R. As before, we use the Fermi coordinates along the geodesic jointing N to x.
From (3.7), ∇vT̃ can be expressed as the diagonal matrix

(
λ(x), λ(x)

`2K(rx)
, · · · , λ(x)

`2K(rx)

)
. Together

with (3.9), we deduce

λ(x) = ω1/n
n c̃

1/n
E ρ̃K(rx)1/n `

2−2/n
K (rx) = ω1/n

n c̃
1/n
E `K(rx) eGK(0)−GK(rx)

which implies that λ(x) is radial. Let s(r) := ω
1/n
n c̃

1/n
E r eGK (0)−GK (r)

`K(r) , so that it satisfies s′(r) =
s(r)`2K(r)

r . We define the map T̃1 : TNM → TNM in polar coordinates as T̃1(r, θ) := (s(r), θ).
We can easily check that ∇vT̃1 can be expressed as the diagonal matrix

(
s′(rx), s(rx)

rx
, · · · , s(rx)

rx

)
in Fermi coordinates. Hence ∇vT̃1 = ∇vT̃ on Ẽ. On the other hand E is indecomposable
by Step 1, which implies that also Ẽ is indecomposable. Thanks to [9, Proposition 2.12] (see
also [12, Lemma A.2]), we deduce that there exists some constant vector w1 ∈ TNM such that
T̃1 = T̃ + w1. By construction T̃1(Ẽ) = B(w1, 1) and s(r) is a multiple of αK(r) (see (1.4)), so
E = Ew,R for some R > 0 and w ∈ TNM . This gives the desired result. and concludes the proof
of the theorem.

3.1 Theorem 1.1 seen from the tangent space at N

Let us define Ẽ = exp−1
N (E). The following result holds:
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Proposition 3.2 We have∫
FẼ

e(n−1)[GK(0)−GK(|v|)]`K(|v|)1−n
√

(ν1
v )2 + `K(|v|)4|ν ′

v|2 dH n−1(v)

≥ nω1/n
n

(∫
Ẽ

en[GK(0)−GK(|v|)]`K(|v|)2−n dv

)(n−1)/n

, (3.11)

where νv = (ν1
v , ν ′

v) ∈ R×Rn−1 is the unit outward normal vector of FẼ at v expressed in polar
coordinates on TN

(
Mn(K)

)
' Rn. Moreover, if Ẽ is a smooth strictly star-shaped domain in

Rn with smooth boundary, that is ∂E = {f(θ)θ | θ ∈ Sn−1} with f : Sn−1 → (0, +∞) smooth,
then:

- if K > 0,

∫
Sn−1

e−(n−1)GK(f)

(
sin(

√
Kf)√
K

)n−1
√

1 + `K(f)4
|∇f |2

f2
dH n−1

≥ (nωn)1/n

(∫
Sn−1

e−nGK(f)

(
sin(

√
Kf)√
K

)n

dH n−1

)(n−1)/n

; (3.12)

(recall f : Sn−1 → (0, π/
√

K))

- if K = 0,∫
Sn−1

fn−1

√
1 +

|∇f |2
f2

dH n−1 ≥ (nωn)1/n

(∫
Sn−1

fn dH n−1

)(n−1)/n

; (3.13)

- if K < 0,

∫
Sn−1

e−(n−1)GK(f)

(
sinh(

√
|K|f)√

|K|

)n−1
√

1 + `K(f)4
|∇f |2

f2
dH n−1

≥ (nωn)1/n

(∫
Sn−1

e−nGK(f)

(
sinh(

√
|K|f)√

|K|

)n

dH n−1

)(n−1)/n

. (3.14)

We observe that, arguing by approximation, the above inequalities hold also when f is non-
smooth and vanishes somewhere, provided all the terms in the integrals are suitably interpreted.

Remark 3.3 As can be easily seen by a direct computation, replacing f by αK(f) in (3.13)
(which corresponds to send Ẽ onto FK(Ẽ)), inequalities (3.14) and (3.12) are equivalent to
(3.13).

Proof. Since by (2.1)

dv exp−1
N = −∇x∇yc(x,N) for x = expN (v),
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we have

(expN )#(dv) =

∣∣det
(
∇x∇yc(x,N)

)∣∣√
det(gx)

d vol(x).

Therefore, recalling that in Fermi coordinates
∣∣det

(
∇x∇yc(x,N)

)∣∣ = `K(rx)n−1 (see (2.3)) and
det(gx) = 1, we get∫

E
en[GK(0)−GK(rx)]`K(rx) d vol(x)

=
∫

E
en[GK(0)−GK(rx)]`K(rx)

√
det(gx)∣∣det

(
∇x∇yc(x, N)

)∣∣
∣∣det

(
∇x∇yc(x,N)

)∣∣√
det(gx)

d vol(x)

=
∫

E
en[GK(0)−GK(rx)]`K(rx)2−n

∣∣det
(
∇x∇yc(x,N)

)∣∣√
det(gx)

d vol(x)

=
∫

Ẽ
en[GK(0)−GK(|v|)]`K(|v|)2−n dv.

Regarding the boundary term, we observe that the surface measure change with the tangential
Jacobian of −∇x∇yc(x,N), that is

(expN )#
(
dH n−1(v)

)
=

∣∣det
(
∇x∇yc(x,N)|

ν⊥x

)∣∣√
det
(
(gx)|

ν⊥x

) dH n−1(x)

where ∇x∇yc(x,N)|
ν⊥x

is the restriction of ∇x∇yc(x,N) to ν⊥
x ⊂ Tx

(
Mn(K)

)
. Hence∫

FE
e(n−1)[GK(0)−GK(rx)]

∣∣∇x∇yc(x,N) · νx

∣∣ dH n−1(x)

=
∫
FE

e(n−1)[GK(0)−GK(rx)]

∣∣∇x∇yc(x,N) · νx

∣∣√det
(
(gx)|

ν⊥x

)∣∣det
(
∇x∇yc(x,N)|

ν⊥x

)∣∣
∣∣det

(
∇x∇yc(x,N)|

ν⊥x

)∣∣√
det
(
(gx)|

ν⊥x

) dH n−1(x)

=
∫
FẼ

e(n−1)[GK(0)−GK(|v|)]
∣∣∇x∇yc(x,N) · νx

∣∣∣∣det
(
∇x∇yc(x,N)|

ν⊥x

)∣∣ dH n−1(v).

Let us write νx = (ν1
x, ν ′

x) ∈ R × Rn−1 using Fermi coordinates. Since

−∇x∇yc(x, N) =
(

1 0
0 `K(rx)In−1

)
,

we have −∇x∇yc(x,N) · νx = (ν1
x, `K(rx)ν ′

x), and so∣∣∇x∇yc(x,N) · νx

∣∣ =√(ν1
x)2 + `K(rx)2|ν ′

x|2.

We now denote by (ν1
x, . . . , νn

x ) the coordinates of νx. To compute
∣∣det

(
∇x∇yc(x,N)|

ν⊥x

)∣∣, we

consider the basis of ν⊥
x given by

τi := (νi
x, 0, . . . , 0,−ν1

x, 0, . . . , 0) = νi
xe1 − ν1

xei, i = 2, . . . , n
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(up to slightly perturbing νx, we can assume ν1
x 6= 0). Then, if we denote Lx := ∇x∇yc(x,N),

we have ∣∣det
(
∇x∇yc(x,N)|

ν⊥x

)∣∣ = ∣∣(Lxτ2) ∧ . . . ∧ (Lxτn)
∣∣∣∣τ2 ∧ . . . ∧ τn

∣∣ .

Since
Lxτi = νi

xe1 − `K(rx)ν1
xei, i = 2, . . . , n,

we get

∣∣(Lxτ2) ∧ . . . ∧ (Lxτn)
∣∣2 = `K(rx)2(n−2)(ν1

x)2(n−2)
[
`K(rx)2(ν1

x)2 +
n∑

i=2

(νi
x)2
]
,

∣∣τ2 ∧ . . . ∧ τn

∣∣2 = (ν1
x)2(n−2)

[
(ν1

x)2 +
n∑

i=2

(νi
x)2
]

= (ν1
x)2(n−2).

So ∣∣det
(
∇x∇yc(x,N)|

ν⊥x

)∣∣ = `K(rx)(n−2)
√

`K(rx)2(ν1
x)2 + |ν ′

x|2

which gives ∣∣∇x∇yc(x,N) · νx

∣∣∣∣det
(
∇x∇yc(x,N)|

ν⊥x

)∣∣ = `K(rx)2−n

√
(ν1

x)2 + `K(rx)2|ν ′
x|2√

`K(rx)2(ν1
x)2 + |ν ′

x|2
.

We now observe that, if x = expN (v), the normal vector νv at FẼ is given by

νv =
(`K(|v|)ν1

x, ν ′
x)√

`K(|v|)2(ν1
x)2 + |ν ′

x|2
= (ν1

v , ν ′
v),

so that ∣∣∇x∇yc(x,N) · νx

∣∣∣∣det
(
∇x∇yc(x,N)|

ν⊥x

)∣∣ = `K(|v|)1−n
√

(ν1
v )2 + `K(|v|)4|ν ′

v|2.

Hence we finally get∫
FE

e(n−1)[GK(0)−GK(rx)]
∣∣∇x∇yc(x,N) · νx

∣∣ dH n−1(x)

=
∫
FẼ

e(n−1)[GK(0)−GK(|v|)]`K(|v|)1−n
√

(ν1
v )2 + `K(|v|)4|ν ′

v|2 dH n−1(v),

and combining all together our isoperimetric inequality read on the tangent space becomes
(3.11).

We now prove (3.12). Let v ∈ ∂Ẽ. We fix (e1, . . . , en) a orthonormal basis at the point v,
where e1 = v

|v| , and denote by νv = (ν1
v , . . . , νn

v ) the outward normal vector at v. Then, a basis
for ν⊥

v if given by

τi := (∇eif, 0, . . . , 0, f, 0, . . . , 0) = ∇eife1 + fei, i = 2, . . . , n.
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Therefore νv is given by

νv =
1√

f2 + |∇f |2
(
fe1 −

n∑
i=2

∇eifei

)
,

and we have ∣∣τ2 ∧ . . . ∧ τn

∣∣2 = f2(n−2)
[
f2 +

n∑
i=2

|∇eif |2
]
,

As a consequence, we infer∫
FẼ

e(n−1)[GK(0)−GK(|v|)]`K(|v|)1−n
√

(ν1
v )2 + `K(|v|)4|ν ′

v|2 dH n−1(v)

=
∫

Sn−1

e−(n−1)(GK(f)−GK(0))

(
sin(

√
Kf)√
K

)n−1
√

1 + `K(f)4
|∇f |2

f2
dH n−1

On the other hand, since(
e−nGK(r) sinn (

√
Kr)

)′ = nKre−nGK(r) sinn−2 (
√

Kr),

we get∫
Ẽ

en[GK(0)−GK(|v|)]`K(|v|)2−n dv =
1
n

∫
Sn−1

e−n(GK(f)−GK(0))

(
sin(

√
Kf)√
K

)n

dH n−1.

This proves (3.12). The proof of (3.13) and (3.14) is analogous. �

A Formal proof of Theorem 1.1

In order to explain the idea behind Theorem 1.1, we first consider the case K = 0 (so that
GK = `K ≡ 1), and we recall Gromov’s proof of the isoperimetric inequality.

A.1 Gromov’s proof of the Euclidean isoperimetric inequality

Without loss of generality, we can assume E ⊂ Rn bounded and smooth. Let Br = B(0, r)
be the ball centered at the origin with radius r > 0. By Brenier’s Theorem [3], there exists a
unique convex, Lipschitz continuous function ϕ : Rn → R such that its gradient T = ∇ϕ pushes
forward the probability density 1

|E|χE(x)dx onto the probability density 1
ωnrn χBr(y)dy, where |E|

denotes the volume of E. By Caffarelli’s regularity result [4, 5] we can assume T ∈ C∞(E,Br).
Moreover ϕ solves the following Monge-Ampère equation

det∇2ϕ =
ωnrn

|E|
on E, (A.1)

where ∇2ϕ is the Hessian matrix of ϕ. As ϕ is convex, the Hessian matrix ∇2ϕ is a positive
definite symmetric matrix, and so by the arithmetic-geometric inequality we get

n(det∇2ϕ)1/n ≤ ∆ϕ
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Thus from the Divergence Theorem we infer

nω1/n
n |E|

n−1
n =

1
r

∫
E

n(det∇2ϕ)1/ndx ≤ 1
r

∫
E

∆ϕdx =
1
r

∫
∂E

∂ϕ

∂νx
dH n−1 ≤ H n−1(∂E),

where at the last step we used that | ∂ϕ
∂νx

| = |〈T , νx〉| ≤ r, as T (x) ∈ Br for all x ∈ E.
This concludes the proof of the classic isoperimetric inequality on Rn. Moreover it is easily

seen (at least formally) that equality holds at each step if and only if T (x) = c1x + c2 for some
constants ci, and this is possible if and only if E is a ball (see [12, Appendix A] for a rigorous
proof of the equality case).

We observe that in the above proof the choice of r plays no role, and this fact is due to the
invariance under scaling of the isoperimetric inequality on Rn.

A.2 The non-flat case

In the following, we will mimic the same strategy to prove an isoperimetric-type inequality on
M := Mn(K) for K 6= 0. As before, fix a point N ∈ M as the pole of the manifold, and
denote by Br(N) ⊂ M the geodesic ball of radius r centered at N . Recall that rx := dg(x,N).
For simplicity, we consider the case when M is the unit sphere, that is K = 1. Let E ⊂ M
be a bounded and smooth open set which is at positive distance from the antipodal point of
N , and denote by vol(E) the volume of E. Moreover, let R ∈ (0, π) be the unique positive
number such that vol(E) = vol(BR(N)). Since the isoperimetric inequality on the sphere is not
scale-invariant, the most natural choice would be to consider the optimal transport map from E
to Bλ(N) with λ = R. However, as we will explain below, this choice presents some difficulties
which it is not clear how to bypass, and for this reason it turns out to be simpler to play also with
the choice of the radius λ. Therefore, we will transport E onto the ball Bλ(N), with λ ∈ (0, π)
arbitrary. Another degree of freedom that we have is the possibility of considering non-constant
densities on both E and Bλ(N). For symmetry reasons, we assume that the densities depend
only on rx. Moreover, we also assume that the density on E depends only on its volume (that
is, on R only).

More precisely, let ρ0
R, ρ1

λ,R : R → R+ be non-negative functions to be fixed later, depending
respectively on R, and on λ and R. We want to transport the probability measure

µE =
cE

vol(E)
ρ0

R(rx)χE(x) vol(dx), cE =
vol(E)∫

E cEρ0
R(rx) d vol(x)

,

onto
νλ,R(dy) =

1
vol(Bλ(N))

ρ1
λ,R(ry)χBλ(N)(y) vol(dy).

Let Tλ : M → M denote the optimal transport from µE to νλ,R for the cost c(x, y) = 1
2dg(x, y)2.

We recall that by (2.9) we have

∇xϕλ + ∇xc(x, Tλ(x)) = 0, (A.2)
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and the Monge-Ampère equation (2.10) becomes

∣∣det
(
∇y∇xc(x, Tλ(x)) · ∇xTλ(x)

)∣∣ = cE vol(Bλ) ρ0
R(rx)

√
det gx

∣∣det
(
∇y∇xc(x, Tλ(x))

)∣∣
vol(BR) ρ1

λ,R(rTλ(x))
√

det gTλ(x)

,

with
−∇y∇xc(x, Tλ(x)) · ∇xTλ(x) = ∇x∇xϕλ + ∇x∇xc(x, Tλ(x))

symmetric and non-negative definite (the above identity follows by differentiating (A.2), while
the fact that ∇x∇xϕλ + ∇x∇xc(x, Tλ(x)) is non-negative follows from (2.8)). We now remark
that, if we want to apply Gromov’s strategy in this case, at some moment we will use the
arithmetic-geometric inequality with the eigenvalues of −∇y∇xc(x, Tλ(x)) · ∇xTλ(x). Therefore
we will end up with an expression involving its determinant, which will always depend on Tλ

via the term
∣∣det

(
∇y∇xc(x, Tλ(x))

)∣∣, and there is no hope that we can use the freedom in the
choice of ρ0

R and ρ1
λ,R to cancel this term.

The key observation is now the following: if we choose λ small, since Tλ(x) ∈ Bλ(N), then∣∣det
(
∇y∇xc(x, Tλ(x))

)∣∣ ∼ ∣∣det
(
∇y∇xc(x,N)

)∣∣. Thus we may try to take a limit as λ → 0 of
the transports Tλ in such a way that in the limit we still have something non-trivial. At this
step the choice of ρ0

R and ρ1
λ,R will be crucial: if we want to find an inequality which becomes

equality when E is a ball, in the case E = BR(N) we need to impose that

−∇y∇xc(x, Tλ(x)) · ∇xTλ(x)

is a multiple of the identity at each point (since we want the arithmetic-geometric inequality to
become an equality). As we will see, this condition will tell us how to choose ρ0

R and ρ1
λ,R.

A.3 The choice of the densities: the case E = BR(N)

We want to transport

µ(dx) =
1

vol(BR)
ρ0

R(rx)χBR(N)(x) vol(dx)

onto
νλ(dy) =

1
vol(Bλ)

ρ1
λ,R(ry)χBλ(N)(y) vol(dy).

In order µ and νλ to be probability measures, we need∫
BR(N)

ρ0
R(rx) d vol(x) = vol(BR(N)),

∫
Bλ(N)

ρ1
λ,R(ry) d vol(y) = vol(Bλ(N)).

Since νλ will be constructed from µ through a push-forward, the above condition on ρ1
λ,R will

follow from the one on ρ0
R.

Let T̄λ denote the optimal transport from µ to νλ for the cost c(x, y) = 1
2dg(x, y)2. We are

going to choose ρ0
R and ρ1

λ in such a way that the matrix

−∇y∇xc(x, T̄λ(x)) · ∇xT̄λ(x) : TxM → TxM (A.3)
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is a multiple of the identity map at each point. To this aim, we first remark that by symmetry
the optimal transport is “radial”, that is it depends only on the distance of x from N . More
precisely, if we consider the polar coordinates induced by the exponential map at N , we can
write

x = (rx, θx) 7−→ T̄λ(x) = (tλ(rx), θx)

with tλ(rx) = dg(T̄λ(x), N). To compute the expression in (A.3), since it is an intrinsic quantity
(i.e. independent of the system of coordinates), for each term we can use the Fermi chart around
the point x along the geodesic

[0, 1] 3 s 7−→ expx

(
s∇xϕλ

)
connecting x to T̄λ(x). In this way we have gx = gT̄λ(x) = In. Moreover, by (2.1) and the Jacobi
field equation, one easily has

[
−∇y∇xc(x, T̄λ(x))

]−1 = d∇xϕλ

(
expx

)
=

(
1 0
0 sin(d(x,T̄λ(x)))

d(x,T̄λ(x))
In−1

)
=

(
1 0
0 sin |rx−tλ(rx)|

|rx−tλ(rx)| In−1

)
.

Let dθ2 =
∑n−1

i=1 dθ2
i denote the standard metric on the Euclidean sphere Sn−1. We observe

that, in the polar coordinates induced by the exponential map at N , the metric at x = (rx, θ)
is dr2 + sin2(rx)dθ2, while the metric at T̄λ(x) = (tλ(rx), θ) is dr2 + sin2(tλ(rx))dθ2. Therefore,
since in these coordinates

∇xT̄λ(x)
(

∂

∂r

)
= t′λ(rx)

∂

∂r
, ∇xT̄λ(x)

(
∂

∂θ

)
=

∂

∂θ
,

it is not difficult to see that in Fermi coordinates we have

∇xT̄λ(x) =

(
t′λ(rx) 0

0 sin(tλ(rx))
sin(rx) In−1

)
.

Combining all together, we finally obtain

−∇y∇xc(x, T̄λ(x)) · ∇xT̄λ(x) =

(
t′λ(rx) 0

0 sin(tλ(rx)) |rx−tλ(rx)|
sin(rx) sin |rx−tλ(rx)| In−1

)
.

Hence the above matrix equals a multiple of the identity if and only if{
t′λ(r) = sin(tλ(r)) |r−tλ(r)|

sin(r) sin |r−tλ(r)| r ∈ [0, R],
tλ(R) = λ.

(A.4)

Since in the sequel we will take the limit as λ → 0, we can assume λ ≤ R. Using a standard
comparison principle for ODE, it is not difficult to prove that the unique solution of (A.4) is
a diffeomorphism from (0, R] onto (0, λ], and a homeomorphism from [0, R] onto [0, λ] (indeed
one can prove that 0 ≤ tλ(r) ≤ r, which implies that tλ(0) = 0).
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We now want to study the Monge-Ampère equation in order to understand how we should
choose the densities. We have∣∣det

(
∇y∇xc(x, T̄λ(x))∇xT̄λ(x)

)∣∣ = vol(Bλ) ρ0
R(rx)

√
det gx

∣∣det
(
∇y∇xc(x, T̄λ(x))

)∣∣
vol(BR) ρ1

λ,R(tλ(rx))
√

det gT̄λ(x)

.

In the Fermi chart, the left hand side coincides with
(

sin(tλ(rx)) |rx−tλ(rx)|
sin(rx) sin |rx−tλ(rx)|

)n
, while for the right

hand side we have
∣∣det

(
∇y∇xc(x, T̄λ(x))

)∣∣ =
(

|rx−tλ(rx)|
sin |rx−tλ(rx)|

)n−1
and det gx = det gT̄λ(x) = 1.

Hence

ρ1
λ,R(tλ(rx)) =

vol(Bλ) sinn(rx) sin |rx − tλ(rx)| ρ0
R(rx)

vol(BR) sinn(tλ(rx)) |rx − tλ(rx)|
,

or equivalently

ρ1
λ,R(r) =

vol(Bλ(N)) sinn(t−1
λ (r)) sin |t−1

λ (r) − r| ρ0
R(t−1

λ (r))
vol(BR(N)) sinn(r) |t−1

λ (r) − r|
. (A.5)

As tλ is known (thanks to (A.4)), we see from the above equation that ρ1
λ,R is uniquely determined

once we fix ρ0
R. We now remark the following fact: when we will consider a general domain E,

the term ρ1
λ,R(d(Tλ(x), N)) will appear in the Monge-Ampère equation . Therefore, if we want

in the limit something independent of the transport map, we need to choose ρ0
R in such a way

that ρ1
λ,R converges uniformly to 1 on [0, λ] as λ → 0.

To this aim, let us define s(r) := ∂λtλ(r)|λ=0. Differentiating the ODE for tλ with respect
to λ at λ = 0 we get {

s′(r) = s(r) r
sin2(r)

, r ∈ [0, R],
s(R) = 1,

which gives

s(r) = e
−

R R
r

s
sin2(s)

ds
.

Since ∫ R

r

s

sin2(s)
= log(sinu) − u cos(u)

sin(u)

∣∣∣R
r

= log
(

sinR

sin r

)
− R cos(R)

sin(R)
+

r cos(r)
sin(r)

,

we obtain
s(r) =

sin r

sin R
e

R cos(R)
sin(R)

− r cos(r)
sin(r) .

Having in mind that tλ(r) ∼ λs(r) � r for λ > 0 small, we see that

ρ1
λ,R(tλ(rx)) ∼

vol(Bλ) sinn+1(rx) ρ0
R(rx)

vol(BR) sinn(tλ(rx)) rx
∼

ωn sinn+1(rx) ρ0
R(rx)

vol(BR) sn(rx) rx
,

Thus, in order to have ρ1
λ,R almost constant we finally set

ρ0
R(r) :=

vol(BR)
ωn sinn(R)

r

sin(r)
e
n

“

R cos(R)
sin(R)

− r cos(r)
sin(r)

”

. (A.6)
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It can be checked by an explicit computation that∫
−

BR(N)
ρ0

R(rx) d vol(x) = 1.

Moreover, with this choice of ρ0
R, we have the following uniform convergence result: for any

ε > 0 there exists λε > 0 such that, if 0 < λ ≤ λε, then

1 − ε ≤ ρ1
λ,R(r) ≤ 1 + ε on [0, λ]. (A.7)

(Since we are just giving a formal argument, we will not prove this fact in details.)

A.4 Back to a general domain

Now that we have chosen the densities ρ0
R and ρ1

λ,R, we come back to a general domain E. We
recall that the maps Tλ : M → M were constructed as the optimal transport maps from

µE =
cE

vol(E)
ρ0

R(rx)χE(x) vol(dx)

onto
νλ,R(dy) =

1
vol(Bλ(N))

ρ1
λ,R(ry)χBλ(N)(y) vol(dy).

Let us write Tλ(x) = expx(∇xϕλ). Then

1
λ

∫
FE

(∇xϕλ + ∇xc(x,N)) · νx dH n−1(x) =
1
λ

∫
E

∆xϕλ + ∆xc(x, N) d vol(x)

=
1
λ

∫
E

[
∆xϕλ + ∆xc(x, Tλ(x))

]
d vol(x)

− 1
λ

∫
E

[
∆xc(x, Tλ(x)) − ∆xc(x, N)

]
d vol(x)

=
1
λ

∫
E

[
∆xϕλ + ∆xc(x, Tλ(x))

]
d vol(x)

− n − 1
λ

∫
E

[
G(d(x, Tλ(x))) − G(rx)

]
d vol(x)

(A.8)

where in the last step we used (2.4) with K = 1, and G(r) := G1(r) = r cos(r)
sin(r) . We now want to

take the limit as λ → 0.

A.4.1 Properties of the limit transport map

Let us define T : M → TNM as T := (∂λTλ)|λ=0. (Again, this is just a formal argument.)
Recalling that

−∇y∇xc(x, Tλ(x)) · ∇xTλ = [∇x∇xϕλ + ∇x∇xc(x, Tλ(x))]
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is symmetric and non-negative definite, letting λ → 0 we get that −∇y∇xc(x,N) · ∇xT is
symmetric and non-negative definite. On the other hand, as

det
(
−∇y∇xc(x, Tλ(x)) · ∇xTλ

)
=

cE vol(Bλ(N)) ρ0
R(rx)

√
det gx det

(
−∇y∇xc(x, Tλ(x))

)
vol(E) ρ1

λ,R(rTλ(x))
√

det gTλ(x)

,

since vol(Bλ(N)) = ωnλn + o(λn) we infer

lim
λ→0

1
λn

det
(
−∇y∇xc(x, Tλ(x)) · ∇xTλ

)
= det

(
−∇y∇xc(x, N) · ∇xT

)
and by (A.7) we get

lim
λ→0

vol(Bλ(N)) ρ0
R(rx)

√
det gx det

(
−∇y∇xc(x, Tλ(x))

)
λn vol(E) ρ1

λ,R(rTλ(x))
√

det gTλ(x)

=
ωn ρ0

R(rx)
√

det gx det
(
−∇y∇xc(x, N)

)
vol(E)

=
ωn ρ0

R(rx) rn−1
x

vol(E) sinn−1(rx)
.

Therefore T satisfies

det
(
−∇y∇xc(x,N) · ∇xT

)
=

cE ωn ρ0
R(rx) rn−1

x

vol(E) sinn−1(rx)
, (A.9)

with ρ0
R defined in (A.6). This implies that T : M → TNM is a transport map from µ to

ν0 =
1
ωn

χB(N,1)(v) dv,

where B(N, 1) ⊂ TNM denotes the unit ball in the tangent space, and dv is the Lebesgue
measure. Moreover one can show that T is the optimal transport map from µ to ν0, where the
optimality is with respect to the cost function c0 : M × TNM → R defined as

c0(x, v) := lim
λ→0

dg(x, expN (λv))2 − dg(x,N)2

2λ
= ∇yc(x,N) · v.

Observe that, if we write x = expN (vx) and define c̄0 : TNM × TNM → R as

c̄0(vx, v) := c0(x, v),

then c̄0(vx, v) = −vx · v, so that the cost function c0 seen on TNM × TNM is equivalent to the
Euclidean cost 1

2 |vx − v|2.

A.4.2 Back to the proof

Regarding the second term in (A.8), we have

lim
λ→0

G(d(x, Tλ(x))) − G(rx)
λ

= ∇yG(d(x, y))|y=N · T (x),
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while for the first term we have

1
λ

[
∆xϕλ + ∆xc(x, Tλ(x))

]
= − 1

λ
trx[∇y∇xc(x, Tλ(x)) · ∇xTλ(x)] → − trx[∇y∇xc(x,N) · ∇xT ]

as λ → 0. Moreover
∇xϕλ + ∇xc(x,N)

λ
→ −∇y∇xc(x,N) · T (x).

Therefore∫
FE

−
(
∇y∇xc(x,N) · T (x)

)
· νx dH n−1(x) = −

∫
E

trx[∇y∇xc(x,N) · ∇xT ] d vol(x)

− (n − 1)
∫

E
∇yG(d(x, y))|y=N · T (x) d vol(x).

(A.10)

Now, let H : [0, π] → R be a smooth function, with H(0) = 0. We have∫
E
∇yH(d(x, y))|y=N · T (x) d vol(x) =

∫
E

(
∇x∇yc(x, N) · ∇xH(rx)

)
· T (x) d vol(x)

=
∫

E

(
∇y∇xc(x, N) · T (x)

)
· ∇xH(rx) d vol(x)

=
∫
FE

H(rx)
(
∇y∇xc(x,N) · T (x)

)
· νx dH n−1(x)

−
∫

E
H(rx)divx

(
∇y∇xc(x,N) · T (x)

)
d vol(x).

We now remark that

divx

(
∇y∇xc(x,N) · T (x)

)
= ∇y∆xc(x, y)|y=N · T (x) + trx[∇y∇xc(x,N) · ∇xT ]

Moreover

∇y∆xc(x, y)|y=N = ∇y

[
(n − 1)

dg(x, y) cos(dg(x, y))
sin(dg(x, y))

+ 1
]∣∣∣∣

y=N

= (n − 1)∇yG(d(x, y))|y=N .

This implies∫
E

[
∇yH(d(x, y)) + (n − 1)H(d(x, y))∇yG(d(x, y))

]∣∣
y=N

· T (x) d vol(x)

=
∫
FE

H(rx)
(
∇y∇xc(x,N) · T (x)

)
· νx dH n−1(x)

−
∫

E
H(rx) trx[∇y∇xc(x,N) · ∇xT ] d vol(x).

Let us impose[
∇yH(d(x, y)) + (n − 1)H(d(x, y))∇yG(d(x, y))

]∣∣
y=N

= (n − 1)∇yG(d(x, y)).
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This is equivalent to say that

H ′(r) + (n − 1)HG′(r) = (n − 1)G′(r) for r > 0,

i.e.
H ′(r)

1 − H(r)
= (n − 1)G′(r).

As H(0) = 0, integrating the above differential equation we get

H(r) = 1 − e(n−1)[G(0)−G(r)].

Observing that G′ < 0, we immediately obtain H(r) ≤ 0, so that with this choice of H

(n − 1)
∫

E
∇yG(d(x, y))|y=N · T (x) d vol(x)

=
∫
FE

H(rx)
(
∇y∇xc(x,N) · T (x)

)
· νx dH n−1(x)

−
∫

E
H(rr) trx[∇y∇xc(x,N) · ∇xT ] d vol(x).

(A.11)

Collecting all together we finally have∫
FE

−
(
∇y∇xc(x,N) · T (x)

)
· νx dH n−1(x) = −

∫
E

trx[∇y∇xc(x,N)∇xT ] d vol(x)

−
∫
FE

H(rx)
(
∇y∇xc(x,N) · T (x)

)
· νx dH n−1(x)

+
∫

E
H(rx) trx[∇y∇xc(x,N) · ∇xT ] d vol(x),

that is∫
FE

(
1 − H(rx)

)(
−∇y∇xc(x,N) · T (x)

)
· νx dH n−1(x)

=
∫

E

(
1 − H(rx)

)
trx[−∇y∇xc(x,N) · ∇xT ] d vol(x),

which recalling the formula for H and G means∫
FE

e
(n−1)

h

1− rx cos(rx)
sin(rx)

i(
−∇y∇xc(x,N) · T (x)

)
· νx dH n−1(x)

=
∫

E
e
(n−1)

h

1− rx cos(rx)
sin(rx)

i

trx[−∇y∇xc(x,N) · ∇xT ] d vol(x),
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Using now the arithmetic-geometric inequality, we get∫
E

e(n−1)[G(0)−G(rx)] tr
(
−∇y∇xc(x,N) · ∇xT

)
d vol(x)

≥ n

∫
E

e(n−1)[G(0)−G(rx)] det
∣∣∇y∇xc(x, N) · ∇xT

∣∣1/n
d vol(x)

= n

∫
E

e(n−1)[G(0)−G(rx)] c
1/n
E ω

1/n
n ρ0

R(rx)1/n r
(n−1)/n
x

vol(E)1/n sin(n−1)/n(rx)
d vol(x).

Moreover, as |T | ≤ 1 in E,∫
FE

e(n−1)[G(0)−G(rx)]
(
−∇y∇xc(x,N) · T (x)

)
· νx dH n−1(x)

=
∫
FE

e(n−1)[G(0)−G(rx)]
(
−∇x∇yc(x,N) · νx

)
· T (x) dH n−1(x)

≤
∫
FE

e(n−1)[G(0)−G(rx)]
∣∣∇x∇yc(x,N) · νx

∣∣ dH n−1(x),

and so we conclude that∫
FE

e(n−1)[G(0)−G(rx)]|∇x∇yc(x, N) · νx| dH n−1(x)

≥ n

∫
E

e(n−1)[G(0)−G(rx)] c
1/n
E ω

1/n
n ρ0

R(rx)1/n r
(n−1)/n
x

vol(E)1/n sin(n−1)/n(rx)
d vol(x)

= nω1/n
n

(∫
E

en[G(0)−G(rx)]

(
rx

sin(rx)

)
d vol(x)

)n−1
n

,

as wanted.

Remark A.1 The main difficulties to make this proof rigorous are in differentiating Tλ with
respect to λ in order to define T , and then to deduce the properties of the limit transport map
from the ones of the maps Tλ. Although we believe that all this could be done using some refined
argument of measure theory and BV functions, we preferred in Section 3 to prove the result
working directly with T , without any mention to Tλ.
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