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ABSTRACT. This paper is concerned with the relations between the differential
invariants of a smooth manifold embedded in the Euclidean space and the square
of the distance function from the manifold. In particular, we are interested in
curvature invariants like the mean curvature vector and the second fundamental
form. We find that these invariants can be computed in a very simple way using
the third order derivatives of the squared distance function.
Moreover, we study a general class of functionals depending on the derivatives
up to a given order γ of the squared distance function and we find an algorithm
for the computation of the Euler equation. Our class of functionals includes as
particular cases the well known Area functional (γ = 2), the integral of the square
of the quadratic norm of the second fundamental form (γ = 3) and the Willmore
functional.
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1. INTRODUCTION

In the last years, a large interest has grown in connection with geometric evo-
lution problems, also with motivations coming from the Mathematical Physics
(phase transitions, Stefan problem). A model problem is the evolution of surfaces
by mean curvature, which can be considered as the gradient flow of the Area func-
tional. Indeed, if M is a compact n–manifold embedded in RN without boundary,
and if Φt is a family of diffeomorphisms of RN such that Φ0 is the identity, then

d

dt

[
Hn
(
Φt(M)

)]
t=0

= −
∫
M

〈H, X〉 dHn

where X = [Φt]
′
t=0 is the infinitesimal generator of Φt, Hn is the n–dimensional

Hausdorff measure and H is the mean curvature vector of M .
This mathematical problem is intriguing because the appearance of singularities
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during the flow makes it necessary (with the exceptions of planar Jordan curves,
convex shapes, codimension 1 graphs) a weak approach to obtain a global in
time solution of the evolution problem. Starting from the pioneering work of
Brakke [2], a large literature is by now available on this subject (see for instance
Chen–Giga–Goto [4], Evans–Spruck [12], Huisken [19], Ilmanen [21] and the refer-
ences therein). The weak formulations are mainly based either on Geometric Mea-
sure Theory (currents, varifolds), or on the theory of viscosity solutions (the level
set approach of Chen–Giga–Goto [4], Evans–Spruck [12]). In the latter approach,
a crucial rôle (see for instance Ambrosio–Soner [1], Evans–Soner-Souganidis [11]
and Soner [30]) is played by the analytical properties of the distance function
dM (x) from the manifold (see also Delfour–Zolésio [8, 9]). For instance, in the
codimension 1 case n = (N − 1), it turns out that Mt = ∂Ut flows by mean curva-
ture if and only if

dt(x, t) = ∆d(x, t) for x ∈Mt

where d(x, t) is equal to the signed distance function fromMt, i.e. d(x, t) = −dMt(x)
if x ∈ Ut and d(x, t) = dMt(x) if x /∈ Ut. Since the signed distance function
makes no sense in higher codimension problems, De Giorgi suggested in [5], [6]
and [7] to work with the squared distance function ηM (x) = [dM (x)]2/2. Setting
η(x, t) = ηMt(x), it turns out that (see Ambrosio–Soner [1]) the mean curvature
flow is characterized by the equation

(∇η)t(x, t) = ∆(∇η)(x, t) for x ∈Mt

because −∇η(x, t) represents the displacement of x ∈ Mt and −∆(∇η)(x, t) is the
mean curvature vector of Mt at x.

One of the goals of this paper is a systematic study of the connections between
the analytical properties of ηM and the geometric invariants of the manifold M .
In particular, in Section 2 we will prove that d3ηM (x) and the second fundamen-
tal form Bx of M are mutually connected for any x ∈ M by simple linear rela-
tions; in addition, for any normal vector p the eigenvalues of 〈Bx, p〉 on the tangent
space (in some sense, the “principal curvatures” in the direction p) are linked to
the eigenvalues of∇2ηM (xs) for points xs on the normal line x+ sp.

Our motivations are also related to the analysis of general classes of geomet-
ric functionals, including the Area functional and the Willmore functional (see
Chen [3], Simon [29], Weiner [32], Willmore [34])

F(M) =

∫
M

|H|2 dHn.

More generally, functionals depending on the second fundamental form ofM have
been widely investigated in the literature (see Langer [23], Reilly [26], Rund [27]
and Voss [31]). By our preceding analysis we see that in principle any autonomous
“geometric” functional can be written as

(1.1) F(M) =

∫
M

f
(
ηMi1i2 , . . . , η

M
j1 ... jγ

)
dHn

for some function f depending on the derivatives of ηM up to a given order γ.
In this setting, the Area functional and the Willmore functional respectively corre-
spond to

(1.2)
1

N − n

∫
M

∑
i,j

|ηMij |2 dHn,
∫
M

∑
i,k

|ηMikk|2 dHn.

One of the main result of this paper is a constructive algorithm for the computation
of the first variation of the functional F in (1.1). Specifically, under smoothness
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assumptions on f we prove that there exists a unique normal vector field EF such
that

d

dt
F
(
Φt(M)

)∣∣∣∣
t=0

=

∫
M

〈EF |X〉 dHn

for any family of diffeomorphisms Φt whose infinitesimal generator is X . In gen-
eral, EF depends on the derivatives of ηM up to the order (2γ − 1), and if f is a
polynomial the same is true for EF .
We carry out an explicit computation for the generalization of the Willmore func-
tional

Fp(M) =

∫
M

|H|p dHn.

In particular, in the codimension one case, we recover some of the results found
by the above mentioned authors (see Reilly [26], Voss [31]).

The advantages of our approach are its full generality and its independence by
the dimension and the codimension. However, it should be said that assumptions
like n = 1 or n = (N − 1) are very often important to get a manageable expression
for EF . Another difficulty is related to the fact that, in the codimension 1 case, any
symmetric functions of the principal curvatures is in principle representable as in
(1.1), but this representation is in practice not easy, with the notable exceptions of
|H|p and |B|p.

Another advantage of this approach is the possibility to consider also function-
als depending on the derivatives of B up to any order. To this purpose, in the final
part of the paper we consider the functionals

(1.3) Gγ(M) =

∫
M

∑
i1,...,iγ

|ηMi1,...,iγ |
2 dHn.

We already noticed that G2 is a multiple of the Area functional; recently, De Giorgi
suggested in [6], [7] a parametric approximation of the mean curvature flow prob-
lem based on the gradient flow of the functionals G2 + εGγ with γ > n+ 1 (in order
to gain a Sobolev embedding for the tangent spaces). For the evolution of curves,
this problem has been studied by Wen [33] with γ = 3 and with a constraint on
length.

We notice that the function inside the integral in (1.3) is equal to 3|B|2 for γ =
3; assuming in addition n = 2, the functional G3 coincides up to multiplicative
and additive constants depending on the genus of M (see the discussion at the
beginning of Section 5) with the Willmore functional. For γ > 2, computing the
leading term in the first variation of EGγ we find that this term is equal, up to a
multiplicative constant, to the normal component of ∆M ◦ . . . ◦ ∆MH, where the
Laplace–Beltrami operator ∆M on M acts (γ − 2) times on H.

We now give a brief explanation of the main idea behind our proof of the first
variation in (1.1). Let us assume, for the sake of simplicity, that the function f in
(1.1) is smooth and depends only on ∇3ηM , as the second functional in (1.2). Let
Mt := Φt(M) be the deformed manifolds; the classical parametric method consists
in the computation of

d

dt
B(x, t)

∣∣∣∣
t=0

where B(x, t) is the second fundamental form of Mt at Φt(x). Using the Area
Formula to carry the integrals from Mt to M , also the derivative at t = 0 of the
tangential Jacobian JΦt(x) on M is needed.
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Still using the Area Formula, we proceed in a slightly different way: by the rela-
tions between∇3ηM and B we basically need to compute the derivative

(1.4)
d

dt
∇3η(x, t)

∣∣∣∣
t=0

where η(·, t) is the squared distance function from Mt. By the smoothness of η we
can reverse the order of differentiation to get

∇3

(
d

dt
η(x, t)

∣∣∣∣
t=0

)
.

Computing ηt(x, 0) in Lemma 4.5 we find that (1.4) is given by

−∇3
〈
∇ηM (x) |X(x−∇ηM (x))

〉
where X is the infinitesimal generator of Φt. The same argument works with
higher order derivatives of η, which correspond to derivatives of B.
We conclude noticing that, in principle, the method works also for second or
higher order variations: one needs to compute the derivatives

∂k

∂tk
η(x, t)

∣∣∣∣
t=0

,
∂k

∂tk
JMΦt(x)

∣∣∣∣
t=0

.

However, in this paper we confine our attention only to first variations.

Acknowledgement . This paper is the fruit of many stimulating conversations
with Ennio De Giorgi, whose recent death has been a great loss for the whole
mathematical community. We would like to dedicate this paper to him.

2. SQUARED DISTANCE FUNCTION FROM A MANIFOLD

In all this paper, e1, . . . , eN is the canonical basis of RN , M is a smooth, compact
n–manifold without boundary embedded in RN and TxM , NxM are respectively
the tangent space and the normal space to M at x ∈M .

The distance function dM (x) and the squared distance function ηM (x) are respec-
tively defined by

dM (x) = dist(x,M), ηM (x) =
1

2
[dM (x)]2

for any x ∈ RN (we will drop M when no ambiguity is possible). In this section
we analyse the differentiability properties of d and η and the connection between
the derivatives of these functions and some geometric properties of M .

It is well known that d is a Lipschitz function with Lipschitz constant 1; more-
over, for any differentiability point x of d there exists y ∈M such that

(2.1) ∇d(x) =
x− y
|x− y|

provided x /∈ M . In particular, at any differentiability point x the minimizer y in
M is uniquely determined and we will denote it by πM (x). By the chain rule, we
have also

(2.2) |∇η(x)|2 = 2η(x)

at any differentiability point of η (the identity is trivial if η(x) = 0).
The above mentioned properties are true even if M is merely a closed set (addi-

tional regularity properties of d are studied in [14, 17]). In general, only one sided
estimates on the second derivatives of d, η are available, based on the convexity of
the function A(x) = |x|2/2− η(x), which can be represented by

max
y∈M

〈x|y〉 − 1

2
|y|2.



DISTANCE FUNCTION FROM A MANIFOLD 5

The function A which will be extensively considered in Section 4.
However, it is natural to expect higher regularity of M to lead to higher regu-

larity of d and η (see also, in the case n = (N − 1), [18, 8, 9, 16, 22]). Assuming,
as we do, that M is a smooth manifold, the following simple result can be proved
(see for instance [1], Theorem 3.1):

Theorem 2.1. There exists a constant σ > 0 such that η is smooth in the region

Ω =
{
x ∈ RN : d(x) < σ

}
.

Moreover, for any x ∈M the Hessian matrix∇2η(x) is the (matrix of) orthogonal projec-
tion onto the normal space NxM .

It should be remarked that d(x) =
√

2η(x) is smooth on Ω \ M but it is not
smooth up to M . In the codimension one case n = (N − 1) this difficulty can be
amended writing M = ∂E and using the signed distance function

d∗(x) =

{
d(x) if x /∈ E;

−d(x) if x ∈ E.

As shown in [1], in higher codimension problems the function η is a good substi-
tute of d∗(x) in the analysis of mean curvature flow problems.

The following result is concerned with the Hessian matrix of η out of M .

Theorem 2.2. Let x ∈ Ω, let y be its projection on M and let

B(s) = ∇2η
(
y + s(x− y)

)
for any s ∈ [0, d(x)]. Then, the matrices B(s) are diagonal in a common basis, and
denoting by λ1(s), . . . , λN (s) their eigenvalues in increasing order, we have

λN−n+1(s) = λN−n+2(s) = · · · = λN (s) = 1 ∀s ∈ [0, d(x)].

The remaining eigenvalues are strictly less than 1 and satisfy the ODE

λ′i(s) =
λi(s)(1− λi(s))

s
∀s ∈ (0, d(x)]

for i = 1, . . . , N . Finally, the quotients λi(s)/s are bounded in (0, d(x)].

The proof of Theorem 2.2 (see [1], Theorem 3.2) is mainly based on the identities

ηiηij = ηj , ηikηij + ηiηijk = ηjk,

obtained by differentiation of (2.2). Using the identity

∇2η = d∇2d+∇d⊗∇d

and using (2.1), it follows that also ∇2d
(
y + s(x − y)

)
is diagonal in the same

basis; in addition, one eigenvalue, corresponding to the eigenvector ∇d(x), is 0,
(N −n− 1) eigenvalues are equal to 1/s and the n remaining ones β1(s), . . . , βn(s)
are bounded and satisfy

(2.3) β′i(s) = −β2
i (s) ∀s ∈ (0, d(x)].

A straightforward consequence of Theorem 2.2 is the following result.

Corollary 2.3. Let x ∈ Ω, y = πM (x) and let Kx : RN × RN × RN → R be the
symmetric 3–linear form induced by d3η(x). Then

Kx(u, v, w) = 0

if at least two of the vectors u, v, w belong to NyM .
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3. SECOND FUNDAMENTAL FORM AND d3η

In this section we analyse the connection between the second fundamental form
of M and d3η. We begin with the definition of the tangential gradient∇Mf .

Definition 3.1. Let x ∈ M , and let f be a C1 real valued function defined in a
neighborhood U of x. The tangential gradient ∇Mf(x) is the projection of ∇f(x)
on TxM .

It is easy to check that ∇Mf depends only on the restriction of f to M ∩ U ;
moreover, an extension argument shows that ∇Mf can also be defined for func-
tions initially defined only on M ∩U . In a similar way we can define the tangential
divergence of a vector field and the tangential Laplacian of a function g:

(3.1) divM X(x) =

k∑
i=1

∇Mi Xi(x), ∆Mg(x) = divM ∇Mg(x).

By Theorem 2.1 we infer

(3.2) ∇Mi f(x) = Pij(x)∇jf(x) with Pij(x) = (δij − ηij(x)),

because ηij(x) is the matrix of orthogonal projection on NxM . Notice that the
formula defining Pij(x) makes sense also on Ω \ M : in this case, Theorem 2.2
implies

(3.3) P (x) : TyM → TyM, KerP (x) ⊃ NyM
where y = x−∇η(x) is the projection of x on M . However, in general P (x) is not
the identity on TyM . Finally, we notice that Pij(x) = ∇Mi xj for any x ∈M .

Now we introduce the second fundamental form B and the mean curvature vector
H of M .

Definition 3.2. Let x ∈ M , u, v ∈ TxM and let φ(y) be a smooth vector field
defined in a neighborhood U of x such that φ(y) ∈ TyM for any y ∈ M ∩ U and
φ(x) = u. The second fundamental form

Bx : TxM × TxM → NxM

is defined by

Bx(u, v) =
[∂φ
∂v

(x)
]⊥

where ⊥ stands for the projection on NxM . We extend Bx to RN × RN by setting

Bx(v, w) = Bx

(
P (x)v, P (x)w

)
∀v, w ∈ RN

and we denote by Bk
ij(x) = 〈Bx(ei, ej)|ek〉 the components on Bx in the canonical

basis. Finally, the mean curvature vector H(x) is the trace of the second funda-
mental form:

Hi(x) =
∑
j

Bi
jj(x).

The 3-tensor Bx embodies all information on the curvature properties of M at
x, while H(x) is important in connection with the tangential divergence theorem
(see Theorem 4.2). It is well known that Bx(u, v) is symmetric with respect to (u, v)
and that it can be computed by

(3.4) Bx(u, v) = −
N−n∑
α=1

〈u|∇Mv να(x)〉να ∀u, v ∈ TxM,

where ν1, . . . , νN−n is any smooth orthonormal basis of the normal space to M in
a neighborhood of x.
For an extensive discussion of these results see for instance [10], Chapter 6.
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We now define a new 3-tensor Cx with components (in the canonical basis)

(3.5) Cijk(x) = ∇Mi Pjk(x) = ∇Mi ∇Mj xk.
Since for any x ∈M the matrix P (x) is the orthogonal projection on TxM , also Cx

is expected to contain all information on the curvature of M (see [20, 24]). In the
following two theorems we find that d3η(x), Cx and Bx are mutually connected
by simple linear relations. The proof of the first theorem is taken from [20].

Theorem 3.3. The components of Bx and the components of Cx are related for any x ∈M
by the identities

(3.6) Bk
ij(x) = Pmj(x)Cikm(x) = Pli(x)Cjkl(x), Cijk = Bk

ij(x) + Bj
ik(x).

In addition, the mean curvature vector H(x) of M is given by

(3.7) Hi(x) =
∑
l

Clil(x).

Proof. Let x ∈M , u = ei, v = ej and let u′ = P (x)ei, v′ = P (x)ej be the projections
of u, v on TxM . Taking φ(y) = P (y)ei, we have[∂φr

∂v′
(x)
]

= Pjm(x)(Pir)m(x) r = 1, . . . , N

so that, using the identity P 2 = P on M we get

Bk
ij(x) = Pjm(x)

[
(Pik)m(x)− Pkl(x)(Pil)m(x)

]
= ∇Mj Pik(x)− Pkl(x)∇Mj Pil(x)

= Pil(x)∇Mj Pkl(x) = Pil(x)Cjkl(x).

Now we prove the second identity in (3.6). Using the first identity in (3.6) and
the symmetry of P we get

Bk
ij(x) + Bj

ik(x) = Plj(x)Cikl(x) + Plk(x)Cijl(x)

= Plj(x)∇Mi Pkl(x) + Plk(x)∇Mi Pjl(x)

= ∇Mi
(
Pjl(x)Plk(x)

)
= ∇Mi Pjk(x) = Cijk(x).

Finally, we prove (3.7):

Hi(x) = Bi
kk(x) = Plk(x)Ckil(x) =

∑
l

Clil(x).

�

Theorem 3.4. The tensor Cx and d3η(x) are related for any x ∈M by the identities

(3.8) Cijk(x) = −Pil(x)ηljk(x), ηijk(x) = −1

2

{
Cijk(x) + Cjki(x) + Ckij(x)

}
.

Proof. The first identity is an easy consequence of the fact that d2η(x) is the or-
thogonal projection on NxM . To prove the second one, we write (omitting the
dependence on x)

ηijk = −Cijk + (δis − Pis)ηsjk = −Cijk + (δis − Pis)(−Cjsk + (δjt − Pjt)ηstk)

= −Cijk + (δis − Pis)(−Cjsk + (δjt − Pjt)(−Ckst + (δkl − Pkl)ηstl))
= −Cijk − Cjsk(δis − Pis)− Ckst(δis − Pis)(δjt − Pjt)

+(δis − Pis)(δjt − Pjt)(δkl − Pkl)ηstl.
By Corollary 2.3, the last term is zero, so that (3.6) yields

ηijk = −Cijk − Cjki + CjskPis − Ckij + CkitPjt + CksjPsi − CkstPisPjt
= −Cijk − Cjki − Ckij + Bk

ij + Bj
ki + Bi

jk − PjtBt
ik.
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Since B(ei, ek) ∈ NxM , PjtBt
ik = 0; exchanging i with j in the above formula,

averaging and using the second identities in (3.6) we eventually get

ηijk = −Cijk − Cjki − Ckij +
1

2

{
Bk
ij + Bj

ki + Bi
jk + Bk

ji + Bi
kj + Bj

ik

}
= −1

2

{
Cijk + Cjki + Ckij

}
.

�

We are particularly interested in the expression of H(x) as a function of d3η(x).
To begin with, we notice that (3.7) implies

Hi(x) =
∑
l

Clil(x) = −Plk(x)ηkil(x) = −ηkik(x) + ηlk(x)ηkil(x)

= −ηkik(x) +
1

2
(ηlkηlk)i(x)

for i = 1, . . . , N . Since ∇2η(x) is symmetric, ηlk(x)ηlk(x) coincides with the sum
of the squares of the eigenvalues of∇2η(x). By Theorem 2.2, this quantity is equal
to n + o(|x − x0|) near every point x0 ∈ M , hence (ηlkηlk)i(x) vanishes on M . As
conjectured in [5] and proved in [1], it follows that

(3.9) H(x) = −∆(∇η)(x) ∀x ∈M.

More generally, using (3.6) and (3.8) we can write each component Bk
ij(x) of the

second fundamental form as a function of∇3η(x):

Bk
ij(x) = Pjm(x)Cikm(x) = −Pjm(x)Pil(x)ηlkm(x)

= −(δjm − ηjm(x))(δil − ηil(x))ηlkm(x)

= −ηijk(x) + ηmj(x)ηkim(x) + ηli(x)ηkjl(x)− ηjm(x)ηil(x)ηlkm(x)

= −ηijk(x) + ηmj(x)ηkim(x) + ηmi(x)ηkjm(x)

= (ηimηmj(x)− ηij)k(x).(3.10)

Conversely, using the second identities in (3.8), (3.6) we get

ηijk(x) = −1

2

{
Cijk(x) + Cjki(x) + Ckij(x)

}
= −1

2

{
Bk
ij(x) + Bj

ik(x) + Bi
jk(x) + Bk

ji(x) + Bj
ki(x) + Bi

kj(x)
}

= −Bk
ij(x)−Bi

jk(x)−Bj
ki(x).(3.11)

We conclude this section with the analysis of the geometric significance of the
eigenvalues λi(s) in Theorem 2.2. Keeping the same notations of Theorem 2.2, let
xs = y + s(x − y), p = ∇d(x); denoting by λ1(s), . . . , λn(s) the eigenvalues of
∇2η(xs) strictly less than 1 and by w1, . . . , wn be the corresponding eigenvectors
(independent of s) spanning TyM , the following theorem holds:

Theorem 3.5. For any i = 1, . . . , n we have

lim
s→0+

λi(s)

s
= λi.

Moreover, the numbers λi are the eigenvalues of the symmetric bilinear form

−
〈
By(u, v)|p

〉
u, v ∈ TyM

and wi are the corresponding eigenvectors.
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Proof. By the remarks following Theorem 2.2, λi(s)/s are eigenvalues βi(s) of∇2dM (xs).
Let π be the affine (n + 1)–space generated by TyM and p and passing through y.
In addition let Σ ⊂ π be the smooth n–manifold obtained projecting U ∩M on π,
for a suitable neighborhood U of y, and let By be the second fundamental form of
Σ at y. Viewing Σ as a codimension 1 surface in π, we denote (see for instance [10])
by λ1, . . . , λn the principal curvatures at y of Σ (with the orientation induced near y
by p), defined as the eigenvalues of the symmetric bilinear form

〈By(u, v)|p〉 u, v ∈ TyΣ.

To prove the theorem, we first assume n = (N − 1). Under this assumption,
Σ = M and the property is a straightforward consequence of the well known
formula (see for instance [18], Lemma 14.17)

βi(s) =
−λi

1− sλi
∀s ∈ (0, d(x)]

for the eigenvalues βi(s) of ∇2dΣ(xs) corresponding to eigenvectors in π (see also
(2.3) or [13]).

In the general case, we notice that, by Theorem 2.1, ηΣ is smooth near y and

(3.12) lim sup
z→y, z∈π

|ηM (z)− ηΣ(z)|
|z − y|4

< +∞

because Σ is obtained projecting M on the space π containing y + TyM . By (3.12)
we infer

lim
s→0+

∇2ηM (xs)−∇2ηΣ(xs)

s
= 0.

Since the matrices are diagonal in the same basis, denoting by λi(s) the eigenval-
ues of ∇2ηΣ(xs) corresponding to the directions wi, λi(s)/s converge to the same
limit of λi(s)/s, i.e., λi.

Finally, we prove the last statement. By (3.12) we infer

d3ηM (y)(u, v, p) = d3ηΣ(y)(u, v, p) ∀u, v ∈ TyM = TyΣ,

so that (3.10) yields〈
By(u, v)|p〉 =

〈
By(u, v)|p〉 ∀u, v ∈ TyM

because p ∈ NyM ∩ NyΣ. This proves that λi are the eigenvalues of −〈By|p〉 and
that wi are the corresponding eigenvectors. �

Remark 3.6. In particular, the sum of the eigenvalues βi(s) = λi(s)/s of ∇2d(xs)
converges as s → 0+ to −〈H(y)|p〉. This property, already proved in [1], has been
used to extend the level set approach (see [25, 12, 4]) to the evolution of surfaces
of any codimension.

4. FUNCTIONALS DEPENDING ON THE DISTANCE

In this section we use the squared distance function η to compute the first vari-
ation of several geometric functionals. For our purposes, it is technically more
convenient to work with the convex function

AM (x) =
1

2
|x|2 − η(x) =

|x|2 − d2(x)

2
,

smooth in the “tubular neighborhood” Ω of the manifold M introduced in Theo-
rem 2.1.
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The greater convenience of AM can be explained noticing that ∇2AM (x) is, for
x ∈M , the projection matrix on TxM , and this quantity often appears in the com-
putation of tangential gradients. For the reader’s convenience, we reformulate
now the results of the preceding sections in terms of AM :

Proposition 4.1. (a) For any x ∈ Ω, ∇AM (x) is the projection y = πM (x) of x on M .
In addition ∇2AM (x) is zero on NyM and maps TyM into TyM . If x = y ∈ M , then
∇2AM (x) is the matrix of orthogonal projection on TxM ;
(b) for any x ∈ Ω, the 3–linear form Kx : Rk × Rk × Rk → R given by

Kx(u, v, w) =
∑
ijk

AMijk(x)uivjwk

is equal to zero if at least two of the 3 vectors u, v, w, are normal to M at∇AM (x);
(c) for x ∈ M , the second fundamental form Bx and the mean curvature vector H(x) are
related to the derivatives of AM (x) by

(4.1) Bk
ij(x) = AMjm(x)AMil (x)AMmlk(x) =

(
δkl −AMkl (x)

)
AMijl,

(4.2) H(x) =
∑
j

AMjij(x),

(4.3) ∇Mi AMjk(x) = Bk
ij(x) + Bj

ik(x).

Proof. The first statement follows by Theorem 2.1 and the second one by Corol-
lary 2.3. The first equality in (4.1) and (4.2) follow by (3.9) and (3.10). The second
equality in (4.1) can be obtained multiplying in (3.11) by (I −∇2AM ). Finally (4.3)
is a restatement of the second equality (3.6). �

In this section we will consider functionals F defined on the class of smooth
n–manifolds M (compact and with no boundary) of the following kind:

(4.4) F(M) =

∫
M

f
(
AMij ... k

)
dHn(x)

assuming that the smooth function f depends only on a finite number of deriva-
tives of AM , of order at most s. For the sake of simplicity we assume that F is
autonomous, i.e., f does not depend on ∇AM (x) = x. Notice that in this way we
can define every functional depending on the curvature, using the relations (4.2).

4.1. Area Formula and Divergence Theorem. For a general smooth map Φ : M →
Rk we can consider the tangential Jacobian,

JMΦ(x) =
[
det
(
dMΦ∗x ◦ dMΦx

)]1/2
where dMΦx : TxM → Rk is the linear map induced by the the tangential gradient
and

(
dMΦx

)∗
: Rk → TxM is the adjoint map.

Theorem 4.2 (Tangential Divergence Theorem). For any smooth vector fieldX defined
on M the following formula holds:∫

M

divM X dHn = −
∫
M

〈H |X〉 dHn.

A simple consequence of this theorem is the equation,∫
M

f∆Mg dHn =

∫
M

g∆Mf dHn.

Another fundamental result is the following Area Formula.
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Theorem 4.3 (Area Formula). If Φ is a smooth injective map from M to Rk, then we
have

(4.5)
∫

Φ(M)

f(y) dHn(y) =

∫
M

f(Φ(x)) JMΦ(x) dHn(x)

for every f ∈ C0(Rk).

For detailed discussions and proofs of these and of related facts we refer to the
books of Federer [15] and of Simon [28].

4.2. First Variation. We can now study the first variation of the general functional
(4.4) deforming the manifold M along some vector field X .

Let Φt(x) be a smooth one–parameter family of diffeomorphisms of Ω in itself,
with Φ0 equal to the identity. That is, Φ : R × Ω → Ω is a smooth function acting
on the manifold M and giving a deformation Mt = Φt(M) which is clearly again a
smooth n–manifold. We want to compute the derivative of F(Mt) at t = 0, i.e.

d

dt

∫
Mt

f
(
AMt
i1i2

, . . . , AMt
j1 ... jγ

)
dHn(x)

∣∣∣∣∣∣
t=0

.

The main result of this section is the following:

Theorem 4.4. There exists a unique vector field EF (AM ) such that

(4.6)
d

dt
F(Mt)

∣∣∣∣
t=0

=

∫
M

〈EF
(
AM

)
|X〉 dHn

for any family Φt whose infinitesimal generator is X . Moreover EF (AM ) is normal and:
(i) if f depends on the derivatives of AM up to the order γ, then EF (AM ) depends on the
derivatives of AM up to the order (2γ − 1);
(ii) if the function f in the functional (4.4) is a polynomial, then EF (AM ) is a polynomial
in the derivatives of AM ;
(iii) if γ = 2 in (i), we have

EF
(
AM

)
= −f

(
AMij

)
H− 2

(
∇Mj φij + φijHj

)
e⊥i + 2φijB

s
ijes

where φij(x) = ∂f/∂AMij (x) and e⊥i = (I −∇2AM )ei is the normal component of ei.

By the same argument leading to Theorem 2.2, choosing Ω small enough we can
assume that for t ∈ (−ε, ε) all the manifolds Mt are contained in Ω and that the
function At(x) = AMt(x) is a smooth function in t ∈ (−ε, ε) and x ∈ Ω.

Applying the Area Formula 4.5 to the map Φt : M → Mt we can rewrite the
derivative as

d

dt

∫
M

f
(
Ati1i2(Φt(x)), . . . , Atj1 ... jγ (Φt(x))

)
JMΦt(x) dHn(x)

∣∣∣∣∣∣
t=0

where JMΦt(x) denotes the tangential Jacobian on M of the map Φt.
Hence, carrying the derivative under the integral sign, we find out

d

dt
F(Mt)

∣∣∣∣
t=0

=

∫
M

∑
α

∂f

∂AMα

d

dt

[
Atα(Φt(x))

]∣∣∣∣
t=0

dHn(x)

+

∫
M

f
(
AMt
i1i2

, . . . , AMt
j1 ... jγ

) d

dt
JMΦt(x)

∣∣∣∣
t=0

dHn(x).
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where γ is a multiindex such that |α| ≤ γ.
Now, the derivative of the Jacobian is simply the tangential divergence of its in-
finitesimal generator field X(x) = dΦt(x)

dt

∣∣∣
t=0

and the derivative of the function

[Atα(Φt(x))] can be expressed by

d

dt

[
Atα(Φt(x))

]∣∣∣∣
t=0

=
∂Atα
∂t

(x)

∣∣∣∣
t=0

+ 〈∇AMα (x) |X(x)〉.

Using the fact that the function At(x) is smooth, we can exchange the order of
differentiation in the middle term of this equation to get

∂Atα
∂t

(x)

∣∣∣∣
t=0

= Dα

{
∂

∂t
At(x)

∣∣∣∣
t=0

}
.

To go on, we need to compute the derivative of the function At(x) at t = 0.

Lemma 4.5. Under the above smoothness assumptions, we have

(4.7)
∂

∂t
At(x)

∣∣∣∣
t=0

= −〈∇AM (x)− x |X(∇AM (x))〉

where X is the infinitesimal generator field of Φt.

Proof. We consider a point x ∈ Ω and we define y = πM (x) ∈ M and z = Φt(y) ∈
Mt. We have d2(x,M) = ‖x− y‖2 and d2(x,Mt) ≤ ‖x− z‖2, hence

AMt(x)−AM (x)

t
= −1

2

d2(x,Mt)− d2(x,M)

t

≥ 1

2

‖x− y‖2 − ‖x− z‖2

t
=
〈z − y | 2x− y − z〉

2t
.

Now z − y = Φt(y)− y is infinitesimal as t→ 0, moreover

Φt(y) = y + tX
(
πM (x)

)
+ o(t).

Then the last term of the equation above tends to

〈X(πM (x)) |x− πM (x)〉 = −〈∇AM (x)− x |X(∇AM (x))〉.

This proves that

lim inf
t→0

AMt(x)−AM (x)

t
≥ −〈∇AM (x)− x |X(∇AM (x))〉.

Now, using a similar reasoning with y = πMt(x) and z = Φ−1
t (y), we obtain the

opposite estimate

lim sup
t→0

AMt(x)−AM (x)

t
≤ −〈∇AM (x)− x |X(∇AM (x))〉

and this proves the lemma. �

We can now write the following general formula

d

dt
F(Mt)

∣∣∣∣
t=0

=

∫
M

f
(
AMt
i1i2

, . . . , AMj1 ... jγ

)
divM X(x) dHn(x)

+

∫
M

∑
α

∂f

∂AMα
〈∇AMα (x) |X(x)〉 dHn(x)

−
∫
M

∑
α

∂f

∂AMα
Dα

[
〈∇AM (x)− x |X(∇AM (x))〉

]
dHn(x).
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Applying the tangential divergence theorem 4.2 to the first term and adding to-
gether gradient and tangential gradient of the functions AM we get

d

dt
F(Mt)

∣∣∣∣
t=0

=−
∫
M

f
(
AMi1i2 , . . . , A

M
j1 ... jγ

)
〈H |X〉 dHn

+

∫
M

∑
α

∂f

∂AMα
〈∇⊥AMα |X〉 dHn(4.8)

−
∫
M

∑
α

∂f

∂AMα
Dα

[
〈∇AM (x)− x |X(∇AM (x))〉

]
dHn(x)

recalling that H is the mean curvature and that the sign “⊥” denotes the projection
on the normal space to the manifold M .

It is now clear that the only problem to get to the Euler equations for F relies on
the computation of the last term, and in particular on the study of the derivatives

(4.9) Dα
[
〈∇AM (x)− x |X(∇AM (x))〉

]
.

Before proceeding to the computation of (4.9), we want to make some remarks
on the first variation:

Proposition 4.6. The first variation of the functional (4.4) depends only on the values on
M of the infinitesimal generator X . Moreover if the vector field X is tangent to M , the
first variation is zero.

Proof. Since ∇AM (x) ∈ M for any x ∈ Ω, (4.8) clearly implies that the first vari-
ation depends only on X|M . If X is tangential, the first term is zero because
H(x) ∈ NxM , the second one is clearly zero and the last one vanishes because
∇AM (x)− x is normal to M at ∇AM (x) for any x ∈ Ω. �

Since (4.8) is linear in X , splitting X(x) in P (x)X(x) and (I − P (x))X(x), we
can assume in the following that X(x) is normal to M at ∇AM (x) for any x ∈ Ω.

Now we go on with the study of the equation (4.9) assuming that the multiindex
α is described by (i1, . . . ir) with γ ≥ r ≥ 2. We can distribute the derivatives on
the two terms inside the scalar product. If all the derivatives act on the right term
in the scalar product the result is zero, because the quantity ∇AM (x) − x is zero
on the manifold M . If all the derivatives go on the left term, it is simple to see that
we obtain exactly the second term, with the opposite sign, in equation (4.8) which
simplifies. So we study the terms with at least one derivative on X(∇AM (x)) and
at least one on ∇AM (x)− x.
Forgetting the term on the left in the scalar product, which will produce functions
of kind AMj1 ... jt , we reduce ourselves to study the derivatives of functions of the
type ϕ(∇AM (x)) at points of M , where ϕ : M → R.

Proposition 4.7. For every multiindex β the derivative Dβ [ϕ(∇AM (x))] can be ex-
pressed on M by a sum of terms

g(x)∇Mj1 ◦ ∇
M
j2 ◦ . . . ◦ ∇

M
jl
ϕ(x)

with l ≤ |β| and with the functions g being polynomials in the derivatives of AM up to
the order |β|+ 1.

Proof. We fix a notation, denoting by ∇Mf(x) the projection of the gradient of the
function f on the tangent space ofM at the point πM (x) even if x 6∈M . This vector
clearly coincides with the tangential gradient if x ∈M .
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We prove by induction on n = |β|, that every derivative can be written as a sum of
terms of the following kind:

(4.10) g
(
AM

)
∇Mj1 ◦ ∇

M
j2 ◦ . . . ◦ ∇

M
jl
ϕ(∇AM (x))

for x ∈ Ω, l ≤ n and where g
(
AM

)
denotes a function of the derivatives of AM up

to the order (n+1) (here we tangentially differentiate ϕ(y) l times and we evaluate
the derivatives at∇AM (x)).
If n = 1 we have only one derivative, hence

∂

∂xi
[ϕ(∇AM (x))] = ∇kϕ(∇AM (x))AMki (x).

By the properties (a) of∇2AM , in the equation above we can consider∇Mk ϕ instead
of ∇ϕ, and the first case of the induction is achieved.
Now, assuming the proposition true for (n− 1), to get the induction step we have
to differentiate with respect to xi a formula like (4.10). If the additional derivative
∇i acts on g

(
AM

)
it does not matter, while when it acts on the other factor we

apply the same reasoning of the case n = 1 to get a term of the form

g
(
AM

)
AMik (x)∇Mk ◦ ∇Mj1 ◦ ∇

M
j2 ◦ . . . ◦ ∇

M
jl
ϕ(∇AM (x)).

Finally, if x belongs to M we have ∇AM (x) = x and the statement follows. �

Proof of Theorem 4.4. The uniqueness of EF (AM ) easily follows by the possibility
to choose Φt(x) = x+ tX(x) where X is any vector field.
We first consider the special case γ = 2, that is, functionals depending on the
tangent space of M . In this case the Euler equation easily follows by formula (4.8),
using the argument of the case |β| = 1 in Proposition 4.7:

d

dt
F(Mt)

∣∣∣∣
t=0

=−
∫
M

f
(
AMij

)
〈H |X〉 dHn

−
∫
M

∂f

∂AMij

(
AMis (x)− δis

)
∇Mj Xs(x) dHn(x)

−
∫
M

∂f

∂AMij

(
AMjs (x)− δjs

)
∇Mi Xs(x) dHn(x).

Defining φij as in the statement of the theorem and using the tangential divergence
theorem we find out
d

dt
F(Mt)

∣∣∣∣
t=0

= −
∫
M

f
(
AMij

)
〈H |X〉 dHn

+

∫
M

[
φij(x)

(
AMis (x)− δis

)
Hj(x) +∇Mj (φij(x)(AMis (x)− δis))

]
Xs(x) dHn(x)

+

∫
M

[
φij(x)

(
AMjs (x)− δjs

)
Hi(x) +∇Mi (φij(x)(AMjs (x)− δjs))

]
Xs(x) dHn(x).

Finally, using the orthogonality of X we obtain (4.4).
In general, the existence of EF (AM ) and its computing algorithm are described

by the following steps:
• Step 1 We distribute the derivatives on the two terms in the scalar product

in the last line of (4.8), avoiding to have all the derivatives acting on one
alone.

• Step 2 Write the derivation operator on the field X in terms of tangential
gradients, following Proposition 4.7.
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• Step 3 Bring derivatives away from the fieldX , using the identity f∇Mi Xs =
∇Mi (fXs) − Xs∇Mi f , and then the tangential divergence theorem 4.2 to
exchange the integral of ∇Mi (fXs) with the integral of −HifX

s. Iterating
this procedure we get to an expression gsXs, which we are interested in.

In particular, we obtain that EF (AM ) has a polynomial dependence on the deriva-
tives of AM if the same is true for f . Applying Proposition 4.7 to expressions like

∂f

∂AMα

[
〈Dβ

(
∇AM (x)− x

)
|DτX(∇AM (x))〉

]
with β + τ = α and β, τ 6= 0, one finds terms of the following form

gσ(x)∇Mσ1
◦ . . . ◦ ∇MσlX(x)

with gσ depending on the derivatives of AM up to the order |α| and l ≤ |α| − 1;
integrating by parts we obtain terms depending on the derivatives of AM up to
the order l + |α|. Since l ≤ |α| − 1 and |α| ≤ γ, we get terms with derivatives of
order at most (2γ − 1). �

5. EULER EQUATIONS FOR SOME PARTICULAR FUNCTIONALS

In this section we study and compute effectively the Euler equations EF (AM )
in some cases. We will consider the following functionals:

(5.1) Fp(M) =

∫
M

|H|p dHn, Gγ(M) =

∫
M

∑
|α|=γ

|AMα |2 dHn

defined on compact, smooth n–manifolds M embedded in RN with ∂M = ∅.
The function H appearing inside the first integral is the mean curvature vector of
M that, as we remarked, can be expressed by ∆

(
∇AM

)
. The Willmore functional

corresponds to the case of surfaces in R3 with p = 2, for further references on this
topic see [34]. We also notice that for γ = 2 the functional Gγ reduces to nHn(M),
whose first variation is −nH.

If γ = 3, by (3.11) the functional Gγ is equal to 3 times the integral of the square
of the quadratic norm of B. By the Gauss–Bonnet theorem, in the case n = 2,
N = 3 the functionals F2 and G3 are proportional, because the deformation does
not change the genus of the manifold and |B|2 is equal to |H|2 − 2λ1λ2, where
λ1, λ2 are the principal curvatures. In particular, in this case we have EG3 = 3EF2

(see also Remark 5.3).

5.1. Codazzi–Mainardi’s Equations. In the computations of this section we will
need the following result.

Proposition 5.1. At every point of the manifold M , the following relation holds,

∇Mi Bl
jk −∇Mj Bl

ik =
∑
s

{
Bl
ks∇Mi Pjs − Bl

ks∇Mj Pis
+Bl

js∇Mi Pks − Bl
is∇Mj Pks

+Bs
ik∇Mj Pls − Bs

jk∇Mi Pls
}
.

For a proof of this proposition, consult the book of Do Carmo [10] at Chapter 6,
Section 2.

Remark 5.2. We notice that in the codimension one case this relation becomes very
simple: denoting with ν a locally smooth, unit normal vector field and with Bν

the symmetric bilinear form 〈B|ν〉, we have

∇Mi Bν
jk −∇Mj Bν

ik = νj [Bν ]
2
ik − νi [Bν ]

2
jk .
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Moreover, setting in this formula j = k and summing over the index k, we get the
equation

(5.2)
∑
k∇Mk Bν

ik = ∇Mi H + νiB
2

where H is 〈H|ν〉 and B2 is the square of the quadratic norm of Bν .

5.2. First Variation ofFp. We have seen in (4.8) that the first variation is expressed
by

d

dt
Fp(Mt)

∣∣∣∣
t=0

=−
∫
M

|H|p 〈H |X〉 dHn

+

∫
M

〈∇⊥|H|p |X〉 dHn(5.3)

− p
∑
ijl

∫
M

|H|p−2AMillD
ijj
[
〈∇AM (x)− x |X(∇AM (x))〉

]
dHn(x).

By Proposition 4.6, we can assume that X(x) is normal to M at ∇AM (x) for any
x ∈ Ω. Studying the last term and distributing the derivatives in the scalar product
we obtain the following:

• With 3 derivatives on the left term we get

−
∫
M

〈∇⊥|H|p |X〉 dHn

that simplifies with the second term in (5.3).
• 3 derivatives on the right term give zero, because the function∇AM (x)−x

is zero on M .
• 2 derivatives on the left term,

−p
∫
M

|H|p−2AMill〈Djj
(
∇AM (x)− x

)
| ∇Mi X(x)〉 dHn(x)

−2p

∫
M

|H|p−2AMill〈Dij
(
∇AM (x)− x

)
| ∇Mj X(x)〉 dHn(x).

The first term is zero because AMill is a normal vector and ∇Mi X is a tan-
gential gradient. The second one, using the tangential divergence theorem
can be expressed as

2p

∫
M

|H|p−2 HjA
M
ill〈∇AMij (x) |X(x)〉 dHn(x)

+2p

∫
M

∇Mj
{
|H|p−2AMillA

M
ijs

}
Xs dHn.

Finally, by the fact that the 3–tensor AMijk gives zero when applied to the
two normal vectors AMill and Hj (see Proposition 4.1(b)), we get

2p

∫
M

∇Mj
{
|H|p−2 HiA

M
ijs

}
Xs dHn.
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• 2 derivatives on the right term,

−p
∫
M

|H|p−2AMillD
i
(
∇sAM (x)− xs

)
Djj

[
Xs(∇AM (x))

]
dHn(x)

−2p

∫
M

|H|p−2AMillD
j
(
∇sAM (x)− xs

)
Dij

[
Xs(∇AM (x))

]
dHn(x).

Using an orthogonality argument like above, we see that the second of
these two terms vanishes, while the first one gives

p

∫
M

|H|p−2AMsll
∂

∂xj

{
AMjr (x)AMrt (∇AM (x))Xs

t (∇AM (x))
}
dHn(x)

= p

∫
M

|H|p−2AMsllA
M
jr (x)

∂

∂xj

{
AMrt (∇AM (x))Xs

t (∇AM (x))
}
dHn(x)

+ p

∫
M

|H|p−2AMsllA
M
jjr(x)AMrt (∇AM (x))Xs

t (∇AM (x)) dHn(x)

= p

∫
M

|H|p−2AMsll∇Mr ◦ ∇Mr Xs(x) dHn(x) = p

∫
M

|H|p−2AMsll∆
MXs dHn(x)

where we used extensively Proposition 4.1(a) and in particular the identity
AMjr (x)AMrt (∇AM (x)) = AMjt (x). Substituting AMsll with Hs and using the
properties of the tangential Laplacian, this final term is equal to

p

∫
M

∆M
(
|H|p−2 Hs

)
Xs dHn.

Finally, adding all these results together, we get

d

dt
Fp(Mt)

∣∣∣∣
t=0

= −
∫
M

|H|p 〈H |X〉 dHn + p

∫
M

∆M
(
|H|p−2 Hi

)
Xi dHn

+2p

∫
M

∇Mj
{
|H|p−2 HsA

M
ijs

}
Xi dHn.

Using the orthogonality of X and Proposition 4.1(b) we can simplify again the last
term to get

2p e⊥i ∇Mj
{
|H|p−2HsA

M
ijs

}
= 2p e⊥i |H|p−2∇Mj

{
HsA

M
ijs

}
.

Now we have,

e⊥i ∇Mj
{
HsA

M
ijs

}
= e⊥i ∇Mj

{
HsB

s
ij

}
= e⊥i Hs∇Mj Bs

ij

and using the relation of Proposition 5.1,

e⊥i ∇Mj Bs
ij = Bs

jt∇Mj Pit
hence, substituting this quantity in the equation above, the term we are dealing
with becomes

HsB
s
jt∇Mj Pit = HsB

s
jtA

M
jti = HsBs

jtB
i
jt.

Then we get the Euler equation of Fp,

(5.4) EFp = −|H|pH + 2p |H|p−2HsBs
jtB

i
jtei + p∆M

(
|H|p−2 Hi

)
e⊥i ,

where we denoted by e⊥i = (I −∇2AM )ei the normal projections of the vectors of
the canonical basis of RN .
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In the codimension 1 case n = (N − 1), we have a scalar form of the Euler equa-
tions. Indeed, considering the classical second fundamental form Bν = 〈B|ν〉,
locally we can write X(x) = ϕ(x)ν(x) and Bl

jt = νlB
ν
jt, hence H(x) = H(x)ν(x),

with ν smooth unit normal vector field and ϕ in C∞(M).
The equation (5.4) becomes

〈EFp |X〉 =− |H|pHϕ+ 2pϕ|H|p−2H Trace [Bν ]
2

+ pϕ∆M
(
|H|p−2H

)
+ pϕ |H|p−2

Hνi∆
Mνi

where we used the fact that νi∇Mνi is equal to zero because ν is a unit vector field.
By the same reason νi∆

Mνi = −〈∇Mνi|∇Mνi〉 = −
∑
i

∣∣∇Mνi∣∣2, which is the
square of the quadratic norm of the bilinear form Bν , indeed, by (3.4) we have

(5.5) Bν
ij = −∇Mi νj = −∇Mj νi.

The term Trace [Bν ]
2 is clearly also equal to |Bν |2; if we denote such quantity with

B2, then we can write

EFp =
[
−|H|pH + p |H|p−2

HB2 + p∆M
(
|H|p−2H

)]
ν.

In particular, setting p = 2 we have the nice equation (see [34])

EF2
=
[
2 ∆MH + 2HB2 −H3

]
ν

corresponding to the Willmore functional.

5.3. First Variation of Gγ . The other functional we are interested in is

(5.6) Gγ(M) =

∫
M

∑
|α|=γ

|AMα |2 dHn,

as usual defined on compact n–manifolds in RN with ∂M = ∅. By the remarks at
the beginning of this section, we can assume γ > 2. We perform the full computa-
tion of EGγ only for the case γ = 3 in codimension 1, in the general case we only
study the part ofEGγ containing the greatest number of derivatives of the function
AM .

Reasoning like in the previous example, the first variation is given by

d

dt
G3(Mt)

∣∣∣∣
t=0

=−
∫
M

|AMijk|2〈H|X〉 dHn

− 2

∫
M

AMijk A
M
ijs∇Mk Xs dHn

− 2

∫
M

AMijk
(
AMis − δis

)
∇Mj ∇Mk Xs dHn

and permuting cyclically the indexes i, j and k in the last two integrals. Hence this
gives,

d

dt
G3(Mt)

∣∣∣∣
t=0

=− 3

∫
M

B2〈H|X〉 dHn

+ 6

∫
M

∇Mk
(
∇Mk AMij AMijs

)
Xs dHn

+ 3

∫
M

AMijk
(
δis −AMis

) (
∇Mj ◦ ∇Mk +∇Mk ◦ ∇Mj

)
Xs dHn.
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Now we use the fact that AMis = δis − νiνs, moreover we set H = Hν and X = ϕν.
Substituting these quantities in the formula above and simplifying the terms equal
to zero by orthogonality, we obtain

d

dt
G3(Mt)

∣∣∣∣
t=0

=− 3

∫
M

ϕHB2 dHn

+ 6

∫
M

ϕ∆M (νiνj)∇Mi νj dHn

− 6

∫
M

ϕ∇Mk (νiνj)∇Mk AMijsνs dHn

− 3

∫
M

∇Mj νk
(
∇Mj ∇Mk ϕ+∇Mk ∇Mj ϕ

)
dHn

− 3

∫
M

ϕ∇Mj νkνs
(
∇Mj ∇Mk νs +∇Mk ∇Mj νs

)
dHn.

Indeed, using the properties stated in Proposition 4.1, we can compute

ϕ∇Mk
(
∇Mk AMij AMijs

)
νs = −ϕ∇Mk

(
∇Mk νiνj∇Mi AMjs +∇Mk νjνi∇Mj AMis

)
νs

= ϕ∇Mk
{(
∇Mk νi

) (
∇Mi νs

)
+
(
∇Mk νj

) (
∇Mj νs

)}
νs

= −2
(
∇Mk νi

) (
∇Mi νs

) (
∇Mk νs

)
.

Hence we have
d

dt
G3(Mt)

∣∣∣∣
t=0

=− 3

∫
M

ϕHB2 dHn − 12

∫
M

ϕ
(
∇Mk νi

) (
∇Mk νj

) (
∇Mi νj

)
dHn

− 3

∫
M

∇Mj νk
(
∇Mj ∇Mk ϕ+∇Mk ∇Mj ϕ

)
dHn

+ 6

∫
M

ϕ
(
∇Mj νk

) (
∇Ms νj

) (
∇Mk νs

)
dHn

=− 3

∫
M

ϕHB2 dHn

− 3

∫
M

∇Mj νk
(
∇Mj ∇Mk ϕ+∇Mk ∇Mj ϕ

)
dHn

− 6

∫
M

ϕ
(
∇Mk νi

) (
∇Mj νk

) (
∇Mi νj

)
dHn.

We introduce now the following elementary symmetric functions of the eigenval-
ues λi of Bν = 〈B|ν〉,

St =
∑

i1<i2 ... <it

λi1λi2 . . . λit , for t ≤ n

and we define St = 0 for t > n. The last term in the equation above can be written
as (

∇Mk νi
) (
∇Mk νj

) (
∇Mi νj

)
= −Trace [Bν ]

3
= −

∑
i

λ3
i .

Using the formula

S3
1 = −2(λ3

1 + λ3
2 + . . . + λ3

n) + 3S1[S2
1 − 2S2] + 6S3
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and recalling that H = S1 and S2
1 − 2S2 = B2, we have

2(λ3
1 + λ3

2 + . . . + λ3
n) = H3 − 3HB2 + 6S3.

Substituting this term in the equation above, we get

d

dt
G3(Mt)

∣∣∣∣
t=0

=− 3

∫
M

ϕHB2 dHn + 3

∫
M

Bν
jk

(
∇Mj ∇Mk ϕ+∇Mk ∇Mj ϕ

)
dHn

+ 18

∫
M

ϕS3 dHn − 3

∫
M

ϕH3 dHn + 9

∫
M

ϕHB2 dHn,

and finally

d

dt

∫
M

B2 dHn
∣∣∣∣∣∣
t=0

= 2

∫
M

ϕHB2 dHn + 6

∫
M

ϕS3 dHn −
∫
M

ϕH3 dHn

+

∫
M

Bν
jk

(
∇Mj ∇Mk ϕ+∇Mk ∇Mj ϕ

)
dHn.

Now, to conclude it is sufficient to show that the last term of the formula above is
equal to

2

∫
M

ϕ∆MH dHn.

This can be done with the help of Codazzi–Mainardi’s equations, in particular
using the relation (5.2)∫
M

Bν
jk∇Mj ∇Mk ϕdHn = −

∫
M

∇Mj Bν
jk∇Mk ϕdHn

= −
∫
M

(
∇Mk H + νkB

2
)
∇Mk ϕdHn = −

∫
M

∇Mk H∇Mk ϕdHn

=

∫
M

ϕ∇Mk ∇Mk H dHn =

∫
M

ϕ∆MH dHn.

Hence the Euler equation of the functional G3 (three times the integral of B2) is
given by

EG3 = 3
[
2∆MH + 2HB2 −H3 + 6S3

]
ν.

Remark 5.3. As we noticed thatB2 = H2−2S2, we have also that the Euler equation
of the functional

L2(M) =

∫
M

S2 dHn

in codimension 1, is given by

EL2 = −3S3ν.

For a complete discussion of Euler equations of functionals depending on the ele-
mentary symmetric functions of the eigenvalues of the second fundamental form,
see [31].
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Theorem 5.4. For any γ > 2 the Euler equation of the functional Gγ is given by

EGγ = 2γ(−1)γ−1
∑

j,i2,k2 ... iγ ,kγ

(
AMi2k2 . . . A

M
iγkγA

M
j i2k2 ... iγkγ

)
e⊥j + g(AM )

= 2γ(−1)γ−1
N∑
j=1


(γ − 2)–times︷ ︸︸ ︷

∆M ◦∆M ◦ . . . ◦∆M Hj

 e⊥j + h(AM )(5.7)

where the vector fields g(AM ), h(AM ) are polynomials in the derivatives of AM up to the
order (2γ − 2).

Proof. We follow the line of proof of Proposition 4.7 and we notice that, by Propo-
sition 4.6, we can assume that the infinitesimal generator X is a normal vector
field. We have seen (see (4.8)) that the term with the highest number of derivatives
arises from the integral

−2

∫
M

AMi1 ... iγD
i1 ... iγ 〈∇AM (x)− x |X(∇AM (x))〉 dHn(x)

when all but one of the derivatives Dij act on the field X . We suppose that the
only derivative going on the left is Di1 . Hence, we have to study

−2

∫
M

AMi1 ... iγ
(
AMi1k(x)− δi1k

)
Di2 ... iγ

[
Xk(∇AM (x))

]
dHn(x).

After doing the first derivative on X(∇AM (x)) we get AMiγj(x)(∇Mj Xk)(∇AM (x));
it is clear that if we are only interested in the term containing the highest deriva-
tive, we can avoid to distribute derivatives on AMiγj(x) and then consider only the
term containing the derivatives of the field. Iterating this argument we get

−2

∫
M

AMi1 ... iγ
(
AMi1k(x)− δi1k

)
AMiγjγ . . . A

M
i2j2∇

M
j2 ◦ . . . ◦ ∇

M
jγX

k(x) dHn(x).

Now we have to apply the tangential divergence theorem 4.2, noticing again that
if we are interested only in the highest derivative term, so we can limit ourselves
to differentiate the term AMi1 ... iγ . Moreover, since we apply the theorem with tan-
gential fields, no term containing H appears. After doing this we obtain

(−1)γ2

∫
M

[
∇Mjγ ◦ . . . ◦ ∇

M
j2A

M
i1 ... iγ

] (
AMi1k − δi1k

)
AMiγjγ . . . A

M
i2j2 X

k(x) dHn(x).

Using the orthogonality of X we get

−2(−1)γ
∫
M

[
∇Mjγ ◦ . . . ◦ ∇

M
j2

(
∇i1AM

)
i2 ... iγ

]
AMiγjγ . . . A

M
i2j2 X

i1(x) dHn(x).

Hence, performing the tangential derivatives and adding on all indexes we get the
first equality in (5.7).
To get the second equality, we apply in the inverse direction the derivative of a
product formula to carry inside the components of the projection AMitkt , in order to
obtain the tangential Laplacians. Notice that, with a reasoning similar to the one
above, in doing this we only introduce terms with an order of differentiation at
most (2γ − 2). In this way we obtain

EGγ = 2γ(−1)γ−1
N∑
j=1


(γ − 1)–times︷ ︸︸ ︷

∆M ◦∆M ◦ . . . ◦∆M
(
∇jAM

) e⊥j + h(AM ).
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The last step in proving this representation formula for Gγ is to show that H(x) =
∆M

(
∇AM

)
(x), at every x ∈M . We have

∆M
(
AMi

)
= ∇Mk

(
AMki

)
= Bi

kk + Bk
ki = Hi + Bk

ki

where we used the relation (4.3). To conclude it is hence sufficient to notice that
Bk
ki = 0 by orthogonality. �

Remark 5.5. We remark that in the two expressions above for the leading term, we
cannot substitute e⊥i with ei, because of the fact that neither the first nor the second
are in general normal vectors. This can be seen considering a torus T in R3 with
the biggest radius equal to 2 and the smallest one equal to 1, for instance that one
defined by

T ≡
{

(2− cos ν) cos θ, (2− cos ν) sin θ, sin ν) ∈ R3 | (ν, θ) ∈ R2
}

and computing these two vectors in the first meaningful case γ = 3 at the point
(2, 0, 1) on the top of T .

The function ηT for the torus is given by

ηT (x, y, z) =
1

2

[√(√
x2 + y2 − 2

)2

+ z2 − 1

]2

.

Setting

A(x, y, z) = AT (x, y, z) =
‖(x, y, z)‖2

2
− ηT (x, y, z)

and using the Mathematica1 package we computed∑
i2,k2,i3,k3

Ai2k2Ai3k3Aj i2k2i3k3 = Aj1111 + 2Aj2211 +Aj2222

with j = 1 at (2, 0, 1) and we found the value −3, hence there is a tangential
component in the leading term of the first representation in (5.7).

For the second term we show the computation explicitly. We have that ∆MHi =
∆M (Hνi), hence

∆MHi = νi∆
MH + 2〈∇Mνi | ∇MH〉+H∆νi

= νi∆
MH + 2∇Mk νi∇Mk H +H∇Mk ∇Mk νi

= νi∆
MH − 2Bν

ik∇Mk H −H∇Mk Bν
ik.

Now we apply the relation (5.2) to the last term in the equation above to get

∆MHi = νi∆
MH − 2Bν

ik∇Mk H −H∇Mi H − νiHB2

= νi
(
∆MH −HB2

)
− (Hδik + 2Bν

ik)∇Mk H.

Since at the point (2, 0, 1) of the torus T we have Bν
11 = 1 and Bν

2j = 0, hence
H = 1, the vector ei∆MHi has a tangential part given by

(5.8) −3(∇M1 H)e1 −H(∇M2 H)e2.

The quantity H = 〈H | ν〉 in a neighborhood of the point (2, 0, 1) is

H(x, y, z) = 2− 2√
x2 + y2

then
∇H(x, y, z) = 2

xe1 + ye2

(x2 + y2)
3/2

.

1Mathematica is a registered trademark of Wolfram Research.
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At the point (2, 0, 1) we have

∇H(2, 0, 1) =
1

2
e1 = ∇MH(2, 0, 1)

because the gradient is a tangent vector.
This, with the (5.8) shows that ei∆Hi can have a non zero tangential component.

REFERENCES

1. L. Ambrosio and H. M. Soner, Level set approach to mean curvature flow in any codimension, J. Diff.
Geom. 43 (1996), 693–737.

2. K. A. Brakke, The Motion of a Surface by its Mean Curvature, Princeton Univ. Press, Princeton, N.J.,
1978.

3. B. Y. Chen, Total Mean Curvature and Submanifold of Finite Type, World Scientific Publishing Co. Pte
Ltd., Singapore, 1984.

4. Y. G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean
curvature flow equations, J. Diff. Geom. 33 (1991), 749–786.

5. E. De Giorgi, Barriers, boundaries and motion of manifolds, Seminari Scuola Normale Superiore, Pisa
(1995).

6. , Congetture riguardanti alcuni problemi di evoluzione, A Paper in Honor of J. Nash, Duke Math.
J. 81 (1996), no. 2, 255–268, in Italian.

7. , Congetture riguardanti alcuni problemi di evoluzione, A Paper in Honor of J. Nash, CvGmt
Preprint Server – Scuola Normale Superiore, http://cvgmt.sns.it/ (1996), in English.

8. M. Delfour and J.-P. Zolésio, Shape analysis via oriented distance functions, J. Functional Analysis 123
(1994), 129–201.

9. , Shape analysis via distance functions: local theory, Boundaries, Interfaces and Transitions
(M. Delfour, ed.), CRM Proc. Lect. Notes Ser., AMS, 1998.

10. M. P. Do Carmo, Riemannian Geometry, Birkhäuser, Boston, 1992.
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