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Abstract. New L1-lower semicontinuity and relaxation results for integral functionals defined

in BV(Ω) are proved, under a very weak dependence of the integrand with respect to the

spatial variable x. More precisely, only the lower semicontinuity in the sense of the 1-capacity

is assumed in order to obtain the lower semicontinuity of the functional. This condition is

satisfied, for instance, by the lower approximate limit of the integrand, if it is BV with respect

to x. Under this further BV dependence, a representation formula for the relaxed functional is

also obtained.
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1. Introduction

In this paper we study the L1-lower semicontinuity and relaxation of an integral functional of
the type

F (u) =
∫

Ω
f(x, u(x),∇u(x)) dx ,

where u is a scalar function from W 1,1(Ω), and of its BV counterpart

F(u) =
∫

Ω
f(x, u,∇u)dx +

∫

Ω
f∞

(
x, ũ,

Dcu

|Dcu|
)

d|Dcu|+
∫

Ju∩Ω
dHN−1

∫ u+(x)

u−(x)
f∞(x, s, νu(x))ds .

In recent years there has been a renewed interest in these topics since many authors ([19], [25],
[22], [26], [15], [13], [24], [23], [14], [2], [3]) have studied the lower semicontinuity and relaxation
of F and F with the aim of lessening the regularity assumptions on f with respect to x.
In searching weaker conditions on f which still guarantee the lower semicontinuity essentially two
kinds of assumptions are considered in the above papers (beside the natural requirements that
f(x, s, ξ) is convex in ξ and continuous in s). Either f is assumed to be lower semicontinuous in
x, uniformly with respect to (s, ξ) (see e.g. [19], [23]), or f is assumed to be weakly differentiable
(see [25], [22], [15], [13]) or even BV in x (see [14]).
In this paper we address the lower semicontinuity and relaxation issues under different assump-
tions on f . To illustrate them let us consider the model case where f(x, ξ) = a(x)p(ξ) and
p : IRN → [0, +∞) is a convex function. In Theorem 3.1 we prove that if a : Ω → [0,+∞) is
lower semicontinuous in the sense of 1-capacity (see Section 2.4), then F is L1-lower semicon-
tinuous in BV(Ω). As far as we know, this is the first result of this kind where capacity plays
a role as an assumption on the integrand. Moreover, Theorem 3.1 is an extension of the result
proved in [19], which requires a to be lower semicontinuity in the classical sense. Notice also
that if a is a BV function, then it can be proved that its lower approximate limit a− is lower
semicontinuous in the sense of 1-capacity. Thus our result implies immediately those proved for
instance in [25], [13] or in [14] where a is assumed to be in W 1,1(Ω) or in BV(Ω), respectively.
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The assumption that a is a BV function is also a key point in finding the relaxed functional
with respect to L1-convergence of

(1.1) u ∈ W 1,1(Ω) 7→
∫

Ω
a(x)p(∇u(x)) dx .

In fact, as stated in the first part of Theorem 1.1 below, we have that if a ∈ BV(Ω), the relaxed
functional of (1.1) in BV(Ω) is given by

(1.2)
∫

Ω
a(x)p(∇u)dx +

∫

Ω
a−(x)p∞

(
Dcu

|Dcu|
)

d|Dcu|+
∫

Ju∩Ω
(u+−u−)a−(x)p∞(νu(x))dHN−1 .

Notice that the lower semicontinuity result and the representation formula for the relaxed func-
tional of (1.1) are obtained under different assumptions on a. This is not the case when dealing
with one dimensional functionals. In fact, it can be proved as a consequence of Example 2 in [7]
that, given any Borel function a, the functional

(1.3)
∫

Ω
a(x)p(u′)dx +

∫

Ω
a(x)p∞

(
Dcu

|Dcu|
)

d|Dcu|+
∑

x∈Ju∩Ω

a(x)p∞(u(x+)−u(x−))

is L1-lower semicontinuous on BV if and only if a is lower semicontinuous and that the relaxed
functional of (1.1) is represented by (1.3) with a replaced by its lower semicontinuous envelope.
However, in higher dimension things are more complicate. Indeed, examples can be given of
functionals of the type (1.1) whose relaxed functional is given by a functional of the type F
where the integrand f is not the product of two functions of x and ξ (see [1, Section 8]).
In the case of a general integrand f our Theorem 3.4 states that a (uniform) lower semicontinuity
of f in the sense of 1-capacity is still sufficient for the functional F to be lower semicontinuous.
This result is obtained by combining in a delicate way two different approximation techniques:
the first one was developed in [11, Section 1] in the context of capacity theory and the second
one was introduced in [23] to approximate lower semicontinuous integrands, convex in the last
variable.
On the other side, as in the model case, the BV dependence of f with respect to x turns out to
guarantee that the relaxed functional F of F is less than or equal to F , provided that we choose
(f∞)− as representative of f∞ in F . Notice in fact that the values of F are clearly affected
by the choice of such representative. We remark that this choice makes the proof of inequality
F ≤ F quite difficult. In fact, up to now, this inequality has been always proved under the
assumption that f∞ were upper semicontinuous with respect to x (see e.g. [19], [2], [3]).
The inequality F ≤ F is proved in Theorem 4.3, where the case of an integrand f depending
only on (x, ξ) is considered. Even in this case the proof of this inequality requires a very delicate
adaptation of the blow-up argument of Fonseca–Müller ([20], [21]). In fact the situation studied
here is complicated by the interaction between the jump set of u and the jump sets of the BV
functions f∞(·, ξ) as ξ varies in IRN . Dealing with this difficulty requires some new technical
ideas (see the discussion before Proposition 4.5), which at the moment do not seem to work
when also a dependence on s is allowed.
Combining the inequality F ≤ F with the lower semicontinuity result given in Theorem 3.4 one
then gets that F coincides with F .
The following relaxation result is a consequence of Theorems 3.4 and 4.3. This is not the most
general one which can be derived by the combinations of these two theorems, but still covers
some significant and interesting examples which were not included in the relaxation results so
far available in the literature.
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Theorem 1.1. Let f : Ω × IRN → [0,+∞) be a Borel function such that f(x, ·) is convex for
every x ∈ Ω and, for every ξ ∈ IRN , f(·, ξ), (f−)∞(·, ξ) belong to BV(Ω). Moreover, assume
that there exists Λ > 0 such that

0 ≤ f(x, ξ) ≤ Λ(1 + |ξ|) for all (x, ξ) ∈ Ω× IRN ,

and that at least one of the following three conditions holds:

(1.4) f(x, ξ) can be splitted as a product of two functions depending on x and ξ separately;

{
f(x, ·) is positively 1-homogeneous and

f−(x, ξ) > 0 for all (x, ξ) ∈ (Ω \N0)× (IRN \ {0}), where HN−1(N0) = 0 .
(1.5)





there exists a convex and demicoercive function Ψ : IRN → [0, +∞) such that

Ψ(ξ) ≤ f(x, ξ) for all (x, ξ) ∈ Ω× IRN ;

for every ξ ∈ IRN there exists Nξ ⊂ Ω such that HN−1(Nξ) = 0 and

(f−)∞(x, ξ) =
(
(f−)∞

)− (x, ξ) for all x ∈ Ω \Nξ .

(1.6)

Then, the relaxed functional F (u) is given by

(1.7)
∫

Ω
f(x,∇u)dx+

∫

Ω
(f−)∞

(
x,

Dcu

|Dcu|
)

d|Dcu|+
∫

Ju∩Ω
[u+(x)−u−(x)](f−)∞(x, νu(x))dHN−1.

A few remarks are in order. First, observe that if f(x, ξ) = a(x)p(ξ), the assumptions of the
above theorem are clearly satisfied whenever a is a bounded function in BV (Ω) and p is a convex
function with linear growth, such that f ≥ 0. Similarly, if (1.5) is in force, then also f−(x, ·)
is 1-homogeneous for all x, therefore in order to apply Theorem 1.1 it is enough to assume
that f(·, ξ) ∈ BV(Ω) for all ξ. Notice also that the representation formula (1.7) for the relaxed
functional F (u) reduces, in the first case, to (1.2) and, in the second case, to

∫

Ω
f(x,∇u) dx +

∫

Ω
f−

(
x,

Dcu

|Dcu|
)

d|Dcu|+
∫

Ju∩Ω
[u+(x)−u−(x)]f−(x, νu(x)) dHN−1 .

On the other hand, for a general integrand it is not necessarily true that (f−)∞(·, ξ) and
((f−)∞)− (·, ξ) coincide HN−1-a.e. in Ω, as shown in [10, Example 4.4]. In that case func-
tional (1.7) is still lower semicontinuous in BV (Ω) but it is strictly smaller than F (u), which in
turn is represented by a similar formula, with (f−)∞ replaced by ((f−)∞)−.

2. Notations and preliminaries

2.1. Notations. Throughout the paper N > 1 is a fixed integer and the letter c denotes a
strictly positive constant, whose value may change from line to line.
Given x0 ∈ IRN and ρ > 0, Bρ(x0) denotes the ball in IRN centered in x0 with radius ρ.
Let Ω be an open subset of IRN . We denote by A(Ω) the family of all open subsets A of Ω and
by B(Ω) the σ-algebra of all Borel subsets B of Ω.
Set LN the Lebesgue measure on IRN and HN−1 the Hausdorff measure of dimension (N − 1)
on IRN .
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2.2. Approximate upper and lower limits. Let Ω ⊂ IRN be an open set and let g : Ω → IRN

be a measurable function. The upper and lower approximate limit of g at a point x ∈ Ω are
defined as

g+(x)=inf{t ∈ IR : D({g>t}; x)= 0}, g−(x)=sup{t ∈ IR : D({g<t};x)= 0} ,

respectively, where, for any measurable set E ⊂ IRN and any x ∈ IRN , D(E; x) denotes the
density of E at the point x. The quantities g+(x), g−(x) are well defined (possibly equal to
±∞) at every x ∈ Ω, and g−(x) ≤ g+(x). The functions g+, g− : Ω → [−∞,∞] are Borel
measurable.
If g ∈ L1

loc(Ω) and x ∈ Ω, the precise representative of g at x is defined as the unique value
g̃(x) ∈ IR such that

(2.1) lim
%→0+

1
%N

∫

B%(x)
|g(y)− g̃(x)| dx = 0 .

Notice that whenever the precise value g̃(x) of g exists, we have g̃(x) = g+(x) = g−(x). The set of
points in Ω where the precise representative of x is not defined is called the approximate singular
set of g and denoted by Sg. It can be easily proved that Sg is a Borel set and g̃ : Ω \ Sg → IR

is a Borel function. Notice also that, if x is a Lebesgue point of g, then (2.1) holds with g̃(x)
replaced by g(x).

2.3. The space BV. The space BV(Ω) is defined as the space of those functions g : Ω → IR

belonging to L1(Ω) whose distributional gradient Dg is an IRN -valued Radon measure with finite
total variation |Dg|(Ω).
We indicate by Dag and Dsg the absolutely continuous and the singular part of the measure
Dg with respect to the Lebesgue measure. We recall that Dag and Dsg are mutually singular.
Moreover we can write

Dg = Dag + Dsg and Dag = ∇gLN ,

where ∇g is the Radon-Nikodým derivative of Dag with respect to the Lebesgue measure.
If g is a BV function it can be proved that for HN−1-a.e. x0 ∈ Sg −∞ < g−(x0) < g+(x0) < +∞
and that there exists a unit vector νg(x0) such that

(2.2) lim
%→0+

1
%N

∫

B±% (x0,νg(x0))
|g(x)− g±(x0)| dx = 0 ,

where, for any ν ∈ SN−1, B±
% (x0, ν) = {x ∈ B%(x0) : 〈x− x0, ν〉 ≷ 0}. The set of points x ∈ Sg

where −∞ < g−(x) < g+(x) < +∞ and (2.2) holds is called the jump set of g and denoted by
Jg. The quantity g+(x) − g−(x) is the jump of g across Jg and νg(x) is the direction of the
jump. It can be proved that Jg is a countably HN−1-rectifiable Borel set and that the function
(g+, g−, νg) : Jg → IR× IR× SN−1 is a Borel function. Moreover,

Dsg = Dcg + (g+ − g−)νg HN−1bJg

and Dcg, the Cantor part of Dg, is a singular measure with the property that |Dcg|(B) = 0 for
any Borel set B ⊂ Ω with finite HN−1-measure.
For a general survey on BV functions we refer to [4].

Now we recall some well known results on the 1-dimensional sections of BV functions. To this
purpose, we introduce some notations.
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Given a direction ν ∈ SN−1, every point x ∈ IRN can be decomposed as x = (x⊥ν , xν), with
xν = 〈x, ν〉 and x⊥ν = x− xνν. By π

ν⊥ we denote the projection of IRN onto the plane through
the origin orthogonal to ν. If E is a given subset of IRN , we set Ex⊥ν = {xν ∈ IR : (x⊥ν , xν) ∈ E} .

Similarly, if g : IRN → IR is a given function, for every x⊥ν ∈ IRN−1, we denote by gx⊥ν the
restriction of the function g to IR; i.e., the function xν ∈ IR 7→ g(x⊥ν , xν).

Lemma 2.1. (see [4], Theorem 3.108) Let g ∈ BV(Ω) be a given function and ν ∈ SN−1 be a
given direction. Then, for HN−1-almost every x⊥ν ∈ π

ν⊥(Ω), g
x⊥ν

belongs to BV(Ω
x⊥ν

),

Jg
x⊥ν

= (Jg)x⊥ν ,

(g̃)x⊥ν is continuous in Ω \ (Jg)x⊥ν and 〈ν, νg(x⊥ν , xν)〉 6= 0 for every xν ∈ (Jg)x⊥ν . Moreover, for
any xν ∈ (Jg)x⊥ν ,

g±
x⊥ν

(xν) = lim
zν→xν

±
g̃(x⊥ν , zν) if 〈ν, νg(x⊥ν , xν)〉 > 0,

g±
x⊥ν

(xν) = lim
zν→xν

∓
g̃(x⊥ν , zν) if 〈ν, νg(x⊥ν , xν)〉 < 0 .

Let Γ be a (N − 1)-dimensional manifold of class C1 in IRN , oriented by a map νΓ : Γ → SN−1.
Next theorem, which actually holds in a much more general setting (see, e.g. [4, Theorem 3.77
and Theorem 3.86]), states that any BV function defined in a neighborhood of Γ has traces on
both sides of Γ.

Theorem 2.2. Let Ω be an open set and Γ ⊂ Ω a C1 manifold oriented by νΓ. Then, if
g ∈ BV(Ω), there exist g±Γ ∈ L1(Γ,HN−1) such that, for HN−1-a.e. x0 ∈ Γ,

(2.3) lim
%→0+

1
%N

∫

B±% (x0,νΓ(x0))
|g(x)− g±Γ (x0)| dx = 0 .

Remark 2.3. Notice that, since g±Γ ∈ L1(Γ,HN−1), then HN−1-a.e. x0 ∈ Γ is a Lebesgue point
for g±Γ . Therefore, for such a point we have

(2.4) lim
%→0

1
%N−1

∫

Γ∩B%(x0)
|g±Γ (x)− g±Γ (x0)| dHN−1(x) = 0 .

Remark 2.4. Notice that from definition (2.1) and Theorem 2.2 it follows immediately that
g±Γ (x) = g̃(x) for HN−1-a.e. x ∈ Γ\Jg. Moreover, since νΓ(x) = ±νg(x) for HN−1-a.e. x ∈ Γ∩Jg

(see [4, Remark 2.87]), from (2.2) and (2.3) we have g±Γ (x) = g±(x) for HN−1-a.e. x ∈ Γ ∩ Jg

such that νΓ(x) = νg(x) and g±Γ (x) = g∓(x) if νΓ(x) = −νg(x).
Let us assume that the manifold Γ splits Ω in two disjoint open subsets Ω± and, just to fix the
ideas, that νΓ points toward Ω+. Then, for every point x0 ∈ Γ for which (2.3) holds, we have
(see [4, Remark 3.85])

(2.5) lim
%→0+

1
%N

∫

Ω±∩B%(x0)
|g(x)− g±Γ (x0)| dx = 0 .
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2.4. Capacity. Given an open set A ⊂ IRN , the 1-capacity of A is defined by setting

C1(A) := inf
{∫

IRN
|Dϕ| dx : ϕ ∈ W 1,1(IRN ), ϕ ≥ 1 LN−a.e. on A

}
.

Then, the 1-capacity of an arbitrary set B ⊂ IRN is given by

C1(B) := inf{C1(A) : A ⊇ B, U open} .

It is well known that capacities and Hausdorff measure are closely related. In particular, we
have that for every Borel set B ⊂ IRN

C1(B) = 0 ⇐⇒ HN−1(B) = 0 .

Definition 2.5. Let B ⊂ IRN be a Borel set with C1(B) < +∞. Given ε > 0, we call capacitary
ε-quasi-potential (or simply capacitary quasi-potential) of B a function ϕε ∈ W 1,1(IRN ), such
that 0 ≤ ϕ̃ε ≤ 1 HN−1-a.e. in IRN , ϕ̃ε = 1 HN−1-a.e. in B and∫

IRN
|Dϕε| dx ≤ C1(B) + ε .

We recall that a function g : IRN → IR is said C1-quasi continuous if for every ε > 0 there
exists an open set A, with C1(A) < ε, such that g|Ac is continuous on Ac; C1-quasi lower
semicontinuous and C1-quasi upper semicontinuous functions are defined similarly.
It is well known that if g is a W 1,1-function, then its precise representative g̃ is C1-quasi contin-
uous (see [18, Sections 9 and 10]). Moreover, to every BV-function g, it is possible to associate
a C1-quasi lower semicontinuous and a C1-quasi upper semicontinuous representative, as stated
by the following theorem (see [9], Theorem 2.5).

Theorem 2.6. For every function g ∈ BV(Ω), the approximate upper limit g+ and the approx-
imate lower limit g− are C1-quasi upper semicontinuous and C1-quasi lower semicontinuous,
respectively.

In particular, if B is a Borel subset of IRN with finite perimeter, then χ−B is C1-quasi lower
semicontinuous and χ+

B is C1-quasi upper semicontinuous.
Finally we recall the following approximation result, due to Dal Maso (see [11], Lemma 1.5 and
§6).

Lemma 2.7. Let g : IRN → [0, +∞) be a C1-quasi lower semicontinuous function. Then there
exists an increasing sequence of nonnegative functions {gh} ⊆ W 1,1(IRN ) such that, for every
h ∈ IN , gh is approximately continuous HN−1-almost everywhere in IRN and gh(x) → g(x),
when h → +∞, for HN−1-almost every x ∈ IRN .

2.5. Demicoercive functions.

Definition 2.8. We say that a function g : IRN → [0,+∞) is demicoercive if there exist a vector
v ∈ IRN and two constants a > 0, b ≥ 0 such that

a|ξ| ≤ g(ξ) + 〈v, ξ〉+ b for all ξ ∈ IRN .

It is not difficult to check that coercive or strictly convex functions are demicoercive. Moreover,
if g satisfies

lim
|ξ|→+∞

g(ξ) = +∞ ,

then it is demicoercive, too.
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For other properties of demicoercive functions see [5], [24], [26].

2.6. The integrand f and its recession function. Let f : Ω × IR × IRN → [0, +∞) be a
Borel function. If f is convex with respect to the last variable, the recession function of f is
defined for all (x, s, ξ) ∈ Ω× IR× IRN by setting

f∞(x, s, ξ) = lim
t→+∞

f(x, s, tξ)
t

= sup
t>0

f(x, s, tξ)− f(x, s, 0)
t

.

Notice that, since the function t 7→ f(x,s,tξ)−f(x,s,0)
t is increasing, the above limit always exists.

Moreover it is easily checked that f∞ is a Borel function, positively 1-homogeneous and convex
in the last variable, and that

(2.6)
f(x, s, tξ)

t
≤ f∞(x, s, ξ) +

f(x, s, 0)
t

for all t > 0 .

In the sequel, we shall often assume that the Borel function f satisfies the following conditions

f(x, s, ·) is convex for every (x, s) ∈ Ω× IR ;(2.7)

0 ≤ f(x, s, ξ) ≤ Λ(1 + |ξ|) for every (x, s, ξ) ∈ Ω× IR× IRN ,(2.8)

for some positive constant Λ. Note that (2.7) and (2.8) imply that f is Lipschitz continuous in
the last variable, uniformly with respect to (x, s) ∈ Ω× IR. Moreover, from these assumptions,
it follows that

(2.9) 0 ≤ f∞(x, s, ξ) ≤ Λ|ξ| for every (x, s, ξ) ∈ Ω× IR× IRN ,

Finally, since f∞ is convex with respect to ξ, by (2.9) it follows that f∞ is Lipschitz continuous
in the last variable, uniformly with respect to (x, s) ∈ Ω× IRN .

2.7. Setting of the problem and preliminary results. For every A ∈ A(Ω) and every
u ∈ BV(Ω), we set

(2.10) F (u,A) =





∫

A
f(x, u,∇u) dx if u ∈ W 1,1(Ω)

+∞ if u ∈ BV(Ω) \W 1,1(Ω).

Our aim is to prove an integral representation theorem for the relaxation F of F , with respect
to the L1-topology, which is defined as the the greatest L1-lower semicontinuous functional less
than or equal to F . Namely,

F (u,Ω) := inf
{

lim inf
n→+∞ F (un, Ω) : un ∈ W 1,1(Ω) , un → u in L1(Ω)

}
.

Let us recall the following well known properties of F :

(i) for every A ∈ A(Ω), F (·, A) is lower semicontinuous with respect to the L1-topology;

(ii) for every A ∈ A(Ω), F (·, A) is local; i.e., for every u, v ∈ BV(Ω), with u = v on A,
F (u,A) = F (v, A);

(iii) for every u ∈ BV(Ω), F (u, ·) is a σ-additive measure on B(Ω).

For other properties of the relaxation we refer to [16], [17], [8], [12].
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For every A ∈ A(Ω), let us define the functional Ff (·, A) : BV(Ω) → [0,+∞) by setting
(2.11)

Ff (u,A) =
∫

A
f(x, u,∇u)dx +

∫

A
f∞

(
x, ũ,

Dcu

|Dcu|
)
d|Dcu|+

∫

Ju∩A
dHN−1

∫ u+(x)

u−(x)
f∞(x, s, νu)ds.

We shall often drop the subscript f (if no confusion arises) and write F(u) in place of Ff (u,Ω).

The following two lower semicontinuity results will be useful in the sequel. For the first one we
refer to [13, Theorem 1.1].

Theorem 2.9. Let f : Ω× IR× IRN → [0, +∞) be a locally bounded Borel function, continuous
with respect to s and convex in ξ, satisfying the following assumptions:

f(·, s, ξ) ∈ W 1,1(Ω) for all (s, ξ) ∈ IR× IRN ;

there exists a Borel set N0 ⊂ Ω, with HN−1(N0) = 0, such that

(2.12) f(·, s, ξ) is approximately continuous in Ω \N0 for all (s, ξ) ∈ IR× IRN ;

for every bounded set B ⊂ IR× IRN there exists L(B) > 0 such that
∫

Ω
|∇xf(x, s, ξ)| dx < L(B) for all (s, ξ) ∈ B .

Then, the functional Ff (·, Ω) defined in (2.11) is L1-lower semicontinuous in BV(Ω).

Remark 2.10. Notice that assumption (2.12) may seem redundant, since every W 1,1-function
admits a HN−1-a.e. approximately continuous representative. Moreover, the functional in (2.10)
is clearly not affected by the choice of the representative. However, the functional (2.11) does
depend on the particular representative chosen and it could be not lower semicontinuous for a
different choice of it.

Notice that if f, gk : IRN → [0, +∞) are convex functions such that f = supk gk, then from (2.6)
we easily get that f∞(ξ) = supk g∞k (ξ) for all ξ. This observation, combined with the argument
used in the proof of Theorem 1.1 in [22] yields easily next result, which states that if f is the
supremum of a sequence of nonnegative integrands gk such that Fgk

is L1-lower semicontinuous,
then also Ff is lower semicontinuous.

Lemma 2.11. Let f, gk : Ω × IR × IRN → [0, +∞), k ∈ IN , be Borel functions, convex in the
last variable and such that

f(x, s, ξ) = sup
k∈IN

gk(x, s, ξ) for all (x, s, ξ) ∈ (Ω \N0)× IR× IRN ,

where N0 ⊂ Ω is a Borel set with HN−1(N0) = 0. If the functionals Fgk
(·, Ω) are L1-lower

semicontinuous in BV(Ω), then Ff (·, Ω) is L1-lower semicontinuous in BV(Ω), too.
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3. The lower semicontinuity results

In this section we prove two lower semicontinuity theorems under very weak differentiability
assumptions on f with respect to the spatial variable x. To this aim, we need some approximation
result of such an integrand with more regular functions.
First, we consider the special case of integrands which are split as a product of a BV function
in x times a function depending on (s, ξ). In this case, the lower semicontinuity result is a
simple consequence of the approximation Lemma 2.7. For the general case, we need to establish
a suitable approximation result (see Lemma 3.3 below), which is very much in the spirit of the
approximation result proved in [23].

3.1. The case of separated variables.

Theorem 3.1. Let a : Ω → [0, +∞) be a locally bounded C1-quasi lower semicontinuous func-
tion. Let p : IR × IRN → [0, +∞) be a continuous function, convex with respect to the last
variable. Then, the functional

F(u) =
∫

Ω
a(x)p(u,∇u)dx +

∫

Ω
a(x)p∞

(
ũ,

Dcu

Dcu|
)
|Dcu|+

∫

Ju∩Ω
a(x)dHN−1

∫ u+(x)

u−(x)
p∞(s, νu)ds

is L1-lower semicontinuous on BV(Ω).

Proof. By Lemma 2.7, there exists an increasing sequence of nonnegative functions ah ∈ W 1,1(Ω)
converging HN−1-a.e. in Ω to a and such that, for all h ∈ IN , ah is approximately continuous
HN−1-a.e. in Ω. Thus the integrands gh(x, s, ξ) = ah(x)p(s, ξ) satisfy all the assumptions of
Theorem 2.9 and the functionals Fgh

are L1-lower semicontinuous on BV(Ω). Then, the assertion
follows immediately from Lemma 2.11.

3.2. The general case. We start with a variant of Lemma 9.2 of [19] which can be proved with
exactly the same argument. Therefore, we omit its simple proof.

Lemma 3.2. Let X be a σ-compact metric space and G a family of lower semicontinuous
functions g : X → IR. Then, there exist a finite or countable subset G′ ⊂ G such that

sup
g∈G′

g(x) = sup
g∈G

g(x) for all x ∈ X .

Next result is essentially contained in [23, Lemma 8 (c)]. However, we give here the proof for
the sake of completeness.

Lemma 3.3. Let X be a σ-compact subset of IRd and f : X × IRN → [0, +∞) a function such
that f(z, ·) is convex for all z ∈ X. Let us assume also that for all z0 ∈ X and ε > 0, there
exists δ > 0 such that

(3.1) f(z0, ξ) ≤ f(z, ξ)+ ε(1+f(z, ξ)) for all (z, ξ) ∈ X × IRN such that |z − z0| < δ .

Then, there exist {ak} ⊂ C∞
0 (IRd) and {ψk} ⊂ C∞(IRN ) such that, for all k ∈ IN , 0 ≤ ak ≤ 1,

ψk is a convex function satisfying

(3.2) 0 ≤ ψk(ξ) ≤ Λk(1 + |ξ|) for all ξ ∈ IRN ,

for some Λk > 0, and

f(z, ξ) = sup
k∈IN

ak(z)ψk(ξ) for all (z, ξ) ∈ X × IRN .
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Proof. We start by noticing that if X = IRd and f , in addition to our assumptions, is also lower
semicontinuous in (x, ξ), then the assertion follows from [23, Lemma 8 (c)]. Thus, our task is to
show that we may always reduce to this case.
To this aim, let us set h = f + 1 and notice that from (3.1) it follows easily that

(3.3)
for all z0 ∈ X and ε > 0 there exists δ > 0 such that

(1− ε)h(z0, ξ) ≤ h(z, ξ) for all (z, ξ) ∈ X × IRN such that |z − z0| < δ .

Then, we argue as in the proof of Proposition 9.3 in [19]. Let us denote by G the family of all
continuous functions g : IRd × IRN → [0,+∞), convex with respect to the last variable, and
satisfying the following conditions:

(i) g(z, ξ) ≤ h(z, ξ) for all (z, ξ) ∈ X × IRN ;

(ii) g satisfies (3.3) in IRd × IRN ;

(iii) 0 ≤ g(z, ξ) ≤ Λ(1 + |ξ|) for all (z, ξ) ∈ IRd × IRN , for some Λ > 0.

Let us now fix z0 ∈ X, ε > 0, and let δ > 0 be such that (3.3) holds. Then, we choose
a ∈ C1

0 (Bδ(z0)) such that 0 ≤ a ≤ 1, a(z0) = 1, and take a sequence of convex functions
ψj : IRn → [0,+∞) satisfying (3.2) and such that supj ψj = h(z0, ·). Clearly, the functions
gj(z, ξ) = (1−ε)a(z)ψj(ξ) satisfy (i), (ii), (iii), and, by construction, supj gj(z0, ξ)=(1−ε)h(z0, ξ)
for all ξ ∈ IRN . Therefore, we may conclude that

(3.4) sup
g∈G

g(z, ξ) ≥ h(z, ξ) for all (z, ξ) ∈ X × IRN .

Since the opposite inequality follows immediately from (i), we get that in (3.4) the equality
holds. Thus, using Lemma 3.2 we may conclude that there exists a sequence {gn} ⊂ G such that

sup
n∈IN

gn(z, ξ) = h(z, ξ) for all (z, ξ) ∈ X × IRN .

Setting now fn = max{gn−1, 0}, the functions fn are continuous in IRd×IRN , convex in the last
variable and satisfy (iii) for suitable positive constants Λn. Moreover it can be easily checked
that each function fn satisfy (3.1) in IRd × IRN and, by construction,

sup
n∈IN

fn(z, ξ) = f(z, ξ) for all (z, ξ) ∈ X × IRN .

The assertion then follows immediately by applying the approximation result stated in
Lemma 8 (c) in [23] to each function fn.

Next theorem is the main L1-lower semicontinuity result of the paper. It is established without
any hypothesis of coercivity or continuity with respect to x. More precisely, we assume only a
C1-quasi lower semicontinuity with respect to the spatial variable, with a suitable uniformity
condition (see (3.5) below).

Theorem 3.4. Let f : Ω× IR× IRN → [0,+∞) be a Borel function such that f(x, s, ·) is convex
for every (x, s) ∈ Ω× IR and f(x, ·, ξ) is continuous for every (x, ξ) ∈ Ω× IRN , satisfying (2.8).
Moreover, assume that for any h ∈ IN there exists an open set Ah ⊂ Ω, with C1(Ah) < 1/h,
such that for every (x0, s0) ∈ (Ω \Ah)× IR and every ε > 0, there exists δ > 0 such that

(3.5) f(x0, s0, ξ) ≤ f(x, s, ξ) + ε(1 + f(x, s, ξ))
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for all (x, s, ξ) ∈ (Ω \ Ah) × IR × IRN such that |x − x0| + |s − s0| < δ. Then, the functional
F : BV(Ω) → [0, +∞) defined in (2.11) is L1-lower semicontinuous on BV(Ω).

Proof. Without loss of generality, we may assume that the sequence {Ah} is such that Ah+1 ⊂ Ah

for all h ∈ IN . Therefore, setting A = ∩hAh, we have C1(A) = HN−1(A) = 0.
For any h, recalling assumptions (3.5) and (2.8), we may apply Lemma 3.3 to the function f ,
with X = Ω \ Ah, thus getting for any h a sequence of functions ah

k ∈ C∞
0 (IRN × IR), with

0 ≤ ah
k ≤ 1, and a sequence of convex functions ψh

k ∈ C∞(IRN ) satisfying for all k ∈ IN

(3.6) 0 ≤ ψh
k (ξ) ≤ Λ(1 + |ξ|) for all ξ ∈ IRN ,

where Λ is the same constant appearing in (2.8), and such that

(3.7) f(x, s, ξ) = sup
k∈IN

ah
k(x, s)ψh

k (ξ) for all (x, s, ξ) ∈ (Ω \Ah)× IR× IRN .

Now, for every h ∈ IN , let ϕh ∈ W 1,1(IRN ) be a capacitary quasi-potential of Ah. More precisely,
let us assume that there exists a Borel set Nh ⊂ IRN , with C1(Nh) = HN−1(Nh) = 0, such that
0 ≤ ϕ̃h(x) ≤ 1 for every x ∈ IRN \Nh, ϕ̃h = 1 on Ah \Nh and

∫

IRN
|∇ϕ̃h| dx ≤ C1(Ah) +

1
h

<
2
h

.

Let us now set, for all h, k ∈ IN , α̃h
k(x, s) = max{ah

k(x, s)− ϕ̃h(x), 0} for all (x, s) ∈ (Ω\Nh)×IR,
α̃h

k(x, s) = 0, otherwise. We have that

(3.8) 0 ≤ α̃h
k(x, s) ≤ 1, ah

k(x, s) ≥ α̃h
k(x, s) ≥ ah

k(x, s)− ϕ̃h(x) for all (x, s) ∈ (Ω \Nh)× IR .

Moreover, setting N0 = ∪hNh, C1(N0) = HN−1(N0) = 0 and, for every h, k ∈ IN , we have that

(3.9) f(x, s, ξ) ≥ α̃h
k(x, s)ψh

k (ξ) for all (x, s, ξ) ∈ (Ω \N0)× IR× IRN .

In fact, if x ∈ (Ω \Ah) \N0, (3.9) follows from (3.7) and from the fact that ϕ̃h(x) ≥ 0, while, if
x ∈ Ah \N0, (3.9) holds since ϕ̃h(x) = 1, hence α̃h

k(x, s) = 0. Finally, we set for all h, k ∈ IN

gh
k (x, s, ξ) = α̃h

k(x, s)ψh
k (ξ), gh(x, s, ξ) = sup

k∈IN
gh
k (x, s, ξ), fh(x, s, ξ) = sup

k∈IN
ah

k(x, s)ψh
k (ξ)

for all (x, s, ξ) ∈ Ω × IR × IRN . Notice that each function gh
k satisfies the assumptions of

Theorem 2.9. Therefore, the functionals Fgh
k
(·, Ω) are all L1-lower semicontinuous in BV(Ω),

hence by Lemma 2.11 the same is true for the functionals Fgh
(·, Ω), for any h ∈ IN .

To prove the lower semicontinuity of Ff , let us take a sequence {uj} ⊂ BV(Ω) converging in
L1(Ω) to u ∈ BV(Ω). Let us fix h ∈ IN and set

ψh(ξ) = sup
k∈IN

ψh
k (ξ) for all ξ ∈ IRN .

From (3.9), (3.8) and (3.7), we then get that

lim inf
j→+∞

Ff (uj , Ω) ≥ lim inf
j→+∞

Fgh
(uj ,Ω) ≥ Fgh

(u,Ω) ≥ Ffh
(u,Ω)−

∫

Ω
ϕ̃hψh(∇u) dx

−
∫

Ω
ϕ̃hψ∞h

( Dcu

|Dcu|
)

d|Dcu| −
∫

Ju∩Ω
dHN−1

∫ u+(x)

u−(x)
ϕ̃hψ∞h (νu) ds

≥ Ff (u,Ω \Ah)−
∫

Ω
ϕ̃hψh(∇u) dx−

∫

Ω
ϕ̃hψ∞h

( Dsu

|Dsu|
)

d|Dsu| .
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Thus, recalling (3.6), we obtain

(3.10) lim inf
j→+∞

Ff (uj ,Ω) ≥ Ff (u,Ω \Ah)− Λ
∫

Ω
ϕ̃h(1 + |∇u|) dx− Λ

∫

Ω
ϕ̃h d|Dsu| .

Since ϕ̃h → 0 in W 1,1(IRN ) as h →∞, we have that, up to a subsequence, ϕ̃h(x) → 0 for HN−1-
almost every x ∈ IRN (see Proposition 1.2 in [11]). Therefore, letting h → +∞ in (3.10) and
recalling that Ah+1 ⊂ Ah for all h and that HN−1(∩hAh) = 0, from the dominated convergence
theorem we get that

lim inf
j→+∞

Ff (uj , Ω) ≥ Ff (u,Ω) ,

thus proving the assertion.

As an application of the previous theorem we are going to prove a fairly general lower semi-
continuity result for an integrand f depending only on x and ξ. To this aim, let us recall the
following approximation result proved in [24, Theorem 4].

Theorem 3.5. Let Ω be an open subset of IRN , f : Ω × IRN → [0, +∞) a function such for
every x ∈ Ω, f(x, ·) is convex and demicoercive. Let us set, for any ξ0 ∈ IRN ,

(3.11) (Pξ0f) (x, ξ) = −1 + inf
λ>0

{
λ + λf

(
x, ξ0 +

ξ − ξ0

λ

)}
for all (x, ξ) ∈ Ω× IRN .

Then, for every x ∈ Ω, (Pξ0f)(x, ·) is convex and demicoercive and ξ 7→ 1 + (Pξ0f)(x, ξ + ξ0) is
a 1-positively homogeneous function. Moreover

(3.12) f(x, ξ) = sup
ξ0∈IRN

(Pξ0f)(x, ξ) for all (x, ξ) ∈ Ω× IRN .

Furthermore, if f is lower semicontinuous in Ω× IRN , then Pξ0f is lower semicontinuous, too.

Theorem 3.6. Let f : Ω× IRN → [0, +∞) be a locally bounded Borel function such that f(x, ·)
is convex for every x ∈ Ω and f(·, ξ) is C1-quasi lower semicontinuous for every ξ ∈ IRN .
Moreover, assume that at least one of the following two conditions holds:{

f(x, ·) is positively 1-homogeneous and

f(x, ξ) > 0 for all (x, ξ) ∈ (Ω \N0)× (IRN \ {0}), where HN−1(N0) = 0 ;
(3.13)

{
f satisfies (2.8) and there exists Ψ : IRN → [0, +∞), convex and demicoercive,

such that Ψ(ξ) ≤ f(x, ξ) for all (x, ξ) ∈ Ω× IRN .
(3.14)

Then, the functional Ff is L1-lower semicontinuous on BV(Ω).

Remark 3.7. We point out that assumptions (3.13) and (3.14) are independent. Indeed, the
function f1(x, ξ) = f1(ξ) = (|ξ| − 1) ∧ 0 satisfies (3.14), but it is null for every x ∈ Ω when
|ξ| ≤ 1, while, for N = 3, the function f2(x, ξ) = (x2

1 +x2
2)|ξ| satisfies (3.13), but it is clearly not

controlled from below by a demicoercive function. Note that both functions f1 and f2 satisfy
all other assumptions of previous theorem, hence the corresponding functionals Ff1 and Ff2 are
lower semicontinuous on BV(Ω), with respect to the L1-topology.

Proof of Theorem 3.6. Step 1. Let us prove the assertion under the assumption (3.13). To this
aim, notice that since f is locally bounded in Ω×IRN and positively 1-homogeneous with respect
to ξ, for any open set Ω′ ⊂⊂ Ω, there exists a constant Λ′ such that

0 ≤ f(x, ξ) ≤ Λ′|ξ| for all (x, ξ) ∈ Ω′ × IRN .
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This estimate, together with the convexity of f with respect to ξ immediately yields that

(3.15) |f(x, ξ1)− f(x, ξ2)| ≤ cΛ′|ξ1 − ξ2| for all (x, ξ1), (x, ξ2) ∈ Ω′ × IRN ,

for some constant c depending only on the dimension N . Let us now fix h and a dense sequence
{ξj}. For all j there exists an open set Aj,h ⊂ Ω, Aj,h ⊃ N0, with C1(Aj,h) < 1/(h2j), such that
f(·, ξj) is lower semicontinuous in Ω \ Aj,h. Setting Ah = ∪jAj,h, Ah is open, C1(Ah) < 1/h,
and making use of (3.15), one easily gets that f is lower semicontinuous in (Ω′ \Ah)× IRN .
In order to prove that the functional Ff (·, Ω′) is L1-lower semicontinuous in BV(Ω′), by Theo-
rem 3.4 it is enough to show that, given h and x0 ∈ Ω′ \Ah, for all ε > 0 there exists δ > 0 such
that

f(x0, ξ) ≤ (1 + ε)f(x, ξ) for all (x, ξ) ∈ (Ω′ \Ah)× IRN such that |x− x0| < δ .

To prove this, we argue by contradiction, assuming that there exist x0 ∈ Ω′ \Ah and ε0 > 0 such
that for any k ∈ IN , there exist two sequences xk ∈ Ω′ \Ah, with |xk − x0| < 1/k, and ξk ∈ IRN

such that

(3.16) f(x0, ξk) > (1 + ε0)f(xk, ξk) .

Clearly, by the positive 1-homogeneity of f(x, ·), we may assume that |ξk| = 1, for every k ∈ IN ;
hence, up to a subsequence, there exists ξ0 ∈ SN−1 such that ξk → ξ0. Then, passing to the
limit when k → +∞ in (3.16) and using the lower semicontinuity of f and the continuity of
f(x0, ·), we get that

f(x0, ξ0) = lim
k→+∞

f(x0, ξk) ≥ (1 + ε0) lim inf
k→+∞

f(xk, ξk) ≥ (1 + ε0)f(x0, ξ0) .

hence, f(x0, ξ0) = 0, which is a contradiction since x0 ∈ Ω \N0.
This proves that Ff (·, Ω′) is lower semicontinuous and, by letting Ω′ ↑ Ω, the lower semicontinuity
of Ff (·, Ω) follows.

Step 2. Assume that (3.14) holds. Since (2.8) is in force, arguing as in the previous step, we
have that for all h ∈ IN , there exists an open set Ah ⊂ Ω, with C1(Ah) < 1/h, such that f is
lower semicontinuous in (Ω \Ah)× IRN .
For all ξ0 ∈ IRN , let us consider the function Pξ0f defined in (3.11). Since f is lower semicon-
tinuous in (Ω \ Ah)× IRN , from the last assertion of Theorem 3.5 (which actually holds also if
Ω is replaced by any σ-compact subset of IRN ) we have that Pξ0f is lower semicontinuous in
(Ω \Ah)× IRN for any h. Therefore, recalling (3.12) and using Lemma 3.2, we get that for any
h there exists a sequence {ξh

k}k∈IN ⊂ IRN such that

f(x, ξ) = sup
k∈IN

(Pξh
k
f)(x, ξ) for all (x, ξ) ∈ (Ω \Ah)× IRN .

Thus, by relabelling the sequence {ξh
k}(h,k)∈IN×IN , we may conclude that there exists a sequence

{ξn}n∈IN such that

(3.17) f(x, ξ) = sup
n∈IN

(Pξnf)(x, ξ) for all (x, ξ) ∈ (Ω \A0)× IRN ,

where A0 = ∩hAh. Let us set, for all n,

Ψn(ξ) = (PξnΨ)(ξ + ξn) + 1 for all ξ ∈ IRN .

Since, by Theorem 3.5 the functions Ψn are all demicoercive and positively 1-homogeneous, for
every n there exist an > 0 and vn ∈ IRN such that

an|ξ| ≤ Ψn(ξ) + 〈vn, ξ〉 for all ξ ∈ IRN .
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Therefore, setting gn(x, ξ) = (Pξnf)(x, ξ + ξn) + 1, we may conclude that

(3.18) an|ξ| ≤ gn(x, ξ) + 〈vn, ξ〉 for all (x, ξ) ∈ Ω× IRN .

The functions ĝn(x, ξ) = gn(x, ξ)+ 〈vn, ξ〉 are C1-quasi lower semicontinuous in x and positively
homogeneous in ξ and from (3.18) it is clear that they all satisfy (3.13). Therefore, from what we
have proved in Step 1 we may conclude that the functionals Fbgn(·, Ω) are L1-lower semicontinuous
in BV(Ω).
Let us now prove that also the functionals Fgn(·, Ω) are lower semicontinuous. To this aim, let
us take a sequence of functions uj ∈ BV(Ω) converging in L1(Ω) to u ∈ BV(Ω). Let us fix an
open set Ω′ ⊂⊂ Ω and a function ψ ∈ C1

0 (Ω), 0 ≤ ψ ≤ 1, such that ψ ≡ 1 in Ω′. We have, using
the fact that gn, ψ ≥ 0, ψ ≡ 1 in Ω′, and integrating by parts twice,

lim inf
j→+∞

Fgn(uj , Ω) = lim inf
j→+∞

[
Fgn(uj ,Ω) +

∫

Ω
ψ〈vn, Duj〉 −

∫

Ω
ψ〈vn, Duj〉

]

≥ lim inf
j→+∞

[∫

Ω
ψgn

(
x,

Duj

|Duj |
)
|Duj |+

∫

Ω
ψ〈vn, Duj〉 −

∫

Ω
ψ〈vn, Duj〉

]

≥ lim inf
j→+∞

Fbgn(uj , Ω′) + lim
j→+∞

∫

Ω
uj〈vn,∇ψ〉 dx

≥ Fbgn(u,Ω′) +
∫

Ω
u〈vn,∇ψ〉 dx = Fbgn(u,Ω′)−

∫

Ω
ψ〈vn, Du〉

= Fgn(u,Ω′)−
∫

Ω\Ω′
ψ〈vn, Du〉 .

The lower semicontinuity of Fgn(·, Ω) follows by letting first ψ ↑ 1 and then Ω′ ↑ Ω.
Set now hn(x, ξ) = gn(x, ξ − ξn) and observe that h∞n (x, ξ) = gn(x, ξ) for all (x, ξ) ∈ Ω × IRN .
Thus,

Fhn(u,Ω) = Fgn(u− 〈ξn, ·〉, Ω) for all u ∈ BV(Ω) ,

hence Fhn(·, Ω) is lower semicontinuous, too. This fact, thanks to (3.17) and to Lemma 2.11
immediately implies the L1-lower semicontinuity of Ff+1(·, Ω), hence the assertion follows.

4. Relaxation

This section is devoted to relaxation results.
The first one (Theorem 4.2) concerns the case of separated variables, under the assumption of
C1-quasi continuity of the integrand with respect to x. This theorem improves the relaxation
result obtained, under stronger regularity assumptions, in [2]. Its proof is based on a Reshetnyak-
type result (Theorem 4.1), which is a consequence of the lower semicontinuity Theorem 3.1, and
follows the same outlines as in [2].
On the other hand, in Subsections 4.2 and 4.3 we consider the general case and prove in particular
Theorem 1.1, which is the main relaxation result of this paper. In that theorem we state the
classical relaxation formula (1.7), under the very weak assumption of BV dependence of the
integrand with respect to x. As usual, this result is attained, once we have proved the so-
called “lim inf” and “lim sup” inequalities. Since the first one is a consequence of the lower
semicontinuity results contained in Subsection 3.2, it is sufficient to prove here only the “lim sup”
inequality (Theorem 4.3). In order to achieve this result, we adapt the blow-up technique
introduced by Fonseca-Muller in [20] and [21] in the case of continuous integrands; however, in
our case, this is a very delicate technical point. Indeed, the presence of jump discontinuities of
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the integrand, due to the assumption of BV dependence in x, imposes a refined use of the trace
properties of BV functions.

4.1. The case of separated variables under C1-quasi continuity assumption.

Theorem 4.1. Let O be an open set in IRd and let A : O → [0,+∞) be a bounded C1-quasi
continuous function, P : O × IRd → [0, +∞) a continuous function, convex and positively 1-
homogeneous in the last variable, such that

(4.1) 0 ≤ P (z, ζ) ≤ Λ for all (z, ζ) ∈ O × Sd−1 ,

for some Λ > 0. Let {vh} be a sequence in BV(O) such that vh → v strongly in L1(Ω) and
|Dvh|(Ω) → |Dv|(Ω). Then

lim
h→∞

∫

O
A(z)P

(
z,

Dvh

|Dvh|(z)
)

d|Dvh|(z) =
∫

O
A(z)P

(
z,

Dv

|Dv|(z)
)

d|Dv|(z) .

Proof. Taking into account that vh → v strongly in L1(O) and |Dvh|(O) → |Dv|(O), it follows
that Dvh ⇀ Dv weakly∗ in M(O; IRd). Thanks to (4.1), we may apply the classical Reshetnyak
Theorem (see [28] or [4, Theorem 2.39]), thus getting

(4.2) lim
h→+∞

∫

O
P

(
z,

Dvh

|Dvh|(z)
)

d|Dvh|(z) =
∫

O
P

(
z,

Dv

|Dv|(z)
)

d|Dv|(z) .

Notice that by the continuity of P and the positive homogeneity of P with respect to the last
variable it follows that for any z0 ∈ O and any ε > 0 there exists δ > 0 such that

P (z0, ζ) ≤ (1 + ε)P (z, ζ) for all (z, ζ) ∈ O × IRd such that |z − z0| < δ .

Therefore, from [23, Lemma 8 (c)] it follows that there exists a sequence of nonnegative func-
tions ah ∈ C∞(O) and a sequence of nonnegative convex functions Ph ∈ C∞(IRd) such that
P (z, ζ) = suph ah(z)Ph(ζ) for all (z, ζ) ∈ O × IRd. By applying Theorem 3.1 to the integrands
A(z)ah(z)Ph(ζ) and recalling Lemma 2.11, we get that

lim inf
h→+∞

∫

O
A(z) P

(
z,

Dvh

|Dvh|(z)
)

d|Dvh|(z) ≥
∫

O
A(z) P

(
z,

Dv

|Dv|(z)
)

d|Dv|(z) .

Similarly, denoting by λ a positive constant such that 0 ≤ A(z) ≤ λ for all z ∈ O, we have that

lim inf
h→+∞

∫

O
(λ−A(z)) P

(
z,

Dvh

|Dvh|(z)
)

d|Dvh|(z) ≥
∫

O
(λ−A(z, t)) P

(
z,

Dv

|Dv|(z)
)

d|Dv|(z) .

Combining these two last inequalities with (4.2), the assertion follows.

Theorem 4.2. Let a : Ω → [0, +∞) be a bounded C1-quasi continuous function and let p :
IR× IRN → [0, +∞) be a continuous function, convex in the last variable and such that

(4.3) 0 ≤ p(s, ξ) ≤ Λ(1 + |ξ|) for every (s, ξ) ∈ IR× IRN ,

for some Λ > 0. Let F : BV(Ω) → [0, +∞] be the functional defined by

(4.4) F (u) =





∫

Ω
a(x)p(u,∇u) dx if u ∈ W 1,1(Ω)

+∞ if u ∈ BV(Ω) \W 1,1(Ω).
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and F be the relaxation of F . Then, for every u ∈ BV(Ω),
(4.5)

F (u) =
∫

Ω
a(x)p(u,∇u) dx+

∫

Ω
a(x)p∞

(
ũ,

Dcu

|Dcu|
)
|Dcu|+

∫

Ju∩Ω
a(x) dHN−1

∫ u+(x)

u−(x)
p∞(s, νu) ds .

Proof. Let us denote by F the functional on the right hand side of (4.5). Clearly, F ≤ F and,
by Theorem 3.1, it follows that F is L1-lower semicontinuous on BV(Ω), so that F ≤ F . To
prove the opposite inequality we shall make use of Theorem 4.1.
Indeed, let u ∈ BV (Ω) and uh = u ∗ φh, where {φh} is a sequence of mollifiers. Then {uh} ⊂
W 1,1

loc (Ω). Moreover, uh → u strongly in L1
loc(Ω) and

∫
A |∇uh| dx → |Du|(A), for every A ⊂⊂ Ω,

such that |Du|(A) = 0. Denoting by G(uh) and G(u) the subgraphs of uh and u, respectively,
by Theorems 1.8 and 1.10 in [27] and Proposition 1.1 in [9] we have that

χG(uh) → χG(u) in L1
loc(Ω× IR) and |α(uh)| (A× IR) → |α(u)| (A× IR) ,

where α(uh) = DχG(uh) and α(u) = DχG(u). Setting

p̂(s, ξ, τ) :=
{ −p(s,−ξ/τ)τ if τ < 0 ,

p∞(s, ξ) if τ = 0 ,

by Lemma 2.2 in [10], it follows that

lim
h→∞

F (uh, A) = lim
h→∞

F(uh, A) = lim
h→∞

∫

A×IR
a(x) p̂

(
s,

α(uh)
|α(uh)|(x, s)

)
d|α(uh)|(x, s)

=
∫

A×IR
a(x) p̂

(
s,

α(u)
|α(u)|(x, s)

)
d|α(u)|(x, s) = F(u,A) ,

where the third equality follows by applying Theorem 4.1, with d = N+1, O = A×IR, z = (x, s),
ζ = (ξ, τ), A(z) = a(x) and P (z, ζ) = p̂ (s, ξ, τ). Hence,

F (u, A) ≤ lim inf
h→+∞

F (uh, A) = F(u,A) ≤ F(u) .

By approximation we then have F (u) ≤ F(u) and the theorem is proven.

4.2. The “limsup” inequality in the general case. In this section we will assume that the
integrand f does not depend on s.
Moreover, we will assume that the recession function f∞ : Ω× IRN → [0, +∞) satisfies

(4.6) f∞(·, ξ) ∈ BV(Ω) for every ξ ∈ IRN ,

and that for every ξ ∈ IRN there exists Nξ ⊂ Ω, with HN−1(Nξ) = 0, such that

(4.7) f∞(x, ξ) = (f∞)−(x, ξ) for all x ∈ Ω \Nξ .

Theorem 4.3. Assume that f : Ω × IRN → IR is a Borel function satisfying (2.7) and (2.8).
Let F : BV(Ω)×A(Ω) → [0,+∞] be the functional defined in (2.10) and F be the relaxation of
F . Assume also that (4.6) and (4.7) hold. Then, F (u, ·) is the trace of a finite Radon measure
on A(Ω), and, for every A ∈ A(Ω) and every u ∈ BV(Ω),

F (u,A) ≤
∫

A
f(x,∇u)dx+

∫

A
f∞

(
x,

Dcu

|Dcu|
)
d|Dcu|+

∫

Ju∩A
[u+(x)− u−(x)]f∞(x, νu(x))dHN−1 .
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We start by observing that under the assumptions of Theorem 4.3 above it is well known that
for any u ∈ BV(Ω) the function F (u, ·) is the trace of a finite Radon measure on A(Ω) and that
for all A ∈ A(Ω)

0 ≤ F (u, A) ≤ Λ(LN (A) + |Du|(A)) .

Following [19, Proof of Theorem 1.3], we fix u ∈ BV(Ω) and consider the Radon-Nikodým
derivatives of F (u, ·) with respect to the Lebesgue measure LN , to the total variation of the
Cantor measure |Dcu| and to the Hausdorff measure HN−1bSu, respectively. In order to obtain
Theorem 4.3, we will prove that

(L)
dF (u, ·)

dLN
(x0) ≤ f(x0,∇u(x0)) for LN -almost every x0 ∈ Ω ,

(C)
dF (u, ·)
d|Dcu| (x0) ≤ f∞

(
x0,

Dcu

|Dcu|(x0)
)

for |Dcu|-almost every x0 ∈ Ω ,

(J)
dF (u, ·)

dHN−1bJu
(x0) ≤ [u+(x0)−u−(x0)]f∞(x0, νu(x0)) for HN−1-almost every x0 ∈ Ju .

Inequality (L) is proven in [19, Theorem 1.3, part (i)], under assumptions (2.7) and (2.8) alone,
hence, we have to prove (C) and (J). To this purpose let us define the following coercive functional
associated to F by setting

F 1(u,A) := F (u,A) + |Du|(A) .

Proposition 4.4. Let f satisfy the assumptions of Theorem 4.3. Then, (C) holds; i.e., for
every u ∈ BV(Ω),

dF (u, ·)
d|Dcu| (x0) ≤ f∞

(
x0,

Dcu

|Dcu|(x0)
)

for |Dcu|-almost every x0 ∈ Ω .

Proof. By Lemma 3.9 of [6] for |Dcu|-almost every x0 ∈ Ω, there exists a double indexed sequence
{thε , uh

ε} such that, for every h ∈ IN ,

(4.8) thε → +∞, εthε → 0+, uh
ε → ũ(x0) as ε → 0+ ,

dF 1(u, ·)
d|Dcu| (x0) =

dF (u, ·)
d|Dcu| (x0) + 1

= lim
h→+∞

lim sup
ε→0+

inf{F 1(v,Qh
ν(x0, ε)) : v ∈ BV(Qh

ν(x0, ε)), v|∂Qh
ν (x0,ε) = uh

ε + 〈thεν, x− x0〉}
hN−1εN thε

,

where ν =
Dcu

|Dcu|(x0), |ν| = 1, and Qh
ν(x0, ε) := x0 + εQh

ν , with

(4.9) Qh
ν := Rν

(
(−h/2, h/2)N−1 × (−1/2, 1/2)

)
,

and Rν denotes a rotation such that RνeN = ν.
Let N1 ⊆ Ω \ Su, with |Dcu|(N1) = 0, be such that for every x0 ∈ (Ω \ Su) \N1 (4.8) holds and
all the limits above exist and are finite.
Let D0 = {νj} be a countable dense subset of SN−1. Moreover, let N2 ⊆ Ω \ Su defined by

(4.10) N2 :=
⋃

j∈IN

Sf∞(·,νj),
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where, for every νj ∈ D0, Sf∞(·,νj) is the approximate singular set of the BV-function f∞(·, νj).
Since, by Theorem 3.78 in [4], for every νj ∈ D0 the set Sf∞(·,νj) is σ-finite with respect to
HN−1, we obtain |Dcu|(N2) = 0 (see Theorem 3.92 (c) in [4]).
Finally, set N0 = N1 ∪N2, where |Dcu|(N0) = 0 and choose x0 ∈ (Ω \ Su) \N0.
Then, taking into account (2.6), (2.8) and (4.8), we have

dF (u, ·)
d|Dcu| (x0) + 1 ≤ lim inf

h→+∞
lim sup

ε→0+

1
hN−1εN thε

F 1(uh
ε + 〈thεν, x− x0〉, Qh

ν(x0, ε))

≤ lim inf
h→+∞

lim sup
ε→0+

−
∫

Qh
ν (x0,ε)

f(x, thεν)
thε

dx + 1

≤ lim inf
h→+∞

lim sup
ε→0+

−
∫

Qh
ν (x0,ε)

(
f∞(x, ν) +

f(x, 0)
thε

)
dx + 1

≤ lim inf
h→+∞

lim sup
ε→0+

−
∫

Qh
ν (x0,ε)

f∞(x, ν) dx + 1 ,

which implies

dF (u, ·)
d|Dcu| (x0) ≤ lim inf

h→+∞
lim sup

ε→0+

−
∫

Qh
ν (x0,ε)

f∞(x, ν) dx .

Hence, in order to conclude, it is enough to prove that for all h ∈ IN

(4.11) lim sup
ε→0+

−
∫

Qh
ν (x0,ε)

f∞(x, ν) dx ≤ f∞(x0, ν) .

Let {νj} be a sequence of directions contained in D0 converging to ν. By using the Lipschitz
continuity of f∞(x, ·) and recalling that x0 6∈ Sf∞(·,νj)

, it follows that for every j ∈ IN

lim sup
ε→0+

−
∫

Qh
ν (x0,ε)

f∞(x, ν) dx ≤ lim sup
ε→0+

−
∫

Qh
ν (x0,ε)

f∞(x, νj) dx + Λ lim sup
ε→0+

−
∫

Qh
ν (x0,ε)

|νj − ν| dx

= f∞(x0, νj) + Λ|νj − ν| .

Thus, letting j → +∞, (4.11) is proved. Hence, the assertion follows.

Let us now describe the idea of the proof of (J) which is really the new point in the whole
relaxation argument. The main difficulty here, differently from the cases treated in [19] and [3],
is due to the points where f∞ and u both jump. To understand how we deal with this case, let
us assume for simplicity that f(x, ξ) = a(x)p(ξ), that a and u have the same jump set Γ and
that Γ is a smooth manifold splitting Ω in two open sets Ω±.
As in [19], our proof is based on a blow-up argument at any point x0 ∈ Γ and on a formula which
involves the jump function wν taking the two values u±(x0) and jumping along the tangent plane
to Γ at x0. However this function would not work in our case. Instead, we have to replace it
with the function wΓ jumping along Γ itself. Moreover, in order to recover a−(x0) we need to
approximate wΓ by a sequence of functions un such that un = wΓ on Ω+ and smoothly interpolate
between the two values u±(x0) on Ω−, if νa(x0) points toward Ω+, and do the opposite if νa(x0)
points toward Ω−. Further complications come to play if f cannot be split as a product, if the
jump set of f∞(·, ξ) varies with ξ and Γ is not a smooth manifold.
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Proposition 4.5. Let f satisfy the assumptions of Theorem 4.3. Then, (J) holds; i.e., for every
u ∈ BV(Ω),

(4.12)
dF (u, ·)

dHN−1bJu
(x0) ≤ [u+(x0)− u−(x0)]f∞(x0, νu(x0)) for HN−1-a.e. x0 ∈ Ju.

Proof. Let u ∈ BV(Ω). Since Ju is a countably HN−1-rectifiable set, we have that Ju = (∪Kn)∪
Ñ , where HN−1(Ñ) = 0, Kn are disjoint compact sets and Kn ⊆ Γn, where, for every n ∈ IN ,
Γn is the graph of a C1-function. Moreover, by removing a set N1 ⊂ Ju of zero HN−1-measure,
we may assume that if x ∈ Kn \N1 for some n, then νu(x) is orthogonal to the tangent plane
to Γn at x.
To prove the assertion it is then enough to show that, for any n, (4.12) holds for HN−1-a.e.
x ∈ Kn. To this aim, we fix n and prove the assertion in Ju ∩ Γn. However, in order to simplify
the notation, from now on we drop the subscript n by writing Γ instead of Γn.
As in the proof of Proposition 4.4, let D0 denote a countable dense subset of SN−1. By Theo-
rem 3.7 of [6], for HN−1-almost every x0 ∈ Ju ∩ Γ we have

dF 1(u, ·)
dHN−1bJu

(x0) =
dF (u, ·)

dHN−1bJu
(x0) + |u+(x0)− u−(x0)|(4.13)

= lim sup
ε→0+

inf{F 1(v, Qν(x0, ε)) : v ∈ BV(Qν(x0, ε)), v|∂Qν(x0,ε) = wν}
εN−1

,

where ν = νu(x0), Qν(x0, ε) = x0 + εQν , Qν is defined as in (4.9) with h = 1, and wν is the
jump function which takes the value u+(x0) if 〈x− x0, ν〉 > 0 and u−(x0) if 〈x− x0, ν〉 ≤ 0.
Let N2 ⊂ Ju, with HN−1(N2) = 0, be such that for every x0 ∈ Ju \N2 (4.13) holds.
Let N3 ⊂ Ju, with HN−1(N3) = 0, be such that for every x0 ∈ (Ju ∩Γ) \N3 Theorem 2.2 holds,
with g±Γ replaced by

(
f∞(·, νj)

)±
Γ
, for every νj ∈ D0.

Let N4 ⊂ Ju, with HN−1(N4) = 0, be such that for every x0 ∈ (Ju ∩ Γ) \ N4 (2.4) and (2.5)
hold, with g±Γ replaced by

(
f∞(·, νj)

)±
Γ
, for every νj ∈ D0.

Let us now set

N5 =
( ⋃

j∈IN

Sf∞(·,νj) \ Jf∞(·,νj)

)
∩ Γ .

Then HN−1(N5) = 0. Let N6 ⊂ Ju, with HN−1(N6) = 0, be such that for every x0 ∈ (Ju ∩
Jf∞(·,νj)

)\N6, νu(x0) = ±νf∞(·,νj)
(x0), for every νj ∈ D0. Finally, set N0 = N1∪N2∪N3∪N4∪

N5 ∪N6 ∪N7, where N7 = ∪νj∈D0Nνj and Nνj is defined as in (4.7). Clearly HN−1(N0) = 0.
Let us fix x0 ∈ (Ju ∩Γ) \N0. For the sake of simplicity, we may assume x0 = 0. Since ν = νu(0)
is orthogonal to Γ at 0, let us orient Γ in such a way that νΓ(0) = νu(0). Denote by A an
open neighborhood of the origin such that Γ ∩ A coincides with the graph of a C1 function
ψ : π

ν⊥(IRN ) → IR such that ψ(0) = 0 and ∇x⊥ν ψ(0) = 0 and A \Γ is the union of two open sets
A±, where the signs ± are chosen so that, as in Remark 2.4, νΓ(0) points toward A+.
Let {νj} be a sequence of directions contained in D0 converging to ν. Notice that for j sufficiently
large there exist C1 functions ψj : π

ν⊥j
(IRN ) → IR such that Γ ∩ A coincides with the graph of

ψj . Finally denote by wΓ the jump function which takes the value u±(0) in A±.
Let us fix δ > 0; then (1− δ)Qν ⊂ Qνj for all j sufficiently large. Let φ ∈ C∞0 (Qν) be a cut-off
function such that φ(x) = 1 in (1 − δ)Qν and |∇φ| ≤ c/δ. For every ε > 0, set φε(x) = φ(x

ε ),
so that |∇φε| ≤ c/εδ and set wε,ν,Γ(x) = φε(x)wΓ(x) + (1 − φε(x))wν(x). We note that wε,ν,Γ
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satisfies the boundary condition wε,ν,Γ|∂(εQν) = wν , so that, by (4.13), we obtain

(4.14)
dF 1(u, ·)

dHN−1bJu
(0) ≤ lim sup

ε→0+

[
F (wε,ν,Γ, εQν)

εN−1
+
|Dwε,ν,Γ|(εQν)

εN−1

]
.

Clearly, for every ε > 0 and j ∈ IN sufficiently large,

|Dwε,ν,Γ|(εQν)
εN−1

≤ 1
εN−1

[∫

εQν

|∇φε||wΓ−wν |dx + |DwΓ|(εQν) + |Dwν |(εQν\ε(1−δ)Qν)

]
(4.15)

≤ c

εNδ

∫

εQν

|wΓ − wν | dx +
|u+ − u−|

εN−1
HN−1

(
Γ ∩ εQν

)
+ cδ

≤ c

εNδ

∫

εQ⊥ν
|ψ(x⊥ν )| dx⊥ν +

|u+ − u−|
εN−1

∫

εQ⊥ν

√
1 + |∇x⊥ν ψ(x⊥ν )|2 dx⊥ν + cδ

≤ c

δ
‖∇ψ‖L∞(εQ⊥ν ) + |u+ − u−| −

∫

εQ⊥ν

√
1 + |∇x⊥ν ψ(x⊥ν )|2 dx⊥ν + cδ ,

where u+, u− stands for u+(0), u−(0), respectively, and Q⊥
ν = π

ν⊥(Qν). Letting ε → 0+ and
recalling that ∇x⊥ν ψ(0) = 0, we obtain

(4.16) lim sup
ε→0+

|Dwε,ν,Γ|(εQν)
εN−1

≤ |u+ − u−|+ cδ .

Let us now fix j ∈ IN and assume, in order to fix the ideas, that 0 ∈ Jf∞(·,νj) and νf∞(·,νj)(0) =
νu(0). We approximate wε,ν,Γ with the functions un

ε,ν,j(x) = φε(x)un
ε,j(x) + (1 − φε(x))un

ε,ν(x),
where

un
ε,ν(x) :=





u+ if 〈x, ν〉 ≥ 0,

(u+ − u−)
n

ε
〈x, ν〉+ u+ if −ε/n ≤ 〈x, ν〉 ≤ 0,

u− if 〈x, ν〉 ≤ −ε/n .

and

(4.17) un
ε,j(x) :=





u+ if xνj ≥ ψj(x⊥νj
),

(u+ − u−)
n

ε
[xνj − ψj(x⊥νj

)] + u+ if ψj(x⊥νj
)− ε/n ≤ xνj ≤ ψj(x⊥νj

),

u− if xνj ≤ ψj(x⊥νj
)− ε/n .

It will be clear from the rest of the proof that, when 0 ∈ Jf∞(·,νj) and νf∞(·,νj)(0) = −νu(0), the
argument below still works if we define

(4.18) un
ε,j(x) :=





u+ if xνj ≥ ψj(x⊥νj
) + ε/n,

(u+ − u−)
n

ε
[xνj − ψj(x⊥νj

)] + u− if ψj(x⊥νj
) ≤ xνj ≤ ψj(x⊥νj

) + ε/n,

u− if xνj ≤ ψj(x⊥νj
)

and that, when 0 ∈ Ω \ Sf∞(·,νj), any of the two possible choices (4.17), (4.18) would make
the argument work. Notice, however, that in all three cases in the definition of un

ε,ν remains
unchanged.
The functions un

ε,ν , u
n
ε,j belong to W 1,1(εQν) and ‖un

ε,ν−wν‖L1(εQν) → 0, ‖un
ε,j−wΓ‖L1(εQν) → 0,

hence ‖un
ε,ν,j − wε,ν,Γ‖L1(εQν) → 0, as n → +∞. Therefore, by the lower semicontinuity of F ,
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(2.8), (2.6), we have that for all ε > 0 and j sufficiently large,

F (wε,ν,Γ, εQν)
εN−1

≤ lim inf
n→+∞

1
εN−1

∫

εQν

f(x,∇un
ε,ν,j) dx

≤ lim inf
n→+∞

1
εN−1

[∫

ε(1−δ)Qν

f(x,∇un
ε,j) dx + Λ

∫

εQν

[
|∇φε||un

ε,j−un
ε,ν |+ 1

]
dx

+Λ
∫

εQν\ε(1−δ)Qν

(
φε|∇un

ε,j |+ (1− φε)|∇un
ε,ν |

)
dx

]

≤ lim inf
n→+∞

[
−
∫

εQνj

εf(x,∇un
ε,j) dx +

c

δ
−
∫

εQν

|un
ε,j−un

ε,ν | dx

]
+ cε + cδ

≤ lim inf
n→+∞ −

∫

εQνj

[
f∞(x, ε∇un

ε,j) + εf(x, 0)
]
dx +

c

δ
−
∫

εQν

|wΓ − wν | dx + cε + cδ

≤ lim inf
n→+∞ −

∫

εQνj

f∞(x, ε∇un
ε,j) dx +

c

δ
‖∇x⊥ν ψ‖L∞(εQ⊥ν ) + cε + cδ ,

where the last inequality −∫εQν
|wΓ − wν | dx ≤ c‖∇x⊥ν ψ‖L∞(εQν) is obtained as in (4.15). Letting

ε → 0+, we obtain

(4.19) lim sup
ε→0+

F (wε,ν,Γ, εQν)
εN−1

≤ lim sup
ε→0+

lim inf
n→+∞ −

∫

εQνj

f∞(x, ε∇un
ε,j) dx + cδ ,

where we have used the equality ∇x⊥ν ψ(0) = 0. Moreover, by the Lipschitz continuity of f∞(x, ·),
we get, setting ψ̂j(x) = ψj(x− 〈x, νj〉νj),

lim sup
ε→0+

lim inf
n→+∞ −

∫

εQνj

f∞(x, ε∇un
ε,j) dx(4.20)

≤ (u+−u−) lim sup
ε→0+

lim inf
n→+∞ −

∫

εQ⊥νj

[
n

ε

∫ ψj(x
⊥
νj

)

ψj(x⊥νj
)−ε/n

f∞(x⊥νj
, xνj , νj−(∇xψ̂j)(x⊥νj

, xνj ))dxνj

]
dx⊥νj

≤ (u+ − u−) lim sup
ε→0+

lim inf
n→+∞ −

∫

εQ⊥νj

[
n

ε

∫ ψj(x
⊥
νj

)

ψj(x⊥νj
)−ε/n

f∞(x⊥νj
, xνj , νj) dxνj

]
dx⊥νj

+c lim sup
ε→0+

−
∫

εQ⊥νj

|∇x⊥νj
ψj(x⊥νj

)| dx⊥νj

≤ (u+ − u−) lim sup
ε→0+

lim inf
n→+∞ −

∫

εQ⊥νj

[
n

ε

∫ ψj(x
⊥
νj

)

ψj(x⊥νj
)−ε/n

f∞(x⊥νj
, xνj , νj) dxνj

]
dx⊥νj

+c lim sup
ε→0+

‖∇x⊥νj
ψj‖L∞(εQ⊥νj

)

≤ (u+−u−) lim sup
ε→0+

lim inf
n→+∞ −

∫

εQ⊥νj

[
n

ε

∫ ψj(x
⊥
νj

)

ψj(x⊥νj
)−ε/n

f∞(x⊥νj
, xνj , νj)dxνj

]
dx⊥νj

+ c|∇x⊥νj
ψj(0)| ,

where Q⊥
νj

= πν⊥j
(Qνj ). Notice that, by Lemma 2.1 we have that, for HN−1-a.e. x⊥νj

∈ εQ⊥
νj

,

lim
n→+∞

n

ε

∫ ψj(x
⊥
νj

)

ψj(x⊥νj
)−ε/n

f∞(x⊥νj
, xνj , νj) dxνj
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=





f̃∞(x⊥νj
, ψj(x⊥νj

), νj) if (x⊥νj
, ψj(x⊥νj

))∈Ω\Jf∞(·,νj)

(f∞)−(x⊥νj
, ψj(x⊥νj

), νj) if (x⊥νj
, ψj(x⊥νj

))∈Jf∞(·,νj), 〈νj , νf∞(·,νj)(x
⊥
νj

, ψj(x⊥νj
))〉 > 0

(f∞)+(x⊥νj
, ψj(x⊥νj

), νj) if (x⊥νj
, ψj(x⊥νj

))∈Jf∞(·,νj), 〈νj , νf∞(·,νj)(x
⊥
νj

, ψj(x⊥νj
))〉 < 0 .

In any case, (2.3) and the assumption that ν and νΓ(x) have the same orientation, yield

lim
n→+∞

n

ε

∫ ψj(x
⊥
νj

)

ψj(x⊥νj
)−ε/n

f∞(x⊥νj
, xνj , νj) dxνj =

(
f∞(·, νj)

)−
Γ
(x⊥νj

, ψj(x⊥νj
)) ,

for HN−1-a.e. x⊥νj
∈ εQ⊥

νj
. Therefore, by the dominated convergence theorem, we get

lim sup
ε→0+

lim inf
n→+∞ −

∫

εQ⊥νj

(u+ − u−)

[
n

ε

∫ ψj(x
⊥
νj

)

ψj(x⊥νj
)−ε/n

f∞(x⊥νj
, xνj , νj) dxνj

]
dx⊥νj

(4.21)

= lim sup
ε→0+

−
∫

εQ⊥νj

(u+ − u−) lim
n→+∞

[
n

ε

∫ ψj(x
⊥
νj

)

ψj(x⊥νj
)−ε/n

f∞(x⊥νj
, xνj , νj) dxνj

]
dx⊥νj

= lim sup
ε→0+

−
∫

εQ⊥νj

(u+ − u−)
(
f∞(·, νj)

)−
Γ
(x⊥νj

, ψj(x⊥νj
)) dx⊥νj

.

Recalling that Γ∩ εQνj can be parametrized by
(
x⊥νj

, ψj(x⊥νj
)
)
, x⊥νj

∈ εQ⊥
νj

, that 0 is a Lebesgue

point for
(
f∞(·, νj)

)−
Γ
, that 0 ∈ Jf∞(·,νj) and νf∞(·,νj)(0) = νu(0) = νΓ(0), we obtain, recalling

(2.2) and (2.3),

lim sup
ε→0+

−
∫

εQ⊥νj

(u+ − u−)
(
f∞(·, νj)

)−
Γ
(x⊥νj

, ψj(x⊥νj
)) dx⊥νj

(4.22)

= lim sup
ε→0+

1
εN−1

∫

εQ⊥νj

(u+ − u−)




(
f∞(·, νj)

)−
Γ
(x⊥νj

, ψj(x⊥νj
))√

1 + |∇x⊥νj
ψj |2

√
1 + |∇x⊥νj

ψj |2

 dx⊥νj

= lim
ε→0+

(
−
∫

εQ⊥νj

√
1 + |∇x⊥νj

ψj |2dx⊥νj

)
−

∫

Γ∩εQνj

(u+−u−)

(
f∞(·, νj)

)−
Γ
(x)√

1 + |∇x⊥νj
ψj |2

dHN−1(x)




=
(√

1 + |∇x⊥νj
ψj(0)|2

) 
(u+ − u−)

(
f∞(·, νj)

)−
Γ
(0)√

1 + |∇x⊥νj
ψj(0)|2




= (u+ − u−)(f∞)−(0, νj) = (u+ − u−)f∞(0, νj) ,

where the last equality follows from the fact that 0 6∈ ∪jNνj and each Nνj is defined as in (4.7).
By (4.13), (4.14), (4.16), (4.19)–(4.22), we obtain

dF (u, ·)
dHN−1bJu

(0) + |u+ − u−| ≤ (u+ − u−)f∞(0, νj) + c|∇x⊥νj
ψj(0)|+ cδ + |u+ − u−| .

Therefore, taking into account the Lipschitz continuity of f∞ with respect to the last variable
and recalling that ∇x⊥νj

ψj(0) → ∇x⊥ν ψ(0) = 0, letting first j → +∞ and then δ → 0+, we get

dF (u, ·)
dHN−1bJu

(0) + |u+ − u−| ≤ (u+ − u−)f∞(0, νu) + |u+ − u−| .

Hence, the assertion follows.
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We are now in position to give the proof of Theorem 4.3.

Proof of Theorem 4.3. Taking into account [19, Theorem 1.3, part (i)] and Propositions 4.4,
4.5, we obtain the assertion for any function u ∈ BV(Ω) and any A ∈ A(Ω).

4.3. The proof of the relaxation result. Thanks to the results obtained in previous sections,
we are now able to give the proof of the relaxation Theorem 1.1.

Proof of Theorem 1.1. Let us start by observing that since for every ξ ∈ IRN the functions
f(·, ξ) and f−(·, ξ) agree LN -a.e. in Ω, then it is easily checked that for every summable function
z : Ω → IRN ∫

Ω
f(x, z(x)) dx =

∫

Ω
f−(x, z(x)) dx .

Therefore, denoting by F the functional in (1.7), we may replace f by f− in the first integral
without affecting the value of the functional.
By Theorem 2.6 f−(·, ξ) is C1-quasi lower semicontinuous for all ξ. Therefore inequality F (u) ≥
F(u) follows at once by applying Theorem 3.1 to a−(x)p(ξ) (if (1.4) holds) or Theorem 3.6 to
f−(x, ξ) (if (1.5) or (1.6) are in force).
The opposite inequality F(u) ≥ F (u) follows by applying Theorem 4.3 to f− and observing that
(4.7) is always satisfied if (1.4) or (1.5) holds.
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